JP2012086296A - Groove working method - Google Patents

Groove working method Download PDF

Info

Publication number
JP2012086296A
JP2012086296A JP2010234374A JP2010234374A JP2012086296A JP 2012086296 A JP2012086296 A JP 2012086296A JP 2010234374 A JP2010234374 A JP 2010234374A JP 2010234374 A JP2010234374 A JP 2010234374A JP 2012086296 A JP2012086296 A JP 2012086296A
Authority
JP
Japan
Prior art keywords
workpiece
cutting
cutting tool
groove
end side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010234374A
Other languages
Japanese (ja)
Other versions
JP5549527B2 (en
Inventor
Tatsuya Kashimura
竜也 樫村
Kengo Kuwabara
賢吾 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2010234374A priority Critical patent/JP5549527B2/en
Publication of JP2012086296A publication Critical patent/JP2012086296A/en
Application granted granted Critical
Publication of JP5549527B2 publication Critical patent/JP5549527B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Milling Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a cutting tool T from getting damaged as chippage on an edge so as to lengthen the service life of the cutting tool T.SOLUTION: A groove working method includes a (1-1) first cutting step of relatively feed-driving the cutting tool T toward a workpiece W from one end of the workpiece W or from a middle side to the another end while gradually decreasing the cut amount in an axial direction of the cutting tool T while the cutting tool T is being turned around the axis, and, following completion of the (1-1) first step, a (1-2) second cutting step of relatively feed-driving the cutting tool T toward the workpiece W from the another end of the workpiece W to the one end or the middle side while gradually decreasing the cut amount in the axial direction of the cutting tool T while the cutting tool T is being turned around the axis.

Description

本発明は、ワークの被加工部に溝を形成するための溝加工方法に関する。   The present invention relates to a groove processing method for forming a groove in a workpiece portion of a workpiece.

ガスタービン部品等の機械部品を製作する際には、機械部品の素材となるワークの被加工部に溝を形成することがよくあり、図9(a)(b)及び図7(a)(b)を参照しながら、ワークWの被加工部Pに対して、ワークWの一端側(右端側)から他端側(左端側)にかけて延びかつ所定の幅寸法を有した溝Fを形成するための一般的な溝加工方法について簡単に説明すると、次のようになる。   When manufacturing machine parts such as gas turbine parts, a groove is often formed in a work portion of a workpiece that is a material of the machine parts, and FIGS. 9 (a), 9 (b) and 7 (a) ( With reference to b), a groove F extending from one end side (right end side) to the other end side (left end side) of the workpiece W and having a predetermined width dimension is formed on the workpiece P of the workpiece W. A general grooving method for the above will be briefly described as follows.

即ち、図9(a)(b)に示すように、前記所定の幅寸法(溝Fの幅寸法)と同じ外径寸法を有した切削工具としてのエンドミルTを用い、エンドミルTを軸心(エンドミルTの軸心)Tc周りに回転させる。そして、エンドミルTに均一な軸方向の切込みを与えつつ、エンドミルTをワークWの一端側から他端側に向かってワークWに対して相対的に送り移動させる。これにより、図7(a)(b)に示すように、ワークWの被加工部Pに切削加工を施して、均一な深さの溝Fを形成することができる。   That is, as shown in FIGS. 9A and 9B, an end mill T as a cutting tool having the same outer diameter as the predetermined width dimension (width dimension of the groove F) is used. The axis of the end mill T) is rotated around Tc. The end mill T is fed and moved relative to the work W from one end side to the other end side of the work W while giving the end mill T a uniform axial cut. As a result, as shown in FIGS. 7A and 7B, the processed portion P of the workpiece W can be cut to form the groove F having a uniform depth.

なお、本発明に関連する先行技術として特許文献1から特許文献4に示すものがある。   In addition, there exist some which are shown to patent document 1-patent document 4 as a prior art relevant to this invention.

特開2000ー141120号公報JP 2000-141120 A 特開2004−202688号公報JP 2004-202688 A 特開2008−213127号公報JP 2008-213127 A 特開2008−279547号公報JP 2008-279547 A

ところで、チタン合金、ニッケル合金、ステンレス合金等の難削材からなるワークWの被加工部Pに溝Fを形成する場合において、図10に示すように、ワークWの被処理部Pの切削加工が進行して、ワークWの被加工部Pの残り部分(未切削部分)の長さ寸法が短くなると(具体的には、ワークWの被加工部Pの長さ寸法が溝Fの深さ寸法に近づいたり、又は溝Fの深さ寸法以下になったりすると)、ワークWの被加工部Pの残り部分がエンドミルTの押す力(エンドミルTの送り移動に伴う力)によってワークWの一端側に倒れ込むように塑性変形し、ワークWの被加工部Pの残り部分におけるエンドミルT側の加工硬化が増大してしまう。そのため、エンドミルTに歯欠け等の損傷が生じて、エンドミルTの長寿命化を図ることが困難になるという問題がある。   By the way, in the case where the groove F is formed in the workpiece P of the workpiece W made of a difficult-to-cut material such as a titanium alloy, nickel alloy, stainless steel, etc., as shown in FIG. And the length dimension of the remaining portion (uncut portion) of the workpiece P of the workpiece W becomes shorter (specifically, the length dimension of the workpiece P of the workpiece W is the depth of the groove F). One end of the workpiece W due to the pushing force of the end mill T (the force accompanying the feed movement of the end mill T) by the remaining portion of the workpiece P of the workpiece W) This causes plastic deformation so as to fall down to the side, and the work hardening on the end mill T side in the remaining portion of the workpiece P of the workpiece W increases. For this reason, there is a problem that damage such as chipping occurs in the end mill T and it is difficult to extend the life of the end mill T.

そこで、本発明は、前述の問題を解決することができる、新規な構成の溝加工方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a groove processing method having a novel configuration that can solve the above-described problems.

本発明の第1の特徴は、ワークの被加工部に溝を形成するための溝加工方法において、前記溝の幅寸法と同じ外径寸法を有した切削工具を用い、前記切削工具を軸心周りに回転させた状態で、前記切削工具の軸方向の切込み量を漸次小さくしつつ、前記切削工具を前記ワークの一端側又は中間側から他端側に向かって前記ワークに対して相対的に送り移動(送り往動)させることにより、前記ワークの前記被加工部に切削加工を施して、前記ワークの前記被加工部に前記ワークの一端側又は中間側から他端側に向かって漸次浅くなるような凹部を形成する第1切削工程と、前記第1切削工程の終了後、前記切削工具を軸心周りに回転させた状態で、前記切削工具の軸方向の切込み量を漸次小さくしつつ、前記切削工具を前記ワークの他端側から一端側又は中間側に向かって前記ワークに対して相対的に送り移動(送り復動)させることにより、前記ワークの前記凹部(前記ワークの前記被加工部)に切削加工を施して、前記ワークの前記被加工部に前記溝を形成する第2切削工程と、を備えたことを要旨とする。   A first feature of the present invention is a grooving method for forming a groove in a work portion of a workpiece, wherein a cutting tool having the same outer diameter as the width of the groove is used, and the cutting tool is axially centered. The cutting tool is moved relative to the workpiece from one end side or an intermediate side to the other end side while gradually reducing the cutting depth in the axial direction of the cutting tool while being rotated around. By performing feed movement (feed forward movement), the workpiece portion of the workpiece is cut, and the workpiece portion of the workpiece is gradually shallowed from one end side or the intermediate side to the other end side of the workpiece. A first cutting step for forming such a recess, and after completion of the first cutting step, the cutting tool is rotated about its axis while the cutting depth in the axial direction of the cutting tool is gradually reduced. , Whether the cutting tool is at the other end of the workpiece By feeding and moving relative to the workpiece toward the one end side or the intermediate side (feed back movement), the concave portion of the workpiece (the workpiece portion of the workpiece) is cut, and the workpiece And a second cutting step for forming the groove in the processed part.

