JP5353375B2 - Cutting method - Google Patents

Cutting method Download PDF

Info

Publication number
JP5353375B2
JP5353375B2 JP2009084801A JP2009084801A JP5353375B2 JP 5353375 B2 JP5353375 B2 JP 5353375B2 JP 2009084801 A JP2009084801 A JP 2009084801A JP 2009084801 A JP2009084801 A JP 2009084801A JP 5353375 B2 JP5353375 B2 JP 5353375B2
Authority
JP
Japan
Prior art keywords
cutting
tool
workpiece
preliminary
holding means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009084801A
Other languages
Japanese (ja)
Other versions
JP2010234478A (en
Inventor
正宏 早渕
敏行 安藤
和孝 村井
崇 岩間
秀典 米崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Original Assignee
Aisin AW Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd filed Critical Aisin AW Co Ltd
Priority to JP2009084801A priority Critical patent/JP5353375B2/en
Publication of JP2010234478A publication Critical patent/JP2010234478A/en
Application granted granted Critical
Publication of JP5353375B2 publication Critical patent/JP5353375B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Milling Processes (AREA)
  • Turning (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cutting method capable of easily dividing cutting chips into parts without using a special cutting tool and irrespective of the properties of the material. <P>SOLUTION: The cutting method uses a cutting device equipped with a workpiece holding means capable of holding a workpiece 8, a tool holding means 12 capable of holding a cutting tool 2, and a drive means capable of relatively rotating and relatively moving both of the workpiece holding means and the tool holding means 12 in the axial direction. The cutting method includes a preliminary cutting step of providing a preliminary groove 7 which is positioned so as to intersect the cutting direction at finish cutting with respect to a machining surface 81 of the workpiece 8, and a finish cutting step of finish cutting of the machining surface 81 with cutting depth deeper than that of the preliminary groove 7. Both of the preliminary cutting step and finish cutting step are performed by using the same cutting tool 2 while maintaining a state of the workpiece 8 held by the workpiece holding means and the cutting tool 2 held by the tool holding means 12. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、金属素材の外周面又は内周面を切削する切削加工方法に関する。   The present invention relates to a cutting method for cutting an outer peripheral surface or an inner peripheral surface of a metal material.

鋼材等の金属素材の加工方法として、旋盤やマシニングセンタを用いた切削加工が広く行われている。切削加工は、素材の内周面又は外周面における円筒状の面よりなる加工面を切削することに利用されることも多い。この場合には、具体的には、金属素材よりなるワークと切削工具とを、相対的に回転させながら軸方向に移動させて切削を行う。   As a method of processing a metal material such as steel, cutting using a lathe or a machining center is widely performed. Cutting is often used to cut a processed surface formed of a cylindrical surface on the inner or outer peripheral surface of a material. In this case, specifically, cutting is performed by moving the workpiece made of a metal material and the cutting tool in the axial direction while relatively rotating.

ところで、切削加工を行う際には、切り屑が生じる。この切り屑の形態としては、粉状に分断される場合と、螺旋状に渦巻きながら長く伸びる場合がある。切り屑が分断されずに長くなれば、切削工具やワークに絡みついたり、切り屑処理に手間がかかったりして、種々の問題を引き起こす。
そのため、切り屑は、細かく分断されるほど良いとされている。しかしながら、切り屑の形態は、ワークである金属素材の性質に左右され、簡単に制御することはできない。
そこで、従来においては、たとえば特許文献1に記載されているようなスローアウェイチップというような特殊な切削工具を用い、発生する切り屑を適宜分断する工夫を凝らしていた。
By the way, when cutting is performed, chips are generated. As a form of this chip, there are a case where it is divided into powder and a case where it is elongated while spirally spiraling. If the chips become long without being divided, they may become entangled with a cutting tool or a workpiece, or it may take time to process the chips, causing various problems.
Therefore, it is said that the chips are better as they are finely divided. However, the shape of the chips depends on the nature of the metal material that is the workpiece and cannot be easily controlled.
Therefore, conventionally, a special cutting tool such as a throw-away tip as described in Patent Document 1, for example, has been used to appropriately divide generated chips.

特開平10−217007号公報JP-A-10-2117007

しかしながら、上記特殊な切削工具を用いても、金属素材の材質や切削条件によっては、うまく切り屑を分断できない場合もある。
本発明は、かかる従来の問題点に鑑みてなされたもので、特殊な切削工具を用いることなく、素材の性質に関係なく容易に切り屑を分断できる切削加工方法を提供しようとするものである。
However, even if the above-mentioned special cutting tool is used, there is a case where the chips cannot be divided well depending on the material of the metal material and the cutting conditions.
The present invention has been made in view of such conventional problems, and an object of the present invention is to provide a cutting method capable of easily cutting chips regardless of the properties of the material without using a special cutting tool. .

