JP2014218723A - Copper-based sinter friction material and brake shoe for railway vehicle - Google Patents

Copper-based sinter friction material and brake shoe for railway vehicle Download PDF

Info

Publication number
JP2014218723A
JP2014218723A JP2013100338A JP2013100338A JP2014218723A JP 2014218723 A JP2014218723 A JP 2014218723A JP 2013100338 A JP2013100338 A JP 2013100338A JP 2013100338 A JP2013100338 A JP 2013100338A JP 2014218723 A JP2014218723 A JP 2014218723A
Authority
JP
Japan
Prior art keywords
copper
friction material
mass
based sintered
sintered friction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013100338A
Other languages
Japanese (ja)
Inventor
上田 博之
Hiroyuki Ueda
博之 上田
西村 公一
Koichi Nishimura
公一 西村
仁 名切
Jin Nagiri
仁 名切
上田崇一朗
Soichiro Ueda
崇一朗 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UEDA BRAKE KK
Original Assignee
UEDA BRAKE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UEDA BRAKE KK filed Critical UEDA BRAKE KK
Priority to JP2013100338A priority Critical patent/JP2014218723A/en
Publication of JP2014218723A publication Critical patent/JP2014218723A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61HBRAKES OR OTHER RETARDING DEVICES SPECIALLY ADAPTED FOR RAIL VEHICLES; ARRANGEMENT OR DISPOSITION THEREOF IN RAIL VEHICLES
    • B61H1/00Applications or arrangements of brakes with a braking member or members co-operating with the periphery of the wheel rim, a drum, or the like
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/05Alloys based on copper with manganese as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • F16D65/04Bands, shoes or pads; Pivots or supporting members therefor
    • F16D65/06Bands, shoes or pads; Pivots or supporting members therefor for externally-engaging brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Compositions of linings; Methods of manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/04Attachment of linings

Abstract

PROBLEM TO BE SOLVED: To provide a copper-based sinter friction material with no need of complicated manufacturing processes and advantageous in terms of costs.SOLUTION: A copper-based sinter friction material containing copper and tin contains ferromanganese of 2 to 20 mass%. The copper-based sinter friction material is applicable to a brake shoe for a railway vehicle, an adhesion-improved abrasive material or the like.

Description

この発明は、銅系焼結摩擦材およびそれを用いた鉄道車両用制輪子に関するものである。   The present invention relates to a copper-based sintered friction material and a railcar brake using the same.

特開2007−309368号公報(特許文献1)は、鉄道車両用制輪子においては、主として銅系焼結摩擦材が使用されることを記載している。鉄道車両用制輪子は、銅系焼結摩擦材と、それを支持する鋼板の台金とで構成されている。   Japanese Patent Laying-Open No. 2007-309368 (Patent Document 1) describes that a copper-based sintered friction material is mainly used in a railcar brake device. The railcar brake is composed of a copper-based sintered friction material and a steel plate base metal that supports the copper-based sintered friction material.

銅系焼結摩擦材として要求される特性は、耐摩耗性が良好であること、相手材に対する攻撃性が緩やかであること、およびブレーキ時の制動距離を比較的短くできることである。このような特性の向上を目指して、従来から、摩擦材中に、黒鉛、アルミナ、シリカ、二硫化モリブデン、鉛、ビスマス等の種々の物質を分散させることが試みられている。   The characteristics required as a copper-based sintered friction material are that the wear resistance is good, that the aggressiveness against the mating material is moderate, and that the braking distance during braking can be made relatively short. In order to improve such characteristics, attempts have been made to disperse various substances such as graphite, alumina, silica, molybdenum disulfide, lead, and bismuth in the friction material.

これらの物質の中で、黒鉛は摩擦係数を安定させ、摩擦材自体の摩耗および対面材料の摩耗を少なくし得るが、銅や銅合金との濡れ性が悪く、多量に含有させるとブレーキ制動時に摩擦材本体から脱落し易くなる可能性がある。アルミナやシリカは、摩擦材自体の耐摩耗性を向上させることに寄与するが、相手材に対する攻撃性がより強くなる。二硫化モリブデンは、多量に含有させると、摩擦材自体の強度を低下させるおそれがある。鉛やビスマスは、環境問題を考慮して、その使用が制限されている。   Among these substances, graphite stabilizes the coefficient of friction and can reduce the wear of the friction material itself and the facing material, but it has poor wettability with copper and copper alloys. There is a possibility that it will easily fall off the friction material body. Alumina and silica contribute to improving the wear resistance of the friction material itself, but are more aggressive against the counterpart material. If molybdenum disulfide is contained in a large amount, the strength of the friction material itself may be reduced. The use of lead and bismuth is restricted in consideration of environmental problems.

特開平9−60673号公報(特許文献2)は、ブレーキライニング等に使用される銅系焼結摩擦材において、耐摩耗性が良好で対面材料に対する攻撃性を緩やかにするために、充填材としてチタンを0.2〜5.0体積%、黒鉛粉末を5〜15体積%含ませ、黒鉛粉末の一部または全部の表面をチタンにより被覆させることを提案している。この公報には、チタンは、黒鉛および銅の両方と濡れ性が良いので、チタンを黒鉛粉末の表面に付着させれば黒鉛が摩擦材本体から脱落しにくくなるという作用効果が記載されている。   Japanese Patent Laid-Open No. 9-60673 (Patent Document 2) describes a copper-based sintered friction material used for brake lining and the like as a filler in order to have good wear resistance and moderate attack on the facing material. It has been proposed to include 0.2 to 5.0% by volume of titanium and 5 to 15% by volume of graphite powder, and coat a part or all of the surface of the graphite powder with titanium. In this publication, since titanium has good wettability with both graphite and copper, the effect is described that if titanium is attached to the surface of the graphite powder, the graphite is less likely to fall off the friction material body.

