JP5578391B2 - Non-asbestos friction material - Google Patents

Non-asbestos friction material Download PDF

Info

Publication number
JP5578391B2
JP5578391B2 JP2008060444A JP2008060444A JP5578391B2 JP 5578391 B2 JP5578391 B2 JP 5578391B2 JP 2008060444 A JP2008060444 A JP 2008060444A JP 2008060444 A JP2008060444 A JP 2008060444A JP 5578391 B2 JP5578391 B2 JP 5578391B2
Authority
JP
Japan
Prior art keywords
fiber
friction material
asbestos
aggregate
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008060444A
Other languages
Japanese (ja)
Other versions
JP2008280521A (en
Inventor
宏喜 両角
真市 山本
真人 山口
直彦 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2008060444A priority Critical patent/JP5578391B2/en
Priority to PCT/JP2008/057196 priority patent/WO2008133056A1/en
Publication of JP2008280521A publication Critical patent/JP2008280521A/en
Application granted granted Critical
Publication of JP5578391B2 publication Critical patent/JP5578391B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、非石綿系摩擦材に係り、更に詳細には、石綿を用いない摩擦材であって車両用のブレーキパッドなどに使用される非石綿系摩擦材に関する。   The present invention relates to a non-asbestos-based friction material, and more particularly to a non-asbestos-based friction material that is a friction material that does not use asbestos and is used for a brake pad for a vehicle.

一般に、車両用のブレーキパッドなどに用いられる非石綿系の摩擦材は、500℃以上の高温下での摩擦係数低下が大きく、500℃以上の高温環境下での使用に際しては、鉄繊維を配合するか、焼結系摩擦材を用いることが知られている。   In general, non-asbestos-based friction materials used for vehicle brake pads, etc. have a large decrease in the coefficient of friction at high temperatures of 500 ° C or higher. Alternatively, it is known to use a sintered friction material.

また、従来、金属繊維、耐熱性有機繊維、所定の繊維基材、熱硬化性樹脂及び摩擦調整剤から成るブレーキ用摩擦材が知られている(例えば、特許文献1参照)。
また、このような摩擦材において、孔系と累積気孔率を調整して耐フェード性を向上するとともに相手攻撃性を低下させたものも知られている(例えば、特許文献2参照)。
特開昭63−266231号公報 特開平11−322959号公報
Conventionally, a brake friction material comprising a metal fiber, a heat-resistant organic fiber, a predetermined fiber base material, a thermosetting resin, and a friction modifier is known (for example, see Patent Document 1).
In addition, such a friction material is known in which the hole system and the cumulative porosity are adjusted to improve the fade resistance and reduce the opponent attack property (see, for example, Patent Document 2).
JP 63-266231 A Japanese Patent Laid-Open No. 11-322959

しかしながら、上述のような摩擦材において、鉄繊維を配合したものや、焼結系摩擦材は、500℃以下の摩耗と摩擦係数安定性に劣るという問題があった。
また、上記従来の摩擦材にあっては、500℃を超える高温域での摩擦係数低下が必ずしも小さいといえず、また、500℃以下における摩擦係数の安定性も十分とはいえなかった。更には、高温域での摩耗特性、特に相手攻撃性などについても更なる改善余地があった。
However, in the friction materials as described above, those containing iron fibers and sintered friction materials have a problem of being inferior in wear at 500 ° C. or less and in friction coefficient stability.
Further, in the conventional friction material, it cannot be said that the decrease in the friction coefficient in a high temperature region exceeding 500 ° C. is necessarily small, and the stability of the friction coefficient at 500 ° C. or less is not sufficient. Furthermore, there is room for further improvement in the wear characteristics at high temperatures, especially the opponent attack.

本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、高温域での摩擦係数低下の抑制、摩擦係数の安定性、相手攻撃性の低減のバランスを図った非石綿系摩擦材を提供することにある。 The present invention has been made in view of such problems of the prior art, and the object of the present invention is to suppress the reduction of the friction coefficient in the high temperature range, the stability of the friction coefficient, and the reduction of the opponent attack. The object is to provide a non-asbestos-based friction material that is balanced .

本発明者らは、上記目的を達成すべく鋭意検討を重ねた結果、所定の金属繊維から成る骨材繊維を用い、必要に応じて所定の高温潤滑性繊維を用いることにより、上記目的が達成できることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors have achieved the above object by using an aggregate fiber made of a predetermined metal fiber and, if necessary, a predetermined high temperature lubricating fiber. The present inventors have found that this can be done and have completed the present invention.

即ち、本発明の非石綿系摩擦材は、85〜145Hvの硬さ、400〜600N/mmの引張強さ、20〜49%の伸びを有し、融点が1450℃以上の金属繊維から成り、チタン(Ti)、チタン合金、ニッケル(Ni)及びニッケル合金から成る群より選ばれた少なくとも1種の骨材繊維と、有機繊維と、結合材を含有する非石綿系摩擦材であって、
速度換算で144km/hrから80km/hrに減速させる条件下で制動させて当該非石綿系摩擦材を700℃に到達させる高温摩擦後にこの非石綿系摩擦材の表面から200μm以浅に形成される摩擦劣化層に含まれる上記骨材繊維の繊維量が、上記高温摩擦前の量の80〜100質量%であることを特徴とする。
That is, the non-asbestos-based friction material of the present invention is composed of metal fibers having a hardness of 85 to 145 Hv, a tensile strength of 400 to 600 N / mm 2, an elongation of 20 to 49%, and a melting point of 1450 ° C. or higher. A non-asbestos-based friction material containing at least one aggregate fiber selected from the group consisting of titanium (Ti), titanium alloy, nickel (Ni), and nickel alloy , an organic fiber, and a binder. ,
Friction formed shallower than 200 μm from the surface of the non-asbestos-based friction material after high-temperature friction that causes the non-asbestos-based friction material to reach 700 ° C. by braking under the condition of speed reduction from 144 km / hr to 80 km / hr. The amount of the aggregate fiber contained in the deteriorated layer is 80 to 100% by mass of the amount before the high-temperature friction.