本発明は、ワークを保持可能なワーク保持手段と、切削工具を保持可能なツール保持手段と、両者を相対的に回転及び相対的に軸方向へ移動させることができる駆動手段とを備えた切削装置を用いた切削加工方法であって、
上記ワークの円筒状の加工面に対し、仕上げ切削を行う際の切削方向と交差するように位置する予備溝を設ける予備切削工程と、
上記加工面に上記予備溝の深さを超える切削代の仕上げ切削を行う仕上げ切削工程とを有し、
上記予備切削工程と上記仕上げ切削工程とは、上記ワーク及び上記切削工具を上記ワーク保持手段及び上記ツール保持手段に保持させた状態を維持したまま同じ切削工具を用いて行い、かつ、
上記切削工具のすくい面が上記加工面の周方向に向くよう保持されており、上記予備切削工程においては、上記切削工具の上記ワークに対する相対的な回転数を0とした状態で、上記すくい面に略直交する方向に上記切削工具を移動させることにより、上記予備溝を軸方向に沿った直線状に設けることを特徴とする切削加工方法にある(請求項1)。
The present invention provides a cutting device comprising a work holding means capable of holding a work, a tool holding means capable of holding a cutting tool, and a driving means capable of relatively rotating and relatively moving both of them in the axial direction. A cutting method using an apparatus,
A pre-cutting step for providing a pre-groove that is positioned so as to intersect the cutting direction when performing the finish cutting on the cylindrical processing surface of the workpiece,
A finishing cutting step of performing a finishing cutting of a cutting allowance exceeding the depth of the preliminary groove on the processed surface;
The above-mentioned preliminary cutting step and the finishing cutting step, have rows with the same cutting tool while the workpiece and the cutting tool was maintained state of being held by the work holding means and the tool holding means, and,
The rake face of the cutting tool is held so as to face the circumferential direction of the machining surface, and in the preliminary cutting step, the rake face is set with the relative rotational speed of the cutting tool with respect to the workpiece being zero. According to another aspect of the present invention, there is provided a cutting method characterized in that the preliminary groove is provided in a straight line shape along the axial direction by moving the cutting tool in a direction substantially orthogonal to the first aspect.

本発明は、上記のごとく、予備切削工程において予備溝を設けた後に仕上げ切削工程において仕上げ切削を行う。これにより、仕上げ切削を行っている際の切り屑は、上記予備溝に到達する毎に分断され、ワークの加工面の直径以下の長さにすることができる。そのため、長い切り屑がワークや切削工具に絡まることによる不具合を防止することができる。   As described above, the present invention performs finish cutting in the finishing cutting process after providing the preliminary grooves in the preliminary cutting process. Thereby, the chip | tip at the time of finishing cutting is divided | segmented whenever it arrives at the said preliminary | backup groove | channel, and can be made into the length below the diameter of the processed surface of a workpiece | work. Therefore, it is possible to prevent problems caused by long chips getting entangled with the workpiece and the cutting tool.

さらに、本発明では、上記予備切削工程と仕上げ切削工程とを、ワーク及び切削工具をワーク保持手段及びツール保持手段にそれぞれ保持させたまま取り外さずに続けて行い、同じ切削工具で予備溝成形と仕上げ切削とを実施する。これにより、予備溝切削と仕上げ切削とを行う際のワークと切削工具との位置関係を同じ状態に維持することができる。
そして、たとえば、2つの切削工具を用いて予備切削工程と仕上げ切削工程とを別々の切削工具で行う場合と比べると、格段に上記2工程の切削精度の連携をはかることができる。2つの切削工具を用いる方法としては、2つの切削工具を1つのツール保持手段に対して脱着させて変更するか、2つのツール保持手段にそれぞれ保持させておくかの方法が考えられる。しかし、これらの方法では、いずれにしても、2つの切削工具間の微妙な位置ズレを考慮する必要があるが、本発明ではそのような問題を全く考慮する必要がない。
Furthermore, in the present invention, the preliminary cutting step and the finish cutting step are continuously performed without removing the workpiece and the cutting tool while holding the workpiece and the cutting tool on the workpiece holding unit and the tool holding unit, respectively. Perform finish cutting. Thereby, the positional relationship of the workpiece | work and cutting tool at the time of performing preliminary groove cutting and finish cutting can be maintained in the same state.
For example, compared with the case where the preliminary cutting process and the finishing cutting process are performed with separate cutting tools using two cutting tools, the cutting accuracy of the above two processes can be remarkably linked. As a method of using two cutting tools, a method of detaching and changing two cutting tools with respect to one tool holding means, or a method of holding them respectively by two tool holding means can be considered. However, in any of these methods, it is necessary to consider a slight positional deviation between the two cutting tools, but in the present invention, it is not necessary to consider such a problem at all.

