JP2014227911A - 発電プラント - Google Patents

発電プラント Download PDF

Info

Publication number
JP2014227911A
JP2014227911A JP2013108219A JP2013108219A JP2014227911A JP 2014227911 A JP2014227911 A JP 2014227911A JP 2013108219 A JP2013108219 A JP 2013108219A JP 2013108219 A JP2013108219 A JP 2013108219A JP 2014227911 A JP2014227911 A JP 2014227911A
Authority
JP
Japan
Prior art keywords
temperature
intake
power generation
generation unit
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013108219A
Other languages
English (en)
Other versions
JP5632041B1 (ja
Inventor
哲弘 笹村
Tetsuhiro Sasamura
哲弘 笹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2013108219A priority Critical patent/JP5632041B1/ja
Application granted granted Critical
Publication of JP5632041B1 publication Critical patent/JP5632041B1/ja
Publication of JP2014227911A publication Critical patent/JP2014227911A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Turbines (AREA)

Abstract

【課題】取水温度が急激に低下した場合でも、取排水温度差が規制値を超えないようにし、かつ、取水口から取水した海水が復水器を経て排水口に到達するまでの所要時間を考慮した、発電部の出力制御を行うことができる発電プラントを提供する。
【解決手段】蒸気タービンにより発電を行う発電部と、復水器と、取水された海水を復水器に送水して海に排水する海水系統部と、取水温度が温度低下した場合で、かつ、取排水温度差が規制値外になると予測される場合、前記所要時間に、取排水温度差が規制値内に収まるように、発電部の出力を制御する制御部とを備える。
【選択図】図4

