JP2014226737A - Cutting-processing method - Google Patents

Cutting-processing method Download PDF

Info

Publication number
JP2014226737A
JP2014226737A JP2013106431A JP2013106431A JP2014226737A JP 2014226737 A JP2014226737 A JP 2014226737A JP 2013106431 A JP2013106431 A JP 2013106431A JP 2013106431 A JP2013106431 A JP 2013106431A JP 2014226737 A JP2014226737 A JP 2014226737A
Authority
JP
Japan
Prior art keywords
cutting
end mill
deep groove
depth
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013106431A
Other languages
Japanese (ja)
Other versions
JP6630029B2 (en
Inventor
渉 佐々木
Wataru Sasaki
渉 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2013106431A priority Critical patent/JP6630029B2/en
Publication of JP2014226737A publication Critical patent/JP2014226737A/en
Application granted granted Critical
Publication of JP6630029B2 publication Critical patent/JP6630029B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a cutting-processing method for cutting-processing a hard-to-work metal material by reducing a cutting resistance at a working time of cutting a hard-to-work metal material having a high viscosity and a low thermal conductivity, such as a titanium alloy or a nickel alloy, so that the method can perform a cutting work on the hard-to-work metal material.SOLUTION: A cutting-processing method drills a hole in a closed side end part of a stop groove as a preceding process of a cutting work, to form a deep groove 2 by an end mill 1. The cutting-processing method comprises a step of driving the end mill rotationally and cutting the end mill while turning the same, and cutting the deep groove always downward by a portion of the end mill.

Description

本発明は、加工物に深溝の切削加工を行う切削加工方法、特に難加工性の金属材に対して深溝の切削加工を行う切削加工方法に関するものである。   The present invention relates to a cutting method for performing deep groove cutting on a workpiece, and particularly to a cutting method for performing deep groove cutting on a difficult-to-work metal material.

鉄等の金属材に深溝の切削加工を行う際には、通常、エンドミルを用いて加工物の切削加工が行われる。   When a deep groove is cut in a metal material such as iron, the workpiece is usually cut using an end mill.

従来、深溝の切削加工が行われるのは主に金型であり、加工の対象は鋼材、アルミニウム合金等の切削性のよいものであった。従って、チタン合金やニッケル合金等、粘性が高く熱伝導率の低い難加工性の金属材に対する深溝の切削加工は想定されていなかった。従来の切削加工方法により難加工性の金属材の切削加工を行う場合、切削が困難であると共に工具が金属材との摩擦熱、切削抵抗により摩耗損傷する虞れがあることから、難加工性の金属材に対し、より効率のよい切削加工方法が求められている。   Conventionally, deep grooves are mainly cut by a mold, and the object of processing is a material having good cutting properties such as a steel material and an aluminum alloy. Accordingly, it has not been assumed that deep grooves are cut on difficult-to-work metal materials having high viscosity and low thermal conductivity, such as titanium alloys and nickel alloys. When cutting difficult-to-work metal materials using conventional cutting methods, cutting is difficult and the tool may be worn and damaged by frictional heat and cutting resistance with the metal material. There is a need for a more efficient cutting method for these metal materials.

尚、特許文献1には、溝の往復加工に於いて、エンドミルの送り方向に対する切削抵抗の向きを一定とし、尚且つ往路と復路の切削抵抗を等しくすることにより、溝の曲りや偏り等の形状精度悪化を防止する金型の切削加工方法が開示されている。   In Patent Document 1, in the reciprocating process of the groove, the direction of the cutting resistance with respect to the feed direction of the end mill is made constant, and the cutting resistance of the forward path and the backward path is made equal, so A mold cutting method for preventing deterioration of shape accuracy is disclosed.

特許文献1の場合、常に一定の切込みとなることでエンドミルの特定の箇所、例えば切削と被切削の境界部に負荷が集中し、又止まり溝折返し時には往路及び復路とは同じ切込みとはならない為切削抵抗が大きくなり、エンドミルの損傷を招く虞れがある。   In the case of Patent Document 1, the load is concentrated at a specific portion of the end mill, for example, at the boundary between cutting and workpiece, because the cutting is always constant, and when the stop groove is turned back, the forward and return paths are not the same. Cutting resistance increases, and there is a possibility of causing damage to the end mill.

又、特許文献2には、先細のテーパ状の刃を有するスクエアエンドミルを用いており、軸心に垂直な方向での切削速度を軸心に平行な方向での切削速度よりも高速とし、工具のワークへの侵入深さが深くなるにつれて移動速度を遅くすると共に切込み深さを小さくすることで時間あたりの切削速度を略一定にすると共に、工具を軸心に垂直な方向から軸心に平行な方向へと移動させる際、又は軸心に平行な方向から軸心に垂直な方向に移動させる際に工具を一時停止させることで工具を撓みのない状態へと復帰させる深溝の加工方法が開示されている。   Patent Document 2 uses a square end mill having a tapered taper blade, and the cutting speed in a direction perpendicular to the axis is higher than the cutting speed in a direction parallel to the axis. As the depth of penetration into the workpiece increases, the moving speed is slowed and the cutting depth is reduced to make the cutting speed per hour substantially constant, and the tool is parallel to the axis from the direction perpendicular to the axis. Disclosed is a deep groove machining method in which a tool is temporarily returned to a non-deflection state by temporarily stopping the tool when moving in a different direction or when moving from a direction parallel to the axis to a direction perpendicular to the axis. Has been.

又、特許文献3には、切刃の有効長が異なる複数の工具を用い、加工の深さに応じて短い刃長のものから長い刃長のものへ工具を取替えて何回かに分けてダウンカットにて加工を行い、目的の深さまで加工した後最後に用いた工具を使用して仕上げ加工を行うことで、溝の底付近の食込みによる広がりを防止し、離形性に優れた溝形状を得る深溝の切削加工方法が開示されている。   In Patent Document 3, a plurality of tools having different effective lengths of cutting blades are used, and the tool is changed from a short blade length to a long blade length according to the depth of machining, and divided into several times. Grooves with excellent releasability by machining by down-cutting, finishing to the desired depth, and finishing using the last tool, preventing spreading near the bottom of the groove A deep groove cutting method for obtaining a shape is disclosed.

特許文献2、特許文献3の場合は、使用されるのが共に先端が平面のスクエアエンドミルであり、溝の形状がエンドミルのテーパ角により決定されてしまう為、溝を所望の形状に加工できないという問題があった。   In the case of Patent Document 2 and Patent Document 3, a square end mill having a flat tip is used, and the shape of the groove is determined by the taper angle of the end mill, so that the groove cannot be processed into a desired shape. There was a problem.

特開平11−347823号公報Japanese Patent Laid-Open No. 11-347823 特開2002−59339号公報JP 2002-59339 A 特開2005−279839号公報JP 2005-279839 A

本発明は斯かる実情に鑑み、切削加工時の切削抵抗を低減し、難加工性の金属材に対する切削加工を可能とする切削加工方法を提供するものである。   In view of such circumstances, the present invention provides a cutting method that reduces cutting resistance during cutting and enables cutting of difficult-to-work metal materials.

本発明は、エンドミルにより深溝を形成する切削加工方法であって、前記エンドミルを回転駆動させると共に、該エンドミルを旋回させつつ切削し、前記深溝を常に前記エンドミルの一部により下向き切削する工程を含む切削加工方法に係るものである。   The present invention is a cutting method for forming a deep groove by an end mill, and includes a step of rotating the end mill, cutting while turning the end mill, and always cutting the deep groove downward by a part of the end mill. This relates to a cutting method.

又本発明は、切削加工の前工程として、止り溝の閉側端部に穴加工を施す切削加工方法に係るものである。   The present invention also relates to a cutting method in which a hole is formed in a closed side end portion of a stop groove as a pre-process of cutting.

更に又本発明は、前記エンドミルの挿入深さが深くなるにつれて、該エンドミルの切込み量を小さくする切削加工方法に係るものである。   Furthermore, the present invention relates to a cutting method for reducing the cutting depth of the end mill as the insertion depth of the end mill increases.

本発明によれば、エンドミルにより深溝を形成する切削加工方法であって、前記エンドミルを回転駆動させると共に、該エンドミルを旋回させつつ切削し、前記深溝を常に前記エンドミルの一部により下向き切削する工程を含むので、切削加工時に前記エンドミルに掛る負荷を軽減させることができ、難加工性の金属材であっても切削加工を行うことができるという優れた効果を発揮する。   According to the present invention, there is provided a cutting method for forming a deep groove by an end mill, the step of rotating the end mill, cutting while turning the end mill, and always cutting the deep groove downward by a part of the end mill. Therefore, it is possible to reduce the load applied to the end mill at the time of cutting, and exhibit an excellent effect that cutting can be performed even with difficult-to-work metal materials.

本発明の実施例に係る深溝の切削加工を説明する斜視図である。It is a perspective view explaining the deep groove cutting which concerns on the Example of this invention. 本発明の実施例に係る深溝の切削加工を説明する平面図である。It is a top view explaining the deep groove cutting which concerns on the Example of this invention. (A)〜(C)は本発明の実施例に係る深溝の切削加工を説明する側断面図である。(A)-(C) are sectional side views explaining the deep groove cutting which concerns on the Example of this invention.

以下、図面を参照しつつ本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1〜図3に於いて、本発明の実施例に係る深溝の切削加工方法について説明する。   1 to 3, a deep groove cutting method according to an embodiment of the present invention will be described.

図1〜図3中、1はエンドミルを示し、2は該エンドミル1により切削された深溝の一例を示し、3は該深溝2が形成された金属材、例えばチタン合金製の加工物を示している。尚、図1、図2中、矢印は切削進行方向を示す。   1 to 3, 1 is an end mill, 2 is an example of a deep groove cut by the end mill 1, and 3 is a metal material in which the deep groove 2 is formed, for example, a workpiece made of a titanium alloy. Yes. In FIG. 1 and FIG. 2, the arrow indicates the cutting progress direction.

前記エンドミル1は、例えば先端が球状で、先端部の周囲に螺旋状の切り刃4が形成されたボールエンドミルとなっており、図示しないホルダにより保持され、該ホルダを介してマシニングセンタ等の工作機械により前記深溝2の切削が行われる。又、前記エンドミル1は前記工作機械により前記エンドミル1の軸心である第1軸心5を中心に高速回転(自転)されると共に、第2軸心6を中心として所定の半径で前記第1軸心5を旋回(公転)する様になっている。   The end mill 1 is, for example, a ball end mill having a spherical tip and a spiral cutting edge 4 formed around the tip, and is held by a holder (not shown), and a machine tool such as a machining center is provided via the holder. Thus, the deep groove 2 is cut. The end mill 1 is rotated (rotated) at high speed around the first axis 5 which is the axis of the end mill 1 by the machine tool, and the first mill with a predetermined radius around the second axis 6. The shaft 5 is turned (revolved).

前記深溝2は一端が開放されており、他端は閉塞された止り溝となっている。尚、前記加工物3には前記エンドミル1により前記深溝2を形成する前の段階として、予め前記深溝2の閉側端部に位置する部分にドリルやプランジにより加工穴7が穿設される様になっている。   One end of the deep groove 2 is open, and the other end is a closed stop groove. In addition, as a step before the deep groove 2 is formed by the end mill 1, a processed hole 7 is drilled by a drill or a plunge in a portion located at the closed end of the deep groove 2 in advance. It has become.

次に、前記エンドミル1を用いた前記深溝2の切削加工について説明する。尚、図3(A)〜(C)中に於いては、前記エンドミル1を矢印の方向に移動させた際に切削される領域を2点鎖線にて示している。   Next, cutting of the deep groove 2 using the end mill 1 will be described. In FIGS. 3A to 3C, a region to be cut when the end mill 1 is moved in the direction of the arrow is indicated by a two-dot chain line.

前記深溝2の切削加工を行う際には、先ず前記エンドミル1の先端が加工開始位置、本実施例に於いては前記加工物3の端部に位置する様工作機械を操作する。   When the deep groove 2 is cut, the machine tool is first operated so that the end of the end mill 1 is positioned at the machining start position, in this embodiment, at the end of the workpiece 3.

次に、前記エンドミル1を高速で回転させつつ、前記エンドミル1を前記第2軸心6を中心に旋回させる。尚、前記エンドミル1は図2中時計方向に回転するものとする。この状態で、前記エンドミル1を前記第1軸心5に平行な方向(図3(A)〜(C)中紙面に対して下側)に、予め設定したd1だけ降下させることで、前記エンドミル1が前記加工物3に対して深さd1だけ切込まれる(図3(A)参照)。   Next, the end mill 1 is turned around the second axis 6 while rotating the end mill 1 at a high speed. The end mill 1 is assumed to rotate clockwise in FIG. In this state, the end mill 1 is lowered by a predetermined d1 in a direction parallel to the first axis 5 (downward with respect to the middle sheet surface in FIGS. 3A to 3C), thereby allowing the end mill 1 to move down. 1 is cut into the workpiece 3 by a depth d1 (see FIG. 3A).

前記エンドミル1の降下後、次に該エンドミル1を前記加工穴7に向って前記第1軸心5に垂直な方向(図1〜図3中矢印の方向)に移動させることで、前記加工物3が切削され、前記エンドミル1の直径より大きい溝幅で深さd1の深溝2aが形成される。この時、前記エンドミル1は前記第2軸心6を中心に旋回しており、公転と送りの合成で図1及び図2に示される様に、前記第1軸心5の軌跡8はトロコイド曲線を描く様になっている。又この時、前記エンドミル1による切削範囲は、図2を参照すると、点Aが切削の始点で点Bが切削の終点となる。従って、前記エンドミル1の回転及び旋回を考慮すると、始点Aから終点Bに至る迄ダウンカットされる。   After the end mill 1 is lowered, the end mill 1 is then moved toward the machining hole 7 in a direction perpendicular to the first axis 5 (in the direction of the arrow in FIGS. 1 to 3). 3 is cut to form a deep groove 2a having a groove width larger than the diameter of the end mill 1 and a depth d1. At this time, the end mill 1 is swiveling around the second axis 6, and the locus 8 of the first axis 5 is a trochoidal curve as shown in FIGS. Is like drawing. At this time, referring to FIG. 2, the cutting range by the end mill 1 is that point A is the starting point of cutting and point B is the ending point of cutting. Accordingly, when the rotation and turning of the end mill 1 are taken into consideration, the cut is performed from the start point A to the end point B.

該エンドミル1にて切削加工を行う際には、ダウンカットにて切削を行うことが望ましく、該エンドミル1に掛る切削抵抗、摩耗が軽減される。又、該エンドミル1により形成される前記深溝2の溝幅が前記エンドミル1の径よりも広くなっていることから、例えば、前記エンドミル1が1aの位置にある時には、前記エンドミル1の切削部分は点Cから点B迄となる。従って、前記エンドミル1と前記深溝2との接触面積が減少し、該深溝2が前記エンドミル1の一部により切削されることとなり、切削時の切削抵抗が軽減される。   When cutting with the end mill 1, it is desirable to perform cutting by down-cutting, and cutting resistance and wear applied to the end mill 1 are reduced. Further, since the groove width of the deep groove 2 formed by the end mill 1 is wider than the diameter of the end mill 1, for example, when the end mill 1 is at the position 1a, the cutting portion of the end mill 1 is From point C to point B. Therefore, the contact area between the end mill 1 and the deep groove 2 is reduced, and the deep groove 2 is cut by a part of the end mill 1, thereby reducing the cutting resistance during cutting.

該エンドミル1を前記深溝2aの閉側端部、即ち予め穿設された前記加工穴7迄移動させると、次に前記エンドミル1を前記第1軸心5と平行な方向に、予め設定したd2だけ降下させる(図3(B)参照)。   When the end mill 1 is moved to the closed end of the deep groove 2a, that is, the pre-drilled processing hole 7, the end mill 1 is then set in a direction parallel to the first axis 5 in advance. (See FIG. 3B).

前記エンドミル1の降下後、深さd1の前記深溝2aをなぞる様に、往路と同様の経路で前記エンドミル1を図3(B)中の矢印の方向へと移動させることで、前記深溝2aが深さd2だけ更に切削され、深さd1+d2の深溝2bが形成される。   After the end mill 1 is lowered, the deep groove 2a is moved by moving the end mill 1 in the direction of the arrow in FIG. 3B along the same path as the forward path so as to trace the deep groove 2a having the depth d1. Further, the depth d2 is further cut to form a deep groove 2b having a depth d1 + d2.

前記エンドミル1が前記深溝2の開放端迄移動すると、次に前記エンドミル1を前記第1軸心5と平行な方向に、予め設定したd3だけ降下させ、深さd1+d2の前記深溝2bに対して深さd3の切込みを入れる(図3(C)参照)。   When the end mill 1 moves to the open end of the deep groove 2, the end mill 1 is then lowered in a direction parallel to the first axis 5 by a preset d 3, with respect to the deep groove 2 b having a depth d 1 + d 2. A notch of depth d3 is made (see FIG. 3C).

最後に、前記深溝2bをなぞる様に前記エンドミル1を図3(C)中の矢印の方向へ前記加工穴7迄移動させ、前記深溝2bを深さd3だけ更に切削することで、前記加工物3に深さd1+d2+d3の深溝2cが形成される。   Finally, the end mill 1 is moved to the machining hole 7 in the direction of the arrow in FIG. 3C so as to trace the deep groove 2b, and the deep groove 2b is further cut by a depth d3, whereby the workpiece 3, a deep groove 2c having a depth d1 + d2 + d3 is formed.

尚、本実施例に於いては、d1、d2、d3の関係をd1>d2>d3としているが、切込み量が大きい場合には送り量を小さくし、切込み量が小さい場合には送り量を大きくすることで、前記エンドミル1の挿入深さに拘らず切削抵抗が一定となる様にしている。   In this embodiment, the relationship between d1, d2, and d3 is d1> d2> d3. However, the feed amount is reduced when the cut amount is large, and the feed amount is set when the cut amount is small. By making it large, the cutting resistance becomes constant regardless of the insertion depth of the end mill 1.

又、上記では前記エンドミル1を1往復半させることで深さd1+d2+d3の前記深溝2cを形成しているが、前記エンドミル1を2往復以上させることで更に深い深溝2を形成してもよいのは言う迄もない。   Further, in the above, the deep groove 2c having the depth d1 + d2 + d3 is formed by reciprocating the end mill 1 once and a half, but the deep groove 2 may be formed by reciprocating the end mill 1 two or more times. Needless to say.

上述の様に、本実施例では、前記エンドミル1を高速回転させると共に、前記第2軸心6を中心に前記エンドミル1を旋回させているので、前記深溝2の切削加工を行う際には、前記第1軸心5の軌跡8は公転と送りが合成された曲線、例えば上記したトロコイド曲線を描き、前記エンドミル1と前記深溝2との接触面積は小さくなる。従って、前記エンドミル1を前記深溝2の左右の壁面と接触させていた従来の切削加工と比べて切削抵抗を軽減させることができ、チタン合金やニッケル合金等の難加工性の金属材であっても発熱を抑制し前記深溝2の切削加工を行うことができる。   As described above, in the present embodiment, the end mill 1 is rotated at a high speed and the end mill 1 is swung around the second axis 6. Therefore, when the deep groove 2 is cut, The locus 8 of the first axis 5 draws a curve obtained by combining revolution and feed, for example, the above-described trochoid curve, and the contact area between the end mill 1 and the deep groove 2 becomes small. Therefore, cutting resistance can be reduced as compared with the conventional cutting process in which the end mill 1 is in contact with the left and right wall surfaces of the deep groove 2, and a difficult-to-work metal material such as a titanium alloy or a nickel alloy. Also, heat generation can be suppressed and the deep groove 2 can be cut.

又、前記深溝2の深さに応じて1回当りの切込み量を変更しているので、最も負荷が掛る前記深溝2壁面の上端縁との接触箇所(境界位置)を上下に変更させることができると共に、切込み量に拘らず切削抵抗が一定となる様送り量を調整することで前記エンドミル1に掛る切削抵抗を一定とすることができ、該エンドミル1の耐久性を向上させることができる。   Further, since the depth of cut per change is changed in accordance with the depth of the deep groove 2, the contact location (boundary position) with the upper edge of the wall surface of the deep groove 2 where the load is most applied can be changed up and down. In addition, the cutting force applied to the end mill 1 can be made constant by adjusting the feed amount so that the cutting resistance becomes constant regardless of the cutting amount, and the durability of the end mill 1 can be improved.

又、本実施例では、前記深溝2の閉側端部に予め加工穴7を穿設しているので、前記エンドミル1を前記深溝2の閉側端部から折返す際の切削抵抗をなくすことができ、切削加工時に掛る前記エンドミル1への負荷を軽減し、該エンドミル1の耐久性を向上させることができる。   Further, in this embodiment, since the machining hole 7 is previously drilled in the closed end portion of the deep groove 2, the cutting resistance when the end mill 1 is turned back from the closed end portion of the deep groove 2 is eliminated. It is possible to reduce the load applied to the end mill 1 during the cutting process and improve the durability of the end mill 1.

更に、本実施例で用いるエンドミル1はボールエンドミルであるので、前記深溝2の閉側端部の形状を滑らかにすることができると共に、該深溝2の壁面が曲面を有する場合であっても、等高線加工することで様々な溝形状や深さに対応することができる。   Furthermore, since the end mill 1 used in the present embodiment is a ball end mill, the shape of the closed end of the deep groove 2 can be made smooth, and the wall surface of the deep groove 2 has a curved surface. It is possible to deal with various groove shapes and depths by contour processing.

尚、より広い幅の前記深溝2を切削する場合には、往路の切削後に前記エンドミル1を幅方向に移動させ復路を往路とは別経路とすることで、より広い幅の前記深溝2を形成することができる。又、前記エンドミル1の旋回半径を調整し、該エンドミル1の旋回速度及び移動速度を調整することで、該エンドミル1の往路と復路を別経路とすることなく一度の工程でより広い幅の前記深溝2を形成することができる。   When the deep groove 2 having a wider width is cut, the deep mill 2 having a wider width is formed by moving the end mill 1 in the width direction after cutting the forward path and making the return path different from the forward path. can do. Further, by adjusting the turning radius of the end mill 1 and adjusting the turning speed and moving speed of the end mill 1, the width and width of the end mill 1 can be increased in a single step without making the forward path and the return path of the end mill 1 separate paths. The deep groove 2 can be formed.

又、本実施例では、前記深溝2の深さに拘らず同一のエンドミル1を使用しているが、前記深溝2の深さ毎に有効長や径の異なるエンドミルを用いてもよく、深さに応じて最適な加工条件で加工することで、切削加工時間を短縮でき、加工効率を向上させることができる。   In the present embodiment, the same end mill 1 is used regardless of the depth of the deep groove 2, but end mills having different effective lengths and diameters may be used for each depth of the deep groove 2. Depending on the machining conditions, machining time can be shortened and machining efficiency can be improved.

1 エンドミル
2 深溝
3 加工物
4 切り刃
5 第1軸心
6 第2軸心
7 加工穴
8 軌跡
1 End Mill 2 Deep Groove 3 Workpiece 4 Cutting Blade 5 First Axis 6 Second Axis 7 Machining Hole 8 Trajectory

Claims (3)

エンドミルにより深溝を形成する切削加工方法であって、前記エンドミルを回転駆動させると共に、該エンドミルを旋回させつつ切削し、前記深溝を常に前記エンドミルの一部により下向き切削する工程を含むことを特徴とする切削加工方法。   A cutting method for forming a deep groove by an end mill, comprising: a step of rotating the end mill, cutting while turning the end mill, and always cutting the deep groove downward by a part of the end mill. Cutting method to do. 切削加工の前工程として、止り溝の閉側端部に穴加工を施す請求項1の切削加工方法。   The cutting method according to claim 1, wherein a hole is formed in the closed end portion of the stop groove as a pre-process of the cutting process. 前記エンドミルの挿入深さが深くなるにつれて、該エンドミルの切込み量を小さくする請求項1又は請求項2の切削加工方法。   The cutting method according to claim 1 or 2, wherein the cutting amount of the end mill is reduced as the insertion depth of the end mill becomes deeper.
JP2013106431A 2013-05-20 2013-05-20 Cutting method Active JP6630029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013106431A JP6630029B2 (en) 2013-05-20 2013-05-20 Cutting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013106431A JP6630029B2 (en) 2013-05-20 2013-05-20 Cutting method

Publications (2)

Publication Number Publication Date
JP2014226737A true JP2014226737A (en) 2014-12-08
JP6630029B2 JP6630029B2 (en) 2020-01-15

Family

ID=52127053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013106431A Active JP6630029B2 (en) 2013-05-20 2013-05-20 Cutting method

Country Status (1)

Country Link
JP (1) JP6630029B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107175470A (en) * 2017-06-02 2017-09-19 中国航发南方工业有限公司 The special-shaped deep groove processing method of titanium alloy component
CN108687388A (en) * 2018-05-30 2018-10-23 中国航发动力股份有限公司 The processing method of small angle tower deep wall face cavity numerical control mill on high-temperature alloy material
CN113275625A (en) * 2021-05-31 2021-08-20 重庆水泵厂有限责任公司 Machining method of discontinuous deep annular cavity
CN114131289A (en) * 2021-12-08 2022-03-04 中国航发南方工业有限公司 Ring groove processing method of high-temperature alloy casing

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0360908A (en) * 1989-07-28 1991-03-15 Honda Motor Co Ltd Method for processing oblong hole
JP2002059339A (en) * 2000-08-24 2002-02-26 Toyota Motor Corp Deep groove machining method
JP2002321113A (en) * 2001-04-24 2002-11-05 Mmc Kobelco Tool Kk Method for cutting groove using end mill
US20030202854A1 (en) * 2002-04-27 2003-10-30 Goetz Lebkuechner Milling method
US20060140734A1 (en) * 2003-06-19 2006-06-29 Arndt Glaesser Milling method used for producing structural components
JP2012086296A (en) * 2010-10-19 2012-05-10 Ihi Corp Groove working method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0360908A (en) * 1989-07-28 1991-03-15 Honda Motor Co Ltd Method for processing oblong hole
JP2002059339A (en) * 2000-08-24 2002-02-26 Toyota Motor Corp Deep groove machining method
JP2002321113A (en) * 2001-04-24 2002-11-05 Mmc Kobelco Tool Kk Method for cutting groove using end mill
US20030202854A1 (en) * 2002-04-27 2003-10-30 Goetz Lebkuechner Milling method
US20060140734A1 (en) * 2003-06-19 2006-06-29 Arndt Glaesser Milling method used for producing structural components
JP2012086296A (en) * 2010-10-19 2012-05-10 Ihi Corp Groove working method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107175470A (en) * 2017-06-02 2017-09-19 中国航发南方工业有限公司 The special-shaped deep groove processing method of titanium alloy component
CN107175470B (en) * 2017-06-02 2019-03-05 中国航发南方工业有限公司 The special-shaped deep groove processing method of titanium alloy component
CN108687388A (en) * 2018-05-30 2018-10-23 中国航发动力股份有限公司 The processing method of small angle tower deep wall face cavity numerical control mill on high-temperature alloy material
CN108687388B (en) * 2018-05-30 2021-04-13 中国航发动力股份有限公司 Machining method for numerical control milling of small-corner deep-wall cavity in high-temperature alloy material
CN113275625A (en) * 2021-05-31 2021-08-20 重庆水泵厂有限责任公司 Machining method of discontinuous deep annular cavity
CN114131289A (en) * 2021-12-08 2022-03-04 中国航发南方工业有限公司 Ring groove processing method of high-temperature alloy casing

Also Published As

Publication number Publication date
JP6630029B2 (en) 2020-01-15

Similar Documents

Publication Publication Date Title
US9346128B2 (en) Method for producing a pattern of depressions in the friction surface of a friction component and a friction component for a frictionally operating device having such a pattern of depressions
US20200222992A1 (en) Deep hole machining method
JP2014226737A (en) Cutting-processing method
JP5939001B2 (en) drill
JP5549527B2 (en) Grooving method
WO2017199911A1 (en) Dimple forming method using rotary cutting tool
JP2010149271A (en) Corner portion working tool
JP2013111683A (en) Grooving method, and metal component
JP6723623B1 (en) Cutting method
JP4702902B2 (en) Sharpening tool and sharpening method
JP6643087B2 (en) Method of manufacturing spiral bevel gear or hypoid gear
JP2010076069A (en) Machining method and apparatus therefor
JP5534509B2 (en) Cutting method
JP2008307621A (en) Christmas cutter for rough cutting
KR100649431B1 (en) Drill provided with fluid guide means
JP2014034080A (en) Drill
JP2005305600A (en) Boring bar and its processing method
JP2016155178A (en) Rotary tool and manufacturing method thereof
KR20160060336A (en) Tapered reamer having serration cutting segment
JP2010076042A (en) Cutting method and apparatus thereof
JP2005279839A (en) Method for machining deep groove
CN213857294U (en) Special flat tooth milling cutter of stainless steel
CN207577505U (en) Self-cooled slides drill bit
JP4756609B2 (en) Rotary cutting tool
CN104785841B (en) Self-adjustable cutter feeding type cutting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170309

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191206

R150 Certificate of patent or registration of utility model

Ref document number: 6630029

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150