そのため、たとえば、予備溝の溝深さと仕上げ切削の切削代との差が少なく、仕上げ切削時に予備溝の底を非常に薄くしか切削できない寸法設定であっても、確実に予備溝を消滅させるように仕上げ切削することができ、高品質に仕上げることができる。もし、予備溝切削時と仕上げ切削時において切削工具を変更していた場合には、2つの切削工具の微妙な位置ズレや、切削工具自体の寸法精度が影響し、溝深さの寸法設定によっては溝底が残ってしまい、不良となる場合もあるが、本発明ではそのような不具合を容易に防止できる。また、ワークの保持状態を2つの工程間で維持することも重要である。   For this reason, for example, the difference between the groove depth of the preliminary groove and the cutting allowance for finishing cutting is small, and even if the dimension setting is such that the bottom of the preliminary groove can only be cut very thin during finishing cutting, the preliminary groove is surely eliminated. Can be finished and finished with high quality. If the cutting tool is changed during pre-groove cutting and finish cutting, the slight positional deviation between the two cutting tools and the dimensional accuracy of the cutting tool itself will affect the groove depth. However, in the present invention, such a problem can be easily prevented. It is also important to maintain the workpiece holding state between the two steps.

このように、予備溝の深さと仕上げ切削時の切削代とを精度良く制御できるので、ワークの素材に応じて最適な予備溝深さを選択する自由度が広がり、切り屑の分断化をさらに容易に行うことができる。
また、上記切削精度の向上によって、仕上げ切削の切削代が100μm未満の場合というような、予備溝の溝深さと仕上げ切削の切削代との差も小さくせざるを得ない場合には、本発明が特に有効である。
以上のように、本発明によれば、特殊な切削工具を用いることなく、素材の性質に関係なく容易に切り屑を分断できる切削加工方法を提供することができる。
In this way, since the depth of the preliminary groove and the cutting allowance at the time of finish cutting can be controlled with high precision, the degree of freedom in selecting the optimal preliminary groove depth according to the workpiece material is expanded, and further fragmentation of the chips can be achieved. It can be done easily.
Further, when the above cutting accuracy is improved, the difference between the groove depth of the preliminary groove and the cutting allowance for the finish cutting is inevitably reduced when the cutting allowance for the finish cutting is less than 100 μm. Is particularly effective.
As described above, according to the present invention, it is possible to provide a cutting method capable of easily dividing chips regardless of the properties of the material without using a special cutting tool.

参考例1における、切削装置の構成を示す説明図。Explanatory drawing which shows the structure of the cutting device in the reference example 1. FIG. 参考例1における、加工面に螺旋状の予備溝を設けた例を示す説明図。Explanatory drawing which shows the example which provided the spiral preliminary groove in the process surface in the reference example 1. FIG. 参考例1における、予備溝と仕上げ切削の切削代の関係を示す説明図。Explanatory drawing which shows the relationship between the reserve groove | channel and the cutting allowance of finish cutting in the reference example 1. FIG. 実施例1における、切削装置の構成を示す説明図。FIG. 3 is an explanatory diagram illustrating a configuration of a cutting device according to the first embodiment . 実施例1における、加工面に直線状の予備溝を設けた例を示す説明図。FIG. 3 is an explanatory view showing an example in which a straight preliminary groove is provided on the processing surface in the first embodiment .

また、上記切削装置としては、少なくとも、上記ワークと上記切削工具の相対的な回転数及び相対的な軸方向移動速度の条件を数値情報に基づいて指令し制御する制御手段を備えたものを用いることができる。そして、上記予備切削工程においては、上記相対的な回転数を0に調整することによって、上記予備溝を軸方向に沿った直線状に設けるこの場合には、いわゆるマシニングセンタと呼ばれる切削装置を適用できる。マシニングセンタは、ワークをワーク保持手段に固定し、切削工具を保持したツール保持手段を回転させながら軸方向に移動させることができる。そして、マシニングセンタの場合には、上記のごとく、相対的な回転数を0にすることによって、直線状に予備溝を設けることが好ましい。 Further, as the cutting device, at least one having a control means for instructing and controlling the conditions of the relative rotational speed and the relative axial movement speed of the workpiece and the cutting tool based on numerical information is used. Can. In the preliminary cutting step, the preliminary groove is provided in a straight line along the axial direction by adjusting the relative rotational speed to zero . In this case, a cutting apparatus called a so-called machining center can be applied. The machining center can fix the work to the work holding means and move it in the axial direction while rotating the tool holding means holding the cutting tool. In the case of a machining center, it is preferable to provide a preliminary groove in a straight line by setting the relative rotational speed to 0 as described above.