Description

本発明は、蒸気タービンにより所定の電力の発電を行う発電部と、蒸気タービンで発生した蒸気を復水する復水器と、海に面する取水口から取水された海水を復水器に送水して排水口から海に排水する海水系統部と、取水口における海水温度(以下、「取水温度」という)が急激に低下して、排水口における海水の温度(以下、「排水温度」という)との差(以下、「取排水温度差」という)が環境規制値(以下、単に「規制値」という場合がある)外になりそうな場合に発電部の出力を制御する制御部とを備えた発電プラントに関する。
一般に、蒸気タービンにより発電を行う発電部を備えた発電プラントにおいては、蒸気タービンを運転させて仕事をした蒸気は、復水器によって一旦水に戻される。復水器は、蒸気を水へ戻す冷却水として、海に面する取水口から取水した海水を使用し、海水と蒸気との間で熱交換させた後、温度上昇した海水を排水口から海に排水している(いわゆる温排水)。
このように温度上昇した海水を排水するため、取排水温度差について、例えば、ある自治体と結んだ公害防止協定では、日平均7℃以下、瞬時10℃以下となるように定められている。
このため、取排水温度差が上述した環境規制値(日平均7℃以下、瞬時10℃以下)内に収まるように、発電部の出力を制御する発電プラントが従来より開発されている。例えば、取排水温度差と発電部の出力との相関関係に着目し、取排水温度差が7℃以下であって、その計測時の温度差が以前の計測時より低くなる傾向のときに、発電部の出力値を現状より高い値に設定し、低くなる傾向でないときに発電部の出力値を現状維持にする。また、取排水温度差が7℃以上であって、その計測時の温度差が以前の計測時より高くなる傾向のときに、発電部の出力を現状より低い値に設定し、高くなる傾向でないときに現状維持にするものが知られている(特許文献1参照)。
特開2010−24871号公報
しかしながら、前記公報の発電プラントは、取水温度が安定している場合を想定しており、かつ、日平均7℃以下を主として発電部の出力を制限しているので、取水温度が急激に低下した場合は想定していない。具体的に説明すると、例えば、冬季(11月〜2月)において、風速・気温・波高等の条件により、取水温度が急激に低下(2〜3℃)して、取排水温度差が大幅に拡大した場合、前記公報の発電プラントは対応できない。
また、前記公報の発電プラントは、取水温度と、取水温度を測定した時点での排水温度との差をリアルタイムで計算した取排水温度差を使用しているため、取水口から取水した海水が復水器を経て排水口に到達するまでの所要時間(例えば、ある発電所では約18分間)は考慮されていない。海水が排水口に到達した時において、取排水温度差が規制値内に収まるように、発電部の出力を制御する必要がある。このような対策は、前記公報の発電プラントは備えていない。
そこで、本発明は、上記課題に鑑み、取水温度が急激に低下した場合でも、取排水温度差が規制値を超えないようにし、かつ、取水口から取水した海水が復水器を経て排水口に到達するまでの所要時間を考慮した、発電部の出力制御を行うことができる発電プラントを提供することを目的とする。
本発明に係る発電プラントは、蒸気タービンにより所定の電力の発電を行う発電部と、蒸気タービンで発生した蒸気を復水する復水器と、海に面する取水口から取水された海水を復水器に送水して排水口から海に排水する海水系統部と、取水温度が低下した場合で、かつ、取水温度と排水温度との差である取排水温度差が規制値外になると予測される場合において、前記海水が取水口から復水器を通って排水口に到達するまでの間に、前記取排水温度差が規制値内に収まるように、前記発電部の出力を降下させる制御部とを備えたことを特徴とする。
かかる構成によれば、海水が排水口に到達するまでの間に、取排水温度差が規制値内に収まるように、発電部の出力を降下させる制御が行われるので、取水温度が低下しても、取排水温度差が規制値外となることが防止される。
また、本発明に係る発電プラントの一態様として、前記制御部は、取水温度、排水温度、取水温度と排水温度との差である取排水温度差、復水器入口温度を測定する測定部と、前記取排水温度差を規制値内に許容させるための目標取排水温度差、前記海水が取水口から復水器を通って排水口に到達するのに要する海水到達所要時間、発電部の出力制御開始時点から排水温度降下の開始時点に要する排水温度降下開始所要時間が、オペレータによって入力設定される入力設定部と、低下した取水温度と前記目標取排水温度差とから目標排水温度が演算によって設定される演算設定部とを備えるような構成を採用することもできる。
この場合、目標排水温度が、容易にかつ精度よく求められる。
また、本発明に係る発電プラントの他態様として、前記制御部は、蓄積されたデータから導き出される、復水器入口温度と、発電部が高出力で稼働している場合の排水温度との第1の相関関係における現時点の復水器入口温度の点座標と、蓄積されたデータから導き出される、復水器入口温度と、発電部が低出力で稼働している場合の排水温度との第2の相関関係における現時点の復水器入口温度の点座標とを結んで基準グラフを作成し、前記演算設定部で設定される目標排水温度に基づいて、基準グラフから目標発電部出力を求めるような構成を採用することもできる。
この場合、目標発電部出力が、容易にかつ精度よく求められる。
さらには、前記制御部は、前記基準グラフにおいて、現時点の排水温度および発電部の出力に基づいて、前記第1の相関関係における前記点座標を補正するとともに、当該補正した点座標と、前記第2の相関関係における前記点座標とを結んで補正グラフを作成し、前記演算設定部で設定される目標排水温度に基づいて、補正グラフから目標発電部出力を求めるような構成を採用することもできる。
この場合、目標発電部出力が、容易にかつさらに精度よく求められる。
また、本発明に係る発電プラントの他態様として、前記制御部は、低下した取水温度が測定された時点の発電部出力が前記目標発電部出力に降下するまでに要する目標発電部出力到達所要時間、および、低下した取水温度が測定された時点の排水温度が前記目標排水温度に降下するまでに要する目標排水温度到達所要時間と、前記排水温度降下開始所要時間および前記海水到達所要時間とに基づいて求められる、低下した取水温度が測定された時点から発電部の出力制御開始時点に要する発電部出力制御開始所要時間が演算される時間演算部を備えるような構成を採用することもできる。
この場合、目標発電部出力到達所要時間、目標排水温度到達所要時間、発電部出力制御開始所要時間が、容易にかつ精度よく求められる。