なお、後述するが、非石綿系摩擦材において、「骨材機能値」は骨材繊維及び高温潤滑性繊維の少なくとも一方の引張強さとその繊維の含有量で定まる値であり、「硬さ機能値」は骨材繊維及び高温潤滑性繊維の少なくとも一方のビッカース硬度と含有量で定まる値である。   As will be described later, in the non-asbestos-based friction material, the “aggregate function value” is a value determined by the tensile strength of at least one of the aggregate fiber and the high-temperature lubricating fiber and the content of the fiber. The “value” is a value determined by the Vickers hardness and content of at least one of the aggregate fiber and the high temperature lubricating fiber.

本発明によれば、所定の金属繊維から成る骨材繊維を用い、必要に応じて所定の高温潤滑性繊維を用いることとしたため、高温域での摩擦係数低下の抑制、摩擦係数の安定性、相手攻撃性の低減のバランスを図った非石綿系摩擦材を提供することができる。 According to the present invention, since aggregate fibers made of predetermined metal fibers are used, and predetermined high-temperature lubricating fibers are used as necessary, suppression of friction coefficient decrease at high temperatures , stability of friction coefficient, It is possible to provide a non-asbestos-based friction material that balances the reduction of opponent attack .

以下、本発明の非石綿系摩擦材につき詳細に説明する。
上述の如く、本発明の非石綿系摩擦材は、骨材繊維と、有機繊維と、結合材を含有するものであり、この骨材繊維は、85〜145Hvの硬さ、400〜600N/mmの引張強さ、20〜49%の伸びを有し、融点が1450℃以上の金属繊維から成る。
Hereinafter, the non-asbestos-based friction material of the present invention will be described in detail.
As described above, the non-asbestos-based friction material of the present invention contains an aggregate fiber, an organic fiber, and a binder, and the aggregate fiber has a hardness of 85 to 145 Hv, 400 to 600 N / mm. It consists of metal fibers having a tensile strength of 2 and an elongation of 20-49% and a melting point of 1450 ° C. or higher.

ここで、骨材繊維は、この非石綿系摩擦材の骨格を形成する機能を有し、摩擦係数の低下、特に500℃を超える高温下での摩擦係数の低下を抑制する役割を果たす。
なお、この骨材繊維の繊維径及び繊維長は、特に限定されるものではないが、30〜100μmφ×1〜5mmとすることが好ましい。
Here, the aggregate fiber has a function of forming a skeleton of the non-asbestos-based friction material, and plays a role of suppressing a decrease in the friction coefficient, particularly a decrease in the friction coefficient at a high temperature exceeding 500 ° C.
In addition, although the fiber diameter and fiber length of this aggregate fiber are not specifically limited, It is preferable to set it as 30-100micrometerphi * 1-5mm.

本発明において、骨材繊維としては、上述のような特性を有する金属繊維から構成されるものであればよく、かかる金属繊維としては、チタン(Ti)、チタン合金、ニッケル(Ni)、ニッケル合金から成る金属繊維を挙げることができ、本発明ではこれらを単独で又は混合して用いる。
チタン合金、及びニッケル合金の特徴は、85〜350Hvの硬さ、300〜1000N/mmの引張強さ、10〜50%の伸びを有することである。
In the present invention, the aggregate fiber may be composed of a metal fiber having the above-described characteristics. Examples of the metal fiber include titanium (Ti), titanium alloy, nickel (Ni), nickel composite. mention may be made of gold or we made metal fibers, these Ru used alone or as a mixture in the present invention.
The characteristics of the titanium alloy and the nickel alloy are that they have a hardness of 85 to 350 Hv, a tensile strength of 300 to 1000 N / mm 2 , and an elongation of 10 to 50%.

また、有機繊維は、摩擦材を補強する機能を有し、耐熱性を有するものがよく、例えば、アラミド繊維、フェノール繊維、及びアクリル繊維を挙げることができる。
結合材は、各種成分を相互に結合させる機能を有し、例えば、フェノール樹脂、ポリイミド樹脂、及びフラン樹脂を挙げることができる。
The organic fiber has a function of reinforcing the friction material and is preferably heat-resistant, and examples thereof include an aramid fiber, a phenol fiber, and an acrylic fiber.
The binding material has a function of binding various components to each other, and examples thereof include a phenol resin, a polyimide resin, and a furan resin.

なお、本発明の非石綿系摩擦材においては、上述の骨材繊維以外の金属繊維として、80Hv以下の硬さ、150〜400N/mmの引張強さ、10%以上の伸びを有し、融点が700〜1100℃の金属繊維から成る高温潤滑性繊維を配合することできる。
かかる高温潤滑性繊維の配合により、高温域での相手攻撃性を有意に低減させることができる。
In the non-asbestos-based friction material of the present invention, the metal fiber other than the above-described aggregate fiber has a hardness of 80 Hv or less, a tensile strength of 150 to 400 N / mm 2, and an elongation of 10% or more. High temperature lubricating fibers made of metal fibers having a melting point of 700 to 1100 ° C. can be blended.
By blending such a high-temperature lubricating fiber, it is possible to significantly reduce the opponent attack in a high temperature range.

即ち、本発明の非石綿系摩擦材において、構成材である金属繊維として、高温下でも強度を保持できる金属繊維(骨材繊維)と潤滑効果のある金属繊維(高温潤滑性繊維)を併用すると、500℃以上の高温下での摩擦係数の低下が効果的に抑制されるが、これとともに、摩擦材の骨格を維持でき、摩擦材とロータの両者の急激な摩耗増を抑制できる。   That is, in the non-asbestos-based friction material of the present invention, when a metal fiber that is a constituent material is a metal fiber (aggregate fiber) that can maintain strength even at high temperatures and a metal fiber that has a lubricating effect (high-temperature lubrication fiber). Although the reduction of the friction coefficient at a high temperature of 500 ° C. or higher is effectively suppressed, the skeleton of the friction material can be maintained and the rapid increase in wear of both the friction material and the rotor can be suppressed.

