JP2014225731A - 信号処理装置、撮像装置、及び、プログラム - Google Patents

信号処理装置、撮像装置、及び、プログラム Download PDF

Info

Publication number
JP2014225731A
JP2014225731A JP2013102929A JP2013102929A JP2014225731A JP 2014225731 A JP2014225731 A JP 2014225731A JP 2013102929 A JP2013102929 A JP 2013102929A JP 2013102929 A JP2013102929 A JP 2013102929A JP 2014225731 A JP2014225731 A JP 2014225731A
Authority
JP
Japan
Prior art keywords
section
sound
frequency
noise reduction
reduction processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013102929A
Other languages
English (en)
Inventor
岡崎 光宏
Mitsuhiro Okazaki
光宏 岡崎
康介 岡野
Kosuke Okano
康介 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2013102929A priority Critical patent/JP2014225731A/ja
Publication of JP2014225731A publication Critical patent/JP2014225731A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】ノイズを適切に低減することができる信号処理装置、撮像装置、及び、プログラムを提供する。【解決手段】本発明の信号処理装置は、入力された音情報から特定音の発生区間を検出する区間検出部と、前記区間検出部によって検出された前記発生区間に含まれる前記特定音の特徴量を検出する特徴量検出部と、入力された音情報に対してノイズ低減処理を行うノイズ低減処理部とを備え、前記ノイズ低減処理部は、前記発生区間と前記特定音の特徴量とに基づいて前記ノイズ低減処理の方法を変更する。【選択図】図1

