JP2014227858A - Fuel injection control device - Google Patents

Fuel injection control device Download PDF

Info

Publication number
JP2014227858A
JP2014227858A JP2013106231A JP2013106231A JP2014227858A JP 2014227858 A JP2014227858 A JP 2014227858A JP 2013106231 A JP2013106231 A JP 2013106231A JP 2013106231 A JP2013106231 A JP 2013106231A JP 2014227858 A JP2014227858 A JP 2014227858A
Authority
JP
Japan
Prior art keywords
injection
fuel
waveform
sensor
sensor waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013106231A
Other languages
Japanese (ja)
Inventor
直己 三上
Naomi Mikami
直己 三上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2013106231A priority Critical patent/JP2014227858A/en
Publication of JP2014227858A publication Critical patent/JP2014227858A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel injection control device capable of highly accurately extracting the fluctuation waveform of a fuel pressure caused by injection, from a fluctuation waveform detected by a fuel pressure sensor during injection.SOLUTION: A fuel injection control device includes: injection sensor waveform detecting means for detecting an injection sensor waveform Wi on the basis of the output of a fuel pressure sensor 20 corresponding to a predetermined cylinder when injection is performed in the predetermined cylinder in the steady operation state of an internal combustion engine; non-injection sensor waveform detecting means for detecting a non-injection sensor waveform Wa on the basis of the output of the fuel pressure sensor 20 corresponding to the predetermined cylinder when injection is performed in a cylinder different from the predetermined cylinder in the steady operation state of the internal combustion engine; and injection waveform extracting means for subtracting the non-injection sensor waveform Wa detected by the non-injection sensor waveform detecting means from the injection sensor waveform Wi detected by the injection sensor waveform detecting means, and extracting an injection waveform W showing a pressure fluctuation caused by the injection performed in the predetermined cylinder.

Description

本発明は、多気筒内燃機関の各気筒に設けられた燃料噴射弁を備え、畜圧容器に蓄えられた高圧燃料を用いて燃料噴射を行う燃料噴射システム、に適用される燃料噴射制御装置に関する。   The present invention relates to a fuel injection control device that is applied to a fuel injection system that includes a fuel injection valve provided in each cylinder of a multi-cylinder internal combustion engine and that performs fuel injection using high-pressure fuel stored in a stock pressure vessel. .

コモンレール(畜圧容器)から複数の燃料噴射弁へ燃料を分配供給する燃料噴射システムにおいて、燃料噴射弁から燃料を噴射させると、噴射率の変化に応じて燃料噴射弁内部の燃料圧力が変化する。そこで、各燃料噴射弁に搭載された燃圧センサにより、噴射時に燃料圧力の変動波形を検出して、検出した変動波形に基づき噴射率変化を示す波形を推定することが行われている。   In a fuel injection system that distributes and supplies fuel from a common rail (stock pressure vessel) to a plurality of fuel injection valves, when fuel is injected from the fuel injection valve, the fuel pressure inside the fuel injection valve changes in accordance with the change in the injection rate. . Therefore, a fuel pressure sensor mounted on each fuel injection valve detects a fluctuation waveform of fuel pressure at the time of injection, and estimates a waveform indicating a change in injection rate based on the detected fluctuation waveform.

ただし、燃圧センサにより検出される変動波形には、燃料ポンプからの燃料圧送に伴い生じる圧力変動や、燃料噴射分だけコモンレール内の圧力が低下することに伴い生じる圧力変動が、外乱として重畳されている。よって、実際の噴射状態を高精度に検出するためには、燃圧センサにより検出される変動波形から、外乱成分を除き、噴射に起因する燃料圧力の変動波形を抽出する必要がある。   However, in the fluctuation waveform detected by the fuel pressure sensor, the pressure fluctuation caused by the fuel pump from the fuel pump and the pressure fluctuation caused by the pressure in the common rail decreasing by the amount of fuel injection are superimposed as disturbances. Yes. Therefore, in order to detect the actual injection state with high accuracy, it is necessary to remove the disturbance component from the fluctuation waveform detected by the fuel pressure sensor and extract the fluctuation waveform of the fuel pressure resulting from the injection.

そこで、特許文献1は、噴射気筒に設けられた燃圧センサにより検出された変動波形から、同時期に非噴射気筒に設けられた燃圧センサにより検出された非噴射の変動波形を差し引いて、噴射に起因する燃圧変化を抽出している。   Therefore, Patent Document 1 subtracts the non-injection fluctuation waveform detected by the fuel pressure sensor provided in the non-injection cylinder at the same time from the fluctuation waveform detected by the fuel pressure sensor provided in the injection cylinder. The resulting fuel pressure change is extracted.

特許第4678397号公報Japanese Patent No. 4678397

特許文献1は、噴射気筒に対して検出された変動波形から、噴射気筒と異なる気筒に対して検出された変動波形を差し引いている。しかしながら、ハードウェアのばらつきによって、噴射気筒に対して検出された変動波形から、噴射気筒と異なる気筒に対して検出された変動波形を差し引いても、噴射に起因する燃料圧力の変動波形の抽出精度が低下するおそれがある。   Patent Document 1 subtracts a fluctuation waveform detected for a cylinder different from the injection cylinder from a fluctuation waveform detected for the injection cylinder. However, even if the fluctuation waveform detected for the cylinder different from the injection cylinder is subtracted from the fluctuation waveform detected for the injection cylinder due to hardware variations, the accuracy of extracting the fluctuation waveform of the fuel pressure caused by the injection May decrease.

本発明は、上記実情に鑑み、噴射時に燃圧センサにより検出された変動波形から、噴射に起因する燃料圧力の変動波形を高精度に抽出することが可能な燃料噴射制御装置を提供することを主たる目的とする。   In view of the above circumstances, the present invention mainly provides a fuel injection control device that can extract a fluctuation waveform of fuel pressure caused by injection with high accuracy from a fluctuation waveform detected by a fuel pressure sensor during injection. Objective.

上記課題を解決するために、請求項1に係る発明は、高圧燃料を畜圧保持する畜圧容器と、前記畜圧容器に対して燃料を圧送する燃料ポンプと、多気筒内燃機関の気筒ごとに設けられ前記畜圧容器内に畜圧保持された高圧燃料を噴射する燃料噴射弁と、前記畜圧容器から各燃料噴射弁の噴射口までの各燃料通路内の燃料圧力をそれぞれ検出する燃圧センサと、を備える燃料噴射システムに適用される燃料噴射制御装置であって、前記機関の定常運転状態において、所定の気筒で噴射が行われている時に、前記所定の気筒に対応する前記燃圧センサの出力に基づいて、噴射時センサ波形を検出する噴射時センサ波形検出手段と、前記機関の前記定常運転状態において、前記所定の気筒とは異なる気筒で噴射が行われている時に、前記所定の気筒に対応する前記燃圧センサの出力に基づいて、非噴射時センサ波形を検出する非噴射時センサ波形検出手段と、前記噴射時センサ波形検出手段により検出された前記噴射時センサ波形から、前記非噴射時センサ波形により検出された前記非噴射時センサ波形を差し引いて、前記所定の気筒での噴射に起因する圧力変動を表す噴射時波形を抽出する噴射時波形抽出手段と、を備える。   In order to solve the above-mentioned problems, the invention according to claim 1 is directed to a pressure-holding vessel that holds high-pressure fuel under pressure, a fuel pump that pumps fuel to the pressure-pressure vessel, and a cylinder of a multi-cylinder internal combustion engine A fuel injection valve that injects high-pressure fuel that is provided in the animal pressure vessel and is held at the animal pressure, and a fuel pressure that detects a fuel pressure in each fuel passage from the animal pressure vessel to the injection port of each fuel injection valve A fuel injection control device applied to a fuel injection system comprising a sensor, wherein the fuel pressure sensor corresponding to the predetermined cylinder when injection is performed in the predetermined cylinder in a steady operation state of the engine An injection sensor waveform detecting means for detecting an injection sensor waveform based on the output of the engine, and in the steady operation state of the engine, when the injection is performed in a cylinder different from the predetermined cylinder, the predetermined cylinder Based on the output of the corresponding fuel pressure sensor, the non-injection sensor waveform detection means for detecting the non-injection sensor waveform, and the non-injection sensor waveform detected by the injection sensor waveform detection means, A non-injection sensor waveform detected by the sensor waveform, and an injection waveform extraction means for extracting an injection waveform representing a pressure fluctuation caused by injection in the predetermined cylinder.

