JP2008246587A - Machining control method of milling - Google Patents
Machining control method of milling Download PDFInfo
- Publication number
- JP2008246587A JP2008246587A JP2007087711A JP2007087711A JP2008246587A JP 2008246587 A JP2008246587 A JP 2008246587A JP 2007087711 A JP2007087711 A JP 2007087711A JP 2007087711 A JP2007087711 A JP 2007087711A JP 2008246587 A JP2008246587 A JP 2008246587A
- Authority
- JP
- Japan
- Prior art keywords
- dimple
- tool
- cutting
- milling
- shape
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Milling Processes (AREA)
Abstract
Description
本発明は、フライス加工の加工制御方法に関するものである。 The present invention relates to a machining control method for milling.
従来のフライス加工の加工制御方法として、特開2002−361510号公報に開示されている。このフライス加工の加工制御方法では、回転するフライス工具を用いて被工作物表面にディンプルを形成するために、フライス工具を被工作物表面に近付けてディンプルを形成し、被工作物表面から離して工作物と干渉を回避し、次のディンプルを形成する位置に移動していた。 JP-A-2002-361510 discloses a conventional milling processing control method. In this machining control method of milling, in order to form dimples on the workpiece surface using a rotating milling tool, the milling tool is brought close to the workpiece surface to form dimples and separated from the workpiece surface. It was moved to the position where the next dimple was formed, avoiding interference with the workpiece.
また、フライス加工の加工制御方法としては、特開2001−198718号公報に開示されている。このフライス工具を用いた加工方法は、切刃回転軌跡が円形をなすフライス工具を、その回転軸線を各切削点における加工面の法線に対して傾斜させる状態で、所定の工具送り方向に移動させることにより切刃回転軌跡の工具送り方向側領域を通過する切刃によって被加工物の表面を切削加工するものである。 Moreover, as a processing control method of milling, it is disclosed by Unexamined-Japanese-Patent No. 2001-198718. In this machining method using a milling tool, a milling tool having a circular cutting edge rotation trajectory is moved in a predetermined tool feed direction in a state in which the rotation axis is inclined with respect to the normal of the machining surface at each cutting point. By doing so, the surface of the workpiece is cut by the cutting blade that passes through the tool feed direction side region of the cutting blade rotation locus.
従来のフライス加工の加工制御方法では、ディンプルを形成するために、図7に図示するように、「フライス工具を被工作物表面に近付ける→離す→次のディンプルの位置に移動する」を繰り返していたので、非切削工程に要する工具の移動距離が増加してしまい、総加工時間が増加してしまっていた。 In the conventional milling process control method, in order to form the dimple, as shown in FIG. 7, “the milling tool is moved closer to the workpiece surface → separated → moved to the next dimple position” is repeated. Therefore, the movement distance of the tool required for the non-cutting process is increased, and the total machining time is increased.
また、フライス工具の切れ刃の1回の形成で、形成されるディンプルの寸法を制御できるものではなかった。 Further, the size of the dimples to be formed cannot be controlled by forming the cutting edge of the milling tool once.
本発明は、このような問題点を解消するためになされたもので、目標とする間隔および寸法を持つディンプルを、フライス工具の切れ刃の1回の形成で、高速に形成することを目的としている。 The present invention has been made to solve such problems, and aims to form dimples having a target interval and dimensions at a high speed by forming a cutting edge of a milling tool once. Yes.
本発明は、被工作物表面にディンプルを形成するフライス工具を用いたディンプル形成加工方法において、前記フライス工具を前記被工作物表面に対し平行移動させながら、前記フライス工具を切削条件決定工程で算出された切削条件に応じて制御することを特徴とする。 The present invention relates to a dimple formation processing method using a milling tool for forming dimples on a workpiece surface, wherein the milling tool is calculated in a cutting condition determination step while the milling tool is translated relative to the workpiece surface. Control is performed according to the cutting conditions.