マシニングセンタを用いて円筒状の加工面を切削する際には、一旦セットした切削工具による切削代を変更することができない。そのため、螺旋状の予備溝を形成した場合には、仕上げ切削を行う際に予備溝の底部が残存するおそれがある。これに対し、相対回転数を0にして軸方向に切削工具を移動させた場合には、切削工具の切刃に囲まれたすくい面に略直行する方向に切削工具が移動し、これにより、本来切削される深さよりも浅い予備溝を形成することができる。実際には、切削した予備溝となる場合と、圧潰されて窪んだ予備溝となる場合があるが、いずれも、切り屑の分断化効果を発揮させうる。   When a cylindrical machining surface is cut using a machining center, the cutting allowance with a once set cutting tool cannot be changed. Therefore, when the spiral preliminary groove is formed, there is a possibility that the bottom of the preliminary groove may remain when performing finish cutting. On the other hand, when the cutting tool is moved in the axial direction with a relative rotational speed of 0, the cutting tool moves in a direction substantially perpendicular to the rake face surrounded by the cutting blade of the cutting tool, Preliminary grooves shallower than the originally cut depth can be formed. Actually, there are a case where the pre-groove is cut and a case where the pre-groove is crushed and depressed, both of which can exert the effect of fragmenting chips.

なお、本発明においては、市販されている通常のさまざまな切削工具を利用することができる。   In the present invention, various commercially available ordinary cutting tools can be used.

参考例1
本発明の実施例にかかる切削加工方法につき、図1〜図3を用いて説明する。
本例では、図1に示すごとく、ワーク8を保持可能なワーク保持手段11と、切削工具2を保持可能なツール保持手段12と、両者を相対的に回転及び相対的に軸方向へ移動させることができる駆動手段13、14とを備えた切削装置1を用いる。
( Reference Example 1 )
A cutting method according to an embodiment of the present invention will be described with reference to FIGS.
In this example, as shown in FIG. 1, the work holding means 11 capable of holding the work 8 and the tool holding means 12 capable of holding the cutting tool 2 are relatively rotated and relatively moved in the axial direction. The cutting apparatus 1 provided with the drive means 13 and 14 which can be used is used.

この切削工具1は、いわゆる旋盤であって、ワーク8と切削工具2の相対的な回転数及び相対的な軸方向移動速度の条件を数値情報に基づいて指令し制御する制御手段(図示略)を備えている。ワーク8を保持するワーク保持手段11に設けられた駆動手段13は、ワーク8の軸心を中心として矢印C方向に回転可能に構成されており、切削工具2を保持するツール保持手段12に設けられた駆動手段14は、ワーク8に対する径方向(矢印X方向)の移動、及びワーク8の軸方向に平行な方向(矢印Z方向)への移動が可能なように構成されている。
また、本例で切削加工を施すワーク8は、図1、図2に示すごとく、円筒状の鋼部材であり、その加工面は、内周面81である。
The cutting tool 1 is a so-called lathe, and is a control means (not shown) for instructing and controlling the conditions of the relative rotational speed and the relative axial movement speed of the workpiece 8 and the cutting tool 2 based on numerical information. It has. The drive means 13 provided in the work holding means 11 for holding the work 8 is configured to be rotatable in the direction of arrow C around the axis of the work 8, and is provided in the tool holding means 12 for holding the cutting tool 2. The drive means 14 is configured to be able to move in the radial direction (arrow X direction) relative to the workpiece 8 and to move in a direction parallel to the axial direction of the workpiece 8 (arrow Z direction).
Further, the workpiece 8 to be cut in this example is a cylindrical steel member as shown in FIGS. 1 and 2, and the processing surface is an inner peripheral surface 81.

ワーク8に対する切削加工を行うに当たっては、まず、ワーク保持手段11にワークを装着すると共に、ツール保持手段12に切削工具2を装着する。
そして、ワーク8の加工面81に対し、仕上げ切削を行う際の切削方向と交差するように位置する予備溝7(図2)を設ける予備切削工程を実施する。具体的には、後の仕上げ切削がワーク8の内周面81において軸方向とほぼ直交する方向に近い方向が切削方向となるので、上記予備溝7としては、軸方向とある程度角度がある螺旋状の軌跡をとればその役割を果たす。そのため、本例では、仕上げ切削の場合よりも、ワーク8と切削工具2の相対的な回転数を低下させ、かつ、両者の相対的な軸方向移動速度を高めるように調整した。これにより、図2に示すごとく、螺旋状の予備溝7が得られた。
When cutting the workpiece 8, first, the workpiece is mounted on the workpiece holding means 11 and the cutting tool 2 is mounted on the tool holding means 12.
And the preliminary cutting process which provides the preliminary groove 7 (FIG. 2) located so that it may cross | intersect the cutting direction at the time of finishing cutting with respect to the process surface 81 of the workpiece | work 8 is implemented. Specifically, since the direction in which the subsequent finish cutting is close to the direction substantially orthogonal to the axial direction on the inner peripheral surface 81 of the workpiece 8 is the cutting direction, the preliminary groove 7 is a spiral having a certain angle with respect to the axial direction. If you take the shape of the trajectory, it plays that role. For this reason, in this example, the relative rotational speed of the workpiece 8 and the cutting tool 2 is decreased and the relative axial movement speed of both is increased as compared with the case of finish cutting. Thereby, as shown in FIG. 2, the spiral preliminary groove 7 was obtained.