ここで、このような摩擦材骨格の維持性は、以下の骨機能値によって評価することができる。
この「骨機能値」は、ともに金属繊維である骨材繊維及び高温潤滑性繊維の少なくとも一方から成る金属繊維分の室温における引張強さ(N/mm)とこれら金属繊維分の含有量(vol%)との積を、100で除した値を示す。
例えば、金属繊維分が骨材繊維から成り、骨材繊維量が20vol%で、その骨材繊維の引張強さ(室温)が300N/mmの場合、骨材機能値は、20×300÷100で60となる。
Here, the maintainability of such a friction material skeleton can be evaluated by the following aggregate function values.
This “ aggregate functional value” is the tensile strength at room temperature (N / mm 2 ) of the metal fiber composed of at least one of the aggregate fiber and the high-temperature lubricating fiber, both of which are metal fibers, and the content of these metal fibers. The value obtained by dividing the product of (vol%) by 100 is shown.
For example, when the metal fiber is composed of aggregate fiber, the aggregate fiber amount is 20 vol%, and the tensile strength (room temperature) of the aggregate fiber is 300 N / mm 2 , the aggregate function value is 20 × 300 ÷ 100 is 60.

本発明の非石綿系摩擦材においては、この骨材機能値が30以上であることが好ましい。
骨材機能値が30未満では、500℃以上の高温下で骨材繊維が摩擦材を保持できなくなるとともに、摩擦劣化層に存在する骨材繊維の繊維径が高温摩擦前の20%未満の大きさになり、摩擦材の骨格を維持できず、高温での摩擦係数の低下が起こることがある。
In the non-asbestos-based friction material of the present invention, the aggregate function value is preferably 30 or more.
When the aggregate function value is less than 30, the aggregate fiber cannot hold the friction material at a high temperature of 500 ° C. or higher, and the fiber diameter of the aggregate fiber existing in the friction deteriorated layer is less than 20% before the high temperature friction. As a result, the skeleton of the friction material cannot be maintained, and the friction coefficient may decrease at high temperatures.

一方、高温域における相手攻撃性は、以下の硬さ機能値によって評価することができる。
この「硬さ機能値」は、ともに金属繊維である骨材繊維及び/又は高温潤滑性繊維から成る金属繊維分の室温におけるビッカース硬さ(Hv)とこれら金属繊維分の含有量(vol%)との積を、100で除した値を示す。
例えば、金属繊維分が骨材繊維から成り、骨材繊維量が20vol%で、その骨材繊維の硬さが90Hvの場合、硬さ機能値は、20×90÷100で18となる。
On the other hand, the opponent aggression property in a high temperature range can be evaluated by the following hardness function value.
This “hardness functional value” is the Vickers hardness (Hv) at room temperature of the metal fibers composed of aggregate fibers and / or high-temperature lubricating fibers, both of which are metal fibers, and the content (vol%) of these metal fibers. The value obtained by dividing the product of and by 100.
For example, when the metal fiber portion is composed of aggregate fiber, the aggregate fiber amount is 20 vol%, and the hardness of the aggregate fiber is 90 Hv, the hardness function value is 18 by 20 × 90 ÷ 100.

本発明の非石綿系摩擦材においては、この硬さ機能値が10以下であることが好ましい。
硬さ機能値が10を超えると、金属繊維の硬さが大きく、総量も多くなることから相手攻撃性が増大するとともに、その金属繊維が摩耗分として脱落することにより、ローターと摩擦材の間に介在することで、摩擦材の摩耗も悪化することがある。
In the non-asbestos-based friction material of the present invention, the hardness function value is preferably 10 or less.
When the hardness function value exceeds 10, the hardness of the metal fiber is large and the total amount is also increased, so that the opponent attack is increased, and the metal fiber falls off as a wear component, so that the rotor and the friction material are separated. By interposing, the frictional material wear may also deteriorate.

本発明の非石綿系摩擦材において、金属繊維繊維分として骨材繊維と高温潤滑性繊維の双方を含み、上記の骨材機能値が30以上で、硬さ機能値が10以下の場合、この金属繊維分が10〜60質量%の割合で含まれ、このうち上記骨材繊維が5〜40質量%分、上記高温潤滑性繊維が5〜20質量%分を占めることが好ましい。   In the non-asbestos-based friction material of the present invention, when both the aggregate fiber value and the high temperature lubricating fiber are included as the metal fiber fiber, the aggregate function value is 30 or more, and the hardness function value is 10 or less. It is preferable that the metal fiber content is included at a rate of 10 to 60% by mass, of which the aggregate fiber accounts for 5 to 40% by mass and the high temperature lubricating fiber accounts for 5 to 20% by mass.

金属繊維分が10質量%未満では、高温下での摩擦係数の低下を抑制することができず、60質量%を超えると、高温下での摩擦係数の低下を抑制することは可能であるが、相手攻撃性が増大し、ローター摩耗と摩擦材の摩耗が増大するとともに、異音や鳴きが発生し易くなる。
骨材繊維が5質量%未満では、高温下での摩擦係数の低下を抑制することができず、40質量%を超えると、高温下での摩擦係数の低下を抑制することは可能であるが、相手攻撃性増大し、ローター摩耗と摩擦材の摩耗が増大するとともに、異音や鳴きが発生し易くなる。
また、高温潤滑性繊維が5質量%未満では、潤滑性繊維の機能を果たすことができなくなることがあり、異音や鳴きが発生し易く、また、高温下での潤滑性能が低下することで、骨材繊維及び研削材によるローター摩耗が増大することがある。20質量%を超えると、潤滑性能が過剰となり高温下での摩擦係数の保持を阻害することがある。
If the metal fiber content is less than 10% by mass, the decrease in the friction coefficient at high temperatures cannot be suppressed, and if it exceeds 60% by mass, the decrease in the friction coefficient at high temperatures can be suppressed. The opponent's aggression increases, the wear of the rotor and the friction material increases, and abnormal noise and squeal are liable to occur.
If the aggregate fiber is less than 5% by mass, it is not possible to suppress the decrease in the friction coefficient at high temperatures, and if it exceeds 40% by mass, it is possible to suppress the decrease in the friction coefficient at high temperatures. The other party's aggression increases, wear of the rotor and friction material increases, and abnormal noise and squealing are likely to occur.
In addition, if the high-temperature lubricating fiber is less than 5% by mass, the function of the lubricating fiber may not be achieved, abnormal noise or squealing is likely to occur, and the lubricating performance at high temperatures is reduced. Rotor wear due to aggregate fibers and abrasives may increase. If it exceeds 20% by mass, the lubrication performance becomes excessive and the retention of the coefficient of friction at high temperatures may be hindered.