Description

本発明は、信号処理装置、撮像装置、及び、プログラムに関する。
動画撮影が可能な撮像装置において動画撮影時には、オートフォーカスレンズの駆動部の動作に伴い発生する動作音(以下、AFノイズという)等のノイズが、マイク等の収音装置により収音され、被写体の発する音声等の目的音に混入し、目的音の品質を損なうことがある。
このようなAFノイズを低減する方法として、AF駆動部の動作前に入力される音声信号のパワー値を取得し、この音声信号のパワー値に基づいてフロアリング係数を変化させることにより、ノイズを除去する方法が提案されている(例えば、特許文献1参照)。
特開2008−252389号公報
しかし、特許文献1によるノイズ低減処理の場合は、AFノイズを低減することができる反面、音信号を多く減算してしまい、音声信号を劣化させる可能性があった。
本発明の課題は、ノイズを適切に低減することができる信号処理装置、撮像装置、及び、プログラムを提供することである。
本発明は、以下のような解決手段により前記課題を解決する。
本発明の第一の態様に係る信号装置は、入力された音情報から特定音の発生区間を検出する区間検出部と、前記区間検出部によって検出された前記発生区間に含まれる前記特定音の特徴量を検出する特徴量検出部と、入力された音情報に対してノイズ低減処理を行うノイズ低減処理部とを備え、前記ノイズ低減処理部は、前記発生区間と前記特定音の特徴量とに基づいて前記ノイズ低減処理の方法を変更することを特徴とする。
また本発明の他の態様に係るプログラムは、コンピュータに、入力された音情報から特定音の発生区間を検出する区間検出ステップと、前記区間検出ステップにおいて検出された前記発生区間に含まれる前記特定音の特徴量を検出する特徴量検出ステップと、入力された音情報に対してノイズ低減処理を行うノイズ低減処理ステップとを実行させるプログラムであって、前記ノイズ低減処理ステップは、前記発生区間と前記特定音の特徴量とに基づいて前記ノイズ低減処理の方法を変更することを特徴とする。
本発明によれば、ノイズを適切に低減することができる信号処理装置、撮像装置、及び、プログラムを提供できる。
本発明の第1実施形態を適用した撮像装置の構成を示すブロック図である。 AF動作時における各部の信号出力例である。 音声波形を示す図である。 図3に示す音声波形の自己相関関数を説明する図である。 音声区間検出の説明図である。 図3に示す音声波形をFFT処理した周波数スペクトルを示す図である。 周波数領域選択減算処理における周波数ビンの選択例を示す図である。 処理する音信号の説明図である。 図8における区間Aの周波数スペクトル図である。 図8における区間Bの周波数スペクトル図である。 フロアリングスペクトル図である。 図8における区間Cの周波数スペクトル図である。 推定ノイズの周波数スペクトル図である。 図8における区間Cのスペクトル減算後の周波数スペクトル図である。 図14に示す周波数スペクトルをフロアリングした周波数スペクトル図である。 図8に示す区間Dの周波数スペクトル図である。 図8における区間Dのスペクトル減算後の周波数スペクトル図である。 図8における区間Dに対するノイズ低減処理後の周波数スペクトル図である。 ノイズ低減処理動作のフローを示すフローチャートである。 本発明の第2実施形態を適用した信号処理装置の構成を示すブロック図である。
(第1実施形態)
以下、図面等を参照して、本発明の第1実施形態について説明する。図1は、本発明の第1実施形態を適用した撮像装置100の構成を示すブロック図である。
図1に示すように、撮像装置100は、カメラ本体110と、レンズ鏡筒120と、を備える。
カメラ本体110は、レンズ鏡筒120を通過した被写体像を撮像してA/D変換すると共に、画像処理して画像データを生成する画像処理部130と、収音した音情報をA/D変換すると共にノイズ低減処理する音情報処理部140と、画像処理部130で得られた画像データ及び音情報処理部140で得られた音声信号を記録する記録部150と、制御部160と、を備える。
レンズ鏡筒120は、図示しない結像光学系と、焦点調整(以下、AF(Auto Focus)と称する)機構部121と、手振れ補正(以下、VR(Vibration Reduction)と称する)レンズ122Lを備えるVRユニット122と、を備える。
AF機構部121は、結像光学系の構成要素であるAFレンズ121L,AF駆動用モータ121MおよびAFエンコーダ121Eを備える。
AF駆動用モータ121Mは、カメラ本体110における制御部160から入力されるAFレンズ121Lの位置を制御するための駆動制御信号に応じて、AFレンズ121Lを移動駆動する。
AFエンコーダ121Eは、AFレンズ121Lの位置を検出してカメラ本体110における制御部160に出力する。
カメラ本体110における制御部160は、CPUを備えて構成され、設定された撮像条件(例えば、絞り値、露出値等)に応じてレンズ鏡筒120を制御する。
制御部160は、例えば、AFエンコーダ121Eから入力されるフォーカスポジションと、操作部から入力される操作入力に基づいて、AFレンズ121Lの位置を制御する駆動制御信号を生成する。
制御部160は、この駆動制御信号に基づいて、AFエンコーダ121Eを介して、AFレンズ121Lの位置を制御する。
つぎに、音情報処理部140について詳細に説明する。
音情報処理部140は、マイク141と、マイク141によって収音されA/D変換された音情報を処理する音信号処理部142と、ノイズ低減処理部143と、を備える。
そして、以下に説明するように、マイク141が収音した(マイク141から入力された)音情報に対して、音信号処理部142におけるノイズタイミング検出部145によるAF駆動区間の検出結果と、音声区間検出部146による音声区間の検出結果と、音声特徴量検出部147により求めた音声の特徴量(基本周波数f0)に基づいて、ノイズ低減処理部143がノイズ低減処理を行い、記録部150に出力する。
音信号処理部142は、AF駆動用モータ121MにおけるAF動作ノイズの発生タイミングを検出するノイズタイミング検出部145と、マイク141により収音された音情報から音声区間を検出する音声区間検出部146と、音声区間検出部146で検出された音声区間の音情報から音声の特徴量(基本周波数f0)を求める音声特徴量検出部147を備える。
ノイズタイミング検出部145はAF駆動用モータ121Mの動作情報から、AF動作ノイズの発生するタイミング(AF駆動区間)を検出する。ノイズタイミング検出部145は、たとえば、以下のようにしてAF駆動区間の検出を行う。
図2は、AF動作時(AF駆動用モータ121M駆動時)における各部の信号出力例であり、(a)は制御部160からのAF駆動コマンド出力、(b)はAFエンコーダ121Eの出力、(c)はマイク出力を示している。
