JP6630029B2 - Cutting method - Google Patents

Cutting method Download PDF

Info

Publication number
JP6630029B2
JP6630029B2 JP2013106431A JP2013106431A JP6630029B2 JP 6630029 B2 JP6630029 B2 JP 6630029B2 JP 2013106431 A JP2013106431 A JP 2013106431A JP 2013106431 A JP2013106431 A JP 2013106431A JP 6630029 B2 JP6630029 B2 JP 6630029B2
Authority
JP
Japan
Prior art keywords
end mill
cutting
deep groove
cut
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013106431A
Other languages
Japanese (ja)
Other versions
JP2014226737A (en
Inventor
渉 佐々木
渉 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2013106431A priority Critical patent/JP6630029B2/en
Publication of JP2014226737A publication Critical patent/JP2014226737A/en
Application granted granted Critical
Publication of JP6630029B2 publication Critical patent/JP6630029B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Milling Processes (AREA)

Description

本発明は、加工物に深溝の切削加工を行う切削加工方法、特に難加工性の金属材に対して深溝の切削加工を行う切削加工方法に関するものである。   The present invention relates to a cutting method for cutting a deep groove in a workpiece, and more particularly to a cutting method for cutting a deep groove in a difficult-to-machine metal material.

鉄等の金属材に深溝の切削加工を行う際には、通常、エンドミルを用いて加工物の切削加工が行われる。   When a deep groove is cut in a metal material such as iron, the work is usually cut using an end mill.

従来、深溝の切削加工が行われるのは主に金型であり、加工の対象は鋼材、アルミニウム合金等の切削性のよいものであった。従って、チタン合金やニッケル合金等、粘性が高く熱伝導率の低い難加工性の金属材に対する深溝の切削加工は想定されていなかった。従来の切削加工方法により難加工性の金属材の切削加工を行う場合、切削が困難であると共に工具が金属材との摩擦熱、切削抵抗により摩耗損傷する虞れがあることから、難加工性の金属材に対し、より効率のよい切削加工方法が求められている。   Conventionally, cutting of a deep groove is mainly performed by a mold, and the object of the processing is a steel material, an aluminum alloy, or the like having good machinability. Therefore, cutting of a deep groove in a difficult-to-work metal material having a high viscosity and a low thermal conductivity such as a titanium alloy or a nickel alloy has not been assumed. When cutting a hard-to-work metal material by a conventional cutting method, it is difficult to cut, and the tool may be worn away due to frictional heat with the metal material and cutting resistance. For metal materials, a more efficient cutting method is required.

尚、特許文献1には、溝の往復加工に於いて、エンドミルの送り方向に対する切削抵抗の向きを一定とし、尚且つ往路と復路の切削抵抗を等しくすることにより、溝の曲りや偏り等の形状精度悪化を防止する金型の切削加工方法が開示されている。   In addition, in Patent Document 1, in the reciprocating processing of the groove, the direction of the cutting resistance with respect to the feed direction of the end mill is fixed, and the cutting resistance in the outward path and the return path is equalized, so that the bending and deviation of the groove can be reduced. A cutting method of a mold for preventing deterioration of shape accuracy is disclosed.

特許文献1の場合、常に一定の切込みとなることでエンドミルの特定の箇所、例えば切削と被切削の境界部に負荷が集中し、又止まり溝折返し時には往路及び復路とは同じ切込みとはならない為切削抵抗が大きくなり、エンドミルの損傷を招く虞れがある。   In the case of Patent Literature 1, the load is concentrated on a specific portion of the end mill, for example, a boundary portion between cutting and the cut, since the cut is always constant, and the same cut is not made in the forward path and the return path when the blind groove is turned back. There is a possibility that the cutting resistance is increased and the end mill is damaged.