上述のような高温潤滑性繊維を構成する金属繊維としては、上記の特性を満足する限り特に限定されるものではないが、典型的には、銅(Cu)、銅合金から成る繊維を例示でき、本発明では、銅(Cu)、銅合金から成る繊維を使用する。 The metal fiber constituting the high-temperature lubricating fiber as described above is not particularly limited as long as the above characteristics are satisfied, but typically, a fiber made of copper (Cu) or a copper alloy can be exemplified. In the present invention, fibers made of copper (Cu) or a copper alloy are used.

なお、本発明の非石綿系摩擦材は、上述の成分以外にも、無機繊維、有機充填材、充填材、潤滑材、及び研削材などを含有することができる。
無機繊維としては、ロックウールやガラス繊維などを例示でき、有機充填材としては、ゴムやダストなど、充填材としては、硫酸バリウムやマイカ、酸化カルシウムなど、潤滑材としては、黒鉛やカーボン、金属硫化物など、研削材としてはジルコニアやアルミナ、マイカなどを例示できる。
The non-asbestos-based friction material of the present invention can contain inorganic fibers, organic fillers, fillers, lubricants, abrasives and the like in addition to the above-described components.
Examples of inorganic fibers include rock wool and glass fibers. Examples of organic fillers include rubber and dust. Examples of fillers include barium sulfate, mica, and calcium oxide. Examples of lubricants include graphite, carbon, and metal. Examples of abrasives such as sulfides include zirconia, alumina, and mica.

また、本発明の非石綿系摩擦材は、高温摩擦後にこの非石綿系摩擦材の表面から200μm以浅に形成される摩擦劣化層において、この層に存在する骨材繊維の繊維径が、高温摩擦前の100〜20%の大きさを有する。
即ち、高温摩擦後においても、上記骨材繊維の繊維径は余り小さくならず、このことからも、上記骨材繊維が骨格形成材としての機能を十分に果たし、当該非石綿系摩擦材の高温域での摩擦係数低下を十分に抑制していることが分かる。
Further, the non-asbestos-based friction material of the present invention is such that the fiber diameter of the aggregate fiber present in this layer is high-temperature friction in a friction-degraded layer formed shallower than 200 μm from the surface of the non-asbestos-based friction material after high-temperature friction. It has the previous 100-20% size.
That is, even after high-temperature friction, the fiber diameter of the aggregate fiber is not so small. Therefore, the aggregate fiber sufficiently functions as a skeleton-forming material, and the high temperature of the non-asbestos-based friction material. It can be seen that the friction coefficient decrease in the region is sufficiently suppressed.

更に、本発明の非石綿系摩擦材は、上記摩擦劣化層において、この層に存在する骨材繊維の繊維量が、この高温摩擦前の80〜100質量%の量を有する。
即ち、高温摩擦後においても、上記骨材繊維の繊維量を余り減少させず、このことからも、上記骨材繊維が骨格形成材としての機能を十分に果たし、当該非石綿系摩擦材の高温域での摩擦係数低下を十分に抑制していることが分かる。
Furthermore, non-asbestos friction material of the present invention, in the friction degradation layer, the fibers of the aggregate fibers present in this layer is, that have a quantity of 80 to 100 wt% before the high temperature friction.
That is, even after high temperature friction, the amount of the aggregate fiber does not decrease so much. From this, the aggregate fiber sufficiently functions as a skeleton-forming material, and the high temperature of the non-asbestos-based friction material. It can be seen that the friction coefficient decrease in the region is sufficiently suppressed.

高温摩擦は、具体的には、700℃において、ロータなどの回転体をパッド形状に形成した非石綿系摩擦材で挟んで制動させることによって行うことができ、例えば、自動車の速度換算としては、時速144kmから時速80km相当に減速する条件下で行うことができる。   Specifically, high-temperature friction can be performed by holding and rotating a rotating body such as a rotor with a non-asbestos-based friction material formed in a pad shape at 700 ° C. For example, as a speed conversion of an automobile, It can be performed under the condition of decelerating from 144 km / h to 80 km / h.

このような骨材特性の観点からは、チタン(Ti)及びチタン合金が良好であり、例えば、30μmの繊維径を有するチタン(Ti)は、高温摩擦後も繊維径が変化せず、しかも摩擦劣化相も摩擦材表面から30μm以浅程度の範囲にしか存在しない。
また、ニッケル(Ni)及びニッケル合金も使用可能であり、例えば、50μmの繊維径を有するニッケル(Ni)では、高温摩擦後の繊維径は10μm程度への低減に留まる。なお、摩擦劣化相も摩擦材表面から200μm以浅程度の範囲である。但し、ニッケルを骨材繊維として用いた場合、骨材機能としての効果は高いが、ニッケルと硫化物の関係から、硫化物と合せて使用しないほうが好ましい。
From the viewpoint of such aggregate characteristics, titanium (Ti) and titanium alloys are good. For example, titanium (Ti) having a fiber diameter of 30 μm does not change its fiber diameter even after high-temperature friction, and the friction The deteriorated phase also exists only in a range of about 30 μm or less from the friction material surface.
Nickel (Ni) and nickel alloys can also be used. For example, in nickel (Ni) having a fiber diameter of 50 μm, the fiber diameter after high-temperature friction is only reduced to about 10 μm. The friction deterioration phase is also in a range of about 200 μm or less from the friction material surface. However, when nickel is used as an aggregate fiber, the effect as an aggregate function is high, but it is preferable not to use it together with sulfide because of the relationship between nickel and sulfide.