図2に示すように、AF駆動コマンドの出力によってAF駆動用モータ121Mが作動すると、AF駆動コマンドの出力時刻であるAF駆動用モータ121Mの動作開始時刻t1から動作終了時刻t3まで連続して駆動音(AF動作ノイズ)が発生する。マイク141によって集音された音情報には、このAF動作ノイズが記録目的音(被写体の音声および背景音等)に重畳している。
なお、図2では、説明を簡略にするため、AF動作ノイズのみを示している。また、後述するノイズ低減処理部143においてノイズ低減処理を行うために所定の窓サイズに分割したデータ毎にFFT処理を行う。実際はオーバーラップした窓がけを行うが、説明を簡略にするため、オーバーラップを省略して図示した。
ノイズタイミング検出部145は、AF駆動用モータ121Mの駆動音(AF動作ノイズ)の発生タイミング(AF駆動区間)を、カメラ本体110における制御部160からレンズ鏡筒120のAF機構部121(AF駆動用モータ121M)に対して送るAF駆動コマンド、およびレンズ鏡筒120におけるAF機構部121に設けられたAFエンコーダ121Eの出力、を用いて推定する。
なお、駆動方向反転時には、AF駆動開始(AF駆動コマンドの出力時刻:t1)より遅れたt2でエンコーダが検出情報を出力する場合があり、その場合はAFコマンド出力のタイミングで駆動開始時を推定したほうが正確なタイミングを得られる。
この場合、コマンド出力のt1で駆動開始を推定し、エンコーダ出力のt3で駆動停止時を推定する。すなわち、AF駆動コマンドの出力時刻t1からAFエンコーダ121Eの出力停止t3までをAF駆動区間として検出し、それ以外を非AF駆動区間として検出する。
なお、タイミング検出部145が検出する動作部のタイミングは、上述のように、AF駆動用モータ121Mの動作情報による、AF動作ノイズの発生するタイミングに限定されず、カメラ本体110が備える動作部の、その他の動作タイミングであってもよい。
動作部とは、例えば、上述のVRレンズ122L、AFレンズ121Lや、図示しないズームレンズや操作部であり、カメラ本体110が備えている構成のうち、動作により、音を生じる構成である。駆動部とは、動作部を駆動する防振制御部122M、AFモータ121M等である。制御信号とは、動作部の動作を制御する制御信号、または、駆動部を制御する駆動制御信号である。
そして、タイミング検出部145は、動作部を動作させる制御信号、動作部を駆動させるために駆動部に入力される駆動制御信号、制御部160で生成される駆動制御信号、制御部160が駆動制御信号を生成する場合に制御部160内部で実行される処理やコマンド、操作部から入力される駆動部を駆動させることを示す信号等により動作部が動作するタイミングを検出してもよい。
音声区間検出部146は、マイク141により収音された音情報から音声区間を検出する。音声区間検出部146は、たとえば、マイク141により収音された音情報から、音声信号の含まれる区間(音声区間)と、それ以外の区間(音声が発生していない区間)とを、自己相関関数のピーク値に基づいて判別する。なお、ここでは音声信号の含まれる区間の検出に自己相関関数のピーク値を用いるが、これ以外の方法を用いてでも良い。
以下に、この音声区間検出部146による音声区間検出の概要を説明する。
図3は、音声波形を示している。この音声波形の任意の一部を切り出して自己相関関数を求めると、図4に示すような波形となる。この図4からわかるように、音声の基本周波数に対応したピークがあり、このピークの大きさによって音声か音声でないかを区別することができる。
図5は、音声区間の検出例である。(a)は、マイク141の出力波形,(b)は、自己相関関数のピークに閾値を設け、閾値以上の部分をHighの表示にしたものである。
図5(a)に示すように、マイク141出力波形の前半には、AF動作ノイズが発生しており、後半には音声とAF動作ノイズが発生している。これに対して、自己相関関数のピークに閾値を設け、閾値以上の部分を検出することで、(b)に示すように音声位置と一致した音声区間を検出することができる。
また、音声特徴量検出部147は、図4に示す自己相関関数から、後述するノイズ低減処理部143において利用するために、音声区間であると判断された音信号(時間領域音情報)から音声の特徴量として基本周波数f0を求める。
基本周波数f0は、自己相関関数における基本周波数に関連する最初のピークのラグと、サンプリング周波数と、に基づいて算出する。
すなわち、図4において、基本周波数に関連する最初のピークのラグをτ0、サンプリング周波数をfsとすると、f0=fs/τ0となる。例えばサンプリング周波数fs=48kHz、ラグτ0=400とすると、基本周波数f0=48000/400=120Hzとなる。
ノイズ低減処理部143は、AF動作ノイズを低減処理する。
以下に、このノイズ低減処理部143によるAF動作ノイズを低減処理の概要を説明する。
ノイズ低減処理部143は、ノイズの周波数スペクトル(推定ノイズスペクトル)に基づいて、音信号にスペクトル減算(Spectral Subtraction)処理することにより、音信号のノイズを低減させる処理を行う。
スペクトル減算処理は、まず、時間領域音信号を予め決められた区間毎に分割して窓関数で重み付けする共に、この区間毎の音データを高速フーリエ変換(FFT:Fast Fourier Transform)して周波数領域の振幅情報と位相情報を求め、周波数スペクトルを得る。
そして、その各周波数領域の振幅情報から推定ノイズ成分を減じ、処理後の周波数スペクトルに対して高速逆フーリエ変換(IFFT:Inverse Fast Fourier Transform)を行なって時間領域に変換するものである。FFT時に求めた位相情報は、IFFT時に使用する。
推定ノイズスペクトルは、たとえば、図2に示す動作ノイズ発生前の区間Xの周波数スペクトルにおける各周波数領域の振幅成分と、動作ノイズ発生後の区間Yの周波数スペクトルにおける各周波数領域の振幅成分と、を比較することで生成する。この推定ノイズスペクトルは、随時更新する。
ノイズ低減処理部143は、たとえば、48kHzサンプリングで求めた時間領域音データについて、1フレーム4096サンプルのFFT処理を行う。FFT時にはハニングウィンドウ処理を行い、隣のフレームとは1/2オーバーラップするようにFFT処理を行う。
図3の音声波形をFFT処理すると、図6の周波数スペクトルが得られる。音声の特徴である調波構造が見られ、基本周波数f0およびその高調波が見られる。
ここで、ノイズ低減処理部143は、AF動作ノイズの発生区間(AF駆動区間)であって、且つ、音声区間である場合には、音声の劣化を回避するために、周波数領域を選択してスペクトル減算処理(以下、これを周波数選択減算処理と称する)を行う。