特開2007−309368号公報JP 2007-309368 A 特開平9−60673号公報Japanese Patent Laid-Open No. 9-60673

特開平9−60673号公報(特許文献2)に開示された摩擦材を得るためには、黒鉛粉末表面にチタンを被覆させるための造粒法または複合化法を行なうことが必要である。造粒方法として、転動造粒、流動層造粒、撹拌造粒、押出造粒、砕解造粒、溶解造粒等が例示されている。また、複合化法として、メカノフージョン処理、クリプトロン処理、ハイブリダイゼーション処理等が例示されている。このような造粒法または複合化法は、摩擦材の製造工程を複雑にするとともに、摩擦材の製造コストを引き上げてしまう。また、チタンは高価であり、多く含ませれば、摩擦材のコストアップを招く。   In order to obtain the friction material disclosed in Japanese Patent Laid-Open No. 9-60673 (Patent Document 2), it is necessary to perform a granulation method or a composite method for coating titanium on the graphite powder surface. Examples of granulation methods include rolling granulation, fluidized bed granulation, stirring granulation, extrusion granulation, disintegration granulation, dissolution granulation and the like. Further, examples of the complexing method include mechanofusion processing, kryptron processing, hybridization processing, and the like. Such a granulation method or compounding method complicates the manufacturing process of the friction material and increases the manufacturing cost of the friction material. In addition, titanium is expensive, and if it is included in a large amount, the cost of the friction material is increased.

本発明は、上記の課題を解決するためになされたものであり、複雑な製造工程を必要とせず、しかもコスト的にも有利な銅系焼結摩擦材を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object thereof is to provide a copper-based sintered friction material that does not require a complicated manufacturing process and is advantageous in terms of cost.

本発明に従った銅系焼結摩擦材は銅およびスズを含むものであり、フェロマンガンを2〜20質量%含有することを特徴とする。   The copper-based sintered friction material according to the present invention contains copper and tin and is characterized by containing 2 to 20% by mass of ferromanganese.

好ましい実施形態においては、銅系焼結摩擦材中の銅の含有量は55〜67質量%、スズの含有量は5〜7質量%である。   In a preferred embodiment, the copper content in the copper-based sintered friction material is 55 to 67 mass%, and the tin content is 5 to 7 mass%.

さらに、好ましくは、銅系焼結摩擦材は、さらに、鉄、硫酸バリウム、黒鉛およびムライトからなる群から選ばれた1種または2種以上の成分を含有する。一つの実施形態では、銅系焼結摩擦材は、鉄を5〜7質量%、硫酸バリウムを2〜3質量%、黒鉛を7〜10質量%およびムライトを3〜5質量%含有する。   Further preferably, the copper-based sintered friction material further contains one or more components selected from the group consisting of iron, barium sulfate, graphite, and mullite. In one embodiment, the copper-based sintered friction material contains 5 to 7% by mass of iron, 2 to 3% by mass of barium sulfate, 7 to 10% by mass of graphite, and 3 to 5% by mass of mullite.

銅系焼結摩擦材は、さらに、燐、硫黄、二硫化モリブデンおよびチタン酸カリウムからなる群から選ばれた1種または2種以上の成分を含有しても良い。   The copper-based sintered friction material may further contain one or more components selected from the group consisting of phosphorus, sulfur, molybdenum disulfide, and potassium titanate.

銅系焼結摩擦材は、チタンを0.1〜1.5質量%含有しても良い。   The copper-based sintered friction material may contain 0.1 to 1.5% by mass of titanium.

この発明に従った鉄道車両用制輪子は、鋼製台金と、この鋼製台金に溶接によって固定された鋼製補強板と、銅およびスズを含み、上記鋼製補強板上に加圧焼結によって接合した銅系焼結摩擦材とを備える。ここで、銅系焼結摩擦材は、フェロマンガンを2〜20質量%含有することを特徴とする。   A railcar brake device according to the present invention includes a steel base metal, a steel reinforcing plate fixed to the steel base metal by welding, copper and tin, and is pressed onto the steel reinforcing plate. And a copper-based sintered friction material joined by sintering. Here, the copper-based sintered friction material contains 2 to 20% by mass of ferromanganese.

好ましい実施形態では、銅系焼結摩擦材中の銅の含有量は55〜67質量%、スズの含有量は5〜7質量%である。   In a preferred embodiment, the copper content in the copper-based sintered friction material is 55 to 67 mass%, and the tin content is 5 to 7 mass%.

さらに、好ましくは、銅系焼結摩擦材は、鉄を5〜7質量%、硫酸バリウムを2〜3質量%、黒鉛を7〜10質量%およびムライトを3〜5質量%含有する。   Further, preferably, the copper-based sintered friction material contains 5 to 7% by mass of iron, 2 to 3% by mass of barium sulfate, 7 to 10% by mass of graphite, and 3 to 5% by mass of mullite.

フェロマンガンは比較的安価であり、入手し易い材料である。このフェロマンガンの適量を銅系焼結摩擦材中に含ませることにより、摩擦材自体の耐摩耗性を向上させつつ、相手攻撃性を緩和し、さらにブレーキ時の制動距離を比較的短くすることができる。   Ferromanganese is a relatively inexpensive and readily available material. By including an appropriate amount of this ferromanganese in the copper-based sintered friction material, while improving the wear resistance of the friction material itself, the opponent's aggression is eased, and the braking distance during braking is relatively short. Can do.