また、前記切削条件決定工程は、予め設定された目標とする上記ディンプルの間隔と寸法とその許容値を設定する工程と、フライス工具の切れ刃の1刃あたりの送りを決定する工程と、上記被工作物表面の形状を設定する工程と、前記フライス工具の切れ刃形状を設定する工程と、前記フライス工具の回転軸線の傾斜角と切り込み深さを設定後、前記フライス工具の切れ刃の軌跡面形状を導出して、形成される前記ディンプル寸法の予測を行い、目標とする寸法許容値を満たすディンプル形状でなければ、前記工具回転軸線の傾斜角と切り込み深さを再設定することを繰り返し、目標とする寸法許容値を満たすディンプル形状を創成する工具回転軸線の傾斜角と切り込み深さを決定する切り込み深さ・傾斜角決定工程とからなるものである。 Further, the cutting condition determining step includes a step of setting a distance and a dimension of the dimple as a target set in advance and an allowable value thereof, a step of determining a feed per cutting edge of the milling tool, After setting the shape of the workpiece surface, the step of setting the cutting edge shape of the milling tool, the inclination angle and the cutting depth of the rotation axis of the milling tool, the locus of the cutting edge of the milling tool The surface shape is derived, the dimple size to be formed is predicted, and if the dimple shape does not satisfy the target dimensional tolerance, the inclination angle and the cutting depth of the tool rotation axis are repeatedly set. And a cutting depth / tilting angle determination step of determining a tilt angle and a cutting depth of a tool rotation axis that creates a dimple shape that satisfies a target dimensional tolerance.
本発明では、フライス工具の動きは、フライス工具を被工作物表面に近付け、フライス工具を被工作物表面に対し平行移動させるのみであり、フライス工具の切れ刃の1回の形成で、被工作物の表面に目標とするディンプル形状を形成することができるようになったので、非切削工程に要する工具の移動距離が低減し、総加工時間が大幅に短縮可能になった。 In the present invention, the milling tool moves only by moving the milling tool closer to the workpiece surface and moving the milling tool parallel to the workpiece surface. Since the target dimple shape can be formed on the surface of the object, the moving distance of the tool required for the non-cutting process is reduced, and the total machining time can be greatly shortened.
以下、本発明に係る実施例を具体的に説明する。図1は本発明によるフライス工具を用いたディンプル形成加工方法の一実施例の全体構成図である。図2は、本発明による、フライス工具の切れ刃の1回の形成で、被工作物表面にディンプルを形成する動作を示す説明図である。 Examples according to the present invention will be specifically described below. FIG. 1 is an overall configuration diagram of an embodiment of a dimple forming method using a milling tool according to the present invention. FIG. 2 is an explanatory view showing an operation of forming dimples on the surface of the workpiece by forming the cutting edge of the milling tool once according to the present invention.
本実施例では、図1に図示するように、コンピュータ1を用いて切削条件決定工程を行い、楕円エンドミル(フライス工具)4と工作機械2を用いて被工作物表面3にディンプル7を形成した。このとき、図2に図示するように、切れ刃の軌跡6を制御して、切れ刃5の1回の形成で、ディンプル7を形成した。以下、目標とするディンプル形状を設定して、楕円エンドミル(フライス工具)の切れ刃形状5、工具回転軸線の傾斜角、切り込み深さ、1刃当たりの送りを決定する方法について、本発明による切削条件決定工程を示す図3のフローチャートと、ディンプル形状を予測する方法を示す図4の説明図を参照し説明する。 In this embodiment, as shown in FIG. 1, a cutting condition determination step is performed using a computer 1, and dimples 7 are formed on a workpiece surface 3 using an elliptical end mill (milling tool) 4 and a machine tool 2. . At this time, as shown in FIG. 2, the locus 6 of the cutting edge was controlled, and the dimple 7 was formed by forming the cutting edge 5 once. Hereinafter, the cutting method according to the present invention will be described with respect to a method of setting a target dimple shape and determining the cutting edge shape 5 of the elliptical end mill (milling tool), the inclination angle of the tool rotation axis, the cutting depth, and the feed per tooth. A description will be given with reference to the flowchart of FIG. 3 showing the condition determining step and the explanatory diagram of FIG. 4 showing the method of predicting the dimple shape.
