JP2014215194A - センサーデバイス - Google Patents

センサーデバイス Download PDF

Info

Publication number
JP2014215194A
JP2014215194A JP2013093345A JP2013093345A JP2014215194A JP 2014215194 A JP2014215194 A JP 2014215194A JP 2013093345 A JP2013093345 A JP 2013093345A JP 2013093345 A JP2013093345 A JP 2013093345A JP 2014215194 A JP2014215194 A JP 2014215194A
Authority
JP
Japan
Prior art keywords
capacitance
axis
capacitance sensor
sensor
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013093345A
Other languages
English (en)
Other versions
JP6056636B2 (ja
Inventor
峰子 小杉
Mineko Kosugi
峰子 小杉
秀和 小野
Hidekazu Ono
秀和 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP2013093345A priority Critical patent/JP6056636B2/ja
Publication of JP2014215194A publication Critical patent/JP2014215194A/ja
Application granted granted Critical
Publication of JP6056636B2 publication Critical patent/JP6056636B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/12Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance

Abstract

【課題】3軸全ての測定に要する時間を短縮化し、消費電力を低減できるようにしたセンサーデバイスを提供する。【解決手段】センサーデバイス1は、2つの可変容量コンデンサCX1,CX2で構成されるX軸の静電容量センサー3と、2つの可変容量コンデンサCY1,CY2で構成されるY軸の静電容量センサー4と、一の可変容量コンデンサCZ1と静電容量不変のコンデンサCZ2とで構成されるZ軸の静電容量センサー5と、XYZ各軸の静電容量センサー3,4,5のそれぞれに対してチャージ電圧を時分割で順次印加していくことにより一の静電容量センサーを選択して測定モードに順次移行させる制御回路8とを備える。制御回路8は、X軸又はY軸が測定モードにあるとき、Z軸の静電容量センサー5における可変容量コンデンサCZ1の静電容量変化を安定化させるための駆動電圧を印加する。【選択図】図1