請求項1に記載の発明によれば、燃料ポンプから畜圧容器へ燃料が圧送される。畜圧容器内に畜圧保持される高圧燃料は、各気筒に設けられた燃料噴射弁により噴射される。そして、畜圧容器から各気筒の燃料噴射弁の噴射口までの各燃料通路内の燃料圧力が、燃圧センサによりそれぞれ検出される。   According to the first aspect of the present invention, fuel is pumped from the fuel pump to the animal pressure vessel. The high-pressure fuel held in the animal pressure vessel is injected by a fuel injection valve provided in each cylinder. The fuel pressure in each fuel passage from the stock pressure vessel to the injection port of the fuel injection valve of each cylinder is detected by a fuel pressure sensor.

内燃機関の定常運転状態において所定の気筒で噴射が行われている時には、所定の気筒に対応する燃圧センサの出力に基づいて、噴射に起因する圧力変動に外乱が重畳された噴射時センサ波形が検出される。また、内燃機関の上記定常運転状態において所定の気筒とは異なる気筒で噴射が行われている場合には、所定の気筒に対応する燃圧センサの出力に基づいて、圧力変動の外乱成分を表す非噴射時センサ波形が検出される。   When injection is performed in a predetermined cylinder in a steady operation state of the internal combustion engine, a sensor waveform during injection in which disturbance is superimposed on pressure fluctuation caused by injection is based on the output of the fuel pressure sensor corresponding to the predetermined cylinder. Detected. Further, when injection is performed in a cylinder different from the predetermined cylinder in the above-described steady operation state of the internal combustion engine, the non-representation of the disturbance component of the pressure fluctuation is based on the output of the fuel pressure sensor corresponding to the predetermined cylinder. A sensor waveform during injection is detected.

ここで、同じ気筒に対して噴射時センサ波形と同時に非噴射時センサ波形が検出できれば、その非噴射時センサ波形は、噴射時センサ波形に重畳された外乱を表す最適な非噴射時センサ波形となる。しかしながら、同じ気筒に対して噴射時センサ波形と非噴射時センサ波形を同時に検出することはできない。そこで、内燃機関の定常運転状態において、同じ気筒に対する噴射時センサ波形と非噴射時センサ波形とが異なるタイミングで取得される。内燃機関の定常運転状態であれば、所定の気筒の噴射時と同様の条件で所定の気筒の非噴射時センサ波形を取得することができる。そして、ハードウェアの特性が同じ気筒に対する噴射時センサ波形と非噴射時センサ波形とから、噴射に起因する圧力変動を表す噴射時波形が抽出される。したがって、噴射に起因する圧力変動に外乱が重畳された噴射時センサ波形から、噴射に起因する燃料圧力の変動を高精度に抽出することができる。   Here, if the non-injection sensor waveform can be detected simultaneously with the injection sensor waveform for the same cylinder, the non-injection sensor waveform is the optimum non-injection sensor waveform representing the disturbance superimposed on the injection sensor waveform. Become. However, the sensor waveform during injection and the sensor waveform during non-injection cannot be detected simultaneously for the same cylinder. Therefore, in the steady operation state of the internal combustion engine, the sensor waveform during injection and the sensor waveform during non-injection for the same cylinder are acquired at different timings. If the internal combustion engine is in a steady operation state, a non-injection sensor waveform of a predetermined cylinder can be acquired under the same conditions as when a predetermined cylinder is injected. And the waveform at the time of injection showing the pressure fluctuation resulting from injection is extracted from the sensor waveform at the time of injection and the sensor waveform at the time of non-injection for the cylinder with the same hardware characteristic. Therefore, it is possible to extract the fuel pressure fluctuation caused by the injection with high accuracy from the sensor waveform during injection in which the disturbance is superimposed on the pressure fluctuation caused by the injection.

燃料噴射システムの概略を示す図。The figure which shows the outline of a fuel-injection system. 噴射指令信号に対応する噴射率及び燃圧の変化を示す図。The figure which shows the change of the injection rate and fuel pressure corresponding to an injection command signal. 噴射時センサ波形及び非噴射時センサ波形を示すタイムチャート。The time chart which shows the sensor waveform at the time of injection, and the sensor waveform at the time of non-injection. 第1実施形態に係る噴射時波形を抽出する処理手順を示すフローチャート。The flowchart which shows the process sequence which extracts the waveform at the time of injection which concerns on 1st Embodiment. 噴射停止時センサ波形、非噴射時センサ波形、噴射時センサ波形、及び噴射時波形を示すタイムチャート。The time chart which shows the sensor waveform at the time of injection stop, the sensor waveform at the time of non-injection, the sensor waveform at the time of injection, and the waveform at the time of injection. 第2実施形態に係る噴射時波形を抽出する処理手順を示すフローチャート。The flowchart which shows the process sequence which extracts the waveform at the time of injection which concerns on 2nd Embodiment.

(第1実施形態)
以下、燃料噴射制御装置を車両に搭載した各実施形態について、図面を参照しつつ説明する。図1に、本実施形態に係る燃料噴射制御装置が適用される燃料噴射システムの構成を示す。本燃料噴射システムは、4気筒のディーゼルエンジン(多気筒内燃機関)に搭載されることを想定している。本燃料噴射システムは、高圧燃料を畜圧保持するコモンレール42(畜圧容器)と、コモンレール42に対して燃料を圧送する燃料ポンプ41と、エンジンの各気筒#1〜#4に設けられた燃料噴射弁10と、コモンレール42から各燃料噴射弁10の噴射口までの各燃料通路内の燃料圧力をそれぞれ逐次検出する燃圧センサ20と、を備える。
(First embodiment)
Hereinafter, embodiments in which a fuel injection control device is mounted on a vehicle will be described with reference to the drawings. FIG. 1 shows a configuration of a fuel injection system to which the fuel injection control device according to the present embodiment is applied. This fuel injection system is assumed to be mounted on a four-cylinder diesel engine (multi-cylinder internal combustion engine). This fuel injection system includes a common rail 42 (stock pressure vessel) that holds high pressure fuel under pressure, a fuel pump 41 that pumps fuel to the common rail 42, and fuel provided in each cylinder # 1 to # 4 of the engine. An injection valve 10 and a fuel pressure sensor 20 that sequentially detects the fuel pressure in each fuel passage from the common rail 42 to the injection port of each fuel injection valve 10 are provided.