次に、ワーク8の加工面81に上記予備溝7の深さ以上の切削代の仕上げ切削を行う仕上げ切削工程を実施する。具体的には、ワーク8と切削工具2とを予備切削工程の場合よりも速い速度で相対回転させると共に、両者の軸方向の相対的な移動速度を予備切削工程の場合よりも遅くし、切削軌跡がワーク8の加工面81において円状に形成されながら、徐々にずれて重なり合い、仕上げ切削後の切削面は溝等のない滑らかな面に仕上げられる。そして、仕上げ切削の切削位置が上記の予備溝7と交差する度に、切り屑が分断された。   Next, a finishing cutting step is performed on the processing surface 81 of the workpiece 8 to perform a finishing cutting with a cutting allowance greater than the depth of the preliminary groove 7. Specifically, the workpiece 8 and the cutting tool 2 are rotated relative to each other at a higher speed than in the preliminary cutting process, and the relative movement speed in the axial direction of both is slower than that in the preliminary cutting process. The trajectory is formed in a circular shape on the processed surface 81 of the workpiece 8, but gradually shifts and overlaps, and the cut surface after finish cutting is finished to be a smooth surface without grooves or the like. And every time the cutting position of finish cutting cross | intersects the said preliminary | backup groove | channel 7, the chip | piece was parted.

図3に示すごとく、本例では、仕上げ切削の切削代D0は300μmに設定した。これに対して、上記予備溝7の深さはD1は250μmとした。そのため、予備溝7が存在する位置での切削代D2は50μmである。なお、ここで示す各切削代の寸法関係は一例であって、切削目的に応じて変更可能である。
また、上記予備切削工程と上記仕上げ切削工程とは、ワーク8及び切削工具2をワーク保持手段11及びツール保持手段12に保持させた状態を維持したまま同じ切削工具2を用いて行った。
As shown in FIG. 3, in this example, the cutting allowance D 0 for finishing cutting was set to 300 μm. On the other hand, the depth of the preliminary groove 7 is D 1 of 250 μm. Therefore, the cutting allowance D 2 at the position where preliminary groove 7 there is a 50 [mu] m. In addition, the dimensional relationship of each cutting allowance shown here is an example, Comprising: It can change according to the cutting purpose.
The preliminary cutting step and the finish cutting step were performed using the same cutting tool 2 while maintaining the state in which the workpiece 8 and the cutting tool 2 were held by the workpiece holding means 11 and the tool holding means 12.

次に、本例の作用効果について説明する。
本例では、上記のごとく、予備切削工程において予備溝7を設けた後に仕上げ切削工程において仕上げ切削を行うので、仕上げ切削を行っている際の切り屑は、予備溝7に到達する毎に分断され、ワーク8の加工面81の直径以下の長さにすることができる。そのため、長い切り屑がワークや切削工具に絡まることによる不具合を防止することができる。
Next, the function and effect of this example will be described.
In this example, as described above, the finishing cutting is performed in the finishing cutting process after the provisioning groove 7 is provided in the preliminary cutting process. Therefore, the chips during the finishing cutting are divided every time the preliminary cutting 7 is reached. Thus, the length can be made to be equal to or smaller than the diameter of the processed surface 81 of the workpiece 8. Therefore, it is possible to prevent problems caused by long chips getting entangled with the workpiece and the cutting tool.

さらに、上記予備切削工程と仕上げ切削工程とを、ワーク8及び切削工具2をワーク保持手段11及びツール保持手段12にそれぞれ保持させたまま取り外さずに続けて行い、同じ切削工具で予備切削工程と仕上げ切削工程とを実施する。これにより、予備溝切削と仕上げ切削とを行う際のワーク8と切削工具2との位置関係を同じ状態に維持することができる。
そして、2つの切削工具を用いて予備切削工程と仕上げ切削工程とを別々の切削工具で行う場合と比べると、格段に上記2工程の切削精度の連携を図ることができる。
Further, the preliminary cutting step and the finishing cutting step are performed continuously without removing the workpiece 8 and the cutting tool 2 while being held by the workpiece holding means 11 and the tool holding means 12, respectively. Perform the finishing cutting process. Thereby, the positional relationship between the workpiece 8 and the cutting tool 2 when performing preliminary groove cutting and finish cutting can be maintained in the same state.
And compared with the case where a preliminary | backup cutting process and a finishing cutting process are performed with a separate cutting tool using two cutting tools, cooperation of the cutting precision of the said 2 processes can be aimed at markedly.

そのため、本例のように、予備溝7の溝深さD1と仕上げ切削の切削代D0との差が少なく、仕上げ切削時に予備溝7の底を非常に薄くしか切削できない寸法設定(D2)であっても、確実に予備溝7を消滅させるように仕上げ切削することができ、高品質に仕上げることができる。 Therefore, as in this example, there is little difference between the groove depth D 1 of the preliminary groove 7 and the cutting allowance D 0 of the finish cutting, and the dimension setting (D Even in the case of 2 ), the finish cutting can be performed so as to surely eliminate the preliminary groove 7, and the high quality can be achieved.