Description

本発明は、例えばMEMS(Micro Electro Mechanical Systems)などによって構成され、互いに直交する3軸方向の加速度などを検知するセンサーデバイスに関する。
従来、一軸方向に移動可能な可動電極を挟んで一対の固定電極が設けられ、各固定電極と可動電極との間に2つの可変容量コンデンサが構成された静電容量センサーが知られている(例えば特許文献1)。この種の静電容量センサーは、可動電極が移動可能な一軸方向に外力(加速度)が作用すると、それに伴って可動電極が2つの固定電極の間で変位し、2つの可変容量コンデンサの静電容量をそれぞれ変化させる。これら可変容量コンデンサの静電容量変化を検知するため、例えば特許文献1では、一対の固定電極に対して一定周期で極性が反転するチャージ電圧を印加するように構成される。
このようなチャージ電圧が印加されると、2つの可変容量コンデンサの間に電位差が発生するため、2つの可変容量コンデンサのそれぞれにおいて可動電極を引き付けようとする静電気力が発生する。しかし、一対の固定電極の間に可動電極が配置されている場合には、各可変容量コンデンサにおいて発生する静電気力は互いに逆方向に可動電極を引き付けて打ち消し合う。そのため、可動電極に作用する静電気力がキャンセルされ、可動電極は外力が作用した場合にのみ2つの固定電極の間で変位するようになっている。
特開2004−294077号公報
近年では、1つのセンサーデバイスに、上記のような静電容量センサーを互いに直交する3軸方向に設け、それら3軸方向についての測定結果を出力することが望まれている。例えば1つのセンサーデバイスにMEMS構造で3軸方向の静電容量センサーを形成する場合、X軸とY軸の2方向については、上述したように、一の可動電極を挟んで2つの固定電極を配置することが可能であるため、2つの可変容量コンデンサを備えた静電容量センサーを構成することができる。しかし、X軸及びY軸に直交するZ軸方向については、一の可動電極を挟んで2つの固定電極を配置することが困難である。
図14は、Z軸方向の加速度を検知する静電容量センサーの一構成例を示す図である。Z軸方向の加速度を検知する静電容量センサーは、図14(a)に示すように半導体基板91の表面に形成された固定電極17に対向して配置される可動電極16が、その固定電極17から所定間隔(数μm程度)を隔てて浮き上がった状態でZ軸方向(上下方向)に移動可能に支持される。すなわち、可動電極16は、固定電極17の周囲において立設する支柱部92の内面から延びる多数のバネ93によってその周囲側面が支持される構成である。また可動電極16の周囲にはキャップ94が被せられ、可動電極16の動作空間が封止される。このような構成では、可動電極16とキャップ94との間隔が過大なものとなるため、可変容量コンデンサを構成する固定電極をキャップ94の下面側に設けることができない。そのため、Z軸方向の加速度を検知する静電容量センサーでは、可動電極16と固定電極17とによる可変容量コンデンサを1つしか形成することができない。
そこでZ軸方向の加速度を検知する静電容量センサーの場合は、例えば図14(b)に示す等価回路のように、可変容量コンデンサCZ1の他に、容量固定のコンデンサCZ2を例えば半導体基板91などに別途形成してそれらを直列に接続する。これにより、他の2軸と同様の手法によって可変容量コンデンサCZ1の静電容量変化を検知することができるようになる。
しかし、その反面、図14(b)のように構成されるZ軸の静電容量センサーは、2つの端子Z1,Z2に対してチャージ電圧が印加されると、可変容量コンデンサCZ1の可動電極16と固定電極17との間に互いに引き付け合う静電気力が発生し、可動電極16がその静電気力によって固定電極17に向かう方向へ移動する。つまり、Z軸の静電容量センサーは、可変容量コンデンサCZ1において発生する静電気力を打ち消し合うもう1つの可変容量コンデンサが存在しないため、チャージ電圧の印加によって発生する静電気力で可動電極16が変位してしまい、外力(加速度)による静電容量変化だけを検知することができなくなる。
これを防止するためには、端子Z1,Z2にチャージ電圧を印加した後、可動電極16に作用する静電気力と、バネ93による引張力とが均等になり、静電気力による可動電極16の変位が一定値に収束して安定するまで待機してから測定することが必要となる。したがって、例えば図15(a)に示すようにXYZ3軸の静電容量センサーのそれぞれにおける静電容量変化を1つのCV変換回路106で検出する場合には、3軸を同時に測定することができないため、図15(b)に示すように、X軸の測定とY軸の測定とを順に行った後、Z軸の測定を開始する前に、Z軸にチャージ電圧を印加して静電容量を安定化させるための処理を行うことが必要となる。しかし、X軸の測定とY軸の測定とが終了した後に、Z軸の静電容量を安定化させるための処理を行うように構成すると、3軸全ての測定を完了させるのに長時間を要すると共に、測定の長時間化に伴ってセンサーデバイスにおける平均消費電力が大きくなるという問題がある。