又、特許文献2には、先細のテーパ状の刃を有するスクエアエンドミルを用いており、軸心に垂直な方向での切削速度を軸心に平行な方向での切削速度よりも高速とし、工具のワークへの侵入深さが深くなるにつれて移動速度を遅くすると共に切込み深さを小さくすることで時間あたりの切削速度を略一定にすると共に、工具を軸心に垂直な方向から軸心に平行な方向へと移動させる際、又は軸心に平行な方向から軸心に垂直な方向に移動させる際に工具を一時停止させることで工具を撓みのない状態へと復帰させる深溝の加工方法が開示されている。   Further, Patent Document 2 uses a square end mill having a tapered tapered blade, and makes a cutting speed in a direction perpendicular to the axis higher than a cutting speed in a direction parallel to the axis. As the penetration depth into the workpiece increases, the moving speed is reduced and the cutting depth is reduced to keep the cutting speed per time approximately constant, and the tool is parallel to the axis from a direction perpendicular to the axis. A deep groove machining method for returning a tool to a state without bending by temporarily stopping the tool when moving in a direction perpendicular to the axis or moving from a direction parallel to the axis to a direction perpendicular to the axis is disclosed. Have been.

又、特許文献3には、切刃の有効長が異なる複数の工具を用い、加工の深さに応じて短い刃長のものから長い刃長のものへ工具を取替えて何回かに分けてダウンカットにて加工を行い、目的の深さまで加工した後最後に用いた工具を使用して仕上げ加工を行うことで、溝の底付近の食込みによる広がりを防止し、離形性に優れた溝形状を得る深溝の切削加工方法が開示されている。   Further, in Patent Document 3, a plurality of tools having different effective lengths of the cutting blades are used, and the tools are changed from a short blade length to a long blade length according to the processing depth, and divided into several times. Processing by down-cutting, processing to the desired depth, and then finishing using the last tool used to prevent spread due to biting near the bottom of the groove and grooves with excellent mold release properties A cutting method of a deep groove for obtaining a shape is disclosed.

特許文献2、特許文献3の場合は、使用されるのが共に先端が平面のスクエアエンドミルであり、溝の形状がエンドミルのテーパ角により決定されてしまう為、溝を所望の形状に加工できないという問題があった。   In the case of Patent Literature 2 and Patent Literature 3, a square end mill having a flat tip is used, and the shape of the groove is determined by the taper angle of the end mill, so that the groove cannot be machined into a desired shape. There was a problem.

特開平11−347823号公報JP-A-11-347823 特開2002−59339号公報JP-A-2002-59339 特開2005−279839号公報JP 2005-279839 A

本発明は斯かる実情に鑑み、切削加工時の切削抵抗を低減し、難加工性の金属材に対する切削加工を可能とする切削加工方法を提供するものである。   The present invention has been made in view of the above circumstances, and provides a cutting method capable of reducing cutting resistance at the time of cutting and enabling cutting of difficult-to-machine metal materials.

本発明は、エンドミルにより深溝を形成する切削加工方法であって、前記エンドミルを回転駆動させると共に、該エンドミルを旋回させつつ切削し、前記深溝を常に前記エンドミルの一部により下向き切削する工程を含む切削加工方法に係るものである。   The present invention is a cutting method for forming a deep groove by an end mill, which includes a step of rotating and driving the end mill, cutting while rotating the end mill, and always cutting the deep groove downward by a part of the end mill. It relates to a cutting method.

又本発明は、切削加工の前工程として、止り溝の閉側端部に穴加工を施す切削加工方法に係るものである。   Further, the present invention relates to a cutting method in which a hole is formed in a closed end portion of a blind groove as a pre-process of the cutting.

更に又本発明は、前記エンドミルの挿入深さが深くなるにつれて、該エンドミルの切込み量を小さくする切削加工方法に係るものである。   Still further, the present invention relates to a cutting method for reducing the depth of cut of the end mill as the insertion depth of the end mill increases.

本発明によれば、エンドミルにより深溝を形成する切削加工方法であって、前記エンドミルを回転駆動させると共に、該エンドミルを旋回させつつ切削し、前記深溝を常に前記エンドミルの一部により下向き切削する工程を含むので、切削加工時に前記エンドミルに掛る負荷を軽減させることができ、難加工性の金属材であっても切削加工を行うことができるという優れた効果を発揮する。   According to the present invention, there is provided a cutting method for forming a deep groove by an end mill, wherein the end mill is rotationally driven and cut while rotating the end mill, and the deep groove is always cut downward by a part of the end mill. Therefore, the load exerted on the end mill during cutting can be reduced, and an excellent effect that cutting can be performed even with difficult-to-machine metal materials is exhibited.