周波数領域選択減算処理は、音声の基本周波数に基づいて周波数領域(周波数ビン)を選択し、その選択した周波数ビンの成分は減算処理を行わず、それ以外の周波数ビンの成分に対してのみ減算処理を行うものである。この周波数領域選択減算処理については、後に詳述する。
さらに、ノイズ低減処理部143は、前述したスペクトル減算で引きすぎて減少または無くなってしまうスペクトルを補正するために、フロアリング処理を行う。
フロアリング処理は、周波数毎に減算後のスペクトルとフロアリングスペクトルの大きさを比較し、フロアリングスペクトルを下回っている場合はフロアリングスペクトルを採用する処理を行い、減算後のスペクトルの下限値をフロアリングスペクトルとする。ただし、減算前のスペクトルがフロアリングスペクトルを下回っている場合は、その周波数スペクトルについてはフロアリング処理を行わない。
フロアリングスペクトルは、AF駆動区間と音声区間の検出結果に基づいて、AFノイズと音声がない区間から推定し、AFノイズスペクトルや音声スペクトルを含まないようにする。
つぎに、ノイズ低減処理部143による周波数領域選択減算処理について、詳細に説明する。
周波数領域選択減算処理は、音声の基本周波数f0の1以上n以下の整数倍(f0、f0×2、f0×3、・・・、f0×n)を含む周波数ビンを選択し、その周波数ビンの成分に対しては減算処理を行わず、それ以外の周波数ビンの成分に対してのみ減算処理を行う。
音声の基本周波数f0は、前述したように、音声特徴量検出部147によって、音声区間検出部146で音声区間であると判断された音信号から求められる。ここでは、たとえば、基本周波数f0=120Hzとして説明する。
選択する周波数ビンは、基本周波数f0の整数倍の周波数に最も近いFFT周波数のものとする。しかし、音声成分は隣接する周波数ビンにも含まれるため、その前後のビンも加えて(たとえば計3個)選択することが好ましい。また、選択するビンは、より近い側のビンと2個とする等、適宜変更可能である。
図7は、サンプリング周波数48kHz、FFTのフレーム長4096点のFFTを行った場合における、周波数ビンの選択例を示す。FFTの周波数分解能は11.7Hzである。基本周波数f0に乗ずる整数nは、1〜20(途中省略)である。なお、整数nは、20に限らず適宜選択可能であるが、少なくとも5程度とするのが好ましい。
この図7に示す例では、基本周波数f0=120Hzの整数倍に最も近いFFT周波数ビンを選択すると共に、その前後の合計3個のビンを選択している。すなわち、f0=120Hzに対応する周波数ビンとしてビンNo.9,10,11のビンを、f0×2=240Hzに対応する周波数ビンとしてビンNo.19,20,21のビンを選択している。ここではnが1〜20であるために、合計60個の周波数ビンを選択している。
ノイズ低減処理部143は、上述したように、周波数領域選択減算処理においては、選択した周波数ビンの成分は減算処理をせず、それ以外の周波数ビンの成分に対しては減算処理を行う。これにより、音声に含まれる調波構造の周波数スペクトルは保存されることとなり、その結果、スペクトル減算処理による音声の劣化を抑制することができる。
なお、本実施形態では、音声の基本周波数f0は時間領域音情報から求め、その情報を周波数領域音データで使用しているが、FFT後の周波数領域音情報から基本周波数f0を求めても良い。
しかし、本実施例のように基本周波数を時間領域音情報から求めるほうが桁違いに高い周波数分解能を得られ、より好ましい。すなわち、本実施例のサンプリング周波数fs=48kHz、基本周波数f0=120Hzの場合、自己相関関数がピークとなるラグは400なので、基本周波数を求める際の周波数分解能Δf1=48000/399−48000/400=0.3Hzとなる。
一方、FFT後の周波数領域音情報から基本周波数f0を求める場合は、基本周波数を求める際の周波数分解能Δf2はFFTの周波数分解能と同じ11.7Hzとなり、周波数分解能は低くなる。
つぎに、上述したノイズ低減処理部143による音声の基本周波数を用いたスペクトル減算処理の具体例を、図8〜図18を参照して説明する。
図8は、処理音例を説明する図である。図9は、図8における区間Aの周波数スペクトル図である。図10は、図8における区間Bの周波数スペクトル図である。図11は、フロアリングスペクトル図である。図12は、図8における区間Cの周波数スペクトル図である。図13は、推定ノイズ周波数スペクトル図である。図14は、図8における区間Cのスペクトル減算後の周波数スペクトル図である。図15は、図14に示す周波数スペクトルをフロアリングした周波数スペクトル図である。図16は、図8に示す区間Dの周波数スペクトル図である。図17は、図8における区間Dのスペクトル減算後の周波数スペクトル図である。図18は、図8における区間Dに対するノイズ低減処理後の周波数スペクトル図である。
なお、本例における各周波数スペクトル図は、8個の周波数ビン(f1〜f8)を備えているものとする。
図8において、区間Aは背景音のみ、区間Bは背景音と音声、区間Cは背景音とAFノイズ、区間Dは背景音とAFノイズが発生しているものとする。この、区間Cおよび区間Dの時間領域音データをノイズ低減処理する例を説明する。なお、説明を簡単にするために、音声の基本周波数f0をf3とし、基本周波数の2倍の周波数はf6とする。また、スペクトル減算を行わない周波数スペクトルはf3,f6のみとする。また、推定ノイズ更新処理は省略して説明する。
図8において、AFノイズが発生する直前の区間は区間B(図10に周波数スペクトルを示す)であるが、区間Bは音声区間であるため、フロアリングスペクトルの推定には使用しない。そのため、区間Bの直前の、区間Aの周波数スペクトル(図9に示す)からフロアリングスペクトルを推定する。この例では、区間Aのスペクトルを1/2にしたものをフロアリングスペクトル(図11に示す)とする。
図8に示す区間C(図12に周波数スペクトルを示す)は、AF区間であるのでスペクトル減算処理を行うが、音声区間でもあるため、音声に含まれる周波数成分(f3およびf6)を保存する周波数領域選択減算処理を行う。すなわち、f3、f6以外のスペクトル成分から推定ノイズスペクトル(図13に周波数スペクトルを示す)の成分を減算すると、図14に示す周波数スペクトルになる。その後、フロアリングを行うと、図15に示すノイズ低減処理後の周波数スペクトルになる。
一方、図8に示す区間D(図16に周波数スペクトルを示す)は、AF区間であるが音声区間ではないため、通常のスペクトル減算を行う。すなわち、図16に示す周波数スペクトルの各周波数成分から図13に示す推定ノイズの周波数スペクトルの各周波数成分をそれぞれ減算して図17に示す周波数スペクトルとし、これに対してフロアリングを行って、図18に示すノイズ低減処理後の周波数スペクトルを得る。