本発明の適用例である鉄道車両用制輪子を示す図である。It is a figure which shows the railcar brake device which is an example of application of this invention. 銅系焼結摩擦材の性能を評価するための試験機を示す図である。It is a figure which shows the testing machine for evaluating the performance of a copper-type sintered friction material. 車輪の摩耗量を測定するための方法を図解的に示す図である。It is a figure showing the method for measuring the amount of wear of a wheel diagrammatically. FeMn含有量と制動距離(停止距離)との関係を示す図である。It is a figure which shows the relationship between FeMn content and braking distance (stop distance). FeMn含有量と摩擦材摩耗量との関係を示す図である。It is a figure which shows the relationship between FeMn content and friction material wear. FeMn含有量と車輪摩耗量との関係を示す図である。It is a figure which shows the relationship between FeMn content and wheel abrasion amount. Cuの重量部数と摩擦材摩耗量との関係を示す図である。It is a figure which shows the relationship between the weight part of Cu and the friction material wear amount. Cuの重量部数と車輪摩耗量との関係を示す図である。It is a figure which shows the relationship between the weight part of Cu, and the amount of wheel wear. Cuの重量部数と停止距離(制動距離)との関係を示す図である。It is a figure which shows the relationship between the weight part number of Cu, and a stop distance (braking distance). Tiの含有量と摩擦材摩耗量との関係を示す図である。It is a figure which shows the relationship between content of Ti, and friction material wear amount. Tiの含有量と車輪摩耗量との関係を示す図である。It is a figure which shows the relationship between content of Ti, and wheel abrasion amount.

図1は、本発明の一つの適用例である鉄道車両用制輪子を示している。まず、図1を参照して、鉄道車両用制輪子の構造を説明する。   FIG. 1 shows a railcar brake device which is one application example of the present invention. First, with reference to FIG. 1, the structure of a railcar brake device will be described.

鉄道車両用制輪子10は、円弧状に形成された鋼製台金11と、鋼製台金11に溶接によって固定された鋼製補強板13と、補強板13上に加圧焼結によって接合した銅系焼結摩擦材14とを備える。鋼製台金11は、車両側に取り付けられた制輪子頭の凹部に遊嵌される取付部12を有する。   The railcar brake 10 is joined to a steel base 11 formed in an arc shape, a steel reinforcing plate 13 fixed to the steel base 11 by welding, and pressure sintering on the reinforcing plate 13. The copper-based sintered friction material 14 is provided. The steel base 11 has an attachment portion 12 that is loosely fitted in a recess of a brake head attached to the vehicle side.

銅系焼結摩擦材14は、主成分として銅およびスズを含むものである。本発明の特徴とするところは、銅系焼結摩擦材14が、所定量のフェロマンガンを含むことにある。フェロマンガンは、チタン等に比べて低価格であり、入手し易い材料である。本願発明者は、実験を通して、所定量のフェロマンガンを含有すれば、銅系焼結摩擦材の特性を向上させ得ることを見出した。以下に、この点を詳細に説明する。   The copper-based sintered friction material 14 contains copper and tin as main components. A feature of the present invention is that the copper-based sintered friction material 14 contains a predetermined amount of ferromanganese. Ferromanganese is a material that is inexpensive and easily available compared to titanium and the like. The inventor of the present application has found through experiments that the properties of the copper-based sintered friction material can be improved if a predetermined amount of ferromanganese is contained. This point will be described in detail below.

[フェロマンガン]
フェロマンガン(FeMn)はマンガンと鉄の合金であり、様々な種類のものがある。JIS G2301「フェロマンガン」には、以下の種類のものが記載されている。
[Ferromanganese]
Ferromanganese (FeMn) is an alloy of manganese and iron, and there are various types. JIS G2301 “ferromanganese” describes the following types.

Figure 2014218723
Figure 2014218723

本願発明者は、以下に記載する実験では高炭素フェロマンガンを使用したが、中炭素フェロマンガンおよび低炭素フェロマンガンを使用しても同様な効果が見込まれる。   The present inventor used high-carbon ferromanganese in the experiments described below, but similar effects are expected even when medium-carbon ferromanganese and low-carbon ferromanganese are used.

[成分材料および配合割合]
以下の表2に示す成分材料および配合割合の試料番号1〜18を準備した。試料番号1〜11は、銅、スズ、鉄、硫酸バリウム、黒鉛、ムライトの各重量部を一定にし、フェロマンガン(FeMn)の添加量を0〜30重量部の間で徐々に変化させたものである。試料番号12〜16は、銅、スズ、鉄、硫酸バリウム、黒鉛、ムライトの各重量部を一定にし、チタン(Ti)の含有量を0.1〜2の間で徐々に変化させたものである。試料番号17および18は、スズ、鉄、硫酸バリウム、黒鉛、ムライトおよびフェロンマンガンの各重量部を一定にし、銅の含有量を60重量部および80重量部にしたものである。
[Ingredient materials and blending ratio]
Sample numbers 1 to 18 of component materials and blending ratios shown in Table 2 below were prepared. Sample Nos. 1 to 11 were obtained by keeping the weight parts of copper, tin, iron, barium sulfate, graphite and mullite constant and gradually changing the addition amount of ferromanganese (FeMn) between 0 and 30 parts by weight. It is. Sample Nos. 12 to 16 are obtained by making the weight parts of copper, tin, iron, barium sulfate, graphite and mullite constant and gradually changing the content of titanium (Ti) between 0.1 and 2. is there. In Sample Nos. 17 and 18, the weight parts of tin, iron, barium sulfate, graphite, mullite, and ferron manganese were made constant, and the copper content was 60 parts by weight and 80 parts by weight.

Figure 2014218723
Figure 2014218723

表2は重量部数で含有量を表したものである。以下の表3は、表2の含有量を質量%で表したものである。   Table 2 shows the content in parts by weight. Table 3 below shows the content of Table 2 in mass%.

Figure 2014218723
Figure 2014218723

[銅系焼結摩擦材の製造]
出発材料の混合は、以下の条件で行なった。
[Manufacture of copper-based sintered friction material]
The starting materials were mixed under the following conditions.

a)混合機
V型ミキサーを使用した。
a) A mixer V-type mixer was used.

b)混合時間
出発材料粉体をV型ミキサーに投入し、約20分間混合した。
b) Mixing time The starting material powder was put into a V-shaped mixer and mixed for about 20 minutes.

c)圧粉条件
成形物寸法:100mmx37mmの長方形底面で、高さが40mm。
c) Compaction conditions Molded product dimensions: 100 mm x 37 mm rectangular bottom surface with a height of 40 mm.

成形圧:4ton/cm
成形ton数:148ton
加圧時間:10秒
Molding pressure: 4 ton / cm 2
Molding ton number: 148 ton
Pressurization time: 10 seconds

d)焼結条件
真空焼結炉内で350℃に昇温、この温度で30分間保持してオイルを除去した。その後、30分かけて900℃に昇温(昇温速度18.3℃/min)し、この温度で60分間保持した。その後、50℃まで降温した。
d) Sintering conditions The temperature was raised to 350 ° C. in a vacuum sintering furnace and kept at this temperature for 30 minutes to remove the oil. Thereafter, the temperature was raised to 900 ° C. over 30 minutes (temperature increase rate: 18.3 ° C./min) and held at this temperature for 60 minutes. Thereafter, the temperature was lowered to 50 ° C.

[試験機および試験条件]
図2に示す試験機を用いて、銅系焼結摩擦材の性能を評価した。試験機は、車輪1と、摩擦材2(銅系焼結摩擦材)と、押付装置3と、舟体4と、ロードセル5と、慣性体6と、モータ7とを備える。
[Tester and test conditions]
The performance of the copper-based sintered friction material was evaluated using the testing machine shown in FIG. The testing machine includes a wheel 1, a friction material 2 (copper-based sintered friction material), a pressing device 3, a boat body 4, a load cell 5, an inertial body 6, and a motor 7.

試験条件は、以下のとおりである。   The test conditions are as follows.

制動初速度:70km/h
車輪径:400mm
摩擦材押付力:3.8kN
等価慣性モーメント:39.2kg・m
試験回数:50回
制動初速度70km/hから摩擦材を押し当て、停止(車輪回転停止)までを1サイクルとして、各試料に対して50回の試験を実施した。
Initial braking speed: 70 km / h
Wheel diameter: 400mm
Friction material pressing force: 3.8 kN
Equivalent moment of inertia: 39.2 kg · m 2
Number of tests: 50 times The friction material was pressed from a braking initial speed of 70 km / h, and the test was stopped 50 times (stopping wheel rotation), and one test was performed 50 times for each sample.

[特性測定方法]
摩擦材(銅系焼結摩擦材)摩耗量:試験前後の質量差分にて算出した。
[Characteristic measurement method]
Friction material (copper-based sintered friction material) wear amount: calculated by mass difference before and after the test.

車輪摩耗量:小型粗さ測定器(小坂研究所製surf−corder SE500)を用いて測定した。具体的には、以下の手順で行った。図3に測定方法を図解的に示す。   Wheel wear amount: Measured using a small roughness measuring device (surf-order SE500 manufactured by Kosaka Laboratory). Specifically, the following procedure was used. FIG. 3 schematically shows the measurement method.

1)試験前の車輪軸方向の断面曲線を取得。   1) Obtain a cross-sectional curve in the wheel axis direction before the test.

2)試験後の車輪軸方向の断面曲線を取得。   2) Obtain a cross-sectional curve in the wheel axis direction after the test.

3)上記の2曲線を重ね合わせ、形状の差分を図示。   3) The above two curves are overlapped, and the difference in shape is shown.

4)差分を等間隔にて読み取った。   4) Differences were read at regular intervals.

制動距離:試験機計測システムにて、πx車輪径x車輪回転数を計測した。車輪回転数は、ブレーキ開始から停止までの累計である。   Braking distance: πx wheel diameter x wheel rotation speed was measured with a tester measurement system. The wheel rotation speed is the cumulative number from the start to the stop of the brake.

[FeMn含有率による特性比較]
フェロマンガン(FeMn)の含有率を0〜30重量部まで変化させた試料番号1〜11の摩擦材特性を以下の表4に示す。
[Characteristic comparison by FeMn content]
Table 4 below shows the friction material characteristics of sample numbers 1 to 11 in which the content of ferromanganese (FeMn) was changed from 0 to 30 parts by weight.

Figure 2014218723
Figure 2014218723

FeMn含有量と制動距離(停止距離)との関係を図4に示し、FeMn含有量と摩擦材摩耗量との関係を図5に示し、FeMn含有量と車輪摩耗量との関係を図6に示す。   FIG. 4 shows the relationship between the FeMn content and the braking distance (stop distance), FIG. 5 shows the relationship between the FeMn content and the friction material wear amount, and FIG. 6 shows the relationship between the FeMn content and the wheel wear amount. Show.

図4に示すように、FeMnの含有量が0〜25重量部までは停止距離が250m前後であまり大差は無いが、30重量部になると停止距離が350m近くまでとなって制動性能の低下が見られた。制動性能の観点からすると、FeMnの含有量は25重量部以下が好ましい。   As shown in FIG. 4, when the FeMn content is 0 to 25 parts by weight, the stopping distance is about 250 m, and there is not much difference, but when it is 30 parts by weight, the stopping distance is close to 350 m and the braking performance is reduced. It was seen. From the viewpoint of braking performance, the content of FeMn is preferably 25 parts by weight or less.

図5に示すように、FeMnの含有量が0〜1重量部までは1.50gを超える摩擦材摩耗量であったが、3重量部以上になると摩擦材摩耗量が急激に低下し、約1.00g以下となった。銅系焼結摩擦材の耐摩耗性の観点からすると、FeMnの含有量は3重量部以上が好ましい。   As shown in FIG. 5, the friction material wear amount exceeded 1.50 g when the content of FeMn was 0 to 1 part by weight. It became 1.00 g or less. From the viewpoint of wear resistance of the copper-based sintered friction material, the FeMn content is preferably 3 parts by weight or more.

図6に示すように、FeMnの含有量が0だと、車輪の摩耗量が1.5μmと大きく、相手攻撃性が活発であることが認められる。FeMnの含有量が0.5重量部以上になると、車輪摩耗量が0.8μm以下と小さくなり、相手攻撃性が緩和されていることが認められる。   As shown in FIG. 6, when the content of FeMn is 0, the wear amount of the wheel is as large as 1.5 μm, and it is recognized that the opponent attack is active. When the content of FeMn is 0.5 parts by weight or more, it is recognized that the wheel wear amount is as small as 0.8 μm or less, and the opponent attack is mitigated.

以上の結果から、銅系焼結摩擦材の特性をバランスよく向上させるためのFeMnの好ましい含有量は、3〜25重量部であると認められる。この重量部を質量%で換算すると、2.9〜19.7質量%となる。したがって、好ましいFeMnの含有量は、銅系焼結摩擦材全体に対して2〜20質量%である。   From the above results, it is recognized that the preferable content of FeMn for improving the properties of the copper-based sintered friction material in a balanced manner is 3 to 25 parts by weight. When this weight part is converted into mass%, it becomes 2.9 to 19.7 mass%. Therefore, the preferable FeMn content is 2 to 20% by mass with respect to the entire copper-based sintered friction material.

[FeMn7重量部におけるCuの重量部数変化の特性比較]
FeMnを7重量部にし、Cuの含有量を60重量部(試料番号17)、70重量部(試料番号6)、80重量部(試料番号18)にした場合の摩擦材特性を比較した。その結果を以下の表5に示す。
[Characteristic comparison of change in number of parts by weight of Cu in 7 parts by weight of FeMn]
The friction material characteristics were compared when FeMn was 7 parts by weight and the Cu content was 60 parts by weight (sample number 17), 70 parts by weight (sample number 6), and 80 parts by weight (sample number 18). The results are shown in Table 5 below.

Figure 2014218723
Figure 2014218723

Cuの重量部数と摩擦材摩耗量との関係を図7に示し、Cuの重量部数と車輪摩耗量との関係を図8に示し、Cuの重量部数と停止距離(制動距離)との関係を図9に示す。   FIG. 7 shows the relationship between the number of parts by weight of Cu and the friction material wear amount, FIG. 8 shows the relationship between the number of parts by weight of Cu and the amount of wheel wear, and the relationship between the number of parts by weight of Cu and the stopping distance (braking distance). As shown in FIG.

図7に示すように、Cuの重量部数が70以下であれば、摩擦材摩耗量が0.70g程度と小さいが、80重量部になると摩擦材摩耗量が1.20g程度に上昇していることが認められる。銅系焼結摩擦材の耐摩耗性の観点からすると、Cuの重量部数は75以下であることが望ましい。   As shown in FIG. 7, when the weight part of Cu is 70 or less, the friction material wear amount is as small as about 0.70 g, but when it is 80 parts by weight, the friction material wear amount is increased to about 1.20 g. It is recognized that From the viewpoint of wear resistance of the copper-based sintered friction material, the weight part of Cu is desirably 75 or less.

図8に示すように、Cuの重量部数が60〜80であれば、車輪摩耗量が約0.40μmと低く維持されることが認められる。   As shown in FIG. 8, when the weight part of Cu is 60 to 80, it is recognized that the wheel wear amount is kept as low as about 0.40 μm.

図9に示すように、停止距離(制動距離)に関しては、Cuの重量部数が70以下であれば300m以下であるが、80重量部になると400m近くになり制動性能の低下をもたらす。制動性能の観点からすると、Cuの重量部数は75以下であることが望ましい。   As shown in FIG. 9, the stopping distance (braking distance) is 300 m or less if the weight part of Cu is 70 or less, but becomes nearly 400 m when the weight part is 80 parts by weight, resulting in a reduction in braking performance. From the viewpoint of braking performance, it is desirable that the number of parts by weight of Cu is 75 or less.

以上の結果から、フェロマンガンを7重量部含む銅系焼結摩擦材中の銅の含有量は75重量部程度以下であることが望ましいと認められる。   From the above results, it is recognized that the copper content in the copper-based sintered friction material containing 7 parts by weight of ferromanganese is desirably about 75 parts by weight or less.

[Ti含有率に関する特性比較]
フェロマンガンを含有せずに、チタン(Ti)を含有させた場合の銅系焼結摩擦材の特性を評価した。Tiを0〜2重量部の間で徐々に変化させた試料番号1、12〜16の摩擦材特性を表6に示す。
[Characteristic comparison regarding Ti content]
The characteristics of the copper-based sintered friction material when titanium (Ti) was contained without containing ferromanganese were evaluated. Table 6 shows the friction material characteristics of Sample Nos. 1 and 12 to 16 in which Ti is gradually changed between 0 and 2 parts by weight.

Figure 2014218723
Figure 2014218723

Tiの含有量(重量部数)と摩擦材摩耗量との関係を図10に示し、Tiの含有量(重量部数)と車輪摩耗量との関係を図11に示す。   FIG. 10 shows the relationship between the Ti content (parts by weight) and the friction material wear amount, and FIG. 11 shows the relationship between the Ti content (parts by weight) and the wheel wear amount.

図10に示すように、Tiを含まない試料番号1の摩擦材摩耗量は2g程度であり、耐摩耗性が劣っていることが認められる。Tiの含有量が0.1〜1重量部であれば、摩擦材摩耗量が1.5g以下であり、耐摩耗性が向上している。Tiの含有量が2重量部になると、摩擦材摩耗量が1.5gを超えるようになり、耐摩耗性が低下する。   As shown in FIG. 10, the friction material wear amount of Sample No. 1 containing no Ti is about 2 g, and it is recognized that the wear resistance is inferior. If the Ti content is 0.1 to 1 part by weight, the friction material wear amount is 1.5 g or less, and the wear resistance is improved. When the Ti content is 2 parts by weight, the friction material wear amount exceeds 1.5 g, and the wear resistance decreases.

図11に示すように、Tiの含有量が0の場合、車輪摩耗量が1.5μmであり、相手攻撃性が活発であることが認められる。Tiの含有量が0.1重量部以上であれば、車輪摩耗量が1μm以下となり、相手攻撃性が緩和していることが認められる。   As shown in FIG. 11, when the Ti content is 0, the wheel wear amount is 1.5 μm, and it is recognized that the opponent is aggressive. When the Ti content is 0.1 parts by weight or more, the wheel wear amount is 1 μm or less, and it is recognized that the opponent attack is mitigated.

図10および図11に示す結果から、好ましいTiの含有量は0.1〜1.5重量部であると認められる。重量部を質量%で換算すると、好ましいTi含有量は0.1〜1.5質量%である。   From the results shown in FIGS. 10 and 11, it is recognized that the preferable Ti content is 0.1 to 1.5 parts by weight. A preferable Ti content is 0.1-1.5 mass% when the weight part is converted by mass%.

[好ましい成分物質およびその量]
銅系焼結摩擦材の特性を向上させるために、所定量のフェロマンガンを含有させることに加えて、他の物質を含有させるようにしても良い。上述したように、0.1〜1.5質量%のチタンの含有は、摩擦材の耐摩耗性を向上させるとともに、相手攻撃性を緩和する。したがって、フェロマンガンと共にチタンを含有させることにより、銅系焼結摩擦材の特性を向上させることができる。
[Preferred component substances and their amounts]
In order to improve the characteristics of the copper-based sintered friction material, in addition to containing a predetermined amount of ferromanganese, another material may be contained. As described above, the inclusion of 0.1 to 1.5% by mass of titanium improves the wear resistance of the friction material and relaxes the opponent attack. Therefore, by including titanium together with ferromanganese, the characteristics of the copper-based sintered friction material can be improved.

試料番号2〜11で示したように、銅系焼結摩擦材は、銅、スズ、フェロマンガンに加えて、鉄、硫酸バリウム、黒鉛およびムライトからなる群から選ばれた1種または2種以上の成分を含有してもよい。試料番号2〜11は、これらの全ての物質を含有している。好ましい含有量は、鉄5〜7質量%、硫酸バリウム2〜3質量%、黒鉛7〜10質量%、ムライト3〜5質量%である。   As shown in sample numbers 2 to 11, the copper-based sintered friction material is one or more selected from the group consisting of iron, barium sulfate, graphite, and mullite in addition to copper, tin, and ferromanganese. These components may be contained. Sample numbers 2-11 contain all these substances. Preferable content is iron 5-7 mass%, barium sulfate 2-3 mass%, graphite 7-10 mass%, and mullite 3-5 mass%.

鉄は、摩擦材の摩擦力向上および耐摩耗性向上に寄与する。硫酸バリウムは、摩擦材の耐熱性向上およびコスト低減に寄与する。黒鉛は、摩擦材の潤滑性向上および相手攻撃性緩和に寄与する。ムライトは、摩擦材の耐摩耗性向上に寄与する。   Iron contributes to the improvement of the frictional force and the wear resistance of the friction material. Barium sulfate contributes to improving the heat resistance of friction materials and reducing costs. Graphite contributes to improving the lubricity of the friction material and mitigating opponent attack. Mullite contributes to improving the wear resistance of the friction material.

上記以外の成分として、燐、硫黄、二硫化モリブデンおよびチタン酸カリウムからなる群から選ばれた1種または2種以上の成分を含有するようにしても良い。燐は、摩擦材の物性値向上に寄与する。硫黄は、摩擦材の潤滑性向上に寄与する。二硫化モリブデンは、摩擦材の潤滑性向上に寄与する。チタン酸カリウムは、摩擦材の耐摩耗性向上および相手攻撃性緩和に寄与する。   As components other than those described above, one or more components selected from the group consisting of phosphorus, sulfur, molybdenum disulfide and potassium titanate may be contained. Phosphorus contributes to improving the physical properties of the friction material. Sulfur contributes to improving the lubricity of the friction material. Molybdenum disulfide contributes to improving the lubricity of the friction material. Potassium titanate contributes to improving the wear resistance of the friction material and mitigating the opponent attack.

本発明は、銅系焼結摩擦材およびそれを使用した鉄道車両用制輪子として有利に利用され得る。さらに、本発明は、増粘着研摩子等にも適用可能である。   The present invention can be advantageously used as a copper-based sintered friction material and a railcar brake using the copper-based sintered friction material. Furthermore, the present invention can be applied to a thickened adhesive abrasive.

1 車輪、2 摩擦材、3 押付装置、4 舟体、5 ロードセル、6 慣性体、7 モータ、10 鉄道車両用制輪子、11 鋼製台金、12 取付部、13 鋼製補強板、14 銅系焼結摩擦材。   DESCRIPTION OF SYMBOLS 1 Wheel, 2 Friction material, 3 Pushing device, 4 Ship body, 5 Load cell, 6 Inertial body, 7 Motor, 10 Railway vehicle control, 11 Steel base metal, 12 Mounting part, 13 Steel reinforcement board, 14 Copper Sintered friction material.

Claims (9)

銅およびスズを含む銅系焼結摩擦材において、
フェロマンガンを2〜20質量%含有することを特徴とする、銅系焼結摩擦材。
In copper-based sintered friction materials containing copper and tin,
A copper-based sintered friction material comprising 2 to 20% by mass of ferromanganese.
前記銅の含有量は55〜67質量%、前記スズの含有量は5〜7質量%である、請求項1に記載の銅系焼結摩擦材。 The copper-based sintered friction material according to claim 1, wherein the copper content is 55 to 67 mass% and the tin content is 5 to 7 mass%. 鉄、硫酸バリウム、黒鉛およびムライトからなる群から選ばれた1種または2種以上の成分を含有する、請求項1または2に記載の銅系焼結摩擦材。 The copper-based sintered friction material according to claim 1 or 2, comprising one or more components selected from the group consisting of iron, barium sulfate, graphite, and mullite. 燐、硫黄、二硫化モリブデンおよびチタン酸カリウムからなる群から選ばれた1種または2種以上の成分を含有する、請求項1〜3のいずれかに記載の銅系焼結摩擦材。 The copper-based sintered friction material according to any one of claims 1 to 3, comprising one or more components selected from the group consisting of phosphorus, sulfur, molybdenum disulfide, and potassium titanate. 鉄を5〜7質量%、硫酸バリウムを2〜3質量%、黒鉛を7〜10質量%およびムライトを3〜5質量%含有する、請求項1または2に記載の銅系焼結摩擦材。 The copper-based sintered friction material according to claim 1 or 2, comprising 5 to 7% by mass of iron, 2 to 3% by mass of barium sulfate, 7 to 10% by mass of graphite, and 3 to 5% by mass of mullite. チタンを0.1〜1.5質量%含有する、請求項1〜5のいずれかに記載の銅系焼結摩擦材。 The copper-based sintered friction material according to any one of claims 1 to 5, comprising 0.1 to 1.5% by mass of titanium. 鋼製台金と、この鋼製台金に溶接によって固定された鋼製補強板と、銅およびスズを含み、前記鋼製補強板上に加圧焼結によって接合した銅系焼結摩擦材とを備えた鉄道車両用制輪子において、
前記銅系焼結摩擦材は、フェロマンガンを2〜20質量%含有することを特徴とする、鉄道車両用制輪子。
A steel base metal, a steel reinforcing plate fixed to the steel base metal by welding, a copper-based sintered friction material containing copper and tin, and joined by pressure sintering on the steel reinforcing plate; In a railcar brake device equipped with
The copper-based sintered friction material contains 2 to 20% by mass of ferromanganese.
前記銅系焼結摩擦材中の銅の含有量は55〜67質量%、スズの含有量は5〜7質量%である、請求項7に記載の鉄道車両用制輪子。 The rolling stock for a railway vehicle according to claim 7, wherein the copper-based sintered friction material has a copper content of 55 to 67 mass% and a tin content of 5 to 7 mass%. 前記銅系焼結摩擦材は、鉄を5〜7質量%、硫酸バリウムを2〜3質量%、黒鉛を7〜10質量%およびムライトを3〜5質量%含有する、請求項7または8に記載の鉄道車両用制輪子。
The said copper-based sintered friction material contains 5-7 mass% of iron, 2-3 mass% of barium sulfate, 7-10 mass% of graphite, and 3-5 mass% of mullite. The railcar brake device described.
JP2013100338A 2013-05-10 2013-05-10 Copper-based sinter friction material and brake shoe for railway vehicle Pending JP2014218723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013100338A JP2014218723A (en) 2013-05-10 2013-05-10 Copper-based sinter friction material and brake shoe for railway vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013100338A JP2014218723A (en) 2013-05-10 2013-05-10 Copper-based sinter friction material and brake shoe for railway vehicle

Publications (1)

Publication Number Publication Date
JP2014218723A true JP2014218723A (en) 2014-11-20

Family

ID=51937462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013100338A Pending JP2014218723A (en) 2013-05-10 2013-05-10 Copper-based sinter friction material and brake shoe for railway vehicle

Country Status (1)

Country Link
JP (1) JP2014218723A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104525934A (en) * 2014-12-11 2015-04-22 来安县隆华摩擦材料有限公司 Double-copper complex fiber friction plate
CN105983697A (en) * 2015-02-10 2016-10-05 苏州东南电碳科技有限公司 Manufacturing method for powder metallurgy brake shoe for electric locomotive
CN106238722A (en) * 2016-08-04 2016-12-21 北京天宜上佳新材料股份有限公司 A kind of brake pad with great friction coefficient and preparation method thereof
JP2018123940A (en) * 2017-02-03 2018-08-09 上田ブレーキ株式会社 Brake shoe for railway vehicle
CN108580877A (en) * 2018-05-22 2018-09-28 沈阳精合数控科技开发有限公司 A kind of wind-powered electricity generation brake pad and its increasing material manufacturing method
KR20210146084A (en) * 2020-05-26 2021-12-03 (주)베스트카본 Brake pad for ship oil pump using simultaneous sintering process and method of manufacuring thereof
CN117448623A (en) * 2023-12-20 2024-01-26 中南大学 Copper-based composite friction material containing modified sepiolite, and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53146902A (en) * 1976-12-17 1978-12-21 Japanese National Railways<Jnr> Preparation of wear-resisting sintered alloy of copper base
JPH03247732A (en) * 1990-02-27 1991-11-05 Taiho Kogyo Co Ltd Sliding material
JPH0960673A (en) * 1995-08-24 1997-03-04 Nisshinbo Ind Inc Sintered metal friction material
CN101666364A (en) * 2009-09-16 2010-03-10 重庆江洲粉末冶金科技有限公司 Copper-base powder metallurgy clutch friction body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53146902A (en) * 1976-12-17 1978-12-21 Japanese National Railways<Jnr> Preparation of wear-resisting sintered alloy of copper base
JPH03247732A (en) * 1990-02-27 1991-11-05 Taiho Kogyo Co Ltd Sliding material
JPH0960673A (en) * 1995-08-24 1997-03-04 Nisshinbo Ind Inc Sintered metal friction material
CN101666364A (en) * 2009-09-16 2010-03-10 重庆江洲粉末冶金科技有限公司 Copper-base powder metallurgy clutch friction body

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6017005582; 株式会社ファインシンター: '次世代高速車両用制輪子ライニング' 粉体粉末冶金協会講演概要集 平成18年度春季大会 , 20060522, Page.243 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104525934A (en) * 2014-12-11 2015-04-22 来安县隆华摩擦材料有限公司 Double-copper complex fiber friction plate
CN105983697A (en) * 2015-02-10 2016-10-05 苏州东南电碳科技有限公司 Manufacturing method for powder metallurgy brake shoe for electric locomotive
CN106238722A (en) * 2016-08-04 2016-12-21 北京天宜上佳新材料股份有限公司 A kind of brake pad with great friction coefficient and preparation method thereof
JP2018123940A (en) * 2017-02-03 2018-08-09 上田ブレーキ株式会社 Brake shoe for railway vehicle
CN108580877A (en) * 2018-05-22 2018-09-28 沈阳精合数控科技开发有限公司 A kind of wind-powered electricity generation brake pad and its increasing material manufacturing method
KR20210146084A (en) * 2020-05-26 2021-12-03 (주)베스트카본 Brake pad for ship oil pump using simultaneous sintering process and method of manufacuring thereof
KR102448524B1 (en) 2020-05-26 2022-09-29 (주)베스트카본 Brake pad for ship oil pump using simultaneous sintering process and method of manufacuring thereof
CN117448623A (en) * 2023-12-20 2024-01-26 中南大学 Copper-based composite friction material containing modified sepiolite, and preparation method and application thereof
CN117448623B (en) * 2023-12-20 2024-03-08 中南大学 Copper-based composite friction material containing modified sepiolite, and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP2014218723A (en) Copper-based sinter friction material and brake shoe for railway vehicle
JP5716494B2 (en) Sintered friction material for high-speed railway
JP6032389B1 (en) Friction material
CN107614720B (en) Sintered friction material for high-speed railway vehicle and manufacturing method thereof
EP3569672B1 (en) Sintered metal friction material
JP4430468B2 (en) Copper-based sintered friction material
JP2017002186A (en) Friction material composition, friction material and friction member using friction material composition
JP6360270B1 (en) Sintered friction material for brake
JP5750076B2 (en) Powder for molding and method for producing the same
JP2019163540A (en) Sinter friction material for high speed railway vehicle
JP5578391B2 (en) Non-asbestos friction material
JP2008214727A (en) Sintered friction material
JP2010090294A (en) Non-asbestos friction material
JP3803947B2 (en) Copper-based sintered bearing material and manufacturing method thereof
JPH1180855A (en) Sintered friction material
TWI680188B (en) Sintered friction material
JPH0753947A (en) Wet friction material
KR20190108707A (en) Composition for disc brake caliper housing, manufacturing method for disc brake caliper housing using the same, and disc brake caliper housing comprising the composition
KR20100075297A (en) Sintered friction material having good stability and manufacturing method of the same
JP2012056778A (en) Fiber-reinforced ceramic composite material and method for producing the same
JP2007162891A (en) Sintered friction substance
KR20080057678A (en) Sintered cu-base friction material protecting the sweating phenomenon, and fabrication method of it
JPH10226834A (en) Copper series sintered frictional material
JP2007107066A (en) Sintered friction material
KR20090043275A (en) Sintered friction material having good stability and manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170829