本発明の非石綿系摩擦材において、各種成分の配合量は、上記の高温摩擦後の特性を満足する限り特に限定されるものではないが、骨材繊維を5〜40質量%、必要に応じて高温潤滑性繊維を5〜20質量%の割合で配合することが好ましい。
骨材繊維の配合量が5質量%未満では、骨格を維持できなくなり、高温摩擦時の骨格形成機能を果たす事ができなくなることがある。また、40質量%を超えると異音や鳴きが発生し易く、また摩耗も多くなることがある。
また、高温潤滑性繊維の配合量が5質量%未満では、潤滑性繊維の機能を果たす事ができなくなることがあり、異音や鳴きが発生し易く、また摩耗も多くなることがある。また、20質量%を超えると、高温摩擦時の骨格形成機能を阻害し、高温時の摩擦係数が低下することがある。
In the non-asbestos-based friction material of the present invention, the blending amount of various components is not particularly limited as long as the above-mentioned characteristics after high-temperature friction are satisfied, but aggregate fiber is 5 to 40% by mass, as necessary It is preferable to blend the high-temperature lubricating fiber at a ratio of 5 to 20% by mass.
When the amount of aggregate fiber is less than 5% by mass, the skeleton cannot be maintained, and the skeleton formation function during high-temperature friction may not be achieved. On the other hand, if it exceeds 40% by mass, abnormal noise and squeal are likely to occur, and wear may increase.
If the blending amount of the high-temperature lubricating fiber is less than 5% by mass, the function of the lubricating fiber may not be achieved, abnormal noise and squeal are likely to occur, and wear may be increased. Moreover, when it exceeds 20 mass%, the frame | skeleton formation function at the time of high temperature friction may be inhibited, and the friction coefficient at the time of high temperature may fall.

次に、本発明の非石綿系摩擦材の製造方法について説明する。
本発明の非石綿系摩擦材は、上述の各種成分を均一に混合した後、予備成形し、次いで金型内に裏金及び予備成形体を挿入した後、加熱加圧成形法で成形した後、熱処理を行うことにより製造することや、均一に混合した後、金型内に混合粉と裏金を挿入した後、加熱加圧成形法で成形すること、又は加熱加圧成形法で成形した後、熱処理を行うことにより製造することができる。
Next, the manufacturing method of the non-asbestos-based friction material of the present invention will be described.
After the non-asbestos-based friction material of the present invention is uniformly mixed with the above-described various components, it is preformed, and after the back metal and the preform are inserted into the mold, it is then molded by a heat and pressure molding method. After manufacturing by heat treatment or after mixing uniformly, after inserting the mixed powder and the back metal into the mold, after molding by the hot press molding method, or after molding by the hot press molding method, It can be manufactured by performing a heat treatment.

以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited to these Examples.

表1に示す各種配合成分を均一に混合した後、予備成形し、次いで金型内に裏金及び予備成形体を挿入した後、加熱加圧成形法で成形した後、熱処理を行い、各例の摩擦材を製造した。
なお、表1において、チタン28質量%、14質量%及び7質量%はそれぞれ10vol%、5vol%及び2.5vol%、ニッケル28質量%は10vol%、銅14質量%及び7質量%はそれぞれ5vol%及び2.5vol%、ステンレス28質量%は10vol%、スチール28質量%は10vol%に相当し、その他使用している摩擦材成分の使用量、密度と摩擦材の重量、密度の関係から測定することができる。
After uniformly mixing the various components shown in Table 1, after preforming, and then inserting the back metal and the preform into the mold, after molding by the heat and pressure molding method, heat treatment is performed, A friction material was produced.
In Table 1, titanium 28 mass%, 14 mass% and 7 mass% are 10 vol%, 5 vol% and 2.5 vol%, nickel 28 mass% is 10 vol%, copper 14 mass% and 7 mass% are 5 vol%, respectively. % And 2.5 vol%, stainless steel 28 mass% is equivalent to 10 vol%, steel 28 mass% is equivalent to 10 vol%, and is measured from the relationship between the amount of friction material components used, density and weight of friction material, and density. can do.

Figure 0005578391
Figure 0005578391

[性能評価]
(1)フェード時の摩擦係数変化
各例の摩擦材を1/5サイズブレーキダイナモスケール試験機を用いて、下記の試験条件に供した。具体的には、すり合わせ1→すり合わせ2→本試験の順で処理し、本試験での摩擦係数を測定し、得られた結果を表2に示した。
[Performance evaluation]
(1) Friction coefficient change during fading The friction material of each example was subjected to the following test conditions using a 1/5 size brake dynamo scale tester. Specifically, the treatment was carried out in the order of lapping 1 → roughing 2 → main test, the friction coefficient in the main test was measured, and the obtained results are shown in Table 2.

・すり合わせ1
制動前温度:120℃
制動初速度:60km/h
制動終速度: 0km/h
減速度 :0.3G
制動回数 :200回
・ Rice 1
Pre-braking temperature: 120 ° C
First braking speed: 60km / h
Final braking speed: 0km / h
Deceleration: 0.3G
Number of braking: 200 times

・すり合わせ2
制動前温度:80℃
制動初速度:130km/h
制動終速度: 0km/h
減速度 :0.6G
制動回数 :10回
・ Rice 2
Pre-braking temperature: 80 ° C
First braking speed: 130km / h
Final braking speed: 0km / h
Deceleration: 0.6G
Number of braking: 10 times

・本試験
制動前温度:60℃
制動初速度:144km/h
制動終速度: 80km/h
減速度 :0.5G
制動間隔 :22秒
制動回数 :摩擦材が700℃に到達するまで実施
・ Main test temperature before braking: 60 ℃
Brake initial speed: 144 km / h
Final braking speed: 80km / h
Deceleration: 0.5G
Braking interval: 22 seconds Number of braking cycles: Conducted until the friction material reaches 700 ° C

(2)摩耗量
JASO C406:2000に準拠したテストピース試験を行った後、各例の摩擦材の摩耗量を測定した。得られた結果を表3に示す。
(2) Amount of wear After performing a test piece test based on JASO C406: 2000, the amount of wear of the friction material of each example was measured. The obtained results are shown in Table 3.