上記のように、撮像装置100の音情報処理部140は、音信号処理部142におけるノイズタイミング検出部145によるAF駆動区間の検出結果と、音声区間検出部146による音声区間の検出結果と、音声特徴量検出部147により求めた音声の基本周波数f0に基づいて、マイク141が収音した(マイク141から入力された)音情報に対するノイズ低減処理部143における処理を変更(通常のスペクトル減算処理または周波数領域選択減算処理)する。
すなわち、音声区間でなく、AF駆動区間でもない場合には、AF駆動区間でないのでノイズ低減処理を行わず、フロアリングスペクトルの更新のみを行う。
このように、フロアリングスペクトルの更新は、AF駆動区間および音声区間の判断に基づいて、AFノイズや音声を含まない背景音のみが発生している音情報を用いて行う。
これは、もし、AF動作ノイズが含まれた音情報でフロアリングスペクトルを更新すると、フロアリングスペクトルにAFノイズのスペクトルが含まれてしまい、フロアリング処理でAFノイズスペクトルが付加され、低減処理後の音にAFノイズが含まれてしまうことによる。
また、同様に、音声が含まれた音情報でフロアリングスペクトルを更新すると、フロアリングスペクトルに音声のスペクトルが含まれるため、フロアリング処理で音声スペクトルが付加され、処理後の音に本来無い音声が生じてしまう。
一方、音声区間であって、且つ、AF駆動区間である場合には、音情報には音声が含まれているため、ノイズ推定は行わず、周波数選択減算処理を行う。ノイズ推定を行わない理由は、音声が含まれた音情報を用いてノイズ推定を行うと、推定ノイズスペクトルに音声スペクトルが含まれるため、その後のスペクトル減算で減算されるスペクトル(目的音+ノイズ)から音声スペクトルを減算してしまい、目的音に含まれる音声を劣化させてしまうことによる。
また、音声区間であり、AF駆動区間でない場合には、AF駆動区間でないのでノイズ低減処理を行わない。また、音声区間であることからフロアリングスペクトルの更新を行わない。
さらに、音声区間でなく、AF区間である場合には、ノイズ推定を行い、通常のスペクトル減算処理を行うものである。
つぎに、本実施形態の撮像装置100の音情報処理部140によるノイズ低減処理動作(ノイズ低減方法)を、図19に示すフローチャートに沿って説明する。なお、図19および以下の説明において、ステップを「S」とも略記する。
音情報処理部140は、マイク141から音信号が出力されると、その音情報に対して、音信号処理部142のノイズタイミング検出部145が、AF駆動用モータ121MにおけるAF動作ノイズの発生タイミングの検出(AF駆動区間の検出)を開始する(S01)。
また、音声区間検出部146が、音情報に対して、音声区間の検出を開始する(S02)。
このステップ02では、音声区間検出部146は、前述したように、音声信号の含まれる区間(音声区間)と、それ以外の区間(音声が発生していない区間)とを、たとえば、自己相関関数のピーク値に基づいて判別する。
音声特徴量検出部147は、音声区間であると判断された音信号について音声の基本周波数f0を求める。この基本周波数f0は、後述するステップ10に送られ、周波数領域選択減算処理に用いられる。
ついで、ノイズ低減処理部143が、時間領域音信号を予め決められた区間毎に分割して窓関数で重み付けすると共に、この区間毎の音データをたとえば高速フーリエ変換(FFT)して周波数領域の振幅情報と位相情報を求め、周波数スペクトルを得る(S03)。
このステップ03で得られた周波数領域の振幅情報(周波数スペクトル)は続くステップ04に送られ、位相情報は後述するステップ12における高速逆フーリエ変換(IFFT)に用いられる。
ここで、ノイズタイミング検出部145の検出結果に基づいて、AF動作ノイズの発生タイミングであるか否か(AF駆動区間であるか否か)を判断する(S04)。
ステップ04において、AF駆動区間であると判断された場合(Yes)にはステップ05に進み、AF駆動区間でないと判断される(No)とステップ06に進む。
ステップ06では、音声区間検出部146によって音声区間として検出されているか否かを判断し、音声区間であると判断された場合(Yes)には、AF区間でないのでノイズ低減処理(スペクトル減算処理,フロアリング処理)を行わず、後述するステップ12に進む。
ステップ06において、音声区間でないと判断された場合(No)には、AF駆動区間でなく音声区間でもないので、フロアリングスペクトルを更新し(S07)、後述するステップ12に進む。
一方、ステップ04においてAF動作ノイズの発生タイミングであると判断された場合には、ステップ05において音声区間検出部146によって音声区間として検出されているか否かを判断する。
ステップ05において音声区間でないと判断される(No)と、推定ノイズの更新を行い(S08)、通常のスペクトル減算処理を行う(S09)。
また、ステップ05において音声区間であると判断された場合(Yes)には、推定ノイズの更新を行うことなく、周波数領域選択減算処理を行う(S10)。
このように、推定ノイズの更新を行わないで周波数領域選択減算処理を行うのは、前述したように、音声区間であって、且つ、AF駆動区間であるの場合は、当該音情報には音声が含まれており、その音声の劣化を防ぐためである。また、周波数領域選択減算処理では、音声に含まれる調波構造の周波数スペクトルが保存されるため、スペクトル減算による音声の劣化を防止できる。
ステップ09によるスペクトル減算処理、または、ステップ10による周波数領域選択減算処理の後、フロアリング処理を行う(S11)。
前述したように、フロアリング処理は、スペクトル減算処理により、周波数スペクトルが著しく減少したり、消失したりする場合があるので、これに対応するものである。ここで用いるフロアリングスペクトルは、AF駆動区間と音声区間の検出結果に基づいてAFノイズと音声がない区間から、前述したステップ07において求めたものである。
そして、ステップ11においてフロアリング処理が行われた後の周波数スペクトル、または、ステップ04においてAF駆動区間でないと判断されてステップ06またはステップ07における処理を終えた周波数スペクトルに対して、ステップ03における高速フーリエ変換(FFT)処理の際に求められた位相情報を用いて、高速逆フーリエ変換(IFFT)処理を行ない(S12)、時間領域に変換して記録部150に出力する。
以上、本実施形態によると、以下の効果を有する。