(ステップ イ)
目標とするディンプル形状として、フィード方向のディンプルの間隔,切れ刃の進行方向のディンプルの寸法とその許容値,切れ刃の進行方向と直交する方向のディンプルの寸法とその許容値を設定する。
(ステップ ロ)
1刃当たりの送りは、フィード方向のディンプルの間隔と等しくなる。
(ステップ ハ)
被工作物表面形状3を設定する。
(ステップ ニ)
楕円エンドミル4の半径と軸方向の半径、および切れ刃のねじれを設定し、切れ刃の形状5を導出する。今回、楕円エンドミル4の半径は、5.0mm、楕円エンドミル(フライス工具)4の軸方向の半径は、1.5mmとした。
(工程 ホ)
まず、経路8、現在の切り込み深さ、現在の工具回転軸線の傾斜角9を設定し、現在の切れ刃の軌跡13を導出する。
次に、現在の切れ刃の軌跡13と被工作物表面3の形状から現在のディンプルの形状12を算出する。
このとき、現在の切れ刃の進行方向のディンプルの寸法10が、目標とする切れ刃の進行方向のディンプルの寸法の許容値内であるか判定し、現在の切れ刃の進行方向のディンプルの寸法10が小さいときは切り込み深さを大きくし,現在の切れ刃の進行方向のディンプルの寸法10が大きいときは切り込み深さを小さくする。
また、現在の切れ刃の進行方向と直交する方向のディンプルの寸法11が、目標とする切れ刃の進行方向と直交する方向のディンプルの寸法の許容値であるか判定し、現在の切れ刃の進行方向と直交する方向のディンプルの寸法11が大きいときは現在の工具回転軸線の傾斜角9を大きくし,現在の切れ刃の進行方向と直交する方向のディンプルの寸法が小さいときは現在の工具回転軸線の傾斜角9を小さくする。
以上のように、目標とする寸法を持つディンプル7となるまで、工具回転軸線の傾斜、切り込み深さを再設定して、現在の工具回転軸線の傾斜9、現在の切り込み深さの修正を行う。
(Step i)
As the target dimple shape, a dimple interval in the feed direction, a dimple dimension in the advancing direction of the cutting edge and its allowable value, and a dimple dimension in a direction orthogonal to the advancing direction of the cutting edge and its allowable value are set.
(Step B)
The feed per blade is equal to the dimple spacing in the feed direction.
(Step C)
Set workpiece surface shape 3.
(Step D)
The radius and the axial radius of the elliptical end mill 4 and the twist of the cutting edge are set, and the shape 5 of the cutting edge is derived. This time, the radius of the elliptical end mill 4 was 5.0 mm, and the radius of the elliptical end mill (milling tool) 4 was 1.5 mm.
(Process e)
First, the path 8, the current cutting depth, and the current tool rotation axis inclination angle 9 are set, and the current cutting edge locus 13 is derived.
Next, the current dimple shape 12 is calculated from the current cutting edge locus 13 and the shape of the workpiece surface 3.
At this time, it is determined whether the dimple dimension 10 in the moving direction of the current cutting edge is within the allowable value of the dimple dimension in the moving direction of the target cutting edge, and the dimple size in the moving direction of the current cutting edge is determined. When 10 is small, the cutting depth is increased, and when the dimple dimension 10 in the moving direction of the current cutting edge is large, the cutting depth is decreased.
Further, it is determined whether the dimple dimension 11 in the direction orthogonal to the current cutting edge traveling direction is an allowable value of the dimple dimension in the direction orthogonal to the target cutting blade traveling direction. When the dimple dimension 11 in the direction perpendicular to the traveling direction is large, the current tool rotation axis inclination angle 9 is increased, and when the dimple dimension in the direction perpendicular to the current cutting edge traveling direction is small, the current tool Decrease the tilt angle 9 of the rotation axis.
As described above, the inclination of the tool rotation axis and the cutting depth are reset until the dimple 7 having the target dimension is obtained, and the inclination 9 of the current tool rotation axis and the current cutting depth are corrected. .
実際に、目標とするフィード方向のディンプルの間隔を5.0mm,切れ刃の進行方向のディンプルの寸法を2.0mm、切れ刃の進行方向と直交する方向のディンプルの寸法を2.0mmとし,上記の方法を用いて切削条件を決定した。その結果、切り込み深さは0.070mmとなり、工具回転軸線の傾斜角は15°となった。なお、工具回転軸線の傾斜方向はダウンカットする側であり、工具の進行方向に対し90°旋回した方向としている。図5は、真鍮にディンプル7を形成した例である。 In actuality, the target dimple spacing in the feed direction is 5.0 mm, the dimple dimension in the direction of the cutting edge is 2.0 mm, and the dimple dimension in the direction perpendicular to the direction of the cutting edge is 2.0 mm. Was used to determine the cutting conditions. As a result, the cutting depth was 0.070 mm, and the inclination angle of the tool rotation axis was 15 °. Note that the inclination direction of the tool rotation axis is the down cut side, and is a direction rotated 90 ° with respect to the traveling direction of the tool. FIG. 5 shows an example in which dimples 7 are formed on brass.
図6は、上記の手法を用いて、真鍮に装飾を施した例である。 FIG. 6 is an example in which brass is decorated using the above method.
ところで上記の説明では、この発明を楕円エンドミル4でディンプル7の形成する場合について述べたが、その他のフライス工具でディンプル7を形成する場合にも利用できることはいうまでもない。 In the above description, the present invention has been described with respect to the case where the dimples 7 are formed by the elliptical end mill 4, but it goes without saying that the present invention can also be used when the dimples 7 are formed by other milling tools.