Figure 0005578391
Figure 0005578391

Figure 0005578391
Figure 0005578391

(3)フェード後における摩擦材の表面観察
実施例1、実施例2、実施例3及び比較例3の摩擦材について、それぞれ以下の試験条件下でフェード処理を行った後、その断面を光学顕微鏡で観察した。これらの光学顕微鏡写真をそれぞれ、図1、図2、図3及び図4に示す。
(3) Surface observation of friction material after fading For the friction materials of Example 1, Example 2, Example 3 and Comparative Example 3, each was subjected to a fading treatment under the following test conditions, and then the cross section was subjected to an optical microscope. Observed at. These optical micrographs are shown in FIGS. 1, 2, 3 and 4, respectively.

(a)試験条件
ねずみ鋳鉄製のロータを用い、実施例1の摩擦材をパッドとして試験を行った。速度144km/hから80km/hに減速させた。初期温度は60、減速度は0.5Gとした。
(A) Test conditions Tests were performed using a gray cast iron rotor and the friction material of Example 1 as a pad. The speed was reduced from 144 km / h to 80 km / h. The initial temperature was 60 ° C. and the deceleration was 0.5 G.

(b)試験結果
実施例1の摩擦材では、温度が700℃のとき、制動回数は6回で、摩擦係数μは0.30であった。また、ロータ厚さ減は、0.041mm、パッド厚さ減は1.40mmとなった。
実施例2の摩擦材では、温度が700℃のとき、制動回数は8回で、摩擦係数μは0.19であった。また、ロータ厚さ減は0.038mm、パッド厚さ減は1.33mmとなった。
実施例3の摩擦材では、温度は700℃のとき、制動回数は7回で、摩擦係数μは0.23であった。また、ロータ厚さ減は0.028mm、パッド厚さ減は0.87mmとなった。
一方、比較例3の摩擦材では、温度は700℃のとき、制動回数は9回で、摩擦係数μは0.17であった。また、ロータ厚さ減は0.031mm、パッド厚さ減は0.79mmとなった。
(B) Test Results In the friction material of Example 1, when the temperature was 700 ° C., the number of braking was 6 and the friction coefficient μ was 0.30. Further, the rotor thickness reduction was 0.041 mm, and the pad thickness reduction was 1.40 mm.
In the friction material of Example 2, when the temperature was 700 ° C., the number of braking was 8 and the friction coefficient μ was 0.19. Further, the rotor thickness reduction was 0.038 mm, and the pad thickness reduction was 1.33 mm.
In the friction material of Example 3, when the temperature was 700 ° C., the number of braking was 7, and the friction coefficient μ was 0.23. Further, the rotor thickness reduction was 0.028 mm, and the pad thickness reduction was 0.87 mm.
On the other hand, in the friction material of Comparative Example 3, when the temperature was 700 ° C., the number of braking was 9 and the friction coefficient μ was 0.17. Further, the rotor thickness reduction was 0.031 mm, and the pad thickness reduction was 0.79 mm.

以上の結果から、実施例1〜3は、比較例3と比較し、骨材繊維を配合することで、その骨格機能を充分に果たす働きから、高温下での摩擦係数低下が抑制でき、骨材繊維と高温潤滑繊維の配合を最適化することによって、高温下での摩擦係数低下の抑制とパッド、ロータの摩耗低減の両立が可能であることが分かる。   From the above results, Examples 1 to 3 can suppress the decrease in the friction coefficient at high temperature from the function of sufficiently fulfilling the skeleton function by blending the aggregate fiber as compared with Comparative Example 3, It can be seen that by optimizing the blending of the material fibers and the high-temperature lubricating fibers, it is possible to achieve both the suppression of the friction coefficient decrease at high temperatures and the wear reduction of the pad and rotor.

また、図1〜図4より、断面観察から、劣化層の厚さ及び骨材繊維、潤滑性繊維の高温摩擦後の状態が確認することができる。骨材繊維、潤滑性繊維の配合をコントロールすることで、劣化層の厚さ、劣化層内における骨材繊維の繊維径をコントロールすることができ、高温下での摩擦係数低下の抑制とパッド、ロータの摩耗低減の両立が可能であることが分かる。   1 to 4, the thickness of the deteriorated layer and the state of the aggregate fiber and the lubricating fiber after high-temperature friction can be confirmed from cross-sectional observation. By controlling the composition of the aggregate fiber and the lubricating fiber, the thickness of the deteriorated layer, the fiber diameter of the aggregate fiber in the deteriorated layer can be controlled, and the friction coefficient reduction at high temperature and the pad, It can be seen that it is possible to reduce the wear of the rotor.

(4)摩擦材表面の金属量分析など
また、実施例1、実施例2、実施例3及び比較例3の摩擦材について、それぞれ上記の試験条件下でフェード処理を行った後、その摩擦材表面の金属成分分析、及び蛍光X線ライン分析を実施し、摩擦材表面の金属量、金属繊維量の維持率について分析した。
これらの分析結果をそれぞれ表4及び表5に示す。表4は、摩擦材に使用している金属全体の成分量に対する、使用している金属繊維成分量の維持率を示す。但し、粉末や繊維以外の成分として含まれる成分も検出している場合がある。表5は、限りなく繊維に近いと考えられる物を測定したときの維持率を示す。
(4) Analysis of amount of metal on friction material surface, etc. Further, the friction materials of Example 1, Example 2, Example 3 and Comparative Example 3 were each subjected to a fade treatment under the above test conditions, and then the friction material. Surface metal component analysis and fluorescent X-ray line analysis were performed to analyze the maintenance rate of the amount of metal and the amount of metal fibers on the surface of the friction material.
These analysis results are shown in Table 4 and Table 5, respectively. Table 4 shows the maintenance rate of the amount of the metal fiber component used relative to the amount of the entire metal component used in the friction material. However, the component contained as components other than powder and fiber may also be detected. Table 5 shows the retention rate when measuring an object that is considered as close to the fiber as possible.