燃料タンク40は、エンジンの各気筒#1〜#4に供給される燃料(軽油)を溜めておくためのタンクである。燃料タンク40内の燃料は、エンジンのクランク軸に連動して駆動される燃料ポンプ41により、コモンレール42に圧送されて蓄圧保持される。コモンレール42内の圧力が、各気筒の燃料噴射弁10へ供給される燃料の供給圧Pcとなる。コモンレール42内に蓄圧された燃料は、配管43(燃料通路)を通して各気筒の燃料噴射弁10へ分配されて供給される。各気筒の燃料噴射弁10は、予め設定された順番で順次燃料を噴射する。   The fuel tank 40 is a tank for storing fuel (light oil) supplied to the cylinders # 1 to # 4 of the engine. The fuel in the fuel tank 40 is pumped to the common rail 42 and accumulated and held by a fuel pump 41 driven in conjunction with the crankshaft of the engine. The pressure in the common rail 42 becomes the fuel supply pressure Pc supplied to the fuel injection valve 10 of each cylinder. The fuel accumulated in the common rail 42 is distributed and supplied to the fuel injection valve 10 of each cylinder through a pipe 43 (fuel passage). The fuel injection valve 10 of each cylinder sequentially injects fuel in a preset order.

燃料噴射弁10は、ボデー11と、ニードル弁12と、電磁コイルやピエゾ素子等のアクチュエータ13とを備えて構成される。ボデー11は、内部に、高圧通路11a(燃料通路)と、低圧通路11dと、高圧通路11aと繋がる噴孔11b(噴射口)とが形成されている。コモンレール42から供給された燃料は、高圧通路11aを通って噴孔11bから噴射される。ニードル弁12は、ボデー内部に収容されて噴孔11bを開閉する。   The fuel injection valve 10 includes a body 11, a needle valve 12, and an actuator 13 such as an electromagnetic coil or a piezo element. The body 11 has a high pressure passage 11a (fuel passage), a low pressure passage 11d, and an injection hole 11b (injection port) connected to the high pressure passage 11a. The fuel supplied from the common rail 42 is injected from the injection hole 11b through the high-pressure passage 11a. The needle valve 12 is accommodated inside the body and opens and closes the nozzle hole 11b.

さらに、ボデー11は、内部に、ニードル弁12に背圧を付与する背圧室11cが形成されている。高圧通路11a及び低圧通路11dは、背圧室11cと接続されている。そして、高圧通路11a及び低圧通路11dと背圧室11cとの連通状態は、制御弁14により切り替えられる。   Further, the body 11 is formed with a back pressure chamber 11 c for applying a back pressure to the needle valve 12. The high pressure passage 11a and the low pressure passage 11d are connected to the back pressure chamber 11c. The communication state between the high pressure passage 11 a and the low pressure passage 11 d and the back pressure chamber 11 c is switched by the control valve 14.

具体的には、アクチュエータ13へ通電されると、制御弁14は噴孔11b側へ押し下げられる。それにより、背圧室11cは低圧通路11dと連通した状態となるので、背圧室11c内の燃料圧力は低下し、ニードル弁12を噴孔11b側に押し付ける背圧が低下する。その結果、ニードル弁12のシート面12aが、噴孔11bと繋がるように形成されたボデー11のシート面11eから離座するので、噴孔11bから燃料が噴射される。   Specifically, when the actuator 13 is energized, the control valve 14 is pushed down to the nozzle hole 11b side. As a result, the back pressure chamber 11c communicates with the low pressure passage 11d, so that the fuel pressure in the back pressure chamber 11c decreases and the back pressure that presses the needle valve 12 toward the nozzle hole 11b decreases. As a result, the seat surface 12a of the needle valve 12 is separated from the seat surface 11e of the body 11 formed so as to be connected to the injection hole 11b, so that fuel is injected from the injection hole 11b.

一方、アクチュエータ13への通電をオフにすると、制御弁14はアクチュエータ13側に押し上げられる。それにより、背圧室11cは高圧通路11aと連通した状態となるので、背圧室11c内の燃料圧力は上昇し、ニードル弁12を噴孔11b側に押し付ける背圧が上昇する。その結果、ニードル弁12のシート面12aが、ボデー11のシート面11eに着座するので、噴孔11bからの燃料噴射が停止される。   On the other hand, when the power supply to the actuator 13 is turned off, the control valve 14 is pushed up to the actuator 13 side. As a result, the back pressure chamber 11c communicates with the high pressure passage 11a, so that the fuel pressure in the back pressure chamber 11c increases, and the back pressure that presses the needle valve 12 toward the nozzle hole 11b increases. As a result, the seat surface 12a of the needle valve 12 is seated on the seat surface 11e of the body 11, so that fuel injection from the injection hole 11b is stopped.

よって、指令信号により、アクチュエータ13の駆動期間を制御すると、噴孔11bから噴射される燃料の噴射量が制御される。   Therefore, when the drive period of the actuator 13 is controlled by the command signal, the injection amount of the fuel injected from the nozzle hole 11b is controlled.

燃圧センサ20は、各燃料噴射弁10に搭載されており、ステム21(起歪体)、圧力センサ素子22、通信回路22aを備えている。ステム21は、ボデー11に取り付けられており、ダイヤフラム部21aを有している。ダイヤフラム部21aは、高圧通路11aを流通する高圧燃料の圧力を受けて弾性変形する。圧力センサ素子22は、ダイヤフラム部21aに取り付けられており、ダイヤフラム部21aの弾性変形量に応じた圧力信号を通信回路22aからECU30へ送信する。   The fuel pressure sensor 20 is mounted on each fuel injection valve 10 and includes a stem 21 (a strain generating body), a pressure sensor element 22, and a communication circuit 22a. The stem 21 is attached to the body 11 and has a diaphragm portion 21a. The diaphragm portion 21a is elastically deformed by receiving the pressure of the high-pressure fuel flowing through the high-pressure passage 11a. The pressure sensor element 22 is attached to the diaphragm portion 21a, and transmits a pressure signal corresponding to the elastic deformation amount of the diaphragm portion 21a from the communication circuit 22a to the ECU 30.