(1)ノイズ低減処理部143は、マイク141が収音した音情報に対して、AF動作ノイズの発生区間(AF駆動区間)であって、且つ、音声区間である場合には、音声の基本周波数に基づいて周波数領域を選択してスペクトル減算処理(周波数選択減算処理)を行う。これにより、音情報に含まれる音声の劣化を抑えてノイズ低減を行うことができる。
(2)ノイズ低減処理部143は、音信号処理部142における音声区間検出部146が音声区間であると判断された時間領域音情報から音声特徴量検出部147が求めた音声の基本周波数に基づいて、周波数領域を選択してスペクトル減算処理(周波数選択減算処理)を行う。これにより、高い周波数分解能を得られ、周波数領域の選択を高精度で行うことが可能となる。その結果、ノイズ低減効果への影響を少なく抑えて音声の劣化を抑制できる。
(第2実施形態)
以下、図面等を参照して、本発明の第2実施形態について説明する。図20は、本発明の第2実施形態の信号処理装置200の構成を示すブロック図である。信号処理装置200は、例えば、入力された音信号500に対して信号処理を実行し、処理後の音信号510を出力する。この、音信号500は、例えば、記憶媒体300に記録されている。また音信号500は、外部機器からデータを入力するための入力部(音声データを受信するためのインターフェース等)を介して入力されてもよい。また、この入力部は、音信号510を出力する出力部と一体的(音声データを送受信するためのインターフェース等)に構成されてもよい。
ここで、記憶媒体300とは、例えば、フラッシュメモリカード、磁気ディスク、光学ディスクなどの可搬媒体である。また、記憶媒体300に代えて、フラッシュメモリを搭載してUSB(Universal Serial Bus)コネクタを介して接続可能なUSBメモリ、またはハードディスクなどの記憶装置であってもよい。USBメモリを上記した入力部に接続し、USBメモリで記憶されたデータを信号処理装置200に入力してもよい。
記憶媒体300には、例えば、音を録音する機能を有する装置により収音されて録音された音の音信号が記憶されている。また、記憶媒体300には、音信号が収音された装置の動作部を動作させる制御信号等のタイミング情報も、その音信号と対応付けられて記録されている。
信号処理装置200は、マイク141を備えていない以外、第1実施形態の音情報処理部140と同様であり、音信号処理部242と、ノイズ低減処理部243とを備える。
ノイズタイミング検出部245は、記憶媒体300に記憶されているタイミング情報より、音信号500におけるノイズの発生タイミングを検出する。
音声区間検出部246は、第1実施形態の音声区間検出部146と同様の機能を有し、記憶媒体300を介して入力された音信号500から、音声信号の含まれる区間(特定音発生区間)と、音声信号が含まれていない区間(特定音が発生していない区間)とを、自己相関関数のピーク値に基づいて判別する。
音声特徴量検出部247は、第1実施形態の音声特徴量検出部147と同様の機能を有し、ノイズ低減処理部243において利用するために、音声区間であると判断された音信号から音声の特徴量として基本周波数f0を求める。
そして、ノイズ低減処理部243は、記憶媒体300を介して入力された音信号500に対して、(1)ノイズタイミング検出部245により検出されたノイズの発生タイミングをもとにノイズ発生期間と判定され、且つ、(2)音声区間検出部246により音声区間と判別された場合、音声の基本周波数に基づいて周波数領域を選択してスペクトル減算処理(周波数選択減算処理)を行い処理後の音信号510を出力する。
これにより、第1実施形態と同様に音情報に含まれる音声の劣化を抑えてノイズ低減を行うことができる。
また、ノイズ低減処理部243は、音信号処理部242における音声区間検出部246により音声区間であると判断された時間領域音情報から、音声特徴量検出部247が求めた音声の基本周波数に基づいて、周波数領域を選択してスペクトル減算処理(周波数選択減算処理)を行う。
これにより、第1実施形態と同様に、高い周波数分解能を得られ、周波数領域の選択を高精度で行うことが可能となる。その結果、ノイズ低減効果への影響を少なく抑えて音声の劣化を抑制できる。
さらに本実施形態によると、リアルタイムに処理する際に装置にかかる負荷を軽減することができる。
以上、説明した実施形態に限定されることなく、以下に示すような種々の変形や変更が可能であり、それらも本発明の範囲内である。
(1)上述の実施形態において、音信号処理部142,242で処理される被処理音として音声を例に説明をしたが、本発明はこれに限定されるものではなく、楽器から発せられる音のように、基本周波数を有し、その倍音、3倍音などの倍音(高調波)を含むような音でもよい。また基本周波数と基本周波数に対して整数倍の音を少なくとも一つ含むような音とで構成されるような音(特定音)であっても本実施形態における音信号処理部142、242を適応することができる。
(2)上述の実施形態において、音声区間検出部146、246で検出される区間は音声に限らない。例えば、楽器から発せられる音のように、基本周波数を有し、その倍音、3倍音などの倍音(高調波)を複数含むような音でもよい。また基本周波数と基本周波数に対して整数倍の音を少なくとも一つ含むような音とで構成されるような音であってもよい。音声区間検出部(区間検出部)146、246は、上記のような特定音が発生している区間を検出することも含む。
(3)上述の実施形態において、音声特徴量検出部147、247で検出される特徴量は音声に限らない。例えば、楽器から発せられる音のように、基本周波数を有し、その倍音、3倍音などの倍音(高調波)を複数含むような音であってもよい。また基本周波数と基本周波数に対して整数倍の音を少なくとも一つ含むような音とで構成されるような音であってもよい。音声特徴量検出部(特徴量検出部)147、247は上記のような音(特定音)から特徴量を検出することも含む。
(4)例えば音情報処理部140が備える構成要素(音信号処理部142およびノイズ低減処理部143)の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより、音情報処理部140または音情報処理部140が備える構成要素による処理を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器などのハードウェアを含むものとする。
なお、実施形態及び変形形態は、適宜組み合わせて用いることもできるが、詳細な説明は省略する。また、本発明は以上説明した実施形態によって限定されることはない。
100:撮像装置、140:音情報処理部、141:マイク、142:音信号処理部、145:ノイズタイミング検出部、146:音声区間検出部、147:音声特徴量検出部、143:ノイズ低減処理部

Claims (8)

  1. 入力された音情報から特定音の発生区間を検出する区間検出部と、
    前記区間検出部によって検出された前記発生区間に含まれる前記特定音の特徴量を検出する特徴量検出部と、
    入力された音情報に対してノイズ低減処理を行い、前記発生区間と前記特定音の特徴量とに基づいて前記ノイズ低減処理の方法を変更するノイズ低減処理部とを備える
    ことを特徴とする信号処理装置。
  2. 請求項1に記載の信号処理装置であって、
    前記ノイズ低減処理部は、前記特徴量検出部により検出された前記特定音の特徴量に対応する第1周波数成分と前記第1周波数成分とは異なる第2周波数成分とで異なるノイズ低減処理を行う
    ことを特徴とする信号処理装置。
  3. 請求項2に記載の信号処理装置であって、
    前記第1周波数成分は、前記区間検出部によって検出された前記発生区間に含まれる前記特定音の基本周波数であって、
    前記第2周波数成分は、前記基本周波数の整数倍の周波数成分とは異なる周波数成分である
    ことを特徴とする信号処理装置。
  4. 請求項3に記載の信号処理装置であって、
    前記ノイズ低減処理部は、前記基本周波数の整数倍の周波数成分を含む所定の周波数帯域に対しては、ノイズ低減処理の程度を弱める
    ことを特徴とする信号処理装置。
  5. 請求項2から4のいずれか1項に記載の信号処理装置であって、
    前記特徴量検出部は、基本周波数を前記音情報における時間領域音情報から求めること、
    を特徴とする信号処理装置。
  6. 請求項1に記載の信号処理装置であって、
    前記区間検出部は、入力された前記音情報から少なくとも基本周波数と前記基本周波数の整数倍の音とで構成された前記特定音が発生された区間を検出する
    ことを特徴とする信号処理装置。
  7. 請求項1から6のいずれか1項に記載の信号処理装置を備える撮像装置。
  8. コンピュータに、
    入力された音情報から特定音の発生区間を検出する区間検出ステップと、
    前記区間検出ステップにおいて検出された前記発生区間に含まれる前記特定音の特徴量を検出する特徴量検出ステップと、
    入力された音情報に対してノイズ低減処理を行うノイズ低減処理ステップとを実行させるプログラムであって、
    前記ノイズ低減処理ステップは、前記発生区間と前記特定音の特徴量とに基づいて前記ノイズ低減処理の方法を変更する
    ことを特徴とするプログラム。
JP2013102929A 2013-05-15 2013-05-15 信号処理装置、撮像装置、及び、プログラム Pending JP2014225731A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013102929A JP2014225731A (ja) 2013-05-15 2013-05-15 信号処理装置、撮像装置、及び、プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013102929A JP2014225731A (ja) 2013-05-15 2013-05-15 信号処理装置、撮像装置、及び、プログラム

Publications (1)

Publication Number Publication Date
JP2014225731A true JP2014225731A (ja) 2014-12-04

Family

ID=52124111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013102929A Pending JP2014225731A (ja) 2013-05-15 2013-05-15 信号処理装置、撮像装置、及び、プログラム

Country Status (1)

Country Link
JP (1) JP2014225731A (ja)

Similar Documents

Publication Publication Date Title
US8698911B2 (en) Sound recording device, imaging device, photographing device, optical device, and program
JP6174856B2 (ja) 雑音抑制装置、その制御方法、及びプログラム
JP4952769B2 (ja) 撮像装置
US20150271439A1 (en) Signal processing device, imaging device, and program
JP6300464B2 (ja) 音声処理装置
US9734840B2 (en) Signal processing device, imaging apparatus, and signal-processing program
JP5435082B2 (ja) ノイズ低減処理装置、カメラ、およびノイズ低減処理プログラム
JP2013250449A (ja) ノイズ低減装置、撮像装置及びプログラム
JP5428762B2 (ja) 撮影装置、および、プログラム
JP2014225731A (ja) 信号処理装置、撮像装置、及び、プログラム
JP2013170936A (ja) 音源位置判定装置、音源位置判定方法、プログラム
JP2012185445A (ja) 信号処理装置、撮像装置、及び、プログラム
JP2013250448A (ja) ノイズ低減装置、撮像装置及びプログラム
JP2014022953A (ja) 信号処理装置、撮像装置、ノイズ低減処理方法、およびプログラム
JP2018205512A (ja) 電子機器及び雑音抑圧プログラム
JP2022038611A5 (ja)
JP5750932B2 (ja) 撮像装置及び撮像装置のノイズ低減方法
JP2013178458A (ja) 信号処理装置及び信号処理プログラム
JP2015031913A (ja) 音声処理装置、音声処理方法、及びプログラム
JP6381367B2 (ja) 音声処理装置、音声処理方法、及び、プログラム
JP6381366B2 (ja) 音声処理装置、音声処理方法、及び、プログラム
US11682377B2 (en) Sound processing apparatus, control method, and recording medium
JP2019086724A (ja) 音声処理装置
JP2023077339A (ja) 撮影装置、制御方法、およびプログラム
JP2015138204A (ja) データ処理装置、撮像装置、及びデータ処理プログラム