第1の特徴によると、溝加工方法は、前記切削工具を前記ワークの一端側又は中間側から他端側に向かって前記ワークに対して相対的に送り移動させる前記第1切削工程と、前記切削工具を前記ワークの他端側から一端側又は中間側に向かって前記ワークに対して相対的に送り移動させる前記第2切削工程とを備え、前記第1切削工程中及び前記第2切削工程中に前記切削工具の軸方向の切込み量を漸次小さくしているため、前記ワークの前記被加工部の切削加工が進行して、前記ワークの前記被加工部の残り部分(未切削部分)の長さ寸法が短くなっても、前記ワークの前記被加工部の前記残り部分が前記エンドミルTの押す力(前記切削工具の送り移動に伴う力)によって倒れ込むように塑性変形することがなく、前記ワークの前記被加工部の前記残り部分における前記切削工具側の加工硬化を十分に抑えることができる。   According to a first feature, the grooving method includes the first cutting step of moving the cutting tool relative to the workpiece from one end side or an intermediate side to the other end side of the workpiece, The second cutting step of moving the cutting tool relative to the workpiece from the other end side of the workpiece toward the one end side or the intermediate side, and during the first cutting step and the second cutting step. Since the cutting depth in the axial direction of the cutting tool is gradually reduced, the cutting of the workpiece portion of the workpiece proceeds, and the remaining portion (uncut portion) of the workpiece portion of the workpiece progresses. Even if the length dimension is shortened, the remaining portion of the workpiece portion of the workpiece is not plastically deformed so as to fall down due to the pushing force of the end mill T (force accompanying the feed movement of the cutting tool). The work piece The cutting tool side of work hardening in the rest of the parts can be sufficiently suppressed.

また、前記第1切削工程中及び前記第2切削工程中に、前記切削工具の軸方向の切込み量を漸次小さくしているため、前記切削工具における境界摩耗の発生箇所を変化させることができる。   In addition, since the cutting depth in the axial direction of the cutting tool is gradually reduced during the first cutting step and the second cutting step, it is possible to change the location where boundary wear occurs in the cutting tool.

本発明の第2の特徴は、ワークの被加工部に溝を形成するための溝加工方法において、前記溝の幅寸法よりも小さい外径寸法を有した切削工具を用い、前記切削工具を軸心周りに回転させかつ公転(トロコイド動作)させた状態で、前記切削工具の軸方向の切込み量を漸次小さくしつつ、前記切削工具を前記ワークの一端側又は中間側から他端側に向かって前記ワークに対して相対的に送り移動(送り往動)させることにより、前記ワークの前記被加工部に切削加工を施して、前記ワークの前記被加工部に前記ワークの一端側又は中間側から他端側に向かって漸次浅くなるような凹部を形成する第1切削工程と、前記第1切削工程の終了後、前記切削工具を軸心周りに回転させかつ公転させた状態で、前記切削工具の軸方向の切込み量を漸次小さくしつつ、前記切削工具を前記ワークの他端側から一端側又は中間側に向かって前記ワークに対して相対的に送り移動(送り復動)させることにより、前記ワークの前記凹部(前記ワークの前記被加工部)に切削加工を施して、前記ワークの前記被加工部に対して前記溝を形成する第2切削工程と、を備えたことを要旨とする。   A second feature of the present invention is a grooving method for forming a groove in a work portion of a workpiece, wherein a cutting tool having an outer diameter smaller than the width of the groove is used, and the cutting tool is pivoted. The cutting tool is moved from one end side or the intermediate side to the other end side of the workpiece while gradually reducing the axial cutting depth of the cutting tool in a state where the cutting tool is rotated around the center and revolved (trochoid operation). By performing feed movement (feed forward movement) relative to the workpiece, the workpiece portion of the workpiece is subjected to cutting, and the workpiece portion of the workpiece is moved from one end side or an intermediate side of the workpiece. A first cutting step for forming a concave portion that gradually becomes shallower toward the other end side; and after the first cutting step, the cutting tool is rotated and revolved around an axis, Gradual amount of cut in the axial direction While cutting, the cutting tool is moved relative to the work from the other end side to the one end side or the intermediate side of the work (feed back movement), thereby the concave portion of the work (of the work) The second aspect of the present invention includes a second cutting step of cutting the processed portion) to form the groove with respect to the processed portion of the workpiece.

第2の特徴によると、溝加工方法は、前記切削工具を前記ワークの一端側又は中間側から他端側に向かって前記ワークに対して相対的に送り移動させる前記第1切削工程と、前記切削工具を前記ワークの他端側から一端側又は中間側に向かって前記ワークに対して相対的に送り移動させる前記第2切削工程とを備え、前記第1切削工程中及び前記第2切削工程中に前記切削工具の軸方向の切込み量を漸次小さくしているため、前記ワークの前記被加工部の残り部分の長さ寸法が短くなっても、前記ワークの前記被加工部の前記残り部分が前記エンドミルTの押す力によって倒れ込むように塑性変形することがなく、前記ワークの前記被加工部の前記残り部分における前記切削工具側の加工硬化を十分に抑えることができる。   According to a second feature, the grooving method includes the first cutting step of moving the cutting tool relative to the workpiece from one end side or an intermediate side to the other end side of the workpiece, The second cutting step of moving the cutting tool relative to the workpiece from the other end side of the workpiece toward the one end side or the intermediate side, and during the first cutting step and the second cutting step. Since the cutting depth in the axial direction of the cutting tool is gradually reduced, the remaining portion of the workpiece portion of the workpiece is reduced even if the length of the remaining portion of the workpiece portion of the workpiece is reduced. Is not plastically deformed so as to fall down due to the pressing force of the end mill T, and the work hardening on the cutting tool side in the remaining portion of the workpiece portion of the workpiece can be sufficiently suppressed.

また、前記第1切削工程中及び前記第2切削工程中に、前記切削工具の軸方向の切込み量を漸次小さくしているため、前記切削工具における境界摩耗の発生箇所を変化させることができる。   In addition, since the cutting depth in the axial direction of the cutting tool is gradually reduced during the first cutting step and the second cutting step, it is possible to change the location where boundary wear occurs in the cutting tool.

本発明の第1及び第2の特徴によれば、前記ワークの前記被加工部の切削加工が進行して、前記ワークの前記被加工部の前記残り部分の長さ寸法が短くなっても、前記ワークの前記被加工部の前記残り部分における前記切削工具側の加工硬化を十分に抑えることができるため、前記切削工具に歯欠け等の損傷が生じ難くなり、前記切削工具の長寿命化を図ることができる。特に、前記切削工具における境界摩耗の発生箇所を変化させることができるため、前記切削工具の長寿命化をより十分に図ることができる。   According to the first and second features of the present invention, even if the cutting of the workpiece portion of the workpiece proceeds and the length of the remaining portion of the workpiece portion of the workpiece is reduced, Since the work hardening on the cutting tool side in the remaining portion of the workpiece of the workpiece can be sufficiently suppressed, damage such as chipping is less likely to occur in the cutting tool, thereby extending the life of the cutting tool. Can be planned. In particular, since the location where boundary wear occurs in the cutting tool can be changed, the life of the cutting tool can be extended more sufficiently.