ECU30(燃料噴射制御装置)は、CPU、ROM、RAM、I/O、及びこれらを接続するバスライン等からなるマイクロコンピュータとして構成される。RAMはメインメモリ、ROMはプログラムメモリである。ECU30は、アクセルペダルの操作量、エンジン負荷、エンジン回転速度等に基づき、目標噴射状態を算出する。例えば、エンジン負荷及びエンジン回転速度に対応する最適噴射状態を噴射状態マップにして記憶させておく。そして、現状のエンジン負荷及びエンジン回転速度に基づき、噴射状態マップを参照して目標噴射状態を算出する。さらに、算出した目標噴射状態に対応する指令信号Tq,t1(図2(a)参照)を、後述する噴射率パラメータtd,te,Rα,Rβ,Rmaxに基づき設定し、燃料噴射弁10へ出力することで燃料噴射弁10の作動を制御する。   The ECU 30 (fuel injection control device) is configured as a microcomputer including a CPU, a ROM, a RAM, an I / O, a bus line connecting these, and the like. The RAM is a main memory, and the ROM is a program memory. The ECU 30 calculates the target injection state based on the accelerator pedal operation amount, the engine load, the engine speed, and the like. For example, the optimal injection state corresponding to the engine load and the engine speed is stored as an injection state map. Based on the current engine load and engine speed, the target injection state is calculated with reference to the injection state map. Further, command signals Tq, t1 (see FIG. 2A) corresponding to the calculated target injection state are set based on injection rate parameters td, te, Rα, Rβ, Rmax, which will be described later, and output to the fuel injection valve 10. Thus, the operation of the fuel injection valve 10 is controlled.

また、ECU30は、CPUがROMに記憶されたプログラムを実行することで、後述する噴射時センサ波形検出手段、非噴射時センサ波形検出手段、噴射時波形抽出手段、としての機能を実現する。   In addition, the ECU 30 realizes functions as an injection sensor waveform detection means, a non-injection sensor waveform detection means, and an injection waveform extraction means, which will be described later, by the CPU executing a program stored in the ROM.

さらに、ECU30は、噴射に起因する圧力変動を表す噴射時波形W(図2(c)参照)に基づき、燃料の噴射率の時間に対する変動を表した噴射率波形(図2(b)参照)を演算して、噴射状態を検出する。この噴射時波形Wは、燃圧センサ20による検出値に基づいて、後述する噴射時波形抽出手段により抽出される。ECU30は、噴射率波形から噴射率パラメータtd,te,Rα,Rβ,Rmaxを算出する。噴射率パラメータtd,te,Rα,Rβ,Rmaxは、それぞれ、噴射が指令された時期に対する噴射開始の遅れ時間、噴射終了が指令された時期に対する噴射終了の遅れ時間、噴射率上昇傾き、噴射率下降傾き、最大噴射率である。   Further, the ECU 30 is based on an injection waveform W (refer to FIG. 2C) representing a pressure variation caused by injection, and an injection rate waveform representing a variation of the fuel injection rate with respect to time (refer to FIG. 2B). Is calculated to detect the injection state. The injection waveform W is extracted by an injection waveform extraction means to be described later based on the detection value by the fuel pressure sensor 20. The ECU 30 calculates injection rate parameters td, te, Rα, Rβ, Rmax from the injection rate waveform. The injection rate parameters td, te, Rα, Rβ, and Rmax are respectively the injection start delay time with respect to the timing when the injection is commanded, the injection end delay time with respect to the timing when the injection end is commanded, the injection rate increasing slope, and the injection rate. The downward slope and maximum injection rate.

ECU30は、これらの噴射率パラメータtd,te,Rα,Rβ,Rmaxを学習し、噴射率パラメータtd,te,Rα,Rβ,Rmaxの学習値に基づき、噴射指令信号(図2(a)参照)に対応した噴射率波形(図2(b)参照)を算出する。さらに、算出した噴射率波形の面積(図2(b)中の網点ハッチ参照)から、噴射量を表す噴射率パラメータQを算出する。   The ECU 30 learns these injection rate parameters td, te, Rα, Rβ, Rmax, and based on the learned values of the injection rate parameters td, te, Rα, Rβ, Rmax, the injection command signal (see FIG. 2A). The injection rate waveform corresponding to (see FIG. 2B) is calculated. Further, an injection rate parameter Q representing the injection amount is calculated from the calculated area of the injection rate waveform (see halftone dot hatching in FIG. 2B).

次に、噴射時センサ波形検出手段、非噴射時センサ波形検出手段、噴射時波形抽出手段について説明する。以下、噴射気筒とは、気筒に設けられた燃料噴射弁10が燃料を噴射している気筒のことであり、非噴射気筒とは、気筒に設けられた燃料噴射弁10が燃料を噴射していない気筒のことである。   Next, the injection sensor waveform detection means, the non-injection sensor waveform detection means, and the injection waveform extraction means will be described. Hereinafter, the injection cylinder is a cylinder in which the fuel injection valve 10 provided in the cylinder injects fuel, and the non-injection cylinder is the fuel injection valve 10 provided in the cylinder injecting fuel. There are no cylinders.

噴射時センサ波形検出手段は、エンジンの定常運転状態において、気筒#1〜4のうち噴射気筒に対応する燃圧センサ20の出力に基づいて、噴射時センサ波形Wiを検出する。図3(a)に、気筒#1(所定の気筒)で噴射が行われている時に、気筒#1に対して検出された噴射時センサ波形Wiを示す。この噴射時センサ波形Wiは、噴射に起因する燃圧の変動に、外乱が重畳された燃圧の変動波形である。詳しくは、期間Aにおいては、噴射時波形Wに圧送に伴う外乱が重畳されており、期間Bにおいては、噴射時波形Wにコモンレール42内の圧力が低下することに伴う外乱が重畳されている。なお、エンジンの定常運転状態とは、エンジンの回転数、燃料の供給圧Pc、及び燃料噴射量Qがほぼ一定の状態のことである。   The injection sensor waveform detection means detects the injection sensor waveform Wi based on the output of the fuel pressure sensor 20 corresponding to the injection cylinder among the cylinders # 1 to # 4 in the steady operation state of the engine. FIG. 3A shows an in-injection sensor waveform Wi detected for the cylinder # 1 when the injection is performed in the cylinder # 1 (predetermined cylinder). This injection sensor waveform Wi is a fluctuation waveform of the fuel pressure in which a disturbance is superimposed on the fluctuation of the fuel pressure caused by the injection. Specifically, in period A, disturbance due to pumping is superimposed on the waveform W during injection, and in period B, disturbance due to pressure drop in the common rail 42 is superimposed on the waveform W during injection. . The steady operation state of the engine means that the engine speed, the fuel supply pressure Pc, and the fuel injection amount Q are substantially constant.

非噴射時センサ波形検出手段は、噴射時センサ波形検出手段による噴射時センサ波形Wiの取得時と同じ定常運転状態において、気筒#1〜4のうち非噴射気筒に対応する燃圧センサ20の出力に基づいて、非噴射時センサ波形Waを検出する。非噴射時センサ波形Waは、燃料ポンプ41による燃料の圧送に伴う燃圧の変動、及び噴射気筒における燃料噴射の分だけコモンレール42内の圧力が低下することに伴い生じる燃圧の変動を表す変動波形である。図3(b)に示す非噴射時センサ波形Waは、気筒#1が非噴射状態の時、すなわち気筒#2〜4のいずれかで噴射が行われている時に、気筒#1の噴射時と同様の条件で、気筒#1に対して検出された非噴射時センサ波形Waである。   The non-injection sensor waveform detection means outputs the output of the fuel pressure sensor 20 corresponding to the non-injection cylinder among the cylinders # 1 to 4 in the same steady operation state as when the injection sensor waveform Wi is acquired by the injection sensor waveform detection means. Based on this, the non-injection sensor waveform Wa is detected. The non-injection sensor waveform Wa is a fluctuation waveform representing a fluctuation in fuel pressure caused by the fuel pump 41 pumping fuel and a fluctuation in fuel pressure that occurs as the pressure in the common rail 42 decreases by the amount of fuel injection in the injection cylinder. is there. The non-injection sensor waveform Wa shown in FIG. 3B is obtained when the cylinder # 1 is in the non-injection state, that is, when the injection is performed in any of the cylinders # 2 to # 4, This is a non-injection sensor waveform Wa detected for the cylinder # 1 under the same conditions.