また、本発明に係る発電プラントの他態様として、前記制御部は、発電部出力制御開始所要時間内において、目標取排水温度差が設定値内であるか否かを判定するとともに、目標取排水温度差が設定値内にある場合は、発電部の出力降下制御を中止するような構成を採用することもできる。
この場合、発電部出力制御開始所要時間内において、目標取排水温度差が設定値内であるか否かを判定するとともに、目標取排水温度差が瞬時的に設定値外であっても、発電部出力制御開始所要時間内において、目標取排水温度差が設定値内にある場合は、発電部の出力降下制御を行わない。すなわち、環境に適した精度の高い発電部の出力降下制御が行われる。
また、本発明に係る発電プラントの他態様として、前記制御部は、目標発電部出力到達所要時間内において、発電部の出力が所定値以上の場合、固定値で出力降下するように制御し、発電部の出力が前記所定位置よりも低くなった場合、自動的に設定される設定値で出力降下するように制御するような構成を採用することもできる。
この場合、発電部に対して支障をきたすことなく、発電部の出力が精度よく降下されるようになる。
また、本発明に係る発電プラントの他態様として、前記制御部は、発電部の出力、取排水温度差、復水器入口温度、排水温度で構成される基準データと、目標発電部出力、目標取排水温度差、目標排水温度で構成される運用目標データとを表示する表示部を備えるような構成を採用することもできる。
この場合、オペレータは、基準データによって現時点での発電プラントの状態を把握できると共に、運用目標データによって発電部出力および排水温度の制御内容を把握することができる。
本発明によれば、海水温度が低下した場合でも、取排水温度差が規制値を超えないようにし、かつ、取水口から取水した海水が復水器を経て排水口に到達するまでの所要時間(遅延時間)を考慮した、発電部の出力制御を行うことができる。
本発明の一実施形態に係る発電プラントの概略構成図。 同実施形態に係る発電プラントの制御部のハードウエアの構成を示すブロック図。 同実施形態に係る発電プラントの制御部の機能を示す機能ブロック図。 同実施形態に係る発電プラントの制御内容を示す図であり、海水が取水口から復水器を通って排水口へ到達するまでの間に、発電部の出力降下制御によって、排水温度が降下して、取排水温度差が規制値内に収まる状態を示す図。 (a)は、同実施形態に係る発電プラントの制御部で作成される基準グラフを示す図、(b)は、同実施形態に係る発電プラントの制御部で作成される補正グラフを示す図。 同実施形態に係る発電プラントの表示部を示す図。 同実施形態に係る発電プラントの制御部で行われる第1段階の制御フローを示す図。 同実施形態に係る発電プラントの制御部で行われる第2段階の制御フローを示す図。 同実施形態に係る発電プラントの制御部で行われる第3段階の制御フローを示す図。
本発明の一実施形態に係る発電プラントについて図1〜図9(a),(b)を参照しながら説明する。本実施形態に係る発電プラント1は、図1に示すように、発電部2と、復水器3と、海水系統部4と、制御部5とを備えている。
発電部2は、蒸気タービン(図示せず)により所定の電力の発電を行う。
復水器3は、蒸気タービンで発生した蒸気を復水する。
海水系統部4は、取水口40から復水器3の入口に接続される入口側流路4aと、復水器3の出口から排水口41に接続される出口側流路4bとを備えている。そして、入口側流路4aによって、取水口40から取水された海水を復水器3に送水し、出口側流路4bによって、復水器3から排水口41に送水する。
入口側流路4aには、復水器入口弁42と、復水器3の入口における海水の温度(以下、「復水器入口温度」という)を測定する復水器入口温度センサT1とが設けられている。また、復水器出口側流路4bには、復水器出口弁43と、復水器3の出口における海水の温度(以下、「復水器出口温度」という)を測定する復水器出口温度センサT2が設けられている。
また、取水口40には、該取水口40における海水の温度(取水温度)を測定する取水口温度センサT3が設けられている。また、排水口41には、該排水口41における海水の温度(排水温度)を測定する排水口温度センサT4が設けられている。そして、復水器入口温度センサT1、復水器出口温度センサT2、取水口温度センサT3および排水口温度センサT4は、制御部5に接続されて、測定された温度データが制御部5に送信されるようになっている。
制御部5は、図2に示すように、CPU(Central Processing Unit)50、内部メモリ51、操作部52、表示部53、I/Oコントローラ54、機器接続用インターフェース55および通信I/F58がバスライン56により接続されて構成されている。
CPU50は、内部メモリ51に記憶された各種プログラムを適宜読み出して実行することにより、所要の制御を実現している。内部メモリ51は、適宜読み出して実行されるプログラムを記憶し、プログラムの実行によって作成される種々の情報を記憶する。
操作部52は、各種設定や入力操作を行うキーボードや操作ボタン等を備えており、操作部52による入力情報はCPU50の制御によって処理される。すなわち、オペレータは、操作部52を介して、必要な各種の設定操作、または、指定操作等が行える。
I/Oコントローラ54には、ハードディスク等で構成される外部記憶部57を接続することができる。外部記憶部57は、制御部5のプログラムを記憶している。さらに、外部記憶部57は、各種の温度センサT1〜T4による温度データ、発電部2の出力値、操作部52により入力される設定値、演算される設定値等が記憶される。
機器接続用インターフェース55は、制御部5と、各種の温度センサT1〜T4とを接続し、各種の温度センサT1〜T4により測定された温度データを受信できるようにするためのインターフェースである。
通信I/F58は、制御部5を専用ネットワークまたは公共ネットワークを介して他のサーバ(図示せず)等と接続できるようにするためのネットワーク・アダプタである。
そして、制御部5は、取水温度が急激に低下した場合で、かつ、取水温度と排水温度との差(取排水温度差)が規制値外になると予測される場合において、海水が取水口40から復水器3を通って排水口41に到達するまでの間に、取排水温度差が規制値内に収まるように、発電部2の出力が降下するように構成されている。具体的に説明すると、制御部5は、図3に示すように、測定部500と、入力設定部501と、演算設定部502と、時間演算部503と、第1時間配分設定部504と、第2時間配分設定部505とを備えている。
測定部500は、復水器入口温度、復水器出口温度、取水温度および排水温度の各温度データを取得する。具体的に説明すると、測定部500は、復水器入口温度センサT1から復水器入口温度の温度データを取得し、復水器出口温度センサT2から復水器出口温度の温度データを取得し、取水口温度センサT3から取水温度の温度データを取得し、排水口温度センサT4から排水温度の温度データを取得する。