Figure 0005578391
Figure 0005578391

Figure 0005578391
Figure 0005578391

図5は、評価前後の金属性分量につき蛍光X線表面分析を実施した結果を示す。
それぞれの金属成分において、ピーク値が高いものが表面で検出された成分であり、主に金属繊維である。但し、評価後に鉄の検出値が高いのは、摩耗によるロータ成分が付着したものが検出された結果である。これらの金属繊維を定量値にしたものが表4及び5である。
FIG. 5 shows the results of fluorescent X-ray surface analysis performed on the metallic content before and after the evaluation.
Among the respective metal components, those having a high peak value are components detected on the surface, mainly metal fibers. However, the high detection value of iron after the evaluation is a result of detection of an adhering rotor component due to wear. Tables 4 and 5 show the quantitative values of these metal fibers.

表4の金属成分分析では、評価前の金属成分量に対し、評価終了後の劣化層を含んだ摩擦材表面の金属成分量を比較し維持率で表したが、実施例1、2が減少しているのに対し、実施例3、比較例4は、増加している。
これは、劣化層にローターの摩耗粉成分である鉄が含まれ、その鉄成分を検出したことで評価前に検出された金属成分量が減少した実施例1、2に対し、高温潤滑繊維である銅が高温で劣化し、劣化層に含まれ、その銅成分も検出した為に増加したものと考えられる。
In the metal component analysis in Table 4, the amount of metal component on the surface of the friction material including the deteriorated layer after the evaluation was compared with the amount of metal component before evaluation, and expressed in terms of maintenance rate. In contrast, Example 3 and Comparative Example 4 are increasing.
This is because the deteriorated layer contains iron, which is a wear powder component of the rotor, and the amount of metal component detected before evaluation is reduced by detecting the iron component. It is considered that some copper deteriorated at a high temperature, was included in the deteriorated layer, and increased because the copper component was detected.

それに対し、表5は、限りなく金属繊維に近いと考えられる物を測定し、その維持率を記した。実施例1〜3は、評価前の金属繊維量に対し、評価終了後の200μm以浅に形成される摩擦劣化層に含まれる骨材繊維が80%以上の繊維量を含有していることが検出された。但し、比較例3は、骨材繊維として使用した銅は、80%以上の繊維量を含有しているが、表4からも明らかであるように、高温潤滑繊維としても働き、劣化層に含まれることで、潤滑機能として摩擦係数の低下を促進していることが確認できる。   On the other hand, Table 5 measured the thing considered to be close to the metal fiber as much as possible, and described the maintenance rate. In Examples 1 to 3, it is detected that the aggregate fiber contained in the frictionally deteriorated layer formed shallower than 200 μm after the evaluation contains a fiber amount of 80% or more with respect to the metal fiber amount before the evaluation. It was done. However, in Comparative Example 3, the copper used as the aggregate fiber contains a fiber amount of 80% or more, but as is clear from Table 4, it also functions as a high temperature lubricating fiber and is included in the deteriorated layer. This confirms that the reduction of the friction coefficient is promoted as a lubricating function.

上記の分析結果から、骨材繊維、潤滑性繊維の高温摩擦後の状態を確認することができる。骨材繊維、潤滑性繊維の配合をコントロールすることで、劣化層の厚さ、劣化層内における骨材繊維の繊維径、繊維量をコントロールすることができ、高温下での摩擦係数低下の抑制とパッド、ロータの摩耗低減の両立が可能であることが分かる。   From the above analysis results, the state of the aggregate fiber and the lubricating fiber after high-temperature friction can be confirmed. By controlling the blending of aggregate fiber and lubricating fiber, the thickness of the deteriorated layer, the fiber diameter of the aggregate fiber in the deteriorated layer, and the amount of fiber can be controlled, and the reduction in friction coefficient at high temperatures is suppressed. It can be seen that it is possible to reduce wear of the pad and the rotor.

フェード後における摩擦材の表面を示した光学顕微鏡写真である。2 is an optical micrograph showing the surface of a friction material after fading. フェード後における摩擦材の表面を示した光学顕微鏡写真である。2 is an optical micrograph showing the surface of a friction material after fading. フェード後における摩擦材の表面を示した光学顕微鏡写真である。2 is an optical micrograph showing the surface of a friction material after fading. フェード後における摩擦材の表面を示した光学顕微鏡写真である。2 is an optical micrograph showing the surface of a friction material after fading. 金属性分量につき蛍光X線表面分析を実施した結果を示すチャートである。It is a chart which shows the result of having performed fluorescent X-ray surface analysis about metallic quantity.

Claims (6)