噴射時波形抽出手段は、気筒#1に対して噴射時センサ波形検出手段により検出された噴射時センサ波形Wiから、気筒#1に対して非噴射時センサ波形検出手段により検出された非噴射時センサ波形Waを差し引き、噴射時波形Wを抽出する。すなわち、噴射時波形抽出手段は、噴射時センサ波形Wiから外乱成分を除いて、噴射時波形Wを抽出する。   The in-injection waveform extraction means is the non-injection time detected for the cylinder # 1 by the non-injection sensor waveform detection means from the injection-time sensor waveform Wi detected by the injection-time sensor waveform detection means. The sensor waveform Wa is subtracted to extract the waveform W during injection. That is, the injection waveform extraction means extracts the injection waveform W by removing the disturbance component from the injection sensor waveform Wi.

次に、噴射時波形Wを抽出する処理手順について図4のフローチャートを参照しつつ説明する。本処理は、ECU30が所定間隔で繰り返し実行する。   Next, the processing procedure for extracting the waveform W during injection will be described with reference to the flowchart of FIG. This process is repeatedly executed by the ECU 30 at predetermined intervals.

まずS11では、エンジンが定常運転状態、すなわち定常走行状態であるか否か判定する。上述したように、噴射時センサ波形Wiと非噴射時センサ波形Waとは、同時に検出できない。したがって、噴射時センサ波形Wiを検出する時のエンジンの運転状態と、非噴射時センサ波形Waを検出する時のエンジンの運転状態と、を同じ状態にする必要がある。具体的には、エンジンの回転数、燃料の供給圧Pc、及び燃料の噴射量Qの変化量が閾値よりも小さい場合には定常走行と判定し、変化量が閾値よりも大きい場合には定常走行ではないと判定する。定常走行でない場合は(NO)、本処理を終了し、定常走行の場合は(YES)、S12の処理に進む。   First, in S11, it is determined whether or not the engine is in a steady operation state, that is, in a steady travel state. As described above, the sensor waveform Wi during injection and the sensor waveform Wa during non-injection cannot be detected simultaneously. Therefore, it is necessary to make the operating state of the engine when detecting the sensor waveform Wi during injection the same as the operating state of the engine when detecting the non-injection sensor waveform Wa. Specifically, when the engine speed, the fuel supply pressure Pc, and the change amount of the fuel injection amount Q are smaller than the threshold value, it is determined as steady running, and when the change amount is larger than the threshold value, it is steady. It is determined that the vehicle is not running. If it is not steady running (NO), this process ends. If it is steady running (YES), the process proceeds to S12.

次に、S12では、噴射時センサ波形検出手段により検出された対象気筒の噴射時センサ波形Wiを、RAMに記憶する。次に、S13では、対象気筒以外の気筒の噴射時に、非噴射時センサ波形検出手段により検出された対象気筒の非噴射時センサ波形Waを、RAMに記憶する。   Next, in S12, the injection sensor waveform Wi of the target cylinder detected by the injection sensor waveform detection means is stored in the RAM. Next, in S13, the non-injection sensor waveform Wa of the target cylinder detected by the non-injection sensor waveform detection means at the time of injection of cylinders other than the target cylinder is stored in the RAM.

次に、S14では、噴射時波形抽出手段により、S12で記憶した噴射時センサ波形Wiから、S13で記憶した非噴射時センサ波形Waを差し引いて、噴射時波形Wを抽出する。詳しくは、噴射時センサ波形Wiと非噴射時センサ波形Waとは同時に検出していないので、噴射時センサ波形Wiの基準CAと、非噴射時センサ波形Waの基準CAとを合わせて、噴射時センサ波形Wiから非噴射時センサ波形Waを差し引く。噴射時波形抽出手段は、ハードウェアの特性が同じ気筒に対して、同様の条件で検出された噴射時センサ波形Wiと非噴射時センサ波形Waとから、噴射に起因する圧力変動を表す噴射時波形Wを抽出する。以上で、本処理を終了する。   Next, in S14, the injection waveform extraction means extracts the injection waveform W by subtracting the non-injection sensor waveform Wa stored in S13 from the injection sensor waveform Wi stored in S12. Specifically, since the sensor waveform Wi at the time of injection and the sensor waveform Wa at the time of non-injection are not detected at the same time, the reference CA of the sensor waveform Wi at the time of injection and the reference CA of the sensor waveform Wa at the time of non-injection are combined. The non-injection sensor waveform Wa is subtracted from the sensor waveform Wi. The injection waveform extraction means is for the cylinders having the same hardware characteristics from the injection sensor waveform Wi and the non-injection sensor waveform Wa detected under the same conditions, and represents the pressure fluctuation caused by the injection. The waveform W is extracted. This process is complete | finished above.

以上説明した第1実施形態によれば、以下の効果を奏する。   According to 1st Embodiment described above, there exist the following effects.

・エンジンの定常運転状態において、所定の気筒に対する噴射時センサ波形Wiと非噴射時センサ波形Waとが異なるタイミングで取得される。エンジンの定常運転状態であれば、所定の気筒の噴射時と同様の条件で所定の気筒の非噴射時センサ波形Waを取得することができる。そして、ハードウェアの特性が同じ気筒に対する噴射時センサ波形Wiと非噴射時センサ波形Waとから、噴射に起因する圧力変動を表す噴射時波形Wが抽出される。したがって、噴射に起因する圧力変動に外乱が重畳された噴射時センサ波形Wiから、噴射に起因する燃料圧力の変動を高精度に抽出することができる。   In the steady operation state of the engine, the sensor waveform Wi during injection and the sensor waveform Wa during non-injection for a predetermined cylinder are acquired at different timings. If the engine is in a steady operation state, the non-injection sensor waveform Wa of the predetermined cylinder can be acquired under the same conditions as when the predetermined cylinder is injected. Then, an injection waveform W representing a pressure fluctuation caused by injection is extracted from the injection sensor waveform Wi and the non-injection sensor waveform Wa for cylinders having the same hardware characteristics. Therefore, it is possible to extract the fuel pressure fluctuation caused by the injection with high accuracy from the sensor waveform Wi during injection in which the disturbance is superimposed on the pressure fluctuation caused by the injection.

(第2実施形態)
次に、第2実施形態について、第1実施形態と異なる点について説明する。第2実施形態では、ECU30は、CPUがROMに記憶されたプログラムを実行することで、噴射時センサ波形検出手段、非噴射時センサ波形検出手段、噴射時波形抽出手段、噴射停止時センサ波形検出手段、進角補正手段、としての機能を実現する。第2実施形態では、燃料ポンプ41による圧送時期と、燃料噴射弁10による噴射時期とが重複しない場合に限る。
(Second Embodiment)
Next, a difference between the second embodiment and the first embodiment will be described. In the second embodiment, the ECU 30 causes the CPU to execute a program stored in the ROM, so that the sensor waveform detection means during injection, the sensor waveform detection means during non-injection, the waveform extraction means during injection, and the sensor waveform detection during injection stop are detected. The function as the means and the advance correction means is realized. In 2nd Embodiment, it is limited to when the pumping timing by the fuel pump 41 and the injection timing by the fuel injection valve 10 do not overlap.