本発明の実施例に係る深溝の切削加工を説明する斜視図である。It is a perspective view explaining cutting processing of a deep slot concerning an example of the present invention. 本発明の実施例に係る深溝の切削加工を説明する平面図である。It is a top view explaining cutting processing of a deep slot concerning an example of the present invention. (A)〜(C)は本発明の実施例に係る深溝の切削加工を説明する側断面図である。(A)-(C) are sectional side views explaining the cutting of the deep groove | channel which concerns on the Example of this invention.

以下、図面を参照しつつ本発明の実施例を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1〜図3に於いて、本発明の実施例に係る深溝の切削加工方法について説明する。   1 to 3, a method for cutting a deep groove according to an embodiment of the present invention will be described.

図1〜図3中、1はエンドミルを示し、2は該エンドミル1により切削された深溝の一例を示し、3は該深溝2が形成された金属材、例えばチタン合金製の加工物を示している。尚、図1、図2中、矢印は切削進行方向を示す。   1 to 3, reference numeral 1 denotes an end mill, 2 denotes an example of a deep groove cut by the end mill 1, and 3 denotes a metal material having the deep groove 2 formed thereon, for example, a workpiece made of a titanium alloy. I have. In FIGS. 1 and 2, arrows indicate the direction in which cutting proceeds.

前記エンドミル1は、例えば先端が球状で、先端部の周囲に螺旋状の切り刃4が形成されたボールエンドミルとなっており、図示しないホルダにより保持され、該ホルダを介してマシニングセンタ等の工作機械により前記深溝2の切削が行われる。又、前記エンドミル1は前記工作機械により前記エンドミル1の軸心である第1軸心5を中心に高速回転(自転)されると共に、第2軸心6を中心として所定の半径で前記第1軸心5を旋回(公転)する様になっている。   The end mill 1 is, for example, a ball end mill having a spherical tip and a spiral cutting edge 4 formed around the tip. The end mill 1 is held by a holder (not shown) and machine tools such as a machining center via the holder. Thereby, the deep groove 2 is cut. The end mill 1 is rotated (rotated) at a high speed around a first axis 5 which is the axis of the end mill 1 by the machine tool, and the first mill is rotated at a predetermined radius around a second axis 6. The shaft center 5 turns (revolves).

前記深溝2は一端が開放されており、他端は閉塞された止り溝となっている。尚、前記加工物3には前記エンドミル1により前記深溝2を形成する前の段階として、予め前記深溝2の閉側端部に位置する部分にドリルやプランジにより加工穴7が穿設される様になっている。   One end of the deep groove 2 is open and the other end is a closed stop groove. Prior to the formation of the deep groove 2 by the end mill 1, a hole 7 is previously drilled in the workpiece 3 by a drill or a plunge at a portion located at the closed end of the deep groove 2. It has become.

次に、前記エンドミル1を用いた前記深溝2の切削加工について説明する。尚、図3(A)〜(C)中に於いては、前記エンドミル1を矢印の方向に移動させた際に切削される領域を2点鎖線にて示している。   Next, cutting of the deep groove 2 using the end mill 1 will be described. In FIGS. 3A to 3C, a region to be cut when the end mill 1 is moved in the direction of the arrow is indicated by a two-dot chain line.

前記深溝2の切削加工を行う際には、先ず前記エンドミル1の先端が加工開始位置、本実施例に於いては前記加工物3の端部に位置する様工作機械を操作する。   When cutting the deep groove 2, a machine tool is first operated so that the end of the end mill 1 is located at a machining start position, in this embodiment, at the end of the workpiece 3.