図1(a)(b)は、第1実施形態に係る溝加工方法における第1切削工程を説明する平面図と断面図である。FIGS. 1A and 1B are a plan view and a cross-sectional view illustrating a first cutting process in the grooving method according to the first embodiment. 図2(a)(b)は、第1実施形態に係る溝加工方法における第2切削工程を説明する平面図と断面図である。2A and 2B are a plan view and a cross-sectional view illustrating a second cutting step in the grooving method according to the first embodiment. 図3(a)(b)は、第2実施形態に係る溝加工方法における第1切削工程を説明する平面図と断面図である。FIGS. 3A and 3B are a plan view and a cross-sectional view illustrating a first cutting process in the grooving method according to the second embodiment. 図4(a)(b)は、第2実施形態に係る溝加工方法における第2切削工程を説明する平面図と断面図である。4A and 4B are a plan view and a cross-sectional view illustrating a second cutting step in the grooving method according to the second embodiment. 図5(a)(b)は、第2実施形態に係る溝加工方法における第3切削工程を説明する平面図と断面図である。5A and 5B are a plan view and a cross-sectional view illustrating a third cutting step in the grooving method according to the second embodiment. 図6は、実施形態に係るマシニングセンタの斜視図である。FIG. 6 is a perspective view of the machining center according to the embodiment. 図7(a)(b)は、ワークの一端側から他端側にかけて延びかつ所定の幅寸法を有した溝が形成された様子を示す平面図と断面図である。FIGS. 7A and 7B are a plan view and a cross-sectional view showing a state in which a groove extending from one end side to the other end side of the work and having a predetermined width dimension is formed. 図8(a)(b)は、ワークの中間側から他端側にかけて延びかつ所定の幅寸法を有した溝が形成された様子を示す平面図と断面図である。8A and 8B are a plan view and a cross-sectional view showing a state in which a groove extending from the intermediate side to the other end side of the workpiece and having a predetermined width dimension is formed. 図9(a)(b)は、一般的な溝加工方法を説明する平面図と断面図である。FIGS. 9A and 9B are a plan view and a cross-sectional view for explaining a general groove processing method. 図10は、発明が解決しようとする課題を説明する断面図である。FIG. 10 is a cross-sectional view illustrating a problem to be solved by the invention.

以下、実施形態に係るマシニングセンタの構成、第1実施形態に係る溝加工方法の構成等、及び本発明の実施形態に係る溝加工方法の構成等について図1から図8を参照して順次説明する。   Hereinafter, the configuration of the machining center according to the embodiment, the configuration of the grooving method according to the first embodiment, the configuration of the grooving method according to the embodiment of the present invention, and the like will be sequentially described with reference to FIGS. .

(実施形態に係るマシニングセンタ)
図6に示すように、実施形態(第1実施形態及び第2実施形態)に係るマシニングセンタ1は、後述の実施形態に係る溝加工方法に使用されるものであって、Y軸方向(換言すれば、前後方向)へ延びたベッド3を備えており、このベッド3の後部には、コラム5が立設されている。また、ベッド3には、ワークWをセット可能なテーブル7がY軸方向へ移動可能に設けられており、ベッド3の後部の適宜位置には、テーブル7をY軸方向へ移動させるY軸モータ9が設けられている。
(Machining center according to the embodiment)
As shown in FIG. 6, the machining center 1 according to the embodiment (first embodiment and second embodiment) is used in a grooving method according to an embodiment described later, and is in the Y-axis direction (in other words, For example, a bed 3 extending in the front-rear direction is provided, and a column 5 is erected at the rear of the bed 3. The bed 3 is provided with a table 7 on which the workpiece W can be set so as to be movable in the Y-axis direction. A Y-axis motor that moves the table 7 in the Y-axis direction at an appropriate position at the rear of the bed 3. 9 is provided.

コラム5には、サドル11がX軸方向(換言すれば、左右方向)へ移動可能に設けられており、コラム5の左部には、サドル11をX軸方向へ移動させるX軸モータ13が設けられている。また、サドル11には、スピンドルヘッド15がZ軸方向(換言すれば、上下方向)へ移動可能に設けられており、サドル11の上部には、スピンドルヘッド15をZ軸方向へ移動させるZ軸モータ17が設けられている。   The column 5 is provided with a saddle 11 that can move in the X-axis direction (in other words, in the left-right direction). An X-axis motor 13 that moves the saddle 11 in the X-axis direction is provided on the left side of the column 5. Is provided. The saddle 11 is provided with a spindle head 15 that can move in the Z-axis direction (in other words, in the vertical direction). The saddle 11 has a Z-axis that moves the spindle head 15 in the Z-axis direction. A motor 17 is provided.

スピンドルヘッド15には、スピンドル19が軸心(スピンドル19の軸心)周りに回転可能に設けられており、スピンドルヘッド15の上部には、スピンドル19を軸心周りに回転させる回転モータ21が設けられている。また、スピンドル19の先端部(下端部)には、切削工具としてエンドミルT(TS)が同心状に着脱可能に設けられている。   The spindle head 15 is provided with a spindle 19 so as to be rotatable around an axis (axis of the spindle 19), and a rotary motor 21 for rotating the spindle 19 around the axis is provided at the upper part of the spindle head 15. It has been. Further, an end mill T (TS) as a cutting tool is detachably provided at the tip (lower end) of the spindle 19 in a concentric manner.

ここで、テーブル7にワークWをセットしかつスピンドル19の先端部にエンドミルT(TS)を装着した状態で、Y軸モータ9の駆動によりテーブル7をY軸方向へ移動させると、エンドミルT(TS)をワークWに対して相対的にY軸方向へ移動させることになる。同様に、X軸モータ13の駆動によりサドル11をX軸方向へ移動させると、エンドミルT(TS)をワークWに対して相対的にX軸方向へ移動させることになり、Z軸モータ17の駆動によりスピンドルヘッド15をZ軸方向へ移動させると、エンドミルT(TS)をワークWに対して相対的にZ軸方向へ移動させることになる。更に、スピンドル19の先端部にエンドミルT(TS)を装着した状態で、回転モータ21の駆動によりスピンドル19を軸心周りに回転させると、エンドミルT(TS)を軸心Tc(TSc)周りに回転させることになる(図1(a)及び図3(a)参照)。   Here, when the table 7 is moved in the Y-axis direction by driving the Y-axis motor 9 with the workpiece W set on the table 7 and the end mill T (TS) attached to the tip of the spindle 19, the end mill T ( TS) is moved relative to the workpiece W in the Y-axis direction. Similarly, when the saddle 11 is moved in the X-axis direction by driving the X-axis motor 13, the end mill T (TS) is moved in the X-axis direction relative to the workpiece W. When the spindle head 15 is moved in the Z-axis direction by driving, the end mill T (TS) is moved in the Z-axis direction relative to the workpiece W. Further, when the spindle 19 is rotated around the axis by driving the rotary motor 21 with the end mill T (TS) attached to the tip of the spindle 19, the end mill T (TS) is rotated around the axis Tc (TSc). It will rotate (refer Fig.1 (a) and Fig.3 (a)).

(第1実施形態に係る溝加工方法)
第1実施形態に係る溝加工方法は、図7(a)(b)に示すように、ワークWの被加工部Pに対して、ワークWの一端側(右端側)から他端側(左端側)にかけて延びかつ所定の幅寸法を有した溝Fを形成するための方法であって、(1-1)第1切削工程及び(1-2)第2切削工程を備えている。そして、各工程の具体的な構成は、次のようになる。
(Groove processing method according to the first embodiment)
As shown in FIGS. 7A and 7B, the grooving method according to the first embodiment is based on the workpiece W of the workpiece W from one end side (right end side) to the other end side (left end). (1) a first cutting step and (1-2) a second cutting step, which is a method for forming a groove F having a predetermined width dimension. And the concrete structure of each process is as follows.