このように、本例では、予備溝7の深さと仕上げ切削時の切削代とを精度良く制御できるので、ワーク8の素材に応じて最適な予備溝深さを選択する自由度が広がり、切り屑の分断化をさらに容易に行うことができる。そして、特殊な切削工具を用いることなく、素材の性質に関係なく容易に切り屑を分断できる切削加工方法を実施できる。   Thus, in this example, since the depth of the preliminary groove 7 and the cutting allowance at the time of finish cutting can be controlled with high accuracy, the degree of freedom to select the optimal preliminary groove depth according to the material of the workpiece 8 is expanded, and the cutting is performed. Separation of waste can be performed more easily. And the cutting method which can cut | disconnect a chip easily irrespective of the property of a raw material can be implemented, without using a special cutting tool.

実施例1
本例は、図4に示すごとく、切削装置3として、いわゆるマシニングセンタを用いた例である。参考例1と同様に、切削加工を施すワーク8は、図4、図5に示すごとく、円筒状の鋼部材であり、その加工面は、内周面81である。
( Example 1 )
In this example, as shown in FIG. 4, a so-called machining center is used as the cutting device 3. As in Reference Example 1 , the workpiece 8 to be cut is a cylindrical steel member as shown in FIGS. 4 and 5, and the processing surface is an inner peripheral surface 81.

同図に示すごとく、切削装置3は、ワーク8を保持可能なワーク保持手段31と、切削工具2を保持可能なツール保持手段32と、両者を相対的に回転及び相対的に軸方向へ移動させることができる駆動手段33とを備えている。切削装置3は、ワーク8と切削工具2の相対的な回転数及び相対的な軸方向移動速度の条件を数値情報に基づいて指令し制御する制御手段(図示略)を備えている。
本例のワーク保持手段31とツール保持手段32とは、いずれも平面方向及び上下方向のいわゆるXYZ方向のいずれにも移動可能に構成されているが、最初の位置決めを行った後には、ツール保持手段32の軸心をワーク8の軸心に合致させた状態で、ツール保持手段32を矢印C方向に回転させる動きと、ツール保持手段32をZ方向に移動させる動きとを駆動手段33によって行うよう構成されている。
As shown in the figure, the cutting apparatus 3 includes a work holding means 31 capable of holding the work 8, a tool holding means 32 capable of holding the cutting tool 2, and relatively rotating and relatively moving in the axial direction. Driving means 33 that can be driven. The cutting device 3 includes control means (not shown) for instructing and controlling the conditions of the relative rotational speed and the relative axial movement speed of the workpiece 8 and the cutting tool 2 based on numerical information.
The workpiece holding means 31 and the tool holding means 32 of this example are both configured to be movable in both the planar direction and the so-called XYZ direction, but after the initial positioning, the tool holding means The drive means 33 performs the movement of rotating the tool holding means 32 in the direction of arrow C and the movement of moving the tool holding means 32 in the Z direction with the axis of the means 32 aligned with the axis of the workpiece 8. It is configured as follows.

ワーク8に対する切削加工を行うに当たっては、まず、ワーク保持手段31にワークを装着すると共に、ツール保持手段32に切削工具2を装着する。
そして、ワーク8の加工面81に対し、仕上げ切削を行う際の切削方向と交差するように位置する予備溝7(図5)を設ける予備切削工程を実施する。具体的には、上記予備溝7としては、ワーク8の軸方向に平行な直線状のものとする。そのため、本例では、ワーク8と切削工具2との相対的な回転数を0に調整すると共に、図5に示すごとく、両者を相対的に軸方向(矢印Z方向)に移動させることによって、予備溝7を軸方向に沿った直線状に設けた。
When cutting the workpiece 8, first, the workpiece is mounted on the workpiece holding means 31 and the cutting tool 2 is mounted on the tool holding means 32.
And the preliminary cutting process which provides the preliminary groove 7 (FIG. 5) located so that it may cross | intersect the cutting direction at the time of finishing cutting with respect to the process surface 81 of the workpiece | work 8 is implemented. Specifically, the preliminary groove 7 is linear in parallel to the axial direction of the workpiece 8. Therefore, in this example, while adjusting the relative rotational speed of the workpiece 8 and the cutting tool 2 to 0, as shown in FIG. 5, by relatively moving both in the axial direction (arrow Z direction), The preliminary groove 7 was provided in a straight line shape along the axial direction.