本発明の切削加工される表面の凹凸形状を形成するものとして次のものがあり、本発明はその製品の切削加工方法に有用である。
(1)摩擦力の制御のために、微細な凹凸形状を制御する。
(2)摺動部での潤滑油確保のために、微細な凹凸を設ける。
(3)反射、回折、見栄え、光沢といった表面に求められる光学機能を制御するために、微細な凹凸を制御する。
(4)熱伝達特性の向上や境界層流れの制御のために、表面に微細な凹凸を設ける。
(5)表面に装飾用の凹凸を設ける。
(6)離型特性の向上のため、金型に微細な凹凸を設ける。
(7)強い撥水性を持たせるとともに、ゴミなど固体粒子付着しにくいといった浄化作用を持つ微細凹凸を設ける。
(8)表面の接着現象の制御のために、微細凹凸を制御する。
Examples of the method for forming the irregular shape of the surface to be machined according to the present invention include the following, and the present invention is useful for a method for machining the product.
(1) To control the frictional force, the fine uneven shape is controlled.
(2) Provide fine irregularities to ensure lubricating oil at the sliding part.
(3) In order to control optical functions required for the surface such as reflection, diffraction, appearance, and gloss, fine irregularities are controlled.
(4) Provide fine irregularities on the surface to improve heat transfer characteristics and control boundary layer flow.
(5) Provide decorative irregularities on the surface.
(6) Provide fine irregularities on the mold to improve the release characteristics.
(7) Provide high water repellency and provide fine irregularities having a cleaning action such that solid particles such as dust hardly adhere.
(8) To control the surface adhesion phenomenon, fine irregularities are controlled.
1 コンピュータ
2 工作機械
3 被工作物表面
4 楕円エンドミル(フライス工具)
5 切れ刃
6 切れ刃の軌跡
7 ディンプル
8 経路
9 現在の工具回転軸線の傾斜角
10現在の切れ刃の進行方向のディンプルの寸法
11現在の切れ刃の進行方向と直交する方向のディンプルの寸法
12現在のディンプル
13現在の切れ刃の軌跡
イ〜ホ ソフトのステップ
1 Computer 2 Machine Tool 3 Workpiece Surface 4 Elliptical End Mill (Milling Tool)
5 Cutting edge 6 Trajectory of cutting edge 7 Dimple 8 Path 9 Inclination angle of current tool rotation axis 10 Dimple dimension in current cutting edge direction 11 Dimple dimension in direction perpendicular to current cutting edge direction 12 Current dimple 13 Current cutting edge trajectory
I-ho soft step
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007087711A JP5145497B2 (en) | 2007-03-29 | 2007-03-29 | Milling process control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007087711A JP5145497B2 (en) | 2007-03-29 | 2007-03-29 | Milling process control method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008246587A true JP2008246587A (en) | 2008-10-16 |
JP5145497B2 JP5145497B2 (en) | 2013-02-20 |
Family
ID=39972153
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007087711A Active JP5145497B2 (en) | 2007-03-29 | 2007-03-29 | Milling process control method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5145497B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102653013A (en) * | 2012-04-16 | 2012-09-05 | 华中科技大学 | Orthogonal turn-milling wide line processing method based on eccentric distance optimization |
WO2017002326A1 (en) * | 2015-06-29 | 2017-01-05 | 兼房株式会社 | Dimpling method using end mill and end mill |
WO2017119298A1 (en) * | 2016-01-06 | 2017-07-13 | 兼房株式会社 | Dimple-machining method using rotary cutting tool and rotary cutting tool for dimple-machining |
WO2017199911A1 (en) * | 2016-05-19 | 2017-11-23 | 兼房株式会社 | Dimple forming method using rotary cutting tool |
CN117371137A (en) * | 2023-09-04 | 2024-01-09 | 上海交通大学 | Multi-axis milling surface morphology rapid prediction method for ball end mill based on SQP |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001071207A (en) * | 1999-08-31 | 2001-03-21 | Masaomi Tsutsumi | Surface work method by ball end mill |
JP2007021692A (en) * | 2005-07-20 | 2007-02-01 | Makino Milling Mach Co Ltd | Cutting method and device |
-
2007
- 2007-03-29 JP JP2007087711A patent/JP5145497B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001071207A (en) * | 1999-08-31 | 2001-03-21 | Masaomi Tsutsumi | Surface work method by ball end mill |
JP2007021692A (en) * | 2005-07-20 | 2007-02-01 | Makino Milling Mach Co Ltd | Cutting method and device |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102653013A (en) * | 2012-04-16 | 2012-09-05 | 华中科技大学 | Orthogonal turn-milling wide line processing method based on eccentric distance optimization |
CN102653013B (en) * | 2012-04-16 | 2013-10-30 | 华中科技大学 | Orthogonal turn-milling wide line processing method based on eccentric distance optimization |
WO2017002326A1 (en) * | 2015-06-29 | 2017-01-05 | 兼房株式会社 | Dimpling method using end mill and end mill |
US10857602B2 (en) | 2015-06-29 | 2020-12-08 | Kanefusa Kabushiki Kaisha | Dimples processing method by means of end milling and end mill |