入力設定部501は、取排水温度差を規制値内に許容させるための目標取排水温度差、海水が取水口40から復水器3を経て排水口41に到達するのに要する海水到達所要時間t0、発電部2の出力制御開始時点から排水温度降下の開始時点に要する排水温度降下開始所要時間t3を、オペレータによる操作部52のキーボードなどを用いた入力によって設定する。
演算設定部502は、取水口温度センサT3により測定される取水温度と、排水口温度センサT4により測定される排水温度との差である取排水温度差、および、急激に低下した取水温度と前記目標取排水温度差とから目標排水温度を演算して設定する。
時間演算部503は、図4に示すように、急激に低下した取水温度が測定された時点の発電部2の出力が後述する目標発電部出力に降下するまでに要する目標発電部出力到達所要時間t1、および、急激に低下した取水温度が測定された時点の排水温度が前記目標排水温度に降下するまでに要する目標排水温度到達所要時間t2を演算するとともに、これらと前記海水到達所要時間t0および前記排水温度降下開始所要時間t3とに基づき、急激に低下した取水温度が測定された時点から発電部出力の制御開始時点に要する発電部出力制御開始所要時間t4を演算する。
第1時間配分設定部504は、図4に示すように、前記発電部出力制御開始所要時間t4、前記排水温度降下開始所要時間t3、前記目標排水温度到達所要時間t2を、前記海水到達所要時間t0内に収まるように時間配分する。
第2時間配分設定部505は、図4に示すように、前記発電部出力制御開始所要時間t4および前記目標発電部出力到達所要時間t1を、前記海水到達所要時間t0から前記排水温度降下開始所要時間t3を差し引いた時間内に収まるように時間配分する。
したがって、第1時間配分設定部504によって、発電部出力制御開始所要時間t4、排水温度降下開始所要時間t3、目標排水温度到達所要時間t2が、海水到達所要時間t0内に収まるように時間配分されるので、排水温度の降下制御を海水到達所要時間t0内で完結させることができる。また、第2時間配分設定部505によって、発電部出力制御開始所要時間t4および目標発電部出力到達所要時間t1が、海水到達所要時間t0から排水温度降下開始所要時間t3を差し引いた時間内に収まるように時間配分されるので、発電部出力降下制御を海水到達所要時間t0内で完結させることができる。
また、制御部5は、図9に示す制御フローS3によって、発電部出力制御開始所要時間t4内において、目標取排水温度差が設定値内であるか否かを判定する。この判定によって、目標取排水温度差が設定値内にある場合、発電部出力降下制御を中止するようにしている。すなわち、発電部出力制御開始所要時間t4内において、目標取排水温度差が設定値内に収まる場合は、発電部2の出力降下制御を行わない。つまり、環境に適した精度の高い発電部2の出力降下制御が行われる。
また、制御部5は、図4に示すように、目標発電部出力到達所要時間t1内で、発電部2の出力が所定値(例えば、310MW)以上である時間t10において、固定値(例えば、3MW/min)で出力降下するように制御し、発電部2の出力が前記所定値よりも低くなる時間t11において、AFC(系統全体の目標周波数を自動制御する装置)によって自動的に設定される設定値(例えば、8MW/min)で出力降下するように制御する。このように制御することで、発電部2に対して支障をきたすことなく、発電部2の出力が精度よく目標値に降下されるようになる。
ここで、取排水温度差と発電部2の出力との関係について説明する。取排水温度差は、発電部2の出力に対してある一定の関係がある。例えば、発電部2の出力の増減は、蒸気タービンへ流入する蒸気の増減に関係し、復水器3で冷却される蒸気の増減に関係する。また、復水器3で冷却される蒸気の増減は、海水との熱交換量の増減に関係し、取排水温度差の高低に関係する。なお、本実施形態においては、取水温度の変化に関わらず、復水器入口温度が安定しているので、復水器入口温度をグラフ作成時のパラメータとして使用する。
さらに、制御部5は、図3に示すように、発電部2の出力と相関関係のある取水温度と、排水温度と、復水器入口温度と、復水器出口温度とを記憶している。すなわち、制御部5は、第1温度記憶手段としての第1温度データベース506と、第2温度記憶手段としての第2温度データベース507とを備えている。
第1温度データベース506は、発電部2が低出力(例えば、175MW)で稼動している場合に測定された取水温度と、排水温度と、復水器入口温度と、復水器出口温度とを対応付けて定期的に記憶して蓄積している。
第2温度データベース507は、発電部2が高出力(例えば、310MW)で稼動している場合に測定された取水温度と、排水温度と、復水器入口温度と、復水器出口温度とを対応付けて定期的に記憶して蓄積している。
そして、制御部5は、図3に示すように、上述した相関関係と、温度に関するデータベースとに基づいて、発電部2の出力の基準グラフAを作成する基準グラフ作成部508と、現時点の排水温度および発電部2の出力に基づいて基準グラフAを補正して、入力設定部501で設定された目標排水温度に基づいて目標発電部出力を求めるための補正グラフBを作成する補正グラフ作成部509とを備えている。
基準グラフAは、図5(a)に示すように、蓄積されたデータから導き出される、復水器入口温度と、発電部2が高出力(本実施形態では、310MW)で稼働している場合の排水温度との相関関係(第1の相関関係)における、現時点の復水器入口温度の点座標と、蓄積されたデータから導き出される、復水器入口温度と、発電部2が低出力(本実施形態では、175MW)で稼働している場合の排水温度との相関関係(第2の相関関係)における、現時点の復水器入口温度の点座標とを結んで作成される。
補正グラフBは、図5(b)に示すように、基準グラフAにおいて、現時点の排水温度および発電部2の出力に基づいて、第1の相関関係における前記点座標を補正するとともに、該補正した点座標と、第2の相関関係における前記点座標とを結んで作成される。
また、制御部5は、上述したように、測定部500で測定された温度、制御部5によって制御される温度データや発電部出力データなどが表示される表示部53を備えている。該表示部53は、図6に示すように、基準データと、運用目標データとを表示する。基準データは、発電部2の出力、取排水温度差、取水温度、復水器入口温度、排水温度、海水到達所要時間で構成される。運用目標データは、目標発電部出力、目標取排水温度差、低下後の取水温度、負荷(発電部出力)変化率、目標発電出力到達所要時間、目標排水温度、発電部出力制御開始所要時間で構成される。そして、表示部53に、基準データと運用目標データとが表示されることで、オペレータは、基準データによって現時点での発電プラント1の状態を把握できるとともに、運用目標データによって発電部2の出力および排水温度の制御内容を把握することができる。
つぎに制御部5における発電部2の出力制御について図7〜図9を参照して説明する。なお、本実施形態においては、冬季において、取水口温度センサT3によって、取水温度が急激に2〜3℃低下したことを例にとって説明する。また、制御部5においては、第1温度データベース506から、発電部2の出力が高出力時(例えば、310MW)における各種温度センサ(復水器入口温度センサT1、復水器出口温度センサT2、取水口温度センサT3、排水口温度センサT4)による測定温度データが取得されるとともに、第2温度データベース507から、発電部2の出力が低出力時(例えば、175MW)における各種温度センサT1〜T4による測定温度データが取得されているものとする。そして、内部メモリ51において、これらの温度データを、発電部2の出力に対応付けて記憶されているものとする。
まず、制御部5における制御フローについて説明する。該制御フローは、第1段階〜第3段階の制御フローで構成される。
第1段階の制御フローS1は、図7に示すように、取水温度が急激に低下したことを検知するステップS10と、検知信号に基づいて、オペレータに対して警報が発信されるステップS11と、警報によって、オペレータが通常運転から出力降下制御運転に切り替えるステップS12,S13とが行われる。
第2段階の制御フローS2は、図8に示すように、基準グラフAを作成するステップS20と、補正グラフBを作成するステップS21と、基準グラフAおよび補正グラフBに基づいて、目標発電部出力を求めるステップS22とで構成される。
第3段階の制御フローS3は、図9に示すように、発電部2の出力降下制御を開始するステップS30と、基準データと運用目標データとが表示部に表示されるステップS31と、測定された取水温度が表示されるステップS33と、目標排水温度が演算されるステップS34と、目標発電部出力と目標排水温度とが表示部に表示されるステップS35と、時間配分されるステップS36,S37,S38と、目標排水温度差を判定するステップS39,発電部2の出力降下制御が中止されるステップS390とで構成される。
以下、第1段階〜第3段階の制御フローS1〜S3にしたがって説明する。まず、第1段階の制御フローS1において、取水口温度センサT3によって、取水温度が急激に2〜3℃低下したことが検知された場合(ステップS10)、オペレータに対して、音声や光によって、発電部2の出力降下制御を行うための警報を発信する(ステップS11)。
そして、警報を受けたオペレータは、操作部52において発電部出力降下制御モードを選択する(ステップS12)。この操作によって、通常運転から発電部出力降下制御運転に切り替えられる(ステップS13)。
つぎに、第2段階の制御フローS2に移行する。図5(a)に示すように、前記第1の相関関係における現時点の復水器入口温度の点座標と、前記第2の相関関係における現時点の復水器入口温度の点座標とを結んで、基準グラフAを作成する(ステップS20)。
つぎに、図5(b)に示すように、作成した基準グラフAにおいて、現時点の排水温度および発電部2の出力に基づいて、第1の相関関係における前記点座標を補正するとともに、該補正した点座標と、第2の相関関係における前記点座標とを結んで補正グラフBを作成する(ステップS21)。そして、補正グラフBにおいて、目標排水温度「17.5℃」に基づいて、目標発電部出力を求める(ステップS22)。
つぎに、第3段階の制御フローS3、すなわち、発電部2の出力降下制御運転が開始される(ステップS30)と、現時点での発電部2の出力、取排水温度差、復水器入口温度、排水温度で構成される基準データと、目標発電部出力、目標取排水温度差、目標排水温度で構成される運用目標データとが表示部53に表示される(ステップS31)。例えば、図6に示すように、基準データとして、発電部出力表示欄に「320MW」が表示され、取排水温度差表示欄に「8.4℃」が表示され、取水温度表示欄に「10℃」が表示され、復水器入口温度表示欄に「11.1℃」が表示され、排水温度表示欄に、実温「18.4℃」と、計算値の温度「17.7℃」とが表示される。また、海水到達所要時間表示欄に「18min」が表示される。一方、運用目標データとして、運用目標データの取水温度表示欄に「8℃」と表示される。なお、運用目標データの目標発電部出力、目標取排水温度差、目標排水温度の表示欄は空白になっている。
なお、基準データは、上述した機器接続用インターフェース55によって、各種温度センサT1〜T4の測定温度データが制御部5に送信されて、表示部53に表示される。また、基準データにおける海水到達所要時間t0および排水温度降下開始所要時間t3については、いずれも発電プラント1の流路長によって決定されるので、オペレータによって予め入力されており、内部メモリ51に記憶されているものとする。また、目標運用データの目標取排水温度差は、オペレータによって入力設定されるものとする。但し、表示部53の取水温度表示欄に表示される取水温度「8℃」は、取水口温度センサT3に検知された時点で表示されるものとする。
そして、取水温度が2℃低下した場合、オペレータは、表示部53の運用目標データに表示された取水温度が「8℃」であることを確認する(ステップS32)。一方、表示された取水温度に対して、取排水温度差が規制値内に収まるように、目標運用データの目標取排水温度差表示欄に「Δ9.5℃」と入力設定する(ステップS33)。入力設定された目標取排水温度差は表示部53の目標取排水温度差表示欄に表示される(図6参照)。
つぎに、目標運用データの目標取排水温度差「Δ9.5℃」が入力設定されると、演算設定部502において、運用目標データの取水温度「8℃」と目標取排水温度差「Δ9.5℃」とから目標排水温度「17.5℃」が求められる(ステップS34)。そして、第2段階の制御フローS2で求められた、目標排水温度「17.5℃」に応じた目標発電部出力「283MW」が、図6に示すように、表示部53に運用目標データに表示される(ステップS35)。
つぎに、時間演算部503において、目標発電部出力到達所要時間t1、および、目標排水温度到達所要時間t2と、排水温度降下開始所要時間t3および海水到達所要時間t0とに基づいて、発電部出力制御開始所要時間t4が演算される(ステップS36)。なお、演算された所要時間のうち、目標発電部出力到達所要時間t1「6.8min」および発電部出力制御開始所要時間t4「4.1min」のみが、表示部53の運用目標データに表示される。また、目標排水温度到達所要時間t2と、目標発電部出力到達所要時間t1とは同一時間になっている。また、目標排水温度到達所要時間t2と排水温度降下開始所要時間t3とが加算された時間が、排水温度降下全所要時間となる。
つぎに、第1時間配分設定部504によって、図4に示すように、発電部出力制御開始所要時間t4「4.1min」、排水温度降下開始所要時間t3「7min」、目標排水温度到達所要時間t2「6.71min」が、海水到達所要時間t0「18min」内に収まるように時間配分される(ステップS37)。
一方、第2時間配分設定部505によって、図4に示すように、発電部出力制御開始所要時間t4「4.1min」および目標発電部出力到達所要時間t1「6.8min」が、海水到達所要時間t0「18min」から排水温度降下開始所要時間t3「7min」を差し引いた時間内に収まるように時間配分される(ステップS38)。
そして、発電部出力制御開始所要時間t4「4.1min」が時間配分されると、発電部出力制御開始所要時間t4「4.1min」内において、目標取排水温度差が設定値内であるか否かを判定する(ステップS39)。この際、目標取排水温度差が設定値内であれば、発電部出力降下制御を中止する(ステップS390)。そして、図6に示す運用目標データの目標発電部出力の表示欄に「発電部出力降下制御中止」を表示する。
そして、基準グラフAおよび補正グラフBに基づいて、発電部2の出力は、発電部出力制御開始所要時間t4(4.1分)経過した時点から、目標発電部出力到達所要時間t1(6.71分間)内において、発電部出力が所定値以上(310MW以上)の場合、固定値(例えば、3MW/min)でt10(3.33分間)の間出力降下し、発電部2の出力が前記所定値よりも低くなった場合、自動的に設定される設定値(例えば、8MW/min)でt11(3.38分間)出力降下する。自動的に設定される設定値は、運用目標データの負荷変化率選択の表示欄に表示される(図6参照)。
一方、排水温度は、発電部出力制御開始所要時間t4(4.1分)経過した時点から、排水温度降下開始所要時間t3(7分間)を経て、目標排水温度到達所要時間t2(6.71分間)内において、急激に低下した取水温度が測定された時点の排水温度が目標排水温度に降下する。具体的には、0.1℃/minでt20(3.33分間)の間出力降下し、排水温度が前記所定値よりも低くなった場合、0.14℃/minでt21(3.38分間)降下する。したがって、海水が取水口40から復水器3を通って排水口41に到達するまでの間に、取排水温度差が規制値内に収まることになる。
以上、本発明に係る発電プラントによれば、海水が取水口40から復水器3を通って排水口41に到達するまでの間に、取排水温度差が規制値内に収まるように、発電部2の出力を降下させる制御が行われるので、急激に取水温度が低下しても、取排水温度差が規制値外となることが防止される。すなわち、急激に取水温度が低下した場合に対応できる、実用的な制御が発電プラント1において行われることになる。
なお、本発明に係る発電プラントは、前記実施形態に限定することなく種々変更することができる。
例えば、前記実施形態の場合、海水到達所要時間t0および排水温度降下開始所要時間t3については、いずれも流路長によって決定されるので、種々の発電プラントの構成に応じて適宜変更可能である。
また、前記実施形態の場合、取水口40の温度が急激に2℃低下した場合を例にとって説明したが、本発明の発電プラントは、低下する温度数値は任意に変更できる構成になっている。
また、前記実施形態の場合、発電部2を出力降下制御する際、AFCを利用しない場合は、排水温度の変化率は、通常の場合は、0.14℃/min×11/8とし、または、緊急の場合は、0.14℃/min×13/8とする。
1…発電プラント、2…発電部、3…復水器、4…海水系統部、4a…入口側流路、4b…出口側流路、5…制御部、40…取水口、41…排水口、42…復水器入口弁、43…復水器出口弁、51…内部メモリ、52…操作部、53…表示部、54…コントローラ、55…機器接続用インターフェース、56…バスライン、57…外部記憶部、500…測定部、501…入力設定部、502…演算設定部、503…時間演算部、504…第1時間配分設定部、505…第2時間配分設定部、506…第1温度データベース、507…第2温度データベース、508…基準グラフ作成部、509…補正グラフ作成部、A…基準グラフ、B…補正グラフ、T1…復水器入口温度センサ、T2…復水器出口温度センサ、T3…取水口温度センサ、T4…排水口温度センサ、t0…海水到達所要時間、t1…目標発電部出力到達所要時間、t2…目標排水温度到達所要時間、t3…排水温度降下開始所要時間、t4…発電部出力制御開始所要時間
本発明に係る発電プラントは、蒸気タービンにより所定の電力の発電を行う発電部と、蒸気タービンで発生した蒸気を復水する復水器と、海に面する取水口から取水された海水を復水器に送水して排水口から海に排水する海水系統部と、取水温度が低下した場合で、かつ、取水温度と排水温度との差である取排水温度差が規制値外になると予測される場合において、前記海水が取水口から復水器を通って排水口に到達するまでの間に、前記取排水温度差が規制値内に収まるように、前記発電部の出力を降下させる制御部とを備え、前記制御部は、取水温度、排水温度、取水温度と排水温度との差である取排水温度差、復水器入口温度を測定する測定部と、前記取排水温度差を規制値内に許容させるための目標取排水温度差、前記海水が取水口から復水器を通って排水口に到達するのに要する海水到達所要時間、発電部の出力制御開始時点から排水温度降下の開始時点に要する排水温度降下開始所要時間が、オペレータによって入力設定される入力設定部と、低下した取水温度と前記目標取排水温度差とから目標排水温度が演算によって設定される演算設定部とを備えたことを特徴とする。
かかる構成によれば、海水が排水口に到達するまでの間に、取排水温度差が規制値内に収まるように、発電部の出力を降下させる制御が行われるので、取水温度が低下しても、取排水温度差が規制値外となることが防止される。また、目標排水温度が、容易にかつ精度よく求められる。
また、本発明に係る発電プラントの他態様として、前記制御部は、目標発電部出力到達所要時間内において、発電部の出力が所定値以上の場合、固定値で出力降下するように制御し、発電部の出力が前記所定値よりも低くなった場合、自動的に設定される設定値で出力降下するように制御するような構成を採用することもできる。

Claims (8)

  1. 蒸気タービンにより所定の電力の発電を行う発電部と、蒸気タービンで発生した蒸気を復水する復水器と、海に面する取水口から取水された海水を復水器に送水して排水口から海に排水する海水系統部と、取水温度が温度低下した場合で、かつ、取水温度と排水温度との差である取排水温度差が規制値外になると予測される場合において、前記海水が取水口から復水器を通って排水口に到達するまでの間に、前記取排水温度差が規制値内に収まるように、前記発電部の出力を降下させる制御部とを備えたことを特徴とする発電プラント。
  2. 前記制御部は、
    取水温度、排水温度、取水温度と排水温度との差である取排水温度差、復水器入口温度を測定する測定部と、
    前記取排水温度差を規制値内に許容させるための目標取排水温度差、前記海水が取水口から復水器を通って排水口に到達するのに要する海水到達所要時間、発電部の出力制御開始時点から排水温度降下の開始時点に要する排水温度降下開始所要時間が、オペレータによって入力設定される入力設定部と、
    低下した取水温度と前記目標取排水温度差とから目標排水温度が演算によって設定される演算設定部とを備えたことを特徴とする請求項1に記載の発電プラント。
  3. 前記制御部は、
    蓄積されたデータから導き出される、復水器入口温度と、発電部が高出力で稼働している場合の排水温度との第1の相関関係における現時点の復水器入口温度の点座標と、蓄積されたデータから導き出される、復水器入口温度と、発電部が低出力で稼働している場合の排水温度との第2の相関関係における現時点の復水器入口温度の点座標とを結んで基準グラフを作成し、
    前記演算設定部で設定される目標排水温度に基づいて、基準グラフから目標発電部出力を求めるようにしたことを特徴とする請求項2に記載の発電プラント。
  4. 前記制御部は、
    前記基準グラフにおいて、現時点の排水温度および発電部の出力に基づいて、前記第1の相関関係における前記点座標を補正するとともに、当該補正した点座標と、前記第2の相関関係における前記点座標とを結んで補正グラフを作成し、
    前記演算設定部で設定される目標排水温度に基づいて、補正グラフから目標発電部出力を求めるようにしたことを特徴とする請求項3に記載の発電プラント。
  5. 前記制御部は、
    低下した取水温度が測定された時点の発電部出力が前記目標発電部出力に降下するまでに要する目標発電部出力到達所要時間、および、低下した取水温度が測定された時点の排水温度が前記目標排水温度に降下するまでに要する目標排水温度到達所要時間と、前記排水温度降下開始所要時間および前記海水到達所要時間とに基づいて求められる、低下した取水温度が測定された時点から発電部の出力制御開始時点に要する発電部出力制御開始所要時間が演算される時間演算部を備えることを特徴とする請求項1乃至4のいずれか1項に記載の発電プラント。
  6. 前記制御部は、発電部出力制御開始所要時間内において、目標取排水温度差が設定値内であるか否かを判定するとともに、目標取排水温度差が設定値内にある場合は、発電部の出力降下制御を中止することを特徴とする請求項5に記載の発電プラント。
  7. 前記制御部は、目標発電部出力到達所要時間内において、発電部の出力が所定値以上の場合、固定値で出力降下するように制御し、発電部の出力が前記所定位置よりも低くなった場合、自動的に設定される設定値で出力降下するように制御することを特徴とする請求項5又は6に記載の発電プラント。
  8. 前記制御部は、発電部の出力、取排水温度差、復水器入口温度、排水温度で構成される基準データと、目標発電部出力、目標取排水温度差、目標排水温度で構成される運用目標データとを表示する表示部を備えることを特徴とする請求項1乃至7のいずれか1項に記載の発電プラント。
JP2013108219A 2013-05-22 2013-05-22 発電プラント Active JP5632041B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013108219A JP5632041B1 (ja) 2013-05-22 2013-05-22 発電プラント