本発明は、上記課題を解決するため、3軸全ての測定に要する時間を短縮化し、消費電力を低減できるようにしたセンサーデバイスを提供することを目的とする。
上記目的を達成するため、本発明に係るセンサーデバイスは、第1の軸方向に移動可能な可動電極を挟んで一対の固定電極が設けられ、各固定電極と可動電極とによって直列接続された2つの可変容量コンデンサが構成される第1の静電容量センサーと、第1の軸方向と直交する第2の軸方向に移動可能な可動電極を挟んで一対の固定電極が配置され、各固定電極と可動電極とによって直列接続された2つの可変容量コンデンサが構成される第2の静電容量センサーと、第1及び第2の軸方向に直交する第3の軸方向に移動可能な可動電極及び該可動電極に対向して配置される固定電極によって構成される可変容量コンデンサと一対の固定電極からなる静電容量不変のコンデンサとを直列接続して構成される第3の静電容量センサーと、第1乃至第3の静電容量センサーのそれぞれの両端の固定電極に対し、互いに逆相のチャージ電圧を時分割で順次印加していくことにより第1乃至第3の静電容量センサーのうちから一の静電容量センサーを選択して測定モードに順次移行させる制御回路とを備え、制御回路は、第1又は第2の静電容量センサーが測定モードにあるとき、第3の静電容量センサーの両端の固定電極に対してチャージ電圧とは異なる互いに逆相の駆動電圧を印加することにより、第3の静電容量センサーにおける可変容量コンデンサの静電気力による静電容量変化を安定化させることを特徴とする構成である。
また上記センサーデバイスにおいて、制御回路は、第1乃至第3の静電容量センサーのうちの測定モードにある静電容量センサーの両端の固定電極に対し、所定の基準電圧を中心にして一定周期且つ一定電圧幅で極性が反転するチャージ電圧を印加するものであり、第1又は第2の静電容量センサーが測定モードにあるときには、第3の静電容量センサーの両端の固定電極に対し、チャージ電圧と同一周期であり、且つ、基準電圧から同一極性方向に一定電圧幅で振動する駆動電圧を印加することを特徴とする構成を採用しても良い。
その場合、センサーデバイスは、第1乃至第3の静電容量センサーのそれぞれにおける可変容量コンデンサの静電容量変化に対応した信号を出力するCV変換回路と、第1乃至第3の静電容量センサーのそれぞれが測定モードにあるとき、CV変換回路の信号出力を所定のタイミングでサンプリングして出力するサンプリング回路とを更に備える構成とし、サンプリング回路は、第1又は第2の静電容量センサーが測定モードにあるとき、第1又は第2の静電容量センサーの両端の固定電極に印加される前記チャージ電圧の極性が反転した後に、CV変換回路の信号出力をサンプリングして出力することにより、駆動電圧による第3の静電容量センサーからの電荷移動をキャンセルして出力することを特徴とする構成を採用することがより好ましい。
本発明によれば、第1又は第2の静電容量センサーが測定モードにあるときに、第3の静電容量センサーにおける可変容量コンデンサの静電気力による静電容量変化を安定化させておくことができるため、第1又は第2の軸方向の測定が終了すると、第3の静電容量センサーを速やかに測定モードに移行させて第3の軸方向の測定を開始することができる。したがって、3軸全ての測定に要する時間が従来よりも短くなり、消費電力を抑制することができるようになる。
センサーデバイスの概念的構成を示すブロック図である。 センサーデバイスの具体的な回路構成の一例を示す図である。 制御回路による制御動作のシーケンスを示す図である。 XYZ3軸の静電容量センサーの両端に印加される電圧を示す図である。 測定モード時に静電容量センサーに印加されるチャージ電圧を示す図である。 測定モードでの第1の電荷移動を示す図である。 測定モードでの第2の電荷移動を示す図である。 測定モードでの第3の電荷移動を示す図である。 容量安定化処理のために印加される駆動電圧を示す図である。 容量安定化処理での第1の電荷移動を示す図である。 容量安定化処理での第2の電荷移動を示す図である。 容量安定化処理での第3の電荷移動を示す図である。 センサーデバイスの他の回路構成の一例を示す図である。 Z軸方向の加速度を検知する静電容量センサーの一構成例を示す図である。 XYZ3軸の静電容量センサーによる従来の測定方法を示す図である。
以下、本発明に関する好ましい実施形態について図面を参照しつつ詳細に説明する。尚、以下に説明する実施形態において互いに共通する部材には同一符号を付しており、それらについての重複する説明は省略する。
図1は、本発明の一実施形態におけるセンサーデバイス1の概念的構成を示すブロック図である。このセンサーデバイス1は、X軸、Y軸及びZ軸の互いに直交する3軸方向の加速度を検知するように構成されたセンサー部2と、センサー部2からの出力をCV変換するCV変換回路6と、CV変換回路6の出力信号を所定のタイミングでサンプリングして出力するサンプリング回路7と、制御回路8とを備えている。