(1-1)第1切削工程
スピンドル19の先端部に所定の幅寸法(溝Fの幅寸法)と同じ外径寸法を有したエンドミルTを装着すると共に、ワークWをテーブル7にセットする。次に、Y軸モータ9、X軸モータ13、及びZ軸モータ17の駆動によりエンドミルTをY軸方向、X軸方向、及びZ軸方向へワークWに対して相対的に移動させて、ワークWの被加工部Pの一方側(右方側)でかつ溝Fの深さ寸法に応じた高さに位置させる。更に、回転モータ21の駆動によりエンドミルTを軸心Tc周りに回転させる。そして、図1(a)(b)に示すように、エンドミルTを軸心Tc周りに回転させた状態で、エンドミルTの軸方向の切込み量(換言すれば、Z軸方向の切込み量)を溝Fの深さ寸法に応じた切込み量から0になるか又は0に近づくまで漸次小さくしつつ、X軸モータ13の駆動によりエンドミルTをワークWの一端側から他端側に向かってX軸方向(左方向)へワークWに対して相対的に送り移動(送り往動)させる。これにより、ワークWの被加工部Pに切削加工を施して、ワークWの被加工部Pに対して、ワークWの一端側から他端側に向かって漸次浅くなるような凹部Gを形成することができる。
(1-1) First Cutting Process At the tip of the spindle 19, an end mill T having the same outer diameter as the predetermined width (width of the groove F) is mounted, and the workpiece W is set on the table 7. Next, the end mill T is moved relative to the workpiece W in the Y-axis direction, the X-axis direction, and the Z-axis direction by driving the Y-axis motor 9, the X-axis motor 13, and the Z-axis motor 17. It is located on one side (right side) of the processed part P of W and at a height corresponding to the depth dimension of the groove F. Further, the end mill T is rotated about the axis Tc by driving the rotary motor 21. Then, as shown in FIGS. 1A and 1B, in the state where the end mill T is rotated about the axis Tc, the cutting amount in the axial direction of the end mill T (in other words, the cutting amount in the Z-axis direction) is set. The X-axis motor 13 is driven to move the end mill T from one end side to the other end side of the work W while the cutting amount corresponding to the depth dimension of the groove F becomes 0 or gradually decreases until it approaches 0. The feed is moved relative to the workpiece W in the direction (left direction) (feed forward movement). Thereby, the to-be-processed part P of the workpiece | work W is cut, and the recessed part G which becomes shallow gradually from the one end side of the workpiece | work W toward the other end side with respect to the to-be-processed part P of the workpiece | work W is formed. be able to.

ここで、エンドミルTの送り往動中に、エンドミルTの軸方向の切込み量を漸次小さくするために、Z軸モータ17の駆動によりエンドミルTをZ軸方向(上方向)へワークWに対して相対的に移動させている。なお、「エンドミルTの軸方向の切込み量を漸次小さくする」とは、エンドミルTの軸方向の切込み量を直線的に漸次小さくしたり、曲線的に漸次小さくしたり、又はステップ的に漸次小さくしたりすることを含む意である。   Here, during the forward and backward movement of the end mill T, the end mill T is moved in the Z-axis direction (upward) with respect to the workpiece W by driving the Z-axis motor 17 in order to gradually reduce the cut amount in the axial direction of the end mill T. It is moved relatively. Note that “increasing the axial cutting depth of the end mill T gradually” means that the axial cutting depth of the end mill T is gradually decreased linearly, gradually decreased curvedly, or gradually decreased stepwise. It is meant to include.

(1-2)第2切削工程
前記(1-1)第1切削工程の終了後に、X軸モータ13及びZ軸モータ17の駆動によりエンドミルTをX軸方向及びZ軸方向へワークWに対して相対的に移動させて、ワークWの被加工部Pの他方側(左方側)でかつ溝Fの深さ寸法に応じた高さに位置させる。そして、図2(a)(b)に示すように、回転モータ21の駆動によりエンドミルTを軸心Tc周りに回転させた状態で、エンドミルTの軸方向の切込み量を溝Fの深さ寸法に応じた切込み量から0になるか又は0に近づくまで漸次小さくしつつ、X軸モータ13の駆動によりエンドミルTをワークWの他端側から一端側に向かってX軸方向(右方向)へワークWに対して相対的に送り移動(送り復動)させる。これにより、ワークWの凹部G(凹部Gの底面)に切削加工を施して、ワークWの被加工部Pに均一な深さ寸法の溝Fを形成することができる。
(1-2) Second Cutting Process After the completion of the (1-1) first cutting process, the end mill T is moved with respect to the workpiece W in the X-axis direction and the Z-axis direction by driving the X-axis motor 13 and the Z-axis motor 17. Are moved relative to each other and positioned on the other side (left side) of the workpiece P of the workpiece W and at a height corresponding to the depth dimension of the groove F. 2 (a) and 2 (b), in the state where the end mill T is rotated around the axis Tc by driving the rotary motor 21, the depth of the groove F is determined by the axial cut amount of the end mill T. The end mill T is moved from the other end side to the one end side of the workpiece W in the X-axis direction (rightward direction) by driving the X-axis motor 13 while gradually decreasing from the cut amount corresponding to 0 to 0 or approaching 0. The feed is moved relative to the workpiece W (feed backward). As a result, the recess G of the workpiece W (the bottom surface of the recess G) can be cut to form a groove F having a uniform depth dimension in the workpiece P of the workpiece W.

ここで、エンドミルTの送り復動中に、エンドミルTの軸方向の切込み量を漸次小さくするために、ワークWに対するエンドミルTのZ軸方向の位置を一定に保っている。   Here, during the backward movement of the end mill T, the position of the end mill T in the Z-axis direction with respect to the workpiece W is kept constant in order to gradually reduce the amount of cut in the axial direction of the end mill T.

なお、図8(a)(b)に示すように、ワークWの中間側から他端側にかけて延びかつ所定の幅寸法を有した溝Fを形成するために、第1実施形態に係る溝加工法を適用しても構わない。この場合には、前記(1-1)第1切削工程において、エンドミルTをワークWの中間側から他端側に向かってX軸方向へワークWに対して相対的に送り移動させると共に、前記(1-2)第2切削工程において、エンドミルTをワークWの他端側から中間側に向かってX軸方向へワークWに対して相対的に送り移動させることになる。   As shown in FIGS. 8A and 8B, the groove machining according to the first embodiment is performed to form a groove F extending from the intermediate side to the other end side of the workpiece W and having a predetermined width dimension. You may apply the law. In this case, in the (1-1) first cutting step, the end mill T is moved and moved relative to the workpiece W in the X-axis direction from the intermediate side to the other end side of the workpiece W. (1-2) In the second cutting step, the end mill T is moved relative to the workpiece W in the X-axis direction from the other end side of the workpiece W toward the intermediate side.

また、前記(1-1)第1切削工程及び前記(1-2)第2切削工程を交互に繰り返して、溝Fの幅を拡大することも可能である。   It is also possible to enlarge the width of the groove F by alternately repeating the (1-1) first cutting step and the (1-2) second cutting step.

続いて、第1実施形態に係る溝加工方法の作用及び効果について説明する。   Then, the effect | action and effect of the groove processing method which concern on 1st Embodiment are demonstrated.