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013108219A JP5632041B1 (ja) 2013-05-22 2013-05-22 発電プラント

Publications (2)

Publication Number Publication Date
JP5632041B1 JP5632041B1 (ja) 2014-11-26
JP2014227911A true JP2014227911A (ja) 2014-12-08

Family

ID=52127998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013108219A Active JP5632041B1 (ja) 2013-05-22 2013-05-22 発電プラント

Country Status (1)

Country Link
JP (1) JP5632041B1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016200078A (ja) * 2015-04-13 2016-12-01 中国電力株式会社 取放水温度差管理システムおよび取放水温度差管理方法
JP2017031840A (ja) * 2015-07-30 2017-02-09 中国電力株式会社 取放水温度差管理方法および取放水温度差管理設備
JP2020020277A (ja) * 2018-07-31 2020-02-06 中国電力株式会社 温度差管理支援装置および温度差管理支援プログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6250756B2 (ja) * 1982-09-10 1987-10-27 Tokyo Shibaura Electric Co
JP2011002127A (ja) * 2009-06-17 2011-01-06 Chugoku Electric Power Co Inc:The 温度差上昇警報発生方法
JP2012112251A (ja) * 2010-11-19 2012-06-14 Chugoku Electric Power Co Inc:The 発電機出力計算装置、方法及びプログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6250756B2 (ja) * 1982-09-10 1987-10-27 Tokyo Shibaura Electric Co
JP2011002127A (ja) * 2009-06-17 2011-01-06 Chugoku Electric Power Co Inc:The 温度差上昇警報発生方法
JP2012112251A (ja) * 2010-11-19 2012-06-14 Chugoku Electric Power Co Inc:The 発電機出力計算装置、方法及びプログラム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016200078A (ja) * 2015-04-13 2016-12-01 中国電力株式会社 取放水温度差管理システムおよび取放水温度差管理方法
JP2017031840A (ja) * 2015-07-30 2017-02-09 中国電力株式会社 取放水温度差管理方法および取放水温度差管理設備
JP2020020277A (ja) * 2018-07-31 2020-02-06 中国電力株式会社 温度差管理支援装置および温度差管理支援プログラム
JP7167525B2 (ja) 2018-07-31 2022-11-09 中国電力株式会社 温度差管理支援装置および温度差管理支援プログラム

Also Published As

Publication number Publication date
JP5632041B1 (ja) 2014-11-26

Similar Documents

Publication Publication Date Title
US8757105B2 (en) System and method for controlling liquid level in a vessel
JP5991329B2 (ja) 制御装置、管理装置、プラント制御システム、及びデータ処理方法
EP1826364B1 (en) Method for determining limit exceedance
WO2020039825A1 (ja) 予測装置、予測方法、及びプログラム
JP2981193B2 (ja) 時系列連続データの予測方法及び記録媒体
JP5632041B1 (ja) 発電プラント
TW202400929A (zh) 用於控制氣體供應系統之氣體供應之方法及設備
CN112740133A (zh) 监测技术设备的技术状态的系统和方法
JP5153855B2 (ja) 発電機出力計算装置、方法及びプログラム
JP2020090945A (ja) 検知装置、検知方法、及び検知プログラム
JP2008292121A (ja) 水温管理システム
JP4990848B2 (ja) 監視システム
WO2010097891A1 (ja) プラント最適運転制御システム
JP6710939B2 (ja) フィールド機器
JP2015209665A (ja) プラント監視制御システム
JP2013108870A (ja) 稠密水位観測システム
EP3179165B1 (en) Steam using facility management method, and steam using facility
JP6620445B2 (ja) 取放水温度差管理方法および取放水温度差管理設備
JP4664842B2 (ja) エネルギープラントの最適運用システムと方法、およびプログラム
JP5017019B2 (ja) プラント最適運転制御システム
JP2008184782A (ja) 雨水流入量予測装置及び雨水流入量予測方法
JP6348859B2 (ja) 流量制御システム
JP5922190B2 (ja) 取放水温度差管理装置および取放水温度差管理方法
JP2018018257A (ja) ヒートマップ表示装置およびヒートマップ表示方法
JP2019003260A (ja) 調節弁の開度異常検出装置、開度異常検出方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141008

R150 Certificate of patent or registration of utility model

Ref document number: 5632041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250