次に、ワーク8の加工面81に上記予備溝7の深さ以上の切削代の仕上げ切削を行う仕上げ切削工程を実施する。具体的には、ワーク8と切削工具2とを相対回転させながら、両者の軸方向の相対的な移動をゆっくりと行うことにより、切削軌跡がワーク8の加工面81において円状に形成されながら、徐々にずれて重なり合い、仕上げ切削後の切削面は溝等のない滑らかな面に仕上げられる。そして、仕上げ切削の切削位置が上記の予備溝7と交差する度に、切り屑が分断された。   Next, a finishing cutting step is performed on the processing surface 81 of the workpiece 8 to perform a finishing cutting with a cutting allowance greater than the depth of the preliminary groove 7. Specifically, while the workpiece 8 and the cutting tool 2 are relatively rotated, the relative movement in the axial direction of the workpiece 8 is slowly performed so that the cutting locus is formed in a circular shape on the machining surface 81 of the workpiece 8. Slowly overlap and overlap, and the cut surface after finish cutting is finished to a smooth surface without grooves. And every time the cutting position of finish cutting cross | intersects the said preliminary | backup groove | channel 7, the chip | piece was parted.

本例の場合には、上記構成のマシニングセンタを用いるので、図5に示すごとく、ツール保持手段32の外周面に切削工具2が配置される関係で、一旦セットした切削工具2による切削代の目標値を変更することができない。そのため、螺旋状の予備溝を形成する場合には、仕上げ切削の場合とほぼ同じ深さの予備溝しか形成されない。これに対し、相対回転数を0にして軸方向に切削工具2を移動させた場合には、切削工具2の切刃に囲まれたすくい面に略直行する方向に切削工具が移動することとなる。これは、円柱状の加工面81を切削する場合には、切削工具2のすくい面をほぼ周方向に向けて、周方向に相対移動させるようセットするためである。これにより、上記予備切削工程では、すくい面を切削方向に向けて切削する場合の本来切削される深さよりも浅い予備溝を形成することができる。そして、これにより、切り屑の分断化効果を十分に発揮させることができ、また、仕上げ切削工程の実施によって、予備溝7を確実に消滅させることができる。
その他は、参考例1と同様の作用効果が得られる。
In the case of this example, since the machining center having the above-described configuration is used, as shown in FIG. 5, the cutting tool 2 is set on the outer peripheral surface of the tool holding means 32. The value cannot be changed. Therefore, in the case of forming a spiral preliminary groove, only the preliminary groove having substantially the same depth as that in the case of finish cutting is formed. On the other hand, when the cutting tool 2 is moved in the axial direction with the relative rotational speed set to 0, the cutting tool moves in a direction substantially perpendicular to the rake face surrounded by the cutting edge of the cutting tool 2. Become. This is for setting the rake face of the cutting tool 2 so as to be relatively moved in the circumferential direction with the rake face of the cutting tool 2 substantially directed in the circumferential direction when the cylindrical processing surface 81 is cut. Thereby, in the said preliminary cutting process, the preliminary | backup groove | channel shallower than the depth cut originally when cutting a rake face toward a cutting direction can be formed. As a result, the effect of fragmenting the chips can be sufficiently exhibited, and the preliminary groove 7 can be surely eliminated by performing the finish cutting process.
In other respects, the same effects as those of Reference Example 1 can be obtained.

1、3 切削装置
11、31 ワーク保持手段
12、32 ツール保持手段
13、14、33 駆動手段
7 予備溝
8 ワーク
81 加工面
1, 3 Cutting device 11, 31 Work holding means 12, 32 Tool holding means 13, 14, 33 Driving means 7 Preliminary groove 8 Work 81 Work surface

Claims (1)

ワークを保持可能なワーク保持手段と、切削工具を保持可能なツール保持手段と、両者を相対的に回転及び相対的に軸方向へ移動させることができる駆動手段とを備えた切削装置を用いた切削加工方法であって、
上記ワークの円筒状の加工面に対し、仕上げ切削を行う際の切削方向と交差するように位置する予備溝を設ける予備切削工程と、
上記加工面に上記予備溝の深さを超える切削代の仕上げ切削を行う仕上げ切削工程とを有し、
上記予備切削工程と上記仕上げ切削工程とは、上記ワーク及び上記切削工具を上記ワーク保持手段及び上記ツール保持手段に保持させた状態を維持したまま同じ切削工具を用いて行い、かつ、
上記切削工具のすくい面が上記加工面の周方向に向くよう保持されており、上記予備切削工程においては、上記切削工具の上記ワークに対する相対的な回転数を0とした状態で、上記すくい面に略直交する方向に上記切削工具を移動させることにより、上記予備溝を軸方向に沿った直線状に設けることを特徴とする切削加工方法。
A cutting apparatus comprising a work holding means capable of holding a work, a tool holding means capable of holding a cutting tool, and a driving means capable of relatively rotating and relatively moving both of them in the axial direction was used. A cutting method,
A pre-cutting step for providing a pre-groove that is positioned so as to intersect the cutting direction when performing the finish cutting on the cylindrical processing surface of the workpiece,
A finishing cutting step of performing a finishing cutting of a cutting allowance exceeding the depth of the preliminary groove on the processed surface;
The above-mentioned preliminary cutting step and the finishing cutting step, have rows with the same cutting tool while the workpiece and the cutting tool was maintained state of being held by the work holding means and the tool holding means, and,
The rake face of the cutting tool is held so as to face the circumferential direction of the machining surface, and in the preliminary cutting step, the rake face is set with the relative rotational speed of the cutting tool with respect to the workpiece being zero. A cutting method characterized in that the preliminary groove is provided in a straight line along the axial direction by moving the cutting tool in a direction substantially perpendicular to the axis .
JP2009084801A 2009-03-31 2009-03-31 Cutting method Active JP5353375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009084801A JP5353375B2 (en) 2009-03-31 2009-03-31 Cutting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009084801A JP5353375B2 (en) 2009-03-31 2009-03-31 Cutting method