第1実施形態に係る溝加工方法は、エンドミルTをワークWの一端側から他端側に向かってX軸方向へワークWに対して相対的に送り移動させる前記(1-1)第1切削工程と、エンドミルTをワークWの他端側から一端側に向かってX軸方向ワークに対して相対的に送り移動させる前記(1-2)第2切削工程とを備え、前記(1-1)第1切削工程中及び前記(1-2)第2切削工程中にエンドミルTの軸方向の切込み量を漸次小さくしているため、ワークWの被加工部Pの切削加工が進行して、ワークWの被加工部Pの残り部分(未切削部分)の長さ寸法が短くなっても(具体的には、ワークWの被加工部Pの残り部分の長さ寸法が溝Fの深さ寸法に近づいたり、又は溝Fの深さ寸法以下になったりしても)、ワークWの被加工部Pの残り部分がエンドミルTの押す力(エンドミルTの送り移動に伴う力)によって倒れ込むように塑性変形することがなく、ワークWの被加工部Pの残り部分におけるエンドミルT側の加工硬化を十分に抑えることができる。   In the grooving method according to the first embodiment, the end mill T is fed and moved relative to the workpiece W in the X-axis direction from one end side to the other end side of the workpiece W. And (1-2) the second cutting step of moving the end mill T relative to the X-axis workpiece from the other end side to the one end side of the workpiece W, ) During the first cutting step and during the (1-2) second cutting step, the cutting depth in the axial direction of the end mill T is gradually reduced, so that cutting of the workpiece P of the workpiece W proceeds, Even if the length dimension of the remaining portion (uncut portion) of the workpiece P of the workpiece W is shortened (specifically, the length dimension of the remaining portion of the workpiece P of the workpiece W is the depth of the groove F). The remaining part of the workpiece P of the workpiece W is pushed by the end mill T (even if it approaches the dimension or becomes less than the depth dimension of the groove F). Force without plastic deformation as falls down by (the force caused by the feed movement of the end mill T), it is possible to suppress the hardening of the end mill T side in the remainder of the processing unit P of the workpiece W sufficiently.

また、前記(1-1)第1切削工程中及び前記(1-2)第2切削工程中に、エンドミルTの軸方向の切込み量を漸次小さくしているため、エンドミルTにおける境界摩耗の発生箇所を変化させることができる。   Further, since the amount of cut in the axial direction of the end mill T is gradually reduced during the (1-1) first cutting process and the (1-2) second cutting process, generation of boundary wear in the end mill T occurs. The location can be changed.

従って、第1実施形態に係る溝加工方法によれば、ワークWの被加工部Pの切削加工が進行して、ワークWの被加工部Pの残り部分の長さ寸法が短くなっても、ワークWの被加工部Pの残り部分におけるエンドミルT側の加工硬化を十分に抑えることができるため、エンドミルTに歯欠け等の損傷が生じ難くなり、エンドミルTの長寿命化を図ることができる。特に、エンドミルTにおける境界摩耗の発生箇所を変化させることができるため、エンドミルTの長寿命化をより十分に図ることができる。   Therefore, according to the grooving method according to the first embodiment, even if the cutting of the workpiece P of the workpiece W progresses and the length of the remaining portion of the workpiece P of the workpiece W is reduced, Since the work hardening on the end mill T side in the remaining portion of the workpiece P of the workpiece W can be sufficiently suppressed, damage to the end mill T, such as tooth chipping, is difficult to occur, and the life of the end mill T can be extended. . In particular, since the location where boundary wear occurs in the end mill T can be changed, the life of the end mill T can be extended more sufficiently.

(第2実施形態に係る溝加工方法)
第2実施形態に係る溝加工方法は、第1実施形態に係る溝加工方法と同様に、ワークWの被加工部Pに対して、ワークWの一端側(右端側)から他端側(左端側)にかけて延びかつ所定の幅寸法を有した溝Fを形成するための方法であって、(2-1)第1切削工程、(2-2)第2切削工程、及び(2-3)第3切削工程を備えている。そして、各工程の具体的な構成は、次のようになる。
(Groove processing method according to the second embodiment)
The grooving method according to the second embodiment is similar to the grooving method according to the first embodiment, with respect to the workpiece P of the workpiece W, from one end side (right end side) to the other end side (left end). And (2) a first cutting step, (2-2) a second cutting step, and (2-3) a method for forming a groove F having a predetermined width dimension. A third cutting step is provided. And the concrete structure of each process is as follows.

(2-1)第1切削工程
スピンドル19の先端部に所定の幅寸法(溝Fの幅寸法)よりも小さい外径寸法を有したエンドミルTSを装着すると共に、ワークWをテーブル7にセットする。次に、Y軸モータ9、X軸モータ13、及びZ軸モータ17の駆動によりエンドミルTSをY軸方向、X軸方向、及びZ軸方向へワークWに対して相対的に移動させて、ワークWの被加工部Pの一方側(右方側)でかつ溝Fの深さ寸法に応じた高さに位置させる。更に、回転モータ21の駆動によりエンドミルTSを軸心TSc周りに回転させると共に、Y軸モータ9及びX軸モータ13の駆動を制御してエンドミルTSを公転(トロコイド運動)させる。そして、図3(a)(b)に示すように、エンドミルTSを軸心TSc周りに回転させかつ公転させた状態で、エンドミルTSの軸方向の切込み量(換言すれば、Z軸方向の切込み量)を溝Fの深さ寸法に応じた切込み量から0になるか又は0に近づくまで漸次小さくしつつ、X軸モータ13の駆動によりエンドミルTSをワークWの一端側から他端側に向かってX軸方向(左方向)へワークWに対して相対的に送り移動(送り往動)させる。これにより、ワークWの被加工部Pに切削加工を施して、ワークWの被加工部Pに対して、ワークWの一端側から他端側に向かって漸次浅くなるような凹部Gを形成することができる。
(2-1) First Cutting Process At the tip of the spindle 19, an end mill TS having an outer diameter smaller than a predetermined width (width of the groove F) is mounted, and the work W is set on the table 7. . Next, the end mill TS is moved relative to the workpiece W in the Y-axis direction, the X-axis direction, and the Z-axis direction by driving the Y-axis motor 9, the X-axis motor 13, and the Z-axis motor 17. It is located on one side (right side) of the processed part P of W and at a height corresponding to the depth dimension of the groove F. Further, the end mill TS is rotated about the axis TSc by driving the rotary motor 21 and the end mill TS is revolved (trochoidal motion) by controlling the driving of the Y-axis motor 9 and the X-axis motor 13. Then, as shown in FIGS. 3A and 3B, the end mill TS is rotated around the axis TSc and revolved, so that the end mill TS has a cut amount in the axial direction (in other words, a cut in the Z axis direction). The end mill TS is moved from one end side to the other end side of the workpiece W by driving the X-axis motor 13 while gradually decreasing until the depth of cut according to the depth dimension of the groove F becomes 0 or approaches 0. Then, the feed is moved (feed forward) relative to the workpiece W in the X-axis direction (left direction). Thereby, the to-be-processed part P of the workpiece | work W is cut, and the recessed part G which becomes shallow gradually from the one end side of the workpiece | work W toward the other end side with respect to the to-be-processed part P of the workpiece | work W is formed. be able to.

ここで、エンドミルTSの送り往動中に、エンドミルTSの軸方向の切込み量を漸次小さくするために、Z軸モータ17の駆動によりエンドミルTSをZ軸方向(上方向)へワークWに対して相対的に移動させている。また、エンドミルTSの1公転毎にエンドミルTSにワークWに対する送り(X軸方向の切込み量)を与えている。なお、「エンドミルTSの軸方向の切込み量を漸次小さくする」とは、エンドミルTSの軸方向の切込み量を直線的に漸次小さくしたり、曲線的に漸次小さくしたり、或いはステップ的に漸次小さくしたりすることを含む意である。   Here, during the feed forward movement of the end mill TS, the end mill TS is moved in the Z-axis direction (upward) with respect to the workpiece W by driving the Z-axis motor 17 in order to gradually reduce the amount of axial cutting of the end mill TS. It is moved relatively. Further, a feed (cut amount in the X-axis direction) with respect to the workpiece W is given to the end mill TS for each revolution of the end mill TS. Note that “reducing the axial cutting depth of the end mill TS gradually” means that the axial cutting depth of the end mill TS is gradually decreased linearly, gradually decreased curvedly, or gradually decreased stepwise. It is meant to include.

(2-2)第2切削工程
前記(2-1)第1切削工程の終了後に、Y軸モータ9、X軸モータ13、及びZ軸モータ17の駆動によりエンドミルTSをY軸方向、X軸方向、及びZ軸方向へワークWに対して相対的に移動させて、ワークWの被加工部Pの他方側(左方側)でかつ溝Fの深さ寸法に応じた高さに位置させる。そして、図4(a)(b)に示すように、回転モータ21等の駆動によりエンドミルTSを軸心TSc周りに回転させかつ公転させた状態で、エンドミルTSの軸方向の切込み量を溝Fの深さ寸法に応じた切込み量から0になるか又は0に近づくまで漸次小さくしつつ、X軸モータ13の駆動によりエンドミルTSをワークWの他端側から一端側に向かってX軸方向(右方向)へワークWに対して相対的に送り移動(送り復動)させる。これにより、ワークWの凹部G(凹部Gの底面)に切削加工を施して、ワークWの被加工部Pに均一な深さの溝Fを形成することができる。
(2-2) Second Cutting Process After the completion of the (2-1) first cutting process, the end mill TS is moved in the Y-axis direction and the X-axis by driving the Y-axis motor 9, the X-axis motor 13, and the Z-axis motor 17. Is moved relative to the workpiece W in the direction and the Z-axis direction, and is positioned on the other side (left side) of the workpiece P of the workpiece W and at a height corresponding to the depth dimension of the groove F. . 4 (a) and 4 (b), the end mill TS is rotated about the axis TSc and revolved by driving the rotary motor 21 or the like, and the axial cut amount of the end mill TS is set to the groove F. The end mill TS is driven from the other end side to the one end side of the workpiece W in the X-axis direction (by driving the X-axis motor 13 while gradually reducing the depth of cut according to the depth dimension to 0 or approaching 0. The feed is moved relative to the workpiece W in the right direction). Thereby, the recess G of the workpiece W (the bottom surface of the recess G) can be cut to form the groove F having a uniform depth in the workpiece P of the workpiece W.

ここで、エンドミルTSの送り復動中に、エンドミルTSの軸方向の切込み量を漸次小さくするために、ワークWに対するエンドミルTSのZ軸方向の位置を一定に保っている。また、エンドミルTSの1公転毎にエンドミルTSにワークWに対する送り(X軸方向の切込み量)を与えている。   Here, during the backward movement of the end mill TS, the position of the end mill TS in the Z-axis direction with respect to the workpiece W is kept constant in order to gradually reduce the amount of cut in the axial direction of the end mill TS. Further, a feed (cut amount in the X-axis direction) with respect to the workpiece W is given to the end mill TS for each revolution of the end mill TS.

(2-3)第3切削工程(仕上げ工程)
前記(2-2)第2切削工程の終了後に、Y軸モータ9、X軸モータ13、及びZ軸モータ17の駆動によりエンドミルTSをY軸方向、X軸方向、及びZ軸方向へワークWに対して相対的に移動させて、溝Fの一側壁面の一方側(右方側)でかつ溝Fの深さ寸法に応じた高さに位置させる。そして、図5(a)(b)に示すように、回転モータ21の駆動によりエンドミルTSを軸心TSc周りに回転させた状態で、X軸モータ13の駆動によりエンドミルTSを溝Fの一側壁面に沿ってX軸方向(左方向)へワークWに対して相対的に送り移動させる。これにより、溝Fの一側壁面に切削加工を施すことができる。
(2-3) Third cutting process (finishing process)
After the end of the (2-2) second cutting step, the end mill TS is moved in the Y-axis direction, the X-axis direction, and the Z-axis direction by driving the Y-axis motor 9, the X-axis motor 13, and the Z-axis motor 17. And is positioned at one side (right side) of one side wall surface of the groove F and at a height corresponding to the depth dimension of the groove F. 5 (a) and 5 (b), the end mill TS is rotated around the axis TSc by driving the rotary motor 21, and the end mill TS is moved to one side of the groove F by driving the X-axis motor 13. It is fed and moved relative to the workpiece W in the X-axis direction (left direction) along the wall surface. Thereby, cutting can be performed on one side wall surface of the groove F.

溝Fの一側壁に対して切削加工を施した後に、Y軸モータ9及びX軸モータ13の駆動によりエンドミルTSをY軸方向及びX軸方向へワークWに対して相対的に移動させて、溝Fの他側壁面の他方側(左方側)でかつ溝Fの深さ寸法に応じた高さに位置させる。そして、図5(a)(b)に示すように、回転モータ21の駆動によりエンドミルTSを軸心TSc周りに回転させた状態で、X軸モータ13の駆動によりエンドミルTSを溝Fの他側壁面に沿ってX軸方向(右方向)へワークWに対して相対的に送り移動させる。これにより、溝Fの他側壁面に切削加工を施して、溝Fの幅寸法を所定の幅寸法(目標寸法)に仕上げるすことができる。   After cutting one side wall of the groove F, the end mill TS is moved relative to the workpiece W in the Y-axis direction and the X-axis direction by driving the Y-axis motor 9 and the X-axis motor 13, It is located on the other side (left side) of the other side wall surface of the groove F and at a height corresponding to the depth dimension of the groove F. 5 (a) and 5 (b), the end mill TS is rotated about the axis TSc by driving the rotary motor 21, and the end mill TS is moved to the other side of the groove F by driving the X-axis motor 13. It is fed and moved relative to the workpiece W in the X-axis direction (right direction) along the wall surface. As a result, the other sidewall surface of the groove F can be cut to finish the width dimension of the groove F to a predetermined width dimension (target dimension).

なお、図8(a)(b)に示すように、ワークWの中間側から他端側にかけて延びかつ所定の幅寸法を有した溝Fを形成するために、第2実施形態に係る溝加工法を適用しても構わない。この場合には、前記(2-1)第1切削工程において、エンドミルTSをワークWの中間側から他端側に向かってX軸方向へワークWに対して相対的に送り移動させると共に、前記(2-2)第2切削工程において、エンドミルTSをワークWの他端側から中間側に向かってX軸方向へワークWに対して相対的に送り移動させることになる。   As shown in FIGS. 8A and 8B, the groove machining according to the second embodiment is performed to form a groove F extending from the intermediate side to the other end side of the workpiece W and having a predetermined width dimension. You may apply the law. In this case, in the (2-1) first cutting step, the end mill TS is moved and moved relative to the workpiece W in the X-axis direction from the intermediate side to the other end side of the workpiece W, and (2-2) In the second cutting step, the end mill TS is moved relative to the workpiece W in the X-axis direction from the other end side of the workpiece W toward the intermediate side.

続いて、第2実施形態に係る溝加工方法の作用及び効果について説明する。   Then, the effect | action and effect of the groove processing method which concern on 2nd Embodiment are demonstrated.

第2実施形態に係る溝加工方法は、エンドミルTSをワークWの一端側から他端側に向かってX軸方向へワークWに対して相対的に送り移動させる前記(2-1)第1切削工程と、エンドミルTSをワークWの他端側から一端側に向かってX軸方向ワークに対して相対的に送り移動させる前記(2-2)第2切削工程とを備え、前記(2-1)第1切削工程中及び前記(2-2)第2切削工程中にエンドミルTSの軸方向の切込み量を漸次小さくしているため、ワークWの被加工部Pの切削加工が進行して、ワークWの被加工部Pの残り部分の長さ寸法が短くなっても、ワークWの被加工部Pの残り部分がエンドミルTSの押す力によって倒れ込むように塑性変形することがなく、ワークWの被加工部Pの残り部分の加工硬化を十分に抑えることができる。   In the grooving method according to the second embodiment, the end mill TS is moved relative to the workpiece W in the X-axis direction from one end side to the other end side of the workpiece W (2-1) First cutting And (2-2) a second cutting step for moving the end mill TS relative to the X-axis direction workpiece from the other end side to the one end side of the workpiece W, and (2-1 ) Since the cutting depth in the axial direction of the end mill TS is gradually reduced during the first cutting step and (2-2) the second cutting step, the cutting of the workpiece P of the workpiece W proceeds, Even if the length of the remaining portion of the workpiece P of the workpiece W is shortened, the remaining portion of the workpiece P of the workpiece W is not plastically deformed so as to fall down by the pressing force of the end mill TS. Work hardening of the remaining part of the to-be-processed part P can fully be suppressed.

また、前記(2-1)第1切削工程中及び前記(2-2)第2切削工程中に、エンドミルTSの軸方向の切込み量を漸次小さくしているため、エンドミルTSにおける境界摩耗の発生箇所を変化させることができる。   Further, during the (2-1) first cutting process and the (2-2) second cutting process, since the amount of cutting in the axial direction of the end mill TS is gradually reduced, occurrence of boundary wear in the end mill TS occurs. The location can be changed.

更に、前記(2-1)第1切削工程中及び前記(2-2)第2切削工程中に、エンドミルTSを軸心TSc周りに回転させかつ公転させた状態で、エンドミルTSをX軸方向へワークWに対して相対的に送り移動させているため、エンドミルTSとワークWとの接触面積(接触距離)を小さくして、切削加工中におけるエンドミルTSの温度上昇を抑えることができる。   Further, during the (2-1) first cutting step and the (2-2) second cutting step, the end mill TS is rotated around the axis TSc and revolved, and the end mill TS is moved in the X-axis direction. Therefore, the contact area (contact distance) between the end mill TS and the workpiece W can be reduced, and the temperature rise of the end mill TS during cutting can be suppressed.

従って、第2実施形態に係る溝加工方法によれば、ワークWの被加工部Pの切削加工が進行して、ワークWの被加工部Pの残り部分の長さ寸法が短くなっても、ワークWの被加工部Pの残り部分の加工硬化を十分に抑えることができるため、エンドミルTSに歯欠け等の損傷が生じ難くなり、エンドミルTSの長寿命化を図ることができる。特に、エンドミルTSにおける境界摩耗の発生箇所を変化させることができると共に、切削加工中におけるエンドミルTSの温度上昇を抑えることができるため、エンドミルTSの長寿命化をより十分に図ることができる。   Therefore, according to the grooving method according to the second embodiment, even if the cutting of the workpiece P of the workpiece W progresses and the length of the remaining portion of the workpiece P of the workpiece W is reduced, Since work hardening of the remaining portion of the workpiece P of the workpiece W can be sufficiently suppressed, damage such as chipping is less likely to occur in the end mill TS, and the life of the end mill TS can be extended. In particular, the occurrence location of boundary wear in the end mill TS can be changed, and the temperature rise of the end mill TS during cutting can be suppressed, so that the life of the end mill TS can be further sufficiently increased.

なお、本発明は、前述の実施形態の説明に限るものでなく、種々の態様で実施可能である。また、本発明に包含される権利範囲は、これらの実施形態に限定されないものである。   In addition, this invention is not restricted to description of the above-mentioned embodiment, It can implement in a various aspect. Further, the scope of rights encompassed by the present invention is not limited to these embodiments.

W ワーク
P 被加工部
F 溝
G 凹部
T エンドミル
Tc エンドミルの軸心
TS エンドミル
TSc エンドミルの軸心
1 マシニングセンタ
3 ベッド
5 コラム
7 テーブル
9 Y軸モータ
11 サドル
13 X軸モータ
15 スピンドルヘッド
17 Z軸モータ
19 スピンドル
21 回転モータ
W Work P Worked part F Groove G Concave T End mill Tc End mill shaft center TS End mill TSc End mill shaft center 1 Machining center 3 Bed 5 Column 7 Table 9 Y-axis motor 11 Saddle 13 X-axis motor 15 Spindle head 17 Z-axis motor 19 Spindle 21 Rotation motor

Claims (4)

ワークの被加工部に溝を形成するための溝加工方法において、
前記溝の幅寸法と同じ外径寸法を有した切削工具を用い、前記切削工具を軸心周りに回転させた状態で、前記切削工具の軸方向の切込み量を漸次小さくしつつ、前記切削工具を前記ワークの一端側又は中間側から他端側に向かって前記ワークに対して相対的に送り移動させることにより、前記ワークの前記被加工部に切削加工を施して、前記ワークの前記被加工部に前記ワークの一端側又は中間側から他端側に向かって漸次浅くなるような凹部を形成する第1切削工程と、
前記第1切削工程の終了後、前記切削工具を軸心周りに回転させた状態で、前記切削工具の軸方向の切込み量を漸次小さくしつつ、前記切削工具を前記ワークの他端側から一端側又は中間側に向かって前記ワークに対して相対的に送り移動させることにより、前記ワークの前記凹部に切削加工を施して、前記ワークの前記被加工部に対して前記溝を形成する第2切削工程と、を備えたことを特徴とする溝加工方法。
In a groove processing method for forming a groove in a work part of a workpiece,
Using the cutting tool having the same outer diameter as the width of the groove and rotating the cutting tool around an axis, the cutting tool is gradually reduced in the axial direction while the cutting tool is gradually reduced in the axial direction. Is moved relative to the workpiece from one end side or the intermediate side to the other end side of the workpiece, thereby cutting the workpiece portion of the workpiece and cutting the workpiece. A first cutting step of forming a recess in the part so as to gradually become shallower from one end side or the intermediate side to the other end side of the workpiece;
After the end of the first cutting step, the cutting tool is rotated from the other end side of the workpiece to the one end while gradually reducing the cutting amount in the axial direction of the cutting tool while the cutting tool is rotated around the axis. Secondly, the groove is formed in the processed portion of the workpiece by cutting the concave portion of the workpiece by moving the workpiece toward the side or the intermediate side relative to the workpiece. A groove cutting method comprising: a cutting step.
ワークの被加工部に溝を形成するための溝加工方法において、
前記溝の幅寸法よりも小さい外径寸法を有した切削工具を用い、前記切削工具を軸心周りに回転させかつ公転させた状態で、前記切削工具の軸方向の切込み量を漸次小さくしつつ、前記切削工具を前記ワークの一端側又は中間側から他端側に向かって前記ワークに対して相対的に送り移動させることにより、前記ワークの前記被加工部に切削加工を施して、前記ワークの前記被加工部に前記ワークの一端側又は中間側から他端側に向かって漸次浅くなるような凹部を形成する第1切削工程と、
前記第1切削工程の終了後、前記切削工具を軸心周りに回転させかつ公転させた状態で、前記切削工具の軸方向の切込み量を漸次小さくしつつ、前記切削工具を前記ワークの他端側から一端側又は中間側に向かって前記ワークに対して相対的に送り移動させることにより、前記ワークの前記凹部に切削加工を施して、前記ワークの前記被加工部に対して前記溝を形成する第2切削工程と、を備えたことを特徴とする溝加工方法。
In a groove processing method for forming a groove in a work part of a workpiece,
While using a cutting tool having an outer diameter smaller than the width of the groove, and rotating and revolving the cutting tool around an axis, the cutting depth in the axial direction of the cutting tool is gradually reduced. The workpiece is cut by moving the cutting tool relative to the workpiece from one end side or an intermediate side to the other end side of the workpiece, thereby cutting the workpiece. A first cutting step of forming a recess that gradually becomes shallower from one end side or the intermediate side to the other end side of the workpiece,
After completion of the first cutting step, the cutting tool is rotated around the axis and revolved, and the cutting tool is moved to the other end of the workpiece while gradually reducing the axial cutting depth of the cutting tool. The groove is formed in the processed portion of the workpiece by cutting the concave portion of the workpiece by moving it relative to the workpiece from the side toward the one end side or the intermediate side. And a second cutting process.
前記第2切削工程の終了後に、前記切削工具を軸心周りに回転させた状態で、前記切削工具を前記溝の各側壁面に沿って前記ワークに対して相対的に送り移動させることにより、前記溝の各側壁面に切削加工を施して、前記溝の幅寸法を目標寸法に仕上げる第3切削工程と、を備えたことを特徴とする請求項2に記載の溝加工方法。   After the end of the second cutting step, in a state where the cutting tool is rotated around the axis, the cutting tool is moved and moved relative to the workpiece along each side wall surface of the groove, The groove processing method according to claim 2, further comprising: a third cutting step of cutting each side wall surface of the groove to finish the width of the groove to a target dimension. 前記第1切削工程中及び前記第2切削工程中に、前記切削工具の1公転毎に前記切削工具を前記ワークに対する送りを与えていることを特徴とする請求項2又は請求項3に記載の溝加工方法。   4. The feed according to claim 2, wherein the cutting tool is fed to the workpiece every revolution of the cutting tool during the first cutting step and the second cutting step. 5. Grooving method.
JP2010234374A 2010-10-19 2010-10-19 Grooving method Active JP5549527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010234374A JP5549527B2 (en) 2010-10-19 2010-10-19 Grooving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010234374A JP5549527B2 (en) 2010-10-19 2010-10-19 Grooving method