次に、前記エンドミル1を高速で回転させつつ、前記エンドミル1を前記第2軸心6を中心に旋回させる。尚、前記エンドミル1は図2中時計方向に回転するものとする。この状態で、前記エンドミル1を前記第1軸心5に平行な方向(図3(A)〜(C)中紙面に対して下側)に、予め設定したd1だけ降下させることで、前記エンドミル1が前記加工物3に対して深さd1だけ切込まれる(図3(A)参照)。   Next, the end mill 1 is turned around the second axis 6 while rotating the end mill 1 at high speed. It is assumed that the end mill 1 rotates clockwise in FIG. In this state, the end mill 1 is lowered by a preset d1 in a direction parallel to the first axis 5 (lower side with respect to the sheet in FIGS. 3 (A) to 3 (C)). 1 is cut into the workpiece 3 by a depth d1 (see FIG. 3A).

前記エンドミル1の降下後、次に該エンドミル1を前記加工穴7に向って前記第1軸心5に垂直な方向(図1〜図3中矢印の方向)に移動させることで、前記加工物3が切削され、前記エンドミル1の直径より大きい溝幅で深さd1の深溝2aが形成される。この時、前記エンドミル1は前記第2軸心6を中心に旋回しており、公転と送りの合成で図1及び図2に示される様に、前記第1軸心5の軌跡8はトロコイド曲線を描く様になっている。又この時、前記エンドミル1による切削範囲は、図2を参照すると、点Aが切削の始点で点Bが切削の終点となる。従って、前記エンドミル1の回転及び旋回を考慮すると、始点Aから終点Bに至る迄ダウンカットされる。   After the end mill 1 descends, the workpiece is moved by moving the end mill 1 in the direction perpendicular to the first axis 5 (the direction of the arrow in FIGS. 1 to 3) toward the machining hole 7. 3 is cut to form a deep groove 2a having a groove width larger than the diameter of the end mill 1 and a depth d1. At this time, the end mill 1 is revolving around the second axis 6, and the trajectory 8 of the first axis 5 is a trochoid curve as shown in FIGS. It is like drawing. At this time, referring to FIG. 2, the cutting range of the end mill 1 is such that the point A is the starting point of cutting and the point B is the ending point of cutting. Therefore, in consideration of the rotation and turning of the end mill 1, the cutting is performed from the start point A to the end point B.

該エンドミル1にて切削加工を行う際には、ダウンカットにて切削を行うことが望ましく、該エンドミル1に掛る切削抵抗、摩耗が軽減される。又、該エンドミル1により形成される前記深溝2の溝幅が前記エンドミル1の径よりも広くなっていることから、例えば、前記エンドミル1が1aの位置にある時には、前記エンドミル1の切削部分は点Cから点B迄となる。従って、前記エンドミル1と前記深溝2との接触面積が減少し、該深溝2が前記エンドミル1の一部により切削されることとなり、切削時の切削抵抗が軽減される。   When performing cutting by the end mill 1, it is desirable to perform cutting by down-cutting, so that cutting resistance and wear applied to the end mill 1 are reduced. Further, since the groove width of the deep groove 2 formed by the end mill 1 is wider than the diameter of the end mill 1, for example, when the end mill 1 is at the position 1a, the cut portion of the end mill 1 From point C to point B. Therefore, the contact area between the end mill 1 and the deep groove 2 is reduced, and the deep groove 2 is cut by a part of the end mill 1, so that the cutting resistance during cutting is reduced.

該エンドミル1を前記深溝2aの閉側端部、即ち予め穿設された前記加工穴7迄移動させると、次に前記エンドミル1を前記第1軸心5と平行な方向に、予め設定したd2だけ降下させる(図3(B)参照)。   When the end mill 1 is moved to the closed end of the deep groove 2a, that is, to the previously drilled machining hole 7, the end mill 1 is then moved in a direction parallel to the first axis 5 to a predetermined d2. (See FIG. 3B).

前記エンドミル1の降下後、深さd1の前記深溝2aをなぞる様に、往路と同様の経路で前記エンドミル1を図3(B)中の矢印の方向へと移動させることで、前記深溝2aが深さd2だけ更に切削され、深さd1+d2の深溝2bが形成される。   After the end mill 1 descends, the end mill 1 is moved in the direction of the arrow in FIG. 3B along the same route as the outward path so as to trace the deep groove 2a having a depth d1. Further cutting is performed by the depth d2 to form the deep groove 2b having the depth d1 + d2.

前記エンドミル1が前記深溝2の開放端迄移動すると、次に前記エンドミル1を前記第1軸心5と平行な方向に、予め設定したd3だけ降下させ、深さd1+d2の前記深溝2bに対して深さd3の切込みを入れる(図3(C)参照)。   When the end mill 1 moves to the open end of the deep groove 2, the end mill 1 is lowered in a direction parallel to the first axis 5 by d3 set in advance, and the end mill 1 is moved to the deep groove 2b having a depth d1 + d2. A cut is made at a depth d3 (see FIG. 3C).

最後に、前記深溝2bをなぞる様に前記エンドミル1を図3(C)中の矢印の方向へ前記加工穴7迄移動させ、前記深溝2bを深さd3だけ更に切削することで、前記加工物3に深さd1+d2+d3の深溝2cが形成される。   Finally, the end mill 1 is moved to the machining hole 7 in the direction of the arrow in FIG. 3 (C) so as to trace the deep groove 2b, and the deep groove 2b is further cut by the depth d3. 3, a deep groove 2c having a depth d1 + d2 + d3 is formed.

尚、本実施例に於いては、d1、d2、d3の関係をd1>d2>d3としているが、切込み量が大きい場合には送り量を小さくし、切込み量が小さい場合には送り量を大きくすることで、前記エンドミル1の挿入深さに拘らず切削抵抗が一定となる様にしている。   In this embodiment, the relationship between d1, d2, and d3 is set to d1> d2> d3. However, when the cut amount is large, the feed amount is reduced, and when the cut amount is small, the feed amount is reduced. By making the end mill 1 larger, the cutting resistance becomes constant regardless of the insertion depth of the end mill 1.

又、上記では前記エンドミル1を1往復半させることで深さd1+d2+d3の前記深溝2cを形成しているが、前記エンドミル1を2往復以上させることで更に深い深溝2を形成してもよいのは言う迄もない。   Further, in the above description, the deep groove 2c having the depth d1 + d2 + d3 is formed by making the end mill 1 reciprocate one and a half times. Needless to say.

上述の様に、本実施例では、前記エンドミル1を高速回転させると共に、前記第2軸心6を中心に前記エンドミル1を旋回させているので、前記深溝2の切削加工を行う際には、前記第1軸心5の軌跡8は公転と送りが合成された曲線、例えば上記したトロコイド曲線を描き、前記エンドミル1と前記深溝2との接触面積は小さくなる。従って、前記エンドミル1を前記深溝2の左右の壁面と接触させていた従来の切削加工と比べて切削抵抗を軽減させることができ、チタン合金やニッケル合金等の難加工性の金属材であっても発熱を抑制し前記深溝2の切削加工を行うことができる。   As described above, in this embodiment, the end mill 1 is rotated at a high speed and the end mill 1 is turned around the second axis 6, so that when the deep groove 2 is cut, The trajectory 8 of the first axis 5 draws a curve in which revolution and feed are combined, for example, the above-described trochoid curve, and the contact area between the end mill 1 and the deep groove 2 is reduced. Therefore, it is possible to reduce the cutting resistance as compared with the conventional cutting in which the end mill 1 is brought into contact with the left and right wall surfaces of the deep groove 2, and is a difficult-to-work metal material such as a titanium alloy or a nickel alloy. Also, the heat generation can be suppressed and the deep groove 2 can be cut.

又、前記深溝2の深さに応じて1回当りの切込み量を変更しているので、最も負荷が掛る前記深溝2壁面の上端縁との接触箇所(境界位置)を上下に変更させることができると共に、切込み量に拘らず切削抵抗が一定となる様送り量を調整することで前記エンドミル1に掛る切削抵抗を一定とすることができ、該エンドミル1の耐久性を向上させることができる。   Further, since the depth of cut is changed in accordance with the depth of the deep groove 2, the contact point (boundary position) with the upper edge of the wall surface of the deep groove 2 where the load is most applied can be changed up and down. By adjusting the feed amount so that the cutting resistance is constant irrespective of the cutting depth, the cutting resistance applied to the end mill 1 can be constant, and the durability of the end mill 1 can be improved.

又、本実施例では、前記深溝2の閉側端部に予め加工穴7を穿設しているので、前記エンドミル1を前記深溝2の閉側端部から折返す際の切削抵抗をなくすことができ、切削加工時に掛る前記エンドミル1への負荷を軽減し、該エンドミル1の耐久性を向上させることができる。   Further, in this embodiment, since the machining hole 7 is formed in advance on the closed side end of the deep groove 2, the cutting resistance when the end mill 1 is folded from the closed side end of the deep groove 2 is eliminated. Thus, the load on the end mill 1 applied during cutting can be reduced, and the durability of the end mill 1 can be improved.

更に、本実施例で用いるエンドミル1はボールエンドミルであるので、前記深溝2の閉側端部の形状を滑らかにすることができると共に、該深溝2の壁面が曲面を有する場合であっても、等高線加工することで様々な溝形状や深さに対応することができる。   Further, since the end mill 1 used in this embodiment is a ball end mill, the shape of the closed end of the deep groove 2 can be made smooth, and even if the wall surface of the deep groove 2 has a curved surface, By performing contour processing, it is possible to cope with various groove shapes and depths.

尚、より広い幅の前記深溝2を切削する場合には、往路の切削後に前記エンドミル1を幅方向に移動させ復路を往路とは別経路とすることで、より広い幅の前記深溝2を形成することができる。又、前記エンドミル1の旋回半径を調整し、該エンドミル1の旋回速度及び移動速度を調整することで、該エンドミル1の往路と復路を別経路とすることなく一度の工程でより広い幅の前記深溝2を形成することができる。   In the case where the deep groove 2 having a wider width is cut, the end mill 1 is moved in the width direction after the cutting of the outward path, and the return path is set to a path different from the outward path, thereby forming the deep groove 2 having a wider width. can do. Further, the turning radius of the end mill 1 is adjusted, and the turning speed and the moving speed of the end mill 1 are adjusted. The deep groove 2 can be formed.

又、本実施例では、前記深溝2の深さに拘らず同一のエンドミル1を使用しているが、前記深溝2の深さ毎に有効長や径の異なるエンドミルを用いてもよく、深さに応じて最適な加工条件で加工することで、切削加工時間を短縮でき、加工効率を向上させることができる。   Further, in this embodiment, the same end mill 1 is used regardless of the depth of the deep groove 2. However, end mills having different effective lengths and diameters for each depth of the deep groove 2 may be used. By performing the processing under the optimum processing conditions according to the conditions, the cutting time can be reduced, and the processing efficiency can be improved.

1 エンドミル
2 深溝
3 加工物
4 切り刃
5 第1軸心
6 第2軸心
7 加工穴
8 軌跡
DESCRIPTION OF SYMBOLS 1 End mill 2 Deep groove 3 Workpiece 4 Cutting blade 5 First axis 6 Second axis 7 Machined hole 8 Trajectory

Claims (2)

ボールエンドミルを往復させて深溝を形成する切削加工方法であって、前記ボールエンドミルを回転駆動させると共に、該ボールエンドミルを旋回させつつ切削し、前記深溝を常に前記ボールエンドミルの一部により下向き切削する工程を含み、切削加工の前工程として、止り溝の閉側端部に1回当たりの切込み量よりも深い加工穴を穿設することを特徴とする切削加工方法。 A cutting method for forming a deep groove by reciprocating a ball end mill, the drives and rotates the ball end mill, cutting while pivoting the ball end mill, which downward cut by a part of always the ball end mill of the deep grooves A cutting method comprising the steps of: drilling a processing hole deeper than a single cut amount at a closed end of a stop groove as a pre-step of cutting processing. 前記ボールエンドミルの挿入深さが深くなるにつれて、該ボールエンドミルの切込み量を小さくする請求項1の切削加工方法。 2. The cutting method according to claim 1, wherein the cutting depth of the ball end mill is reduced as the insertion depth of the ball end mill is increased.
JP2013106431A 2013-05-20 2013-05-20 Cutting method Active JP6630029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013106431A JP6630029B2 (en) 2013-05-20 2013-05-20 Cutting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013106431A JP6630029B2 (en) 2013-05-20 2013-05-20 Cutting method