CN107614170B (en) * | 2015-06-29 | 2019-06-18 | 兼房株式会社 | Pit processing method and slotting cutter based on slotting cutter |
CN107614170A (en) * | 2015-06-29 | 2018-01-19 | 兼房株式会社 | Pit processing method and slotting cutter based on slotting cutter |
JPWO2017119298A1 (en) * | 2016-01-06 | 2018-10-25 | 兼房株式会社 | Dimple processing method using rotary cutting tool and rotary cutting tool for dimple processing |
WO2017119298A1 (en) * | 2016-01-06 | 2017-07-13 | 兼房株式会社 | Dimple-machining method using rotary cutting tool and rotary cutting tool for dimple-machining |
US11027341B2 (en) | 2016-01-06 | 2021-06-08 | Kanefusa Kabushiki Kaisha | Dimple processing method using rotary cutting tool, and rotary cutting tool for dimple processing |
CN109153086A (en) * | 2016-05-19 | 2019-01-04 | 兼房株式会社 | The pit processing method of rotary cutting tool is used |
WO2017199911A1 (en) * | 2016-05-19 | 2017-11-23 | 兼房株式会社 | Dimple forming method using rotary cutting tool |
EP3459664A4 (en) * | 2016-05-19 | 2020-01-15 | Kanefusa Kabushiki Kaisha | Dimple forming method using rotary cutting tool |
US10702931B2 (en) | 2016-05-19 | 2020-07-07 | Kanefusa Kabushiki Kaisha | Dimple processing method using rotary cutting tool |
CN117371137A (en) * | 2023-09-04 | 2024-01-09 | 上海交通大学 | Multi-axis milling surface morphology rapid prediction method for ball end mill based on SQP |
CN117371137B (en) * | 2023-09-04 | 2024-05-10 | 上海交通大学 | Multi-axis milling surface morphology rapid prediction method for ball end mill based on SQP |
Also Published As
Publication number | Publication date |
---|---|
JP5145497B2 (en) | 2013-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5145497B2 (en) | Milling process control method | |
JP2008279547A (en) | Groove working method and formed rotary cutting tool | |
JP4732549B1 (en) | Cutting method and cutting apparatus | |
US20160107246A1 (en) | Method and apparatus for creating a starting hole for milling in a surface of a workpiece by a cnc milling machine | |
JP5904561B2 (en) | Machining method of workpiece | |
JP2011175076A (en) | Fresnel lens and fresnel lens molding die, and method for manufacturing fresnel lens and method for manufacturing fresnel lens molding die | |
JP5353375B2 (en) | Cutting method | |
JP2010149271A (en) | Corner portion working tool | |
JP6457257B2 (en) | Milling tool and machining method using the same | |
JP6643087B2 (en) | Method of manufacturing spiral bevel gear or hypoid gear | |
JP2014226737A (en) | Cutting-processing method | |
JP2009136956A (en) | Turning work method, turning condition and cutting route formation method | |
Krebs et al. | Improving the cutting conditions in the five-axis micromilling of hardened high-speed steel by applying a suitable tool inclination | |
JP2013111683A (en) | Grooving method, and metal component | |
JP4517156B2 (en) | Method for calculating uneven shape of cutting surface in milling and processing control method for uneven shape | |
JP2008307621A (en) | Christmas cutter for rough cutting | |
JP7355844B2 (en) | How to machine titanium alloys using polycrystalline diamond | |
CN204818258U (en) | Be used for processing broaching machine and broach in convex groove | |
JP2008049450A (en) | Standing-wall machining method and end mill for machining standing-wall | |
JP2008264965A (en) | Grinding forming method and rotary cutting tool | |
JP2006289871A (en) | Method for manufacturing ring zone optical element and method for manufacturing mold for ring zone optical element | |
JP2001212711A (en) | Formed milling cutter for rough cutting | |
JP6371339B2 (en) | Machining method, machining apparatus, and power transmission component manufacturing method | |
CN105033347A (en) | Broaching machine and broaching tool for machining arc groove | |
CN111036938A (en) | Chip breaking processing method for long-chip material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100315 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120314 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120327 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120522 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120731 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120820 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5145497 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151207 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |