JP2010090294A - Non-asbestos friction material - Google Patents

Non-asbestos friction material Download PDF

Info

Publication number
JP2010090294A
JP2010090294A JP2008262430A JP2008262430A JP2010090294A JP 2010090294 A JP2010090294 A JP 2010090294A JP 2008262430 A JP2008262430 A JP 2008262430A JP 2008262430 A JP2008262430 A JP 2008262430A JP 2010090294 A JP2010090294 A JP 2010090294A
Authority
JP
Japan
Prior art keywords
friction material
friction
asbestos
aggregate
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008262430A
Other languages
Japanese (ja)
Inventor
Masato Yamaguchi
真人 山口
Kazuo Shimazu
和男 島津
Hiroki Morozumi
宏喜 両角
Naoteru Hatano
直輝 端野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2008262430A priority Critical patent/JP2010090294A/en
Publication of JP2010090294A publication Critical patent/JP2010090294A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Braking Arrangements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-asbestos friction material that has a suppressed decrease in a friction coefficient, excellent stability of the friction coefficient and decreased counterpart-attacking property in a high temperature range. <P>SOLUTION: The non-asbestos friction material comprises: an aggregate powder comprising a metal powder having hardness of 85 to 145 Hv, tensile strength of 400 to 600 N/mm<SP>2</SP>, an elongation of 20 to 49%, and a melting point of 1,450°C or higher; an organic fiber; and a binding material. After high temperature friction, a friction degradation layer is formed to a depth of 200 μm or less from the surface of the non-asbestos friction material, in which the aggregate powder included in the layer has a size of 100 to 60% of the size before the high temperature friction. The aggregate powder is in a form of granules, angular granules or polyhedrons. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、非石綿系摩擦材に係り、更に詳細には、石綿を用いない摩擦材であって車両用のブレーキパッドなどに使用される非石綿系摩擦材に関する。   The present invention relates to a non-asbestos-based friction material, and more particularly to a non-asbestos-based friction material that is a friction material that does not use asbestos and is used for a brake pad for a vehicle.

一般に、車両用のブレーキパッドなどに用いられる非石綿系の摩擦材は、500℃以上の高温下での摩擦係数低下が大きく、500℃以上の高温環境下での使用に際しては、鉄繊維を配合するか、焼結系摩擦材を用いることが知られている。   In general, non-asbestos-based friction materials used for vehicle brake pads, etc. have a large decrease in the coefficient of friction at high temperatures of 500 ° C or higher. Alternatively, it is known to use a sintered friction material.

また、従来、金属繊維、耐熱性有機繊維、所定の繊維基材、熱硬化性樹脂及び摩擦調整剤から成るブレーキ用摩擦材が知られている(例えば、特許文献1参照)。
また、このような摩擦材において、孔系と累積気孔率を調整して耐フェード性を向上するとともに相手攻撃性を低下させたものも知られている(例えば、特許文献2参照)。
特開昭63−266231号公報 特開平11−322959号公報
Conventionally, a brake friction material comprising a metal fiber, a heat-resistant organic fiber, a predetermined fiber base material, a thermosetting resin, and a friction modifier is known (for example, see Patent Document 1).
In addition, such a friction material is known in which the hole system and the cumulative porosity are adjusted to improve the fade resistance and reduce the opponent attack property (see, for example, Patent Document 2).
JP 63-266231 A Japanese Patent Laid-Open No. 11-322959

しかしながら、上述のような摩擦材において、鉄繊維を配合したものや、焼結系摩擦材は、500℃以下の摩耗と摩擦係数安定性に劣るという問題があった。
また、上記従来の摩擦材にあっては、500℃を超える高温域での摩擦係数低下が必ずしも小さいといえず、また、500℃以下における摩擦係数の安定性も十分とはいえなかった。更には、高温域での摩耗特性、特に相手攻撃性などについても更なる改善余地があった。
However, in the friction materials as described above, those containing iron fibers and sintered friction materials have a problem of being inferior in wear at 500 ° C. or less and in friction coefficient stability.
Further, in the conventional friction material, it cannot be said that the decrease in the friction coefficient in a high temperature region exceeding 500 ° C. is necessarily small, and the stability of the friction coefficient at 500 ° C. or less is not sufficient. Furthermore, there is room for further improvement in the wear characteristics at high temperatures, especially the opponent attack.

本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、高温域での摩擦係数低下が抑制され、摩擦係数の安定性に優れるとともに相手攻撃性が低減した非石綿系摩擦材を提供することにある。   The present invention has been made in view of such problems of the prior art. The object of the present invention is to suppress a decrease in the friction coefficient in a high temperature range, to have excellent friction coefficient stability and to attack the opponent. The object is to provide a non-asbestos-based friction material with a reduced amount.

本発明者らは、上記目的を達成すべく鋭意検討を重ねた結果、所定の骨材粉末を用い、必要に応じて所定の骨材繊維や高温潤滑性繊維を用いることにより、上記目的が達成できることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors have achieved the above object by using a predetermined aggregate powder and using a predetermined aggregate fiber or high-temperature lubricating fiber as necessary. The present inventors have found that this can be done and have completed the present invention.

即ち、本発明の非石綿系摩擦材は、85〜145Hvの硬さ、400〜600N/mmの引張強さ、20〜49%の伸びを有し、融点が1450℃以上の金属粉末から成る骨材粉末と、有機繊維と、結合材とを含有する非石綿系摩擦材である。
高温摩擦後にこの非石綿系摩擦材の表面から200μm以浅に形成される摩擦劣化層に含まれる上記骨材粉末が、この高温摩擦前の100〜60%の大きさを有することを特徴とする。
That is, the non-asbestos-based friction material of the present invention comprises a metal powder having a hardness of 85 to 145 Hv, a tensile strength of 400 to 600 N / mm 2, an elongation of 20 to 49%, and a melting point of 1450 ° C. or higher. It is a non-asbestos-based friction material containing aggregate powder, organic fibers, and a binder.
The aggregate powder contained in the friction deterioration layer formed shallower than 200 μm from the surface of the non-asbestos friction material after high temperature friction has a size of 100 to 60% before the high temperature friction.

本発明によれば、所定の骨材粉末を用い、必要に応じて所定の骨材繊維や高温潤滑性繊維を用いることとしたため、高温域での摩擦係数低下が抑制され、摩擦係数の安定性に優れるとともに相手攻撃性が低減した非石綿系摩擦材を提供することができる。   According to the present invention, since a predetermined aggregate powder is used, and a predetermined aggregate fiber or high-temperature lubricating fiber is used as necessary, a decrease in friction coefficient in a high temperature range is suppressed, and the stability of the friction coefficient is improved. It is possible to provide a non-asbestos-based friction material that is superior in resistance and has reduced opponent attack.

以下、本発明の非石綿系摩擦材につき詳細に説明する。
上述の如く、本発明の非石綿系摩擦材は、骨材粉末と、有機繊維と、結合材を含有するものである。
Hereinafter, the non-asbestos-based friction material of the present invention will be described in detail.
As described above, the non-asbestos-based friction material of the present invention contains aggregate powder, organic fibers, and a binder.

ここで、上記の骨材粉末は、85〜145Hvの硬さ、400〜600N/mmの引張強さ、20〜49%の伸びを有し、融点が1450℃以上である金属粉末から成る。
本発明において、この骨材粉末は、非石綿系摩擦材の骨格を形成する機能を有し、摩擦係数の低下、特に500℃を超える高温下での摩擦係数の低下を抑制する役割を果たす。
Here, the aggregate powder is composed of a metal powder having a hardness of 85 to 145 Hv, a tensile strength of 400 to 600 N / mm 2, an elongation of 20 to 49%, and a melting point of 1450 ° C. or higher.
In the present invention, the aggregate powder has a function of forming a skeleton of a non-asbestos-based friction material, and plays a role of suppressing a decrease in friction coefficient, particularly a decrease in friction coefficient at a high temperature exceeding 500 ° C.

この骨材粉末の形状、粉末径(粒径)及び粉末長は、特に限定されるものではないが、粒状、少なくとも一部に角部を有する粒状、ないしは多面体状であることが好ましく、粉末径は5μm〜1mmφ、粉末長(最大長)は5μm〜1mmとすることが好ましい。
なお、「最大長」は、当該粉末の内部を通る線分のうちで最も長いものを意味しており、例えば、粉末形状が楕円球の場合には長軸の長さを意味する。
The shape of the aggregate powder, the powder diameter (particle diameter) and the powder length are not particularly limited, but are preferably granular, granular having at least part of a corner, or polyhedral, Is preferably 5 μm to 1 mmφ, and the powder length (maximum length) is preferably 5 μm to 1 mm.
“Maximum length” means the longest line segment passing through the interior of the powder. For example, when the powder shape is an elliptical sphere, it means the length of the long axis.

本発明において、骨材粉末を構成する金属粉末としては、上述のような特性を有する金属成分から構成されるものであればよく、かかる金属粉末としては、チタン(Ti)、チタン合金、ニッケル(Ni)、ニッケル合金、ステンレスから成る金属粉末を挙げることができ、本発明ではこれらを単独で又は混合して用いることができる。
チタン合金、及びニッケル合金の特徴は、85〜350Hvの硬さ、300〜1000N/mmの引張強さ、10〜50%の伸びを有することである。
In the present invention, the metal powder constituting the aggregate powder may be any metal powder having the above-described characteristics. Examples of the metal powder include titanium (Ti), titanium alloy, nickel ( Ni), a nickel alloy, and a metal powder made of stainless steel can be mentioned. In the present invention, these can be used alone or in combination.
The characteristics of the titanium alloy and the nickel alloy are that they have a hardness of 85 to 350 Hv, a tensile strength of 300 to 1000 N / mm 2 , and an elongation of 10 to 50%.

また、本発明の非石綿系摩擦材においては、上述の骨材粉末と同質、即ち85〜145Hvの硬さ、400〜600N/mmの引張強さ、20〜49%の伸びを有し、融点が1450℃以上である性質、の金属繊維から成る骨材繊維を配合することが好ましい。 Moreover, in the non-asbestos-based friction material of the present invention, it has the same quality as the above-described aggregate powder, that is, a hardness of 85 to 145 Hv, a tensile strength of 400 to 600 N / mm 2, and an elongation of 20 to 49%. It is preferable to mix aggregate fibers made of metal fibers having a melting point of 1450 ° C. or higher.

この骨材繊維は、上記の骨材粉末と同様に、非石綿系摩擦材の骨格を形成する機能を有し、摩擦係数の低下、特に500℃を超える高温下での摩擦係数の低下を抑制する役割を果たす。
なお、この骨材繊維の繊維径及び繊維長は、特に限定されるものではないが、30〜100μmφ×1〜5mmとすることが好ましい。
This aggregate fiber has the function of forming the skeleton of non-asbestos-based friction material, as with the above-mentioned aggregate powder, and suppresses the decrease in the friction coefficient, especially the friction coefficient at high temperatures exceeding 500 ° C. To play a role.
In addition, although the fiber diameter and fiber length of this aggregate fiber are not specifically limited, It is preferable to set it as 30-100micrometerphi * 1-5mm.

本発明において、骨材繊維としては、上述のような特性を有する金属繊維から構成されるものであればよく、かかる金属繊維としては、チタン(Ti)、チタン合金、ニッケル(Ni)、ニッケル合金、ステンレスから成る金属繊維を挙げることができ、本発明ではこれらを単独で又は混合して用いることができる。
チタン合金、及びニッケル合金の特徴は、85〜350Hvの硬さ、300〜1000N/mmの引張強さ、10〜50%の伸びを有することである。
In the present invention, the aggregate fiber may be composed of a metal fiber having the above-described characteristics. Examples of the metal fiber include titanium (Ti), titanium alloy, nickel (Ni), and nickel alloy. In the present invention, these can be used alone or in combination.
The characteristics of the titanium alloy and the nickel alloy are that they have a hardness of 85 to 350 Hv, a tensile strength of 300 to 1000 N / mm 2 , and an elongation of 10 to 50%.

次に、有機繊維は、摩擦材を補強する機能を有し、耐熱性を有するものがよく、例えば、アラミド繊維、フェノール繊維、及びアクリル繊維を挙げることができる。
結合材は、各種成分を相互に結合させる機能を有し、例えば、フェノール樹脂、ポリイミド樹脂、及びフラン樹脂を挙げることができる。
Next, the organic fiber preferably has a function of reinforcing the friction material and has heat resistance, and examples thereof include an aramid fiber, a phenol fiber, and an acrylic fiber.
The binding material has a function of binding various components to each other, and examples thereof include a phenol resin, a polyimide resin, and a furan resin.

なお、本発明の非石綿系摩擦材においては、上述の金属繊維、金属粉末以外の金属繊維として、80Hv以下の硬さ、150〜400N/mmの引張強さ、10%以上の伸びを有し、融点が700〜1100℃の金属繊維から成る高温潤滑性繊維を配合することできる。 The non-asbestos-based friction material of the present invention has a hardness of 80 Hv or less, a tensile strength of 150 to 400 N / mm 2, and an elongation of 10% or more as metal fibers other than the above-described metal fibers and metal powders. In addition, high-temperature lubricating fibers made of metal fibers having a melting point of 700 to 1100 ° C. can be blended.

このような高温潤滑性繊維を構成する金属繊維としては、上記の特性を満足する限り特に限定されるものではないが、典型的には、銅(Cu)、銅合金から成る繊維を例示できる。
かかる高温潤滑性繊維の配合により、高温域での相手攻撃性を有意に低減させることができる。
The metal fiber constituting such a high-temperature lubricating fiber is not particularly limited as long as the above characteristics are satisfied, but typically, a fiber made of copper (Cu) or a copper alloy can be exemplified.
By blending such a high-temperature lubricating fiber, it is possible to significantly reduce the opponent attack in a high temperature range.

即ち、本発明の非石綿系摩擦材において、構成材である骨材粉末(金属粉末)として、高温下でも強度を保持できる金属粉末と潤滑効果のある金属繊維(高温潤滑性繊維)を併用すると、500℃以上の高温下での摩擦係数の低下が効果的に抑制されるが、これとともに、摩擦材の形状(骨格)を維持でき、摩擦材とローターの両者の急激な摩耗増を抑制できる。
この際、骨材粉末を含有することの利点は、摩擦材とローターの両者の急激な摩耗増を有意に抑制することである。
That is, in the non-asbestos-based friction material of the present invention, when an aggregate powder (metal powder) that is a constituent material is used in combination with a metal powder that can maintain strength even at high temperatures and a metal fiber that has a lubricating effect (high-temperature lubrication fiber). , The reduction of the coefficient of friction at high temperatures of 500 ° C. or more can be effectively suppressed, but at the same time, the shape (skeleton) of the friction material can be maintained, and the rapid increase in wear of both the friction material and the rotor can be suppressed. .
At this time, an advantage of containing the aggregate powder is to significantly suppress a rapid increase in wear of both the friction material and the rotor.

また、上述の如く、本発明では、骨材粉末と同質の骨材繊維を配合してもよいが、かかる骨材繊維を配合すると、上記骨材粉末の機能が補強され、500℃以上の高温下での摩擦係数の低下が十分に抑制され、これとともに、摩擦材の形状(骨格)が十分に維持される。   Further, as described above, in the present invention, an aggregate fiber having the same quality as the aggregate powder may be blended, but when such an aggregate fiber is blended, the function of the aggregate powder is reinforced and a high temperature of 500 ° C. or higher. The lowering of the lower friction coefficient is sufficiently suppressed, and at the same time, the shape (skeleton) of the friction material is sufficiently maintained.

本発明の非石綿系摩擦材においては、金属成分として、骨材粉末、骨材繊維及び高温潤滑性繊維を含み、この金属成分が総量として10〜60質量%の割合で含まれ、このうち骨材粉末及び骨材繊維が5〜40質量%分、高温潤滑性繊維が5〜30質量%分を占めることが好ましい。   The non-asbestos-based friction material of the present invention includes aggregate powder, aggregate fiber, and high-temperature lubricating fiber as metal components, and the metal component is included in a total amount of 10 to 60% by mass. It is preferable that the material powder and the aggregate fiber occupy 5 to 40% by mass and the high-temperature lubricating fiber occupies 5 to 30% by mass.

金属成分総量が10質量%未満では、高温下での摩擦係数の低下を抑制することができないことがあり、60質量%を超えると、高温下での摩擦係数の低下を抑制することは可能であるが、相手攻撃性が増大し、ローター摩耗と摩擦材の摩耗が増大するとともに、異音や鳴きが発生し易くなることがある。
骨材粉末及び骨材繊維が5質量%未満では、高温下での摩擦係数の低下を抑制できないことがあり、40質量%を超えると、高温下での摩擦係数の低下を抑制することは可能であるが、相手攻撃性が増大し、ローター摩耗と摩擦材の摩耗が増大するとともに、異音や鳴きが発生し易くなることがある。
また、高温潤滑性繊維が5質量%未満では、潤滑性繊維の機能を果たすことができないことがあり、異音や鳴きが発生し易く、また、高温下での潤滑性能が低下することで、骨材繊維、同質金属粉末及び研削材(配合した場合)によるローター摩耗が増大することがあり、30質量%を超えると、潤滑性能が過剰となり高温下での摩擦係数の保持を阻害することがある。
If the total amount of metal components is less than 10% by mass, the decrease in the coefficient of friction at high temperatures may not be suppressed, and if it exceeds 60% by mass, the decrease in the coefficient of friction at high temperatures may be suppressed. However, the aggression of the opponent increases, the wear of the rotor and the friction material increases, and abnormal noise and squeal are likely to occur.
If the aggregate powder and aggregate fiber are less than 5% by mass, the decrease in the coefficient of friction at high temperatures may not be suppressed. If the amount exceeds 40% by mass, the decrease in the coefficient of friction at high temperatures may be suppressed. However, the attack of the opponent increases, the wear of the rotor and the friction material increases, and abnormal noise and squeal are likely to occur.
Moreover, if the high temperature lubricating fiber is less than 5% by mass, the function of the lubricating fiber may not be achieved, abnormal noise and squeal are likely to occur, and the lubricating performance at high temperature is reduced, Rotor wear due to aggregate fibers, homogenous metal powder and abrasives (when blended) may increase, and if it exceeds 30% by mass, lubrication performance becomes excessive and the retention of the friction coefficient at high temperatures may be hindered. is there.

なお、本発明の非石綿系摩擦材は、上述の成分以外にも、無機繊維、有機充填材、充填材、潤滑材、及び研削材などを含有することができる。
無機繊維としては、ロックウールやガラス繊維などを例示でき、有機充填材としては、ゴムやダストなど、充填材としては、硫酸バリウムやマイカ、酸化カルシウムなど、潤滑材としては、黒鉛やカーボン、金属硫化物など、研削材としてはジルコニアやアルミナ、マイカなどを例示できる。
The non-asbestos-based friction material of the present invention can contain inorganic fibers, organic fillers, fillers, lubricants, abrasives and the like in addition to the above-described components.
Examples of inorganic fibers include rock wool and glass fibers. Examples of organic fillers include rubber and dust. Examples of fillers include barium sulfate, mica, and calcium oxide. Examples of lubricants include graphite, carbon, and metal. Examples of abrasives such as sulfides include zirconia, alumina, and mica.

また、本発明の非石綿系摩擦材においては、高温摩擦後にこの非石綿系摩擦材の表面から200μm以浅に摩擦劣化層が形成される。そして、この摩擦劣化層には、上記の骨材粉末と、配合した場合には上記の骨材繊維が、高温摩擦前の100〜60%の大きさで含まれて存在している。
即ち、高温摩擦後においても、骨材粉末や骨材繊維の大きさは余り小さくならず、このことからも、骨材粉末が、配合した場合の骨材繊維と相俟って骨格形成材としての機能を十分に果たしており、当該非石綿系摩擦材の高温域での摩擦係数低下を十分に抑制していると推察される。
Further, in the non-asbestos-based friction material of the present invention, a friction deteriorated layer is formed shallower than 200 μm from the surface of the non-asbestos-based friction material after high-temperature friction. And in this friction deterioration layer, said aggregate powder and said aggregate fiber in the case of mix | blending are contained by the magnitude | size of 100 to 60% before high temperature friction.
That is, even after high temperature friction, the size of the aggregate powder and aggregate fiber is not so small, and from this, the aggregate powder combined with the aggregate fiber when blended is used as a skeleton forming material. This function is sufficiently fulfilled, and it is surmised that the non-asbestos-based friction material sufficiently suppresses a decrease in the friction coefficient in a high temperature range.

また、本発明の非石綿系摩擦材は、高温摩擦後にこの非石綿系摩擦材の表面から200μm以浅に形成される摩擦劣化層において、この摩擦劣化層直下に上記金属成分が存在している。
即ち、高温摩擦後においても、摩擦劣化層直下に上記金属成分が十分に存在し、このことからも、上記金属成分が摩擦材を形成するための機能を十分に果たし、当該非石綿系摩擦材の高温域での摩擦係数低下を十分に抑制していることが分かる。
In the non-asbestos-based friction material of the present invention, the metal component is present immediately below the friction-degraded layer in the friction-degraded layer formed at a depth of 200 μm or less from the surface of the non-asbestos-based friction material after high-temperature friction.
That is, even after high-temperature friction, the metal component is sufficiently present immediately below the friction-deteriorating layer, and from this, the metal component sufficiently functions to form a friction material, and the non-asbestos-based friction material. It can be seen that the lowering of the friction coefficient in the high temperature range is sufficiently suppressed.

更に、本発明の非石綿系摩擦材は、上記摩擦劣化層下において、この層下に存在する金属成分量が、この高温摩擦前の80〜100質量%の量を有することが好ましい。
即ち、高温摩擦後においても、上記金属成分の成分量を余り減少させず、このことからも、上記金属成分が摩擦材の形状を保持する為の補強材としての機能を十分に果たし、当該非石綿系摩擦材の高温域での摩擦係数低下を十分に抑制していることが分かる。
Furthermore, in the non-asbestos-based friction material of the present invention, it is preferable that the amount of the metal component existing under this friction degradation layer is 80 to 100% by mass before this high-temperature friction.
That is, even after high temperature friction, the amount of the metal component does not decrease so much, and for this reason, the metal component sufficiently functions as a reinforcing material for maintaining the shape of the friction material. It turns out that the friction coefficient fall in the high temperature range of asbestos type friction material is fully controlled.

高温摩擦は、具体的には、700℃において、ロータなどの回転体をパッド形状に形成した非石綿系摩擦材で挟んで制動させることによって行うことができ、例えば、自動車の速度換算としては、時速144kmから時速80km相当に減速する条件下で行うことができる。   Specifically, high-temperature friction can be performed by holding and rotating a rotating body such as a rotor with a non-asbestos-based friction material formed in a pad shape at 700 ° C. For example, as a speed conversion of an automobile, It can be performed under the condition of decelerating from 144 km / h to 80 km / h.

このような特性の観点からは、チタン(Ti)及びチタン合金が良好であり、例えば、30μmの繊維径又は45μmの粉末径を有するチタン(Ti)は、高温摩擦後も繊維径、粉末径が変化せず、しかも摩擦劣化層直下にも形状が変化せずに存在する。
また、ニッケル(Ni)及びニッケル合金も使用可能であり、例えば、50μmの繊維径、50μmの粉末径を有するニッケル(Ni)では、高温摩擦後の繊維径及び粉末径は10μm程度への低減に留まる。但し、ニッケルを金属成分として用いた場合、補強機能としての効果は高いが、ニッケルと硫化物の関係から、硫化物と合せて使用しないほうが好ましい。
From the viewpoint of such characteristics, titanium (Ti) and titanium alloys are good. For example, titanium (Ti) having a fiber diameter of 30 μm or a powder diameter of 45 μm has a fiber diameter and a powder diameter even after high temperature friction. There is no change, and there is no change in shape immediately under the friction-degraded layer.
Nickel (Ni) and nickel alloys can also be used. For example, in nickel (Ni) having a fiber diameter of 50 μm and a powder diameter of 50 μm, the fiber diameter and powder diameter after high-temperature friction can be reduced to about 10 μm. stay. However, when nickel is used as a metal component, the effect as a reinforcing function is high, but it is preferable not to use it together with sulfides because of the relationship between nickel and sulfides.

本発明の非石綿系摩擦材において、各種成分の配合量は、上記の高温摩擦後の特性を満足する限り特に限定されるものではないが、骨材粉末と骨材繊維から成る金属成分を合計量で5〜40質量%、必要に応じて高温潤滑性繊維を5〜30質量%の割合で配合することが好ましい。
骨材粉末及び骨材繊維から成る金属成分の合計量が5質量%未満では、摩擦材の形状を維持できなくなり、高温摩擦時の摩擦材の形状機能を果たすことができなくなることがある。また、40質量%を超えると異音や鳴きが発生し易く、また摩耗も多くなることがある。
また、高温潤滑性繊維の配合量が5質量%未満では、潤滑性繊維の機能を果たすことができなくなることがあり、異音や鳴きが発生し易く、また摩耗も多くなることがある。また、30質量%を超えると、高温摩擦時の潤滑性能が過剰となり従来の摩擦機能を阻害し、高温時の摩擦係数が低下することがある。
In the non-asbestos-based friction material of the present invention, the blending amount of various components is not particularly limited as long as the above-mentioned characteristics after high-temperature friction are satisfied, but the total of metal components composed of aggregate powder and aggregate fibers The amount is preferably 5 to 40% by mass, and if necessary, the high temperature lubricating fiber is preferably blended at a rate of 5 to 30% by mass.
When the total amount of the metal components composed of the aggregate powder and the aggregate fiber is less than 5% by mass, the shape of the friction material cannot be maintained, and the shape function of the friction material during high temperature friction may not be achieved. On the other hand, if it exceeds 40% by mass, abnormal noise and squeal are likely to occur, and wear may increase.
If the blending amount of the high-temperature lubricating fiber is less than 5% by mass, the function of the lubricating fiber may not be achieved, abnormal noise and squeal are likely to occur, and wear may be increased. On the other hand, if it exceeds 30% by mass, the lubrication performance at the time of high temperature friction becomes excessive and the conventional friction function is hindered, and the friction coefficient at high temperature may be lowered.

次に、本発明の非石綿系摩擦材の製造方法について説明する。
本発明の非石綿系摩擦材は、上述の各種成分を均一に混合した後、予備成形し、次いで金型内に裏金及び予備成形体を挿入した後、加熱加圧成形法で成形した後、熱処理を行うことにより製造することや、均一に混合した後、金型内に混合粉と裏金を挿入した後、加熱加圧成形法で成形すること、又は加熱加圧成形法で成形した後、熱処理を行うことにより製造することができる。
Next, the manufacturing method of the non-asbestos-based friction material of the present invention will be described.
After the non-asbestos-based friction material of the present invention is uniformly mixed with the above-described various components, it is preformed, and after the back metal and the preform are inserted into the mold, it is then molded by a heat and pressure molding method. After manufacturing by heat treatment or after mixing uniformly, after inserting the mixed powder and the back metal into the mold, after molding by the hot press molding method, or after molding by the hot press molding method, It can be manufactured by performing a heat treatment.

以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited to these Examples.

(実施例1〜3、比較例1〜4)
表1に示す各種配合成分を均一に混合した後、予備成形し、次いで金型内に裏金及び予備成形体を挿入した後、加熱加圧成形法で成形した後、熱処理を行い、各例の摩擦材を製造した。
なお、表1において、チタン28質量%は10vol%、銅38質量%、34質量%、28質量%及び14質量%はそれぞれ14vol%、12vol%、10vol%、5vol%、スチール30質量%及び17質量%は10vol%、6vol%に相当し、その他使用している摩擦材成分の使用量、密度と摩擦材の重量、密度の関係から測定することができる。
(Examples 1-3, Comparative Examples 1-4)
After uniformly mixing the various components shown in Table 1, after preforming, and then inserting the back metal and the preform into the mold, after molding by the heat and pressure molding method, heat treatment is performed, A friction material was produced.
In Table 1, 28% by mass of titanium is 10% by volume, 38% by mass of copper, 34% by mass, 28% by mass and 14% by mass are 14% by volume, 12% by volume, 10% by volume, 5% by volume, 30% by mass of steel and 17% by mass, respectively. The mass% corresponds to 10 vol% and 6 vol%, and can be measured from the relationship between the usage amount of the other friction material components used, the density, the weight of the friction material, and the density.

Figure 2010090294
Figure 2010090294

[性能評価]
(1)フェード時の摩擦係数変化
各例の摩擦材を1/5サイズブレーキダイナモスケール試験機を用いて、下記の試験条件に供した。具体的には、すり合わせ1→すり合わせ2→本試験の順で処理し、本試験での摩擦係数を測定し、得られた結果を図1に、その測定値を表2に示した。
[Performance evaluation]
(1) Friction coefficient change during fading The friction material of each example was subjected to the following test conditions using a 1/5 size brake dynamo scale tester. Specifically, the treatment was carried out in the order of lapping 1 → roughing 2 → main test, and the coefficient of friction in this test was measured. The results obtained are shown in FIG. 1 and the measured values are shown in Table 2.

・すり合わせ1
制動前温度:120℃
制動初速度:60km/h
制動終速度: 0km/h
減速度 :0.3G
制動回数 :200回
・ Rice 1
Pre-braking temperature: 120 ° C
First braking speed: 60km / h
Final braking speed: 0km / h
Deceleration: 0.3G
Number of braking: 200 times

・すり合わせ2
制動前温度:80℃
制動初速度:130km/h
制動終速度: 0km/h
減速度 :0.6G
制動回数 :10回
・ Rice 2
Pre-braking temperature: 80 ° C
First braking speed: 130km / h
Final braking speed: 0km / h
Deceleration: 0.6G
Number of braking: 10 times

・本試験
制動前温度:60℃
制動初速度:144km/h
制動終速度: 80km/h
減速度 :0.5G
制動間隔 :22秒
制動回数 :摩擦材が700℃に到達するまで実施
・ Main test temperature before braking: 60 ℃
Brake initial speed: 144 km / h
Final braking speed: 80km / h
Deceleration: 0.5G
Braking interval: 22 seconds Number of braking cycles: Conducted until the friction material reaches 700 ° C

(2)摩耗量
JASO C406:2000に準拠したテストピース試験を行った後、各例の摩擦材の摩耗量を測定した。摩耗量については、パッド厚さとロータ厚さの減少量を測定し、得られた結果を表3に示す。
(2) Amount of wear After performing a test piece test based on JASO C406: 2000, the amount of wear of the friction material of each example was measured. Regarding the amount of wear, the amount of decrease in pad thickness and rotor thickness was measured, and the results obtained are shown in Table 3.

Figure 2010090294
Figure 2010090294

Figure 2010090294
Figure 2010090294

(a)試験条件
ねずみ鋳鉄製のローターを用い、実施例1の摩擦材をパッドとして試験を行った。速度144km/hから80km/hに減速させた。初期温度は60゜、減速度は0.5Gとした。
(A) Test conditions Tests were performed using a gray cast iron rotor and the friction material of Example 1 as a pad. The speed was reduced from 144 km / h to 80 km / h. The initial temperature was 60 ° and the deceleration was 0.5G.

(b)試験結果
実施例1の摩擦材では、温度が700℃のとき、制動回数は7回で、摩擦係数μは0.40であった。また、テストピース試験時のロータ厚さ減は、0.001mm、パッド厚さ減は0.93mmとなった。
実施例2の摩擦材では、温度が700℃のとき、制動回数は7回で、摩擦係数μは0.40であった。また、テストピース試験時のロータ厚さ減は0.002mm、パッド厚さ減は0.89mmとなった。
実施例3の摩擦材では、温度が7000℃のとき、制動回数は7回で、摩擦係数μは0.40であった。また、テストピース試験時のロータ厚さ減は0.005mm、パッド厚さ減は1.14mmとなった。
一方、比較例1の摩擦材では、温度は700℃のとき、制動回数は7回で、摩擦係数μは0.40であった。また、テストピース試験時のロータ厚さ減は0.010mm、パッド厚さ減は1.02mmとなった。
(B) Test Results In the friction material of Example 1, when the temperature was 700 ° C., the number of braking was 7 and the friction coefficient μ was 0.40. Further, the rotor thickness reduction during the test piece test was 0.001 mm, and the pad thickness reduction was 0.93 mm.
In the friction material of Example 2, when the temperature was 700 ° C., the number of braking was 7 and the friction coefficient μ was 0.40. Further, the rotor thickness reduction during the test piece test was 0.002 mm, and the pad thickness reduction was 0.89 mm.
In the friction material of Example 3, when the temperature was 7000 ° C., the number of braking was 7 and the friction coefficient μ was 0.40. Further, the rotor thickness reduction during the test piece test was 0.005 mm, and the pad thickness reduction was 1.14 mm.
On the other hand, in the friction material of Comparative Example 1, when the temperature was 700 ° C., the number of braking was 7 and the friction coefficient μ was 0.40. Further, the rotor thickness reduction during the test piece test was 0.010 mm, and the pad thickness reduction was 1.02 mm.

また、実施例1(骨材粉末の形状が球状)及び実施例2(骨材粉末の形状が角部を有する多面体状)の摩擦材について、フェード試験終了後のSEM写真をそれぞれ図2及び図3に示す。
図2及び図3は、フェード試験前の各摩擦材断面の任意の1カ所とフェード試験終了後における各摩擦材断面(摩擦劣化層)の任意の2カ所を示しており、下段は上段に示したものの拡大図であるが、若干白色を帯びた円状像又は角形像が同種金属粉末を示している。
これらの図において、実施例1の摩擦材では同種金属粉末はフェード試験前の大きさの95%、実施例2の摩擦材では82%の大きさを維持している。
Moreover, about the friction material of Example 1 (The shape of aggregate powder is spherical) and Example 2 (The shape of aggregate powder is a polyhedron shape which has a corner | angular part), the SEM photograph after completion | finish of a fade test is respectively FIG.2 and FIG. 3 shows.
2 and 3 show one arbitrary position of each friction material cross section before the fade test and two arbitrary positions of each friction material cross section (friction deteriorated layer) after the fade test, and the lower part is shown in the upper part. As shown in the enlarged view of FIG. 1, a circular image or a square image having a slight white color indicates the same kind of metal powder.
In these figures, in the friction material of Example 1, the same kind of metal powder maintains 95% of the size before the fade test, and in the friction material of Example 2, the size of 82% is maintained.

以上の結果から、実施例1及び2は、比較例1と比較すると、骨材繊維が骨材粉末に置き換えて配合されているが、その金属成分の機能が充分に発揮されており、高温下での摩擦係数低下が抑制されている。
また、骨材粉末と高温潤滑繊維の配合が最適化されており、高温下での摩擦係数低下の抑制と安定した摩擦係数とパッド、ローターの摩耗を、骨材繊維や高温潤滑繊維などの金属繊維をのみを使用した場合以上に低減する効果がある。よって、高温下での摩擦係数低下の抑制と摩擦係数の安定性に優れるとともにパッド、ローター摩耗低減が可能であることが分かる。
From the above results, compared with Comparative Example 1, Examples 1 and 2 are blended by replacing the aggregate fiber with the aggregate powder, but the functions of the metal components are sufficiently exhibited, and at high temperatures. The reduction in the coefficient of friction is suppressed.
In addition, the composition of aggregate powder and high-temperature lubricating fiber has been optimized to suppress the decrease in friction coefficient at high temperatures and to stabilize the friction coefficient and wear of pads and rotors. There is an effect of reducing more than when only fibers are used. Therefore, it can be seen that the friction coefficient reduction at high temperature and the stability of the friction coefficient are excellent, and the wear of the pad and the rotor can be reduced.

各例の摩擦材につきフェード時の摩擦係数変化を測定したグラフである。It is the graph which measured the friction coefficient change at the time of fade about the friction material of each example. 摩擦材についてのフェード試験終了後のSEM写真である。It is a SEM photograph after the end of the fade test on the friction material. 摩擦材についてのフェード試験終了後のSEM写真である。It is a SEM photograph after the end of the fade test on the friction material.

Claims (7)

85〜145Hvの硬さ、400〜600N/mmの引張強さ、20〜49%の伸びを有し、融点が1450℃以上の金属粉末から成る骨材粉末と、有機繊維と、結合材とを含有する非石綿系摩擦材であって、
高温摩擦後にこの非石綿系摩擦材の表面から200μm以浅に形成される摩擦劣化層に含まれる上記骨材粉末が、この高温摩擦前の100〜60%の大きさを有することを特徴とする非石綿系摩擦材。
Aggregate powder comprising a metal powder having a hardness of 85 to 145 Hv, a tensile strength of 400 to 600 N / mm 2, an elongation of 20 to 49%, and a melting point of 1450 ° C. or higher, an organic fiber, and a binder A non-asbestos-based friction material containing
The aggregate powder contained in the friction deterioration layer formed shallower than 200 μm from the surface of the non-asbestos-based friction material after high-temperature friction has a size of 100 to 60% before the high-temperature friction. Asbestos-based friction material.
上記骨材粉末の形状が、粒状、少なくとも一部に角部を有する粒状又は多面体状であることを特徴とする請求項1に記載の非石綿系摩擦材。   2. The non-asbestos-based friction material according to claim 1, wherein the aggregate powder has a granular shape, a granular shape having a corner portion at least partially, or a polyhedral shape. 更に、85〜145Hvの硬さ、400〜600N/mmの引張強さ、20〜49%の伸びを有し、融点が1450℃以上の金属繊維から成る骨材繊維を含むことを特徴とする請求項1又は2に記載の非石綿系摩擦材。 Furthermore, it has a hardness of 85 to 145 Hv, a tensile strength of 400 to 600 N / mm 2, an elongation of 20 to 49%, and includes aggregate fibers made of metal fibers having a melting point of 1450 ° C. or higher. The non-asbestos-based friction material according to claim 1 or 2. 更に、80Hv以下の硬さ、150〜400N/mmの引張強さ、10%以上の伸びを有し、融点が700〜1100℃の金属繊維から成る高温潤滑性繊維を含むことを特徴とする請求項1〜3のいずれか1つの項に記載の非石綿系摩擦材。 Furthermore, it has a hardness of 80 Hv or less, a tensile strength of 150 to 400 N / mm 2, an elongation of 10% or more, and includes high-temperature lubricating fibers made of metal fibers having a melting point of 700 to 1100 ° C. The non-asbestos-based friction material according to any one of claims 1 to 3. 上記金属成分の総量が10〜60質量%であり、このうち上記骨材粉末及び上記骨材繊維が5〜40質量%、上記高温潤滑性繊維が5〜30質量%を占めることを特徴とする請求項4に記載の非石綿系摩擦材。   The total amount of the metal component is 10 to 60% by mass, of which the aggregate powder and the aggregate fiber occupy 5 to 40% by mass, and the high temperature lubricating fiber occupies 5 to 30% by mass. The non-asbestos-based friction material according to claim 4. 上記骨材粉末と上記骨材繊維の合計量が5〜40質量%であることを特徴とする請求項3〜5のいずれか1つの項に記載の非石綿系摩擦材。   The non-asbestos-based friction material according to any one of claims 3 to 5, wherein a total amount of the aggregate powder and the aggregate fiber is 5 to 40% by mass. 上記高温潤滑性繊維を5〜30質量%の割合で含むことを特徴とする請求項4〜6のいずれか1つの項に記載の非石綿系摩擦材。   The non-asbestos-based friction material according to any one of claims 4 to 6, wherein the high-temperature lubricating fiber is contained in a proportion of 5 to 30% by mass.
JP2008262430A 2008-10-09 2008-10-09 Non-asbestos friction material Pending JP2010090294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008262430A JP2010090294A (en) 2008-10-09 2008-10-09 Non-asbestos friction material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008262430A JP2010090294A (en) 2008-10-09 2008-10-09 Non-asbestos friction material

Publications (1)

Publication Number Publication Date
JP2010090294A true JP2010090294A (en) 2010-04-22

Family

ID=42253322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008262430A Pending JP2010090294A (en) 2008-10-09 2008-10-09 Non-asbestos friction material

Country Status (1)

Country Link
JP (1) JP2010090294A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103194172A (en) * 2013-03-20 2013-07-10 咸阳非金属矿研究设计院有限公司 Non-asbestos composite fiber and preparation method thereof
WO2015005320A1 (en) * 2013-07-09 2015-01-15 黒崎播磨株式会社 Metal fiber composite

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103194172A (en) * 2013-03-20 2013-07-10 咸阳非金属矿研究设计院有限公司 Non-asbestos composite fiber and preparation method thereof
WO2015005320A1 (en) * 2013-07-09 2015-01-15 黒崎播磨株式会社 Metal fiber composite
JP2015017001A (en) * 2013-07-09 2015-01-29 黒崎播磨株式会社 Metal fiber composite

Similar Documents

Publication Publication Date Title
JP6563676B2 (en) Friction material composition, friction material and method for producing the same
JP2647164B2 (en) Friction material
JP4071434B2 (en) Friction material for brake
JP4430468B2 (en) Copper-based sintered friction material
JP6481775B2 (en) Friction material composition, friction material and friction member
JP2008179806A (en) Non-asbestos friction material
JP6950678B2 (en) Friction material composition
JP5540396B2 (en) Friction material
JP2018111755A (en) Sintered metal friction material
JP6360270B1 (en) Sintered friction material for brake
CN110242691A (en) A kind of environmentally-friendly friction material and brake block and preparation method based on it
JP2010090294A (en) Non-asbestos friction material
JP2009102583A (en) Brake friction material
JP5578391B2 (en) Non-asbestos friction material
JP6596956B2 (en) Friction material composition, and friction material and friction member using the same
JPWO2019151390A1 (en) Friction material, friction material composition, friction member and vehicle
JP2007314598A (en) Friction material
JP2007107662A (en) Sintered friction material
JP2018070810A (en) Friction material
JP2021152119A (en) Friction member, friction material composition, friction material and vehicle
JP2012111892A (en) Friction material for brake pad
JP2009073908A (en) Friction material
JP2012111891A (en) Friction material for brake pad
JP2009073909A (en) Friction material
JP2000355685A (en) Friction material