噴射停止時センサ波形検出手段は、エンジンの定常運転状態において、所定の気筒の噴射時期に噴射を停止させた時に、所定の気筒に対応する燃圧センサ20の出力に基づいて、噴射停止時センサ波形Wbを検出する。   The injection stop time sensor waveform detection means is based on the output of the fuel pressure sensor 20 corresponding to the predetermined cylinder when the injection is stopped at the injection timing of the predetermined cylinder in the steady operation state of the engine. Wb is detected.

進角補正手段は、非噴射時センサ波形検出手段により検出された非噴射時センサ波形Waの位相を、所定の気筒と噴射が行われている気筒との間の燃料通路の長さに応じて、進角するように補正する。   The advance angle correction means determines the phase of the non-injection sensor waveform Wa detected by the non-injection sensor waveform detection means in accordance with the length of the fuel passage between the predetermined cylinder and the cylinder in which the injection is performed. , Correct to advance.

次に、噴射時波形Wを抽出する処理手順について図6のフローチャートを参照しつつ説明する。本処理は、ECU30が所定間隔で繰り返し実行する。本処理では、噴射期間を含む所定期間において、燃料ポンプ41による圧送と、燃料噴射弁10による噴射が順次行われる。   Next, a processing procedure for extracting the waveform W during injection will be described with reference to the flowchart of FIG. This process is repeatedly executed by the ECU 30 at predetermined intervals. In this process, during a predetermined period including the injection period, the pressure pumping by the fuel pump 41 and the injection by the fuel injection valve 10 are sequentially performed.

まず、S21では、S11と同様に定常走行状態であるか否か判定する。定常走行でない場合は(NO)、本処理を終了し、常走行の場合は(YES)、S22の処理に進む。   First, in S21, it is determined whether or not the vehicle is in a steady running state as in S11. If it is not steady running (NO), this process ends. If it is always running (YES), the process proceeds to S22.

次に、S22では、対象気筒の噴射時期に噴射を停止させた時に、噴射停止時センサ波形検出手段により検出された対象気筒の噴射停止時センサ波形Wbを、RAMに記憶する。図5(a)に、気筒#1の噴射時期において噴射を停止させた時に、気筒#1に対して検出された噴射停止時センサ波形Wbを示す。噴射停止時センサ波形Wbは、全気筒の噴射が停止した状態で検出される。それゆえ、噴射停止時センサ波形Wbには、コモンレール42内の圧力が燃料噴射の分低下することに伴う燃圧変動は重畳されておらず、圧送に伴う燃圧変動のみが重畳される。S22では、所定期間のうち圧送期間における噴射停止時センサ波形Wbを、RAMに記憶する。図5(a)は、RAMに記憶される噴射停止時センサ波形Wbを示している。   Next, in S22, when the injection is stopped at the injection timing of the target cylinder, the injection stop time sensor waveform Wb detected by the injection stop time sensor waveform detection means is stored in the RAM. FIG. 5A shows an injection stop-time sensor waveform Wb detected for the cylinder # 1 when the injection is stopped at the injection timing of the cylinder # 1. The injection stop time sensor waveform Wb is detected in a state where the injection of all cylinders is stopped. Therefore, the fuel pressure fluctuation accompanying the pressure drop in the common rail 42 by the amount corresponding to the fuel injection is not superimposed on the injection stop time sensor waveform Wb, and only the fuel pressure fluctuation accompanying the pressure feeding is superimposed. In S22, the sensor waveform Wb at the time of injection stop in the pumping period in the predetermined period is stored in the RAM. FIG. 5A shows an injection stop time sensor waveform Wb stored in the RAM.

次に、S23では、非噴射時センサ波形検出手段により検出された対象気筒の噴射時センサ波形Wiを、RAMに記憶する。図5(b)に、気筒#2〜4のいずれかで噴射が行われている時に、気筒#1に対して検出された非噴射時センサ波形Waを示す。S23では、所定期間のうち噴射期間における非噴射時センサ波形Waを、RAMに記憶する。図5(b)は、RAMに記憶される非噴射時センサ波形Waを示している。   Next, in S23, the injection sensor waveform Wi of the target cylinder detected by the non-injection sensor waveform detection means is stored in the RAM. FIG. 5B shows a non-injection sensor waveform Wa detected for the cylinder # 1 when the injection is performed in any of the cylinders # 2 to # 4. In S23, the non-injection sensor waveform Wa during the injection period of the predetermined period is stored in the RAM. FIG. 5B shows a non-injection sensor waveform Wa stored in the RAM.

次に、S24では、対象気筒の噴射時に、噴射時センサ波形検出手段により検出された対象気筒の噴射時センサ波形Wiを、RAMに記憶する。図5(c)に、気筒#1で噴射が行われている時に、気筒#1に対して検出された噴射時センサ波形Wiを示す。S24では、所定期間における噴射時センサ波形Wiを、RAMに記憶する。図5(c)は、図5(a)及び図5(b)とは時間スケールが異なり、所定期間における噴射時センサ波形Wiを示している。   Next, in S24, the injection sensor waveform Wi of the target cylinder detected by the injection sensor waveform detection means at the time of injection of the target cylinder is stored in the RAM. FIG. 5C shows an in-injection sensor waveform Wi detected for the cylinder # 1 when the injection is performed in the cylinder # 1. In S24, the sensor waveform Wi during injection for a predetermined period is stored in the RAM. FIG. 5C is different in time scale from FIG. 5A and FIG. 5B, and shows an injection-time sensor waveform Wi in a predetermined period.

次に、S25では、噴射時波形抽出手段が、S24で記憶した噴射時センサ波形Wiから、S22で記憶した噴射停止時センサ波形Wb、及びS23で記憶した非噴射時センサ波形Waを差し引き、噴射時波形Wを抽出する。詳しくは、図5(c)に示すように、圧送期間における噴射時センサ波形Wiから噴射停止時センサ波形Wbを差し引き、噴射期間における噴射時センサ波形Wiから非噴射時センサ波形Waを差し引く。   Next, in S25, the injection waveform extraction means subtracts the injection stop sensor waveform Wb stored in S22 and the non-injection sensor waveform Wa stored in S23 from the injection sensor waveform Wi stored in S24. The time waveform W is extracted. Specifically, as shown in FIG. 5C, the sensor waveform Wb at the time of injection stop is subtracted from the sensor waveform Wi at the time of injection in the pumping period, and the sensor waveform Wa at the time of non-injection is subtracted from the sensor waveform Wi at the time of injection in the injection period.