センサー部2は、X軸方向の加速度を検知する第1の静電容量センサー3と、Y軸方向の加速度を検知する第2の静電容量センサー4と、Z軸方向の加速度を検知する第3の静電容量センサー5とを備える。これら静電容量センサー3,4,5は、例えばMEMS構造によって半導体基板の表面上に形成される。X軸の静電容量センサー3は、例えば半導体基板の表面に平行なX軸方向に移動可能な可動電極10を挟んで一対の固定電極11,12が設けられ、それら固定電極11,12と可動電極10とによって直列接続された2つの可変容量コンデンサCX1,CX2が形成された構成である。同様に、Y軸の静電容量センサー4は、例えば半導体基板の表面に平行であり、且つ、X軸に直交するY軸方向に移動可能な可動電極13を挟んで一対の固定電極14,15が設けられ、それら固定電極14,15と可動電極13とによって直列接続された2つの可変容量コンデンサCY1,CY2が形成された構成である。これに対し、Z軸の静電容量センサー5は、例えば半導体基板の表面に対して垂直なZ軸方向に移動可能な可動電極16とその可動電極16に対向して配置された固定電極17とによって形成される可変容量コンデンサCZ1と、半導体基板上などに設けられる固定電極18,19によって形成される静電容量不変のコンデンサCZ2とを直列接続した構成である。尚、Z軸の静電容量センサー5を構成する可変容量コンデンサCZ1は、図14(a)に示した構造と同様である。
これらの静電容量センサー3,4,5は、いずれも可動電極10,13,16が移動可能な方向に外力(加速度)が作用すると、それに伴って可動電極10,13,16が変位し、可変容量コンデンサCX1,CX2,CY1,CY2,CZ1の静電容量をそれぞれ変化させるように構成されている。そして各静電容量センサー3,4,5において直列接続された2つのコンデンサの中点がCV変換回路6へと接続され、静電容量変化に伴う信号をセンサー部2からのシングル出力としてCV変換回路6へ出力する。
制御回路8は、上記3つの静電容量センサー3,4,5のそれぞれに対し、所定のチャージ電圧を時分割で順次印加していくことにより、3つの静電容量センサー3,4,5のうちから一の静電容量センサーを選択して測定モードに順次移行させると共に、CV変換回路6及びサンプリング回路7の動作を制御する回路である。
図2は、センサーデバイス1の具体的な回路構成の一例を示す図である。図2に示すように、本実施形態のCV変換回路6は、オペアンプ20を備えて構成される。このオペアンプ20の反転入力端子には、センサー部2からの出力端子が接続される。オペアンプ20の反転入力端子と出力端子との間には、フィードバックコンデンサCfとスイッチSfとが並列接続される。スイッチSfはコンデンサCfに蓄積された電荷を放電させるためのものであり、上述した制御回路8によってオンオフ制御される。一方、オペアンプ20の非反転入力端子は基準電圧Vrefに接続される。このオペアンプ20は、反転入力端子の電位Vinと非反転入力端子の電位Vipとが等しくなるように動作するため、反転入力端子の電位Vinが所定の基準電圧Vrefで保持されるようになる。
このようなCV変換回路6は、センサー部2に設けられた各静電容量センサー3,4,5が測定モードにあるとき、加速度が作用して可変容量コンデンサの静電容量が変化すると、その静電容量変化によって移動する電荷をフィードバックコンデンサCfに蓄積し、静電容量の変化分に応じた出力信号Voをオペアンプ20の出力端子から出力する。
本実施形態のサンプリング回路7は、出力相関二重サンプリング回路を採用している。このサンプリング回路7は、CV変換回路6の出力信号Voをサンプリングして出力するために、コンデンサCa,CbとスイッチSa,Sbとを備えている。コンデンサCaの一端は、CV変換回路6におけるオペアンプ20の出力端子に接続され、他端はスイッチSbの一端に接続される。またコンデンサCaとスイッチSbとの間には、スイッチSaの一端が接続されており、そのスイッチSaの他端は基準電圧Vrefが接続されている。スイッチSbの他端はサンプリング回路7の出力端子Voutとなっており、その出力端子VoutはコンデンサCbを介して基準電圧Vrefに接続されている。
このようなサンプリング回路7は、はじめにスイッチSbを開放した状態でスイッチSaを閉じることにより、コンデンサCaにおいてCV変換回路6からの出力信号Voの1回目のサンプリングを行う。そしてスイッチSbを開放した状態のまま、次にスイッチSaを開放し、コンデンサCaにおいてCV変換回路6からの出力信号Voの2回目のサンプリングを行う。このようにしてコンデンサCaで2回のサンプリングを行った後、スイッチSbを閉じることにより、コンデンサCaに蓄積されていた電荷量に応じた出力信号Voutを出力する。これにより、サンプリング回路7は、CV変換回路6におけるオペアンプ20のオフセット電圧やkT/Cノイズなどをキャンセルした出力信号Voutを出力することができる。尚、サンプリング回路7における各スイッチSa,Sbは、上述した制御回路8によってオンオフ制御される。
またセンサー部2においては、X軸の静電容量センサー3における2つの可変容量コンデンサCX1,CX