Publications (2)

Publication Number Publication Date
JP2010234478A JP2010234478A (en) 2010-10-21
JP5353375B2 true JP5353375B2 (en) 2013-11-27

Family

ID=43089323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009084801A Active JP5353375B2 (en) 2009-03-31 2009-03-31 Cutting method

Country Status (1)

Country Link
JP (1) JP5353375B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104526030A (en) * 2014-12-08 2015-04-22 湖南南方宇航工业有限公司 Processing method for T-shaped thin-walled parts

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103273126B (en) * 2013-06-13 2016-04-13 沈阳飞机工业(集团)有限公司 Aluminium lithium alloy covering numerical control milling method
JP6405872B2 (en) * 2014-10-14 2018-10-17 三菱マテリアル株式会社 Pre-groove cutting method
JP6352891B2 (en) * 2015-12-01 2018-07-04 ファナック株式会社 Numerical control device for fixed cycle motion control of muscle processing for shredding chips
CN110090991A (en) * 2019-05-22 2019-08-06 成都飞机工业(集团)有限责任公司 A kind of high-rate wireless LAN method of the high edge strip vallecular cavity of thin-walled
CN114101765A (en) * 2021-12-08 2022-03-01 中国航发南方工业有限公司 Asymmetric groove processing method of high-temperature alloy casing

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5554101A (en) * 1978-10-16 1980-04-21 Mitsubishi Metal Corp Cutting method
JPS56166103U (en) * 1980-05-02 1981-12-09
JPS58126001A (en) * 1982-01-22 1983-07-27 Hitachi Ltd Cutting method of material
JP2002263902A (en) * 2001-03-09 2002-09-17 Matsushita Electric Ind Co Ltd Cutting method
JP2005059178A (en) * 2003-08-19 2005-03-10 Tochigi Fuji Ind Co Ltd Manufacturing method of base material, forging base material, product, and electromagnetic clutch device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104526030A (en) * 2014-12-08 2015-04-22 湖南南方宇航工业有限公司 Processing method for T-shaped thin-walled parts
CN104526030B (en) * 2014-12-08 2016-08-24 湖南南方宇航工业有限公司 A kind of processing method of T-shaped thin-walled parts

Also Published As

Publication number Publication date
JP2010234478A (en) 2010-10-21

Similar Documents

Publication Publication Date Title
JP5353375B2 (en) Cutting method
JP6212876B2 (en) Gear machining method and gear machining cutter
JP6903004B2 (en) How to machine teeth, tools for machining and machine tools
JP6833710B2 (en) Machine tools and processing methods using machine tools
US7441484B1 (en) CNC prescribe method to encourage chip breaking
US8186251B2 (en) Device for machining rotationally symmetrical surfaces of a workpiece
EP2979785A1 (en) Polygon machining device and polygon machining method
JPWO2010010845A1 (en) Thin wall cutting method
JP2007105819A (en) Threading tool, threading device and threading method
CN110621430B (en) Thread cutting device and thread cutting method
JP2012086296A (en) Groove working method
JP2009136956A (en) Turning work method, turning condition and cutting route formation method
JP2008296331A (en) Machining device
US20200269333A1 (en) Form cutting method
US20220072631A1 (en) Milling head, turn-mill machine and method
JP2006289871A (en) Method for manufacturing ring zone optical element and method for manufacturing mold for ring zone optical element
JP4656371B2 (en) Cutting method
JP6371339B2 (en) Machining method, machining apparatus, and power transmission component manufacturing method
JP2003220513A (en) Method for machining circular arc groove
JP6577861B2 (en) Machine Tools
JP2003117716A (en) Machining device and machining method
JP2005279839A (en) Method for machining deep groove
JP2005305590A (en) Method and apparatus for machining curved surface
JP2005169582A (en) Combined cutting method of machine tool and combined cutting machine
JP6405115B2 (en) Drilling method, cylinder block manufacturing method, and drilling machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130812

R150 Certificate of patent or registration of utility model

Ref document number: 5353375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150