Publications (2)

Publication Number Publication Date
JP2012086296A true JP2012086296A (en) 2012-05-10
JP5549527B2 JP5549527B2 (en) 2014-07-16

Family

ID=46258490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010234374A Active JP5549527B2 (en) 2010-10-19 2010-10-19 Grooving method

Country Status (1)

Country Link
JP (1) JP5549527B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013099829A (en) * 2011-11-09 2013-05-23 Ihi Corp Grooving method
WO2014002228A1 (en) * 2012-06-28 2014-01-03 株式会社牧野フライス製作所 Control device for machine tool and machine tool
WO2014002270A1 (en) * 2012-06-29 2014-01-03 株式会社牧野フライス製作所 Fluting method, control device for machine tool and tool path-generating device
JP2014226737A (en) * 2013-05-20 2014-12-08 株式会社Ihi Cutting-processing method
CN104768684A (en) * 2012-10-31 2015-07-08 株式会社牧野铣床制作所 Machine tool control device and machine tool
EP3100808A4 (en) * 2014-01-28 2017-07-05 Makino Milling Machine Co., Ltd. Cutting method and tool path generating device
CN116460344A (en) * 2023-04-27 2023-07-21 广州诺贝尼家居有限公司 Grooving device for plate processing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04130790A (en) * 1990-09-21 1992-05-01 Matsushita Electric Works Ltd Working method for printed wiring board
JPH05200616A (en) * 1992-01-22 1993-08-10 Nec Corp Working of groove and groove working device
JPH068026A (en) * 1992-06-25 1994-01-18 Hitachi Tool Eng Ltd Cutting by end mill
JPH10124129A (en) * 1996-08-27 1998-05-15 Sharp Corp Numerical control data producing device, producing method, and recording medium for cutting work machine
JP2002059339A (en) * 2000-08-24 2002-02-26 Toyota Motor Corp Deep groove machining method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04130790A (en) * 1990-09-21 1992-05-01 Matsushita Electric Works Ltd Working method for printed wiring board
JPH05200616A (en) * 1992-01-22 1993-08-10 Nec Corp Working of groove and groove working device
JPH068026A (en) * 1992-06-25 1994-01-18 Hitachi Tool Eng Ltd Cutting by end mill
JPH10124129A (en) * 1996-08-27 1998-05-15 Sharp Corp Numerical control data producing device, producing method, and recording medium for cutting work machine
JP2002059339A (en) * 2000-08-24 2002-02-26 Toyota Motor Corp Deep groove machining method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013099829A (en) * 2011-11-09 2013-05-23 Ihi Corp Grooving method
US9886021B2 (en) 2012-06-28 2018-02-06 Makino Milling Machine Co., Ltd. Control device for coordinating translation and revolution movement in a machine tool
WO2014002228A1 (en) * 2012-06-28 2014-01-03 株式会社牧野フライス製作所 Control device for machine tool and machine tool
CN104428088A (en) * 2012-06-28 2015-03-18 株式会社牧野铣床制作所 Control device for machine tool and machine tool
JPWO2014002228A1 (en) * 2012-06-28 2016-05-26 株式会社牧野フライス製作所 Machine tool control device and machine tool
CN104428088B (en) * 2012-06-28 2017-08-29 株式会社牧野铣床制作所 The control device and lathe of lathe
WO2014002270A1 (en) * 2012-06-29 2014-01-03 株式会社牧野フライス製作所 Fluting method, control device for machine tool and tool path-generating device
CN104487193A (en) * 2012-06-29 2015-04-01 株式会社牧野铣床制作所 Fluting method, control device for machine tool and tool path-generating device
JP5818987B2 (en) * 2012-06-29 2015-11-18 株式会社牧野フライス製作所 Grooving method, machine tool control device, and tool path generation device
US10569348B2 (en) 2012-06-29 2020-02-25 Makino Milling Machine Co., Ltd. Groove-forming method, control device for machine tool and tool path generating device
CN104768684A (en) * 2012-10-31 2015-07-08 株式会社牧野铣床制作所 Machine tool control device and machine tool
JP2014226737A (en) * 2013-05-20 2014-12-08 株式会社Ihi Cutting-processing method
EP3100808A4 (en) * 2014-01-28 2017-07-05 Makino Milling Machine Co., Ltd. Cutting method and tool path generating device
CN116460344A (en) * 2023-04-27 2023-07-21 广州诺贝尼家居有限公司 Grooving device for plate processing
CN116460344B (en) * 2023-04-27 2023-09-08 广州诺贝尼家居有限公司 Grooving device for plate processing

Also Published As

Publication number Publication date
JP5549527B2 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
JP5549527B2 (en) Grooving method
KR101995784B1 (en) Method for machining a workpiece, tool arrangement and tooth cutting machine
KR102266159B1 (en) Method for machining a toothing, a machining tool, and a machine tool
JP5761577B2 (en) Crown gear manufacturing apparatus and method
JP2007326213A (en) Device and method for soft machining of bevel gear, and use of the device
JP4664029B2 (en) Creation method and machine for spiral bevel gears
JP6307877B2 (en) Rolling equipment
JP2010149271A (en) Corner portion working tool
JP2004074394A (en) Radius end mill and manufacturing method of bevel gear forging die
KR101224748B1 (en) NC table using hypoid gear
JP5946984B1 (en) Groove processing method
US20230158591A1 (en) Method for machining a tooth flank region of a workpiece tooth arrangement, chamfering tool, control program having control instructions for carrying out the method, and gear-cutting machine
JP2014226737A (en) Cutting-processing method
JP2013111683A (en) Grooving method, and metal component
JP6968068B2 (en) A method for making or processing gears, and gear cutting machines designed for it.
JP2007283452A (en) Cutting method
JP6819099B2 (en) Gear processing method
JP2010076069A (en) Machining method and apparatus therefor
JP7289563B2 (en) Machining method, machining equipment and machining program
CN113523377A (en) Cycloid machining method for large-allowance casting blank
JP7271160B2 (en) Cutting device and cutting method
JP5842554B2 (en) Grooving method
KR20240011689A (en) A method for machining a tooth flank region of a workpiece tooth arrangement, a chamfering tool, a control program having control instructions for performing the method, and a gear cutting machine.
CN113909541A (en) Cycloid machining method for large-allowance casting blank
KIKUCHI et al. Development of MSS300 Super Skiving Machine-Realization of High-Precision, High-Efficiency

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140505

R151 Written notification of patent or utility model registration

Ref document number: 5549527

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250