ここで、所定の気筒が気筒#1であり、気筒#2〜4のいずれかにおいて噴射が行われている場合、コモンレール内の圧力が低下することに伴い生じる圧力変動は、気筒#2〜4のいずれかと、気筒#1との間の燃料通路の長さに応じた時間遅れて、気筒#1に対応する燃圧センサ20まで伝播される。それゆえ、進角補正手段により、気筒#1と、気筒#2〜4のうち噴射が行われている気筒との間の燃料通路の長さに応じて、非噴射時センサ波形Waの位相を進角させる。そして、圧送期間における噴射時センサ波形Wiから噴射停止時センサ波形Wbを差し引くとともに、噴射期間における噴射時センサ波形Wiから進角補正手段により補正された非噴射時センサ波形Waを差し引き、噴射時波形Wを抽出する。図5(d)に、抽出された噴射時波形Wを示す。   Here, when the predetermined cylinder is the cylinder # 1 and the injection is performed in any of the cylinders # 2 to # 4, the pressure fluctuation caused when the pressure in the common rail decreases is the cylinder # 2 to # 4. Is transmitted to the fuel pressure sensor 20 corresponding to the cylinder # 1 with a time delay corresponding to the length of the fuel passage between the cylinder # 1 and the cylinder # 1. Therefore, the advance angle correcting means adjusts the phase of the non-injection sensor waveform Wa in accordance with the length of the fuel passage between the cylinder # 1 and the cylinder in which injection is performed among the cylinders # 2 to # 4. Advance. Then, the sensor waveform Wb at the time of injection stop is subtracted from the sensor waveform Wi at the time of injection in the pumping period, and the sensor waveform Wa at the time of injection corrected by the advance correction means is subtracted from the sensor waveform Wi at the time of injection in the injection period. Extract W. FIG. 5D shows the extracted waveform W at the time of injection.

以上説明した第2実施形態によれば、以下の効果を奏する。   According to 2nd Embodiment described above, there exist the following effects.

・燃料の圧送時期と燃料の噴射時期とが重複しない場合に、エンジンの定常運転状態において、所定の気筒の噴射を停止させた時に、所定の気筒に対応する燃圧センサ20の出力に基づいて、圧送に伴う圧力変動を表す噴射停止時センサ波形Wbが検出される。さらに、噴射時センサ波形Wiから、コモンレール42内の圧力が低下することに伴い生じる圧力変動を表す非噴射時センサ波形Waと、圧送に伴う圧力変動を表す停止時センサ波形Wbとが差し引かれ、噴射に起因する圧力変動を表す噴射時波形Wが抽出される。したがって、高精度に噴射に起因する圧力変動を抽出することができる。   Based on the output of the fuel pressure sensor 20 corresponding to a predetermined cylinder when injection of a predetermined cylinder is stopped in a steady operation state of the engine when the fuel pumping timing and the fuel injection timing do not overlap. A sensor waveform Wb at the time of injection stop representing a pressure fluctuation accompanying the pressure feeding is detected. Further, the non-injection sensor waveform Wa representing the pressure fluctuation caused by the pressure in the common rail 42 decreasing and the stop sensor waveform Wb representing the pressure fluctuation accompanying the pumping are subtracted from the injection sensor waveform Wi, A waveform W at the time of injection representing a pressure fluctuation caused by the injection is extracted. Therefore, the pressure fluctuation resulting from the injection can be extracted with high accuracy.

・所定の気筒と異なる気筒において噴射が行われている場合、コモンレール42内の圧力が低下することに伴い生じる圧力変動は、燃料通路の長さに応じた時間遅れて、所定の気筒に対応する圧力センサ20まで伝播される。そこで、所定の気筒と噴射が行われている気筒との間の燃料通路の長さに応じて、非噴射時センサ波形Waの位相が進角するように補正される。これにより、より高精度に噴射に起因する圧力変動を抽出することができる。   When the injection is performed in a cylinder different from the predetermined cylinder, the pressure fluctuation caused when the pressure in the common rail 42 decreases corresponds to the predetermined cylinder with a time delay corresponding to the length of the fuel passage. Propagated to the pressure sensor 20. Therefore, the phase of the non-injection sensor waveform Wa is corrected to advance in accordance with the length of the fuel passage between the predetermined cylinder and the cylinder in which the injection is performed. Thereby, the pressure fluctuation resulting from injection can be extracted with higher accuracy.

(他の実施形態)
本発明は上記実施形態の記載内容に限定されず、以下のように変更して実施してもよい。
(Other embodiments)
The present invention is not limited to the description of the above embodiment, and may be modified as follows.

・第1実施形態において、燃料の圧送時期と燃料の噴射時期は重複していてもよい。   In the first embodiment, the fuel pumping timing and the fuel injection timing may overlap.

・第2実施形態において、非噴射時センサ波形Waを進角補正する場合よりも抽出精度は劣るが、噴射期間における噴射時センサ波形Wiから進角補正していない非噴射時センサ波形Waを差し引き、噴射時波形Wを抽出してもよい。   In the second embodiment, although the extraction accuracy is inferior to the case of advance correction of the non-injection sensor waveform Wa, the non-injection sensor waveform Wa that has not been advanced is subtracted from the injection sensor waveform Wi in the injection period. The waveform W at the time of injection may be extracted.

・燃料噴射システムは、ディーゼルエンジンに限らずガソリンエンジンやガスエンジンに搭載してもよい。また、燃料噴射システムは、4気筒以外のエンジンに搭載してもよい。また、燃料噴射システムは、車両のエンジンに限らず、船舶等のエンジンに搭載してもよい。   -The fuel injection system may be mounted not only on a diesel engine but also on a gasoline engine or a gas engine. The fuel injection system may be mounted on an engine other than the four cylinders. Further, the fuel injection system is not limited to a vehicle engine, and may be mounted on an engine such as a ship.

10…燃料噴射弁、11a…高圧通路、11b…噴孔、20…燃圧センサ、30…ECU、41…燃料ポンプ、42…コモンレール、W…噴射時波形、Wa…非噴射時センサ波形、Wi…噴射時センサ波形。   DESCRIPTION OF SYMBOLS 10 ... Fuel injection valve, 11a ... High pressure passage, 11b ... Injection hole, 20 ... Fuel pressure sensor, 30 ... ECU, 41 ... Fuel pump, 42 ... Common rail, W ... Waveform at injection, Wa ... Sensor waveform at non-injection, Wi ... Sensor waveform during injection.

Claims (3)