Publications (2)

Publication Number Publication Date
JP2014226737A JP2014226737A (en) 2014-12-08
JP6630029B2 true JP6630029B2 (en) 2020-01-15

Family

ID=52127053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013106431A Active JP6630029B2 (en) 2013-05-20 2013-05-20 Cutting method

Country Status (1)

Country Link
JP (1) JP6630029B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107175470B (en) * 2017-06-02 2019-03-05 中国航发南方工业有限公司 The special-shaped deep groove processing method of titanium alloy component
CN108687388B (en) * 2018-05-30 2021-04-13 中国航发动力股份有限公司 Machining method for numerical control milling of small-corner deep-wall cavity in high-temperature alloy material
CN113275625B (en) * 2021-05-31 2023-01-06 重庆水泵厂有限责任公司 Machining method of discontinuous deep annular cavity
CN114131289B (en) * 2021-12-08 2023-05-30 中国航发南方工业有限公司 Method for machining annular groove of high-temperature alloy casing
CN115055744A (en) * 2022-06-29 2022-09-16 中国航发动力股份有限公司 Arc groove milling method based on numerical control machine tool and application

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0360908A (en) * 1989-07-28 1991-03-15 Honda Motor Co Ltd Method for processing oblong hole
JP2002059339A (en) * 2000-08-24 2002-02-26 Toyota Motor Corp Deep groove machining method
JP3474549B2 (en) * 2001-04-24 2003-12-08 三菱マテリアル神戸ツールズ株式会社 Groove machining method by end mill
DE10219012B4 (en) * 2002-04-27 2004-11-04 Mtu Aero Engines Gmbh milling
DE10327623B4 (en) * 2003-06-19 2006-07-13 Mtu Aero Engines Gmbh Milling process for the production of components
JP5549527B2 (en) * 2010-10-19 2014-07-16 株式会社Ihi Grooving method

Also Published As

Publication number Publication date
JP2014226737A (en) 2014-12-08

Similar Documents

Publication Publication Date Title
JP6630029B2 (en) Cutting method
KR101818807B1 (en) Spirally-fed drilling and milling cutter
KR100767831B1 (en) Drill bit
US20100129169A1 (en) Corner Portion Working Tool
CN102935524A (en) Deep hole drilling processing method of high temperature alloy material casing
CN111515438A (en) Drilling tool and method for producing a drill hole
CA2798775A1 (en) Methods of skiving metal and forming a fin in a heat exchanger
JP2019136789A (en) Drill and drilling device
JP4702902B2 (en) Sharpening tool and sharpening method
JP2009178787A (en) Drill, cutting insert for drill, and cutting method
JP2008246587A (en) Machining control method of milling
JP2010076069A (en) Machining method and apparatus therefor
JP5534509B2 (en) Cutting method
JP2008307621A (en) Christmas cutter for rough cutting
KR20160060336A (en) Tapered reamer having serration cutting segment
JP2007075942A (en) Drilling tool
WO2017145699A1 (en) Drilling method and drilling apparatus
JP3199122U (en) Drill that suppresses generation of burrs
CN204603414U (en) A kind of self-adjusting feed type topping machanism
CN207577505U (en) Self-cooled slides drill bit
JP4756697B2 (en) Drilling tool
JP2010076042A (en) Cutting method and apparatus thereof
JP4756609B2 (en) Rotary cutting tool
JP2005279839A (en) Method for machining deep groove
CN104785841B (en) Self-adjustable cutter feeding type cutting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170309

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191206

R150 Certificate of patent or registration of utility model

Ref document number: 6630029

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150