85〜145Hvの硬さ、400〜600N/mmの引張強さ、20〜49%の伸びを有し、融点が1450℃以上の金属繊維から成り、チタン(Ti)、チタン合金、ニッケル(Ni)及びニッケル合金から成る群より選ばれた少なくとも1種の骨材繊維と、有機繊維と、結合材を含有する非石綿系摩擦材であって、
速度換算で144km/hrから80km/hrに減速させる条件下で制動させて当該非石綿系摩擦材を700℃に到達させる高温摩擦後にこの非石綿系摩擦材の表面から200μm以浅に形成される摩擦劣化層に含まれる上記骨材繊維の繊維量が、上記高温摩擦前の量の80〜100質量%であることを特徴とする非石綿系摩擦材。
Hardness of 85~145Hv, 400~600N / mm 2 tensile strength, have an elongation of 20-49%, a melting point Ri consists 1450 ° C. or more metal fiber, titanium (Ti), titanium alloys, nickel ( A non-asbestos-based friction material containing at least one aggregate fiber selected from the group consisting of Ni) and a nickel alloy , an organic fiber, and a binder,
Friction formed shallower than 200 μm from the surface of the non-asbestos-based friction material after high-temperature friction that causes the non-asbestos-based friction material to reach 700 ° C. by braking under the condition of speed reduction from 144 km / hr to 80 km / hr. A non-asbestos-based friction material, wherein a fiber amount of the aggregate fiber contained in the deteriorated layer is 80 to 100% by mass of the amount before the high-temperature friction.
更に、80Hv以下の硬さ、150〜400N/mmの引張強さ、10%以上の伸びを有し、融点が700〜1100℃の銅繊維(Cu)又は銅合金繊維から成る高温潤滑性繊維を含むことを特徴とする請求項1に記載の非石綿系摩擦材。 Furthermore, a high-temperature lubricating fiber comprising a copper fiber (Cu) or a copper alloy fiber having a hardness of 80 Hv or less, a tensile strength of 150 to 400 N / mm 2, an elongation of 10% or more, and a melting point of 700 to 1100 ° C. The non-asbestos-based friction material according to claim 1, comprising: 上記骨材繊維、又は上記骨材繊維及び上記高温潤滑性繊維から成る金属繊維分の骨材機能値が30以上であり、且つその硬さ機能値が10以下であることを特徴とする請求項1又は2に記載の非石綿系摩擦材。   The aggregate function value of the aggregate fiber or the metal fiber composed of the aggregate fiber and the high-temperature lubricating fiber is 30 or more, and the hardness function value is 10 or less. The non-asbestos-based friction material according to 1 or 2. 上記金属繊維分が10〜60質量%の割合で含まれ、このうち上記骨材繊維が5〜40質量%分、上記高温潤滑性繊維が5〜20質量%分を占めることを特徴とする請求項3に記載の非石綿系摩擦材。   The metal fiber content is included at a rate of 10 to 60% by mass, wherein the aggregate fiber accounts for 5 to 40% by mass and the high temperature lubricating fiber accounts for 5 to 20% by mass. Item 4. The non-asbestos-based friction material according to Item 3. 上記骨材繊維を5〜40質量%の割合で含むことを特徴とする請求項1〜4のいずれか1つの項に記載の非石綿系摩擦材。   The non-asbestos-based friction material according to any one of claims 1 to 4, wherein the aggregate fiber is included at a rate of 5 to 40% by mass. 上記高温潤滑性繊維を5〜20質量%の割合で含むことを特徴とする請求項2〜5のいずれか1つの項に記載の非石綿系摩擦材。   The non-asbestos-based friction material according to any one of claims 2 to 5, wherein the high-temperature lubricating fiber is contained at a ratio of 5 to 20% by mass.
JP2008060444A 2007-04-13 2008-03-11 Non-asbestos friction material Expired - Fee Related JP5578391B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008060444A JP5578391B2 (en) 2007-04-13 2008-03-11 Non-asbestos friction material
PCT/JP2008/057196 WO2008133056A1 (en) 2007-04-13 2008-04-11 Non-asbestos friction material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007105535 2007-04-13
JP2007105535 2007-04-13
JP2008060444A JP5578391B2 (en) 2007-04-13 2008-03-11 Non-asbestos friction material

Publications (2)

Publication Number Publication Date
JP2008280521A JP2008280521A (en) 2008-11-20
JP5578391B2 true JP5578391B2 (en) 2014-08-27

Family

ID=40141600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008060444A Expired - Fee Related JP5578391B2 (en) 2007-04-13 2008-03-11 Non-asbestos friction material

Country Status (1)

Country Link
JP (1) JP5578391B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111720462B (en) * 2012-12-21 2022-04-05 曙制动器工业株式会社 Friction material
JP6204091B2 (en) * 2013-07-09 2017-09-27 黒崎播磨株式会社 Metal fiber composite
CN107326721B (en) * 2017-06-07 2018-11-30 东阳市特意新材料科技有限公司 A kind of preparation method of hole isotypy paper friction material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4539240A (en) * 1984-11-29 1985-09-03 Borg-Warner Corporation Asbestos free friction element
JPH0774657B2 (en) * 1987-10-30 1995-08-09 アイシン化工株式会社 Friction material for brake
JPH02209635A (en) * 1989-02-03 1990-08-21 Aisin Chem Co Ltd Friction material for brake
JP2874296B2 (en) * 1989-09-18 1999-03-24 住友電気工業株式会社 Friction material for brake
JP2782105B2 (en) * 1990-02-14 1998-07-30 曙ブレーキ工業株式会社 Non-asbestos friction material
JP2601077B2 (en) * 1991-10-28 1997-04-16 日立化成工業株式会社 Friction material

Also Published As

Publication number Publication date
JP2008280521A (en) 2008-11-20

Similar Documents

Publication Publication Date Title
JP6226042B2 (en) Non-asbestos friction material composition, friction material and friction member using the same
JP2647164B2 (en) Friction material
JP5124814B2 (en) Non-asbestos friction material
JP4430468B2 (en) Copper-based sintered friction material
JP5057000B2 (en) Non-asbestos friction material composition, friction material and friction member using the same
KR102387244B1 (en) Friction material
CN105745298B (en) Friction material composition and friction material
JP5071604B2 (en) Non-asbestos friction material composition, friction material and friction member using the same
JP6481775B2 (en) Friction material composition, friction material and friction member
JP6977778B2 (en) Friction member, friction material composition for underlayment material and friction material
JP6043642B2 (en) Brake friction material
JP5987539B2 (en) Friction material composition, friction material and friction member using the same
JP5263454B2 (en) Non-asbestos friction material composition, friction material and friction member using the same
JPH038409B2 (en)
JP5578391B2 (en) Non-asbestos friction material
JP6360270B1 (en) Sintered friction material for brake
JP2009102583A (en) Brake friction material
JP6596956B2 (en) Friction material composition, and friction material and friction member using the same
JPWO2019151390A1 (en) Friction material, friction material composition, friction member and vehicle
JP2016121245A (en) Friction material composition, and friction material and friction member using the same
JP5469805B2 (en) Friction material composition and friction material using friction material composition
JP6570167B2 (en) Friction material composition, and friction material and friction member using the same
JP2010090294A (en) Non-asbestos friction material
JP4195791B2 (en) Friction material for brake
JP2021152119A (en) Friction member, friction material composition, friction material and vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140626

LAPS Cancellation because of no payment of annual fees