高圧燃料を畜圧保持する畜圧容器(42)と、前記畜圧容器に対して燃料を圧送する燃料ポンプ(41)と、多気筒内燃機関の気筒ごとに設けられ前記畜圧容器内に畜圧保持された高圧燃料を噴射する燃料噴射弁(10)と、前記畜圧容器から各燃料噴射弁の噴射口(11b)までの各燃料通路内(43,11a)の燃料圧力をそれぞれ検出する燃圧センサ(20)と、を備える燃料噴射システムに適用される燃料噴射制御装置(30)であって、
前記機関の定常運転状態において、所定の気筒で噴射が行われている時に、前記所定の気筒に対応する前記燃圧センサの出力に基づいて、噴射時センサ波形Wiを検出する噴射時センサ波形検出手段と、
前記機関の前記定常運転状態において、前記所定の気筒とは異なる気筒で噴射が行われている時に、前記所定の気筒に対応する前記燃圧センサの出力に基づいて、非噴射時センサ波形Waを検出する非噴射時センサ波形検出手段と、
前記噴射時センサ波形検出手段により検出された前記噴射時センサ波形から、前記非噴射時センサ波形により検出された前記非噴射時センサ波形を差し引いて、前記所定の気筒での噴射に起因する圧力変動を表す噴射時波形Wを抽出する噴射時波形抽出手段と、を備えることを特徴とする燃料噴射制御装置。
An animal pressure vessel (42) for holding high-pressure fuel under pressure, a fuel pump (41) for pumping fuel to the animal pressure vessel, and an accumulator provided in each cylinder of a multi-cylinder internal combustion engine. A fuel injection valve (10) for injecting high-pressure fuel maintained at pressure, and a fuel pressure in each fuel passage (43, 11a) from the animal pressure vessel to the injection port (11b) of each fuel injection valve are detected. A fuel injection control device (30) applied to a fuel injection system comprising a fuel pressure sensor (20),
An in-injection sensor waveform detection means for detecting an in-injection sensor waveform Wi based on an output of the fuel pressure sensor corresponding to the predetermined cylinder when injection is performed in the predetermined cylinder in a steady operation state of the engine. When,
The non-injection sensor waveform Wa is detected based on the output of the fuel pressure sensor corresponding to the predetermined cylinder when injection is performed in a cylinder different from the predetermined cylinder in the steady operation state of the engine. A non-injection sensor waveform detecting means,
Pressure fluctuation caused by injection in the predetermined cylinder by subtracting the non-injection sensor waveform detected by the non-injection sensor waveform from the injection sensor waveform detected by the injection sensor waveform detection means And a fuel injection waveform extracting means for extracting a fuel injection waveform W representing the fuel injection control device.
前記燃料ポンプによる圧送時期と、前記燃料噴射弁による噴射時期とが重複しない場合に、前記機関の前記定常運転状態において、前記所定の気筒の噴射時期において噴射を停止させた時に、前記所定の気筒に対応する前記燃圧センサの出力に基づいて、噴射停止時センサ波形Wbを検出する噴射停止時センサ波形検出手段を備え、
前記噴射時波形抽出手段は、前記噴射時センサ波形から、前記非噴射時センサ波形検出手段により検出された前記非噴射時センサ波形、及び前記噴射停止時センサ波形検出手段により検出された噴射停止時センサ波形を差し引く請求項1に記載の燃料噴射制御装置。
When the injection timing of the predetermined cylinder is stopped at the injection timing of the predetermined cylinder in the steady operation state of the engine, when the pumping timing by the fuel pump and the injection timing by the fuel injection valve do not overlap, the predetermined cylinder An injection stop sensor waveform detection means for detecting an injection stop sensor waveform Wb based on the output of the fuel pressure sensor corresponding to
The injection time waveform extracting means includes the non-injection sensor waveform detected by the non-injection sensor waveform detection means and the injection stop time detected by the injection stop sensor waveform detection means from the injection sensor waveform. The fuel injection control device according to claim 1, wherein a sensor waveform is subtracted.
前記所定の気筒と噴射が行われている気筒との間の前記燃料通路の長さに応じて、前記非噴射時センサ波形検出手段により検出された前記非噴射時センサ波形の位相を進角するように補正する進角補正手段を備え、
前記噴射時波形抽出手段は、前記噴射時センサ波形から、前記噴射停止時センサ波形検出手段により検出された前記噴射停止時センサ波形、及び前記進角補正手段により補正された前記非噴射時センサ波形を差し引く請求項2に記載の燃料噴射制御装置。
The phase of the non-injection sensor waveform detected by the non-injection sensor waveform detection means is advanced according to the length of the fuel passage between the predetermined cylinder and the cylinder in which injection is performed. An advance correction means for correcting
The injection waveform extraction means includes the injection stop sensor waveform detected by the injection stop sensor waveform detection means and the non-injection sensor waveform corrected by the advance correction means from the injection sensor waveform. The fuel injection control device according to claim 2, wherein
JP2013106231A 2013-05-20 2013-05-20 Fuel injection control device Pending JP2014227858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013106231A JP2014227858A (en) 2013-05-20 2013-05-20 Fuel injection control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013106231A JP2014227858A (en) 2013-05-20 2013-05-20 Fuel injection control device

Publications (1)

Publication Number Publication Date
JP2014227858A true JP2014227858A (en) 2014-12-08

Family

ID=52127954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013106231A Pending JP2014227858A (en) 2013-05-20 2013-05-20 Fuel injection control device

Country Status (1)

Country Link
JP (1) JP2014227858A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017089522A (en) * 2015-11-11 2017-05-25 株式会社デンソー Fuel injection state estimation device
CN114233501A (en) * 2021-11-12 2022-03-25 潍柴动力股份有限公司 Gas injection valve monitoring method and related equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011117338A (en) * 2009-12-02 2011-06-16 Toyota Motor Corp Fuel injection device for internal combustion
JP2012062849A (en) * 2010-09-17 2012-03-29 Denso Corp Fuel injection waveform arithmetic unit
JP2013007341A (en) * 2011-06-24 2013-01-10 Denso Corp Fuel-injection-condition estimating apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011117338A (en) * 2009-12-02 2011-06-16 Toyota Motor Corp Fuel injection device for internal combustion
JP2012062849A (en) * 2010-09-17 2012-03-29 Denso Corp Fuel injection waveform arithmetic unit
JP2013007341A (en) * 2011-06-24 2013-01-10 Denso Corp Fuel-injection-condition estimating apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017089522A (en) * 2015-11-11 2017-05-25 株式会社デンソー Fuel injection state estimation device
CN114233501A (en) * 2021-11-12 2022-03-25 潍柴动力股份有限公司 Gas injection valve monitoring method and related equipment

Similar Documents

Publication Publication Date Title
JP5195842B2 (en) Pressure reducing valve controller
EP2039919B1 (en) Fuel injection system learning average of injection quantities for correcting injection characteristic of fuel injector
JP4424395B2 (en) Fuel injection control device for internal combustion engine
JP5136617B2 (en) Fuel injection waveform calculation device
JP5287915B2 (en) Fuel injection state estimation device
CN103089465B (en) Fuel injection controller
US20150046066A1 (en) Control device and control method for multi-cylinder internal combustion engine
JP5003796B2 (en) Fuel injection state detection device
JP5263280B2 (en) Fuel injection control device
JP6040877B2 (en) Fuel injection state estimation device
JP6020387B2 (en) Pressure sensor responsiveness learning device
WO2011078153A1 (en) Device for determining abnormality in fuel injection valve, and method for determining abnormality in fuel injection valve
JP5998970B2 (en) Fuel injection characteristic detection device
JP2014227858A (en) Fuel injection control device
JP5024429B2 (en) Fuel injection state detection device
JP5182337B2 (en) Detection deviation judgment device of fuel pressure sensor
JP5718829B2 (en) Abnormality judgment device for fuel supply system
JP5168325B2 (en) Fuel injection state detection device
JP6303944B2 (en) Fuel injection control device
JP5910522B2 (en) Fuel injection control device
JP2012167644A (en) Fuel injection control apparatus
JP5267441B2 (en) Fuel injection device for internal combustion engine
JP5799895B2 (en) Fuel injection control device
JP6252327B2 (en) Fuel supply control device
JP5915563B2 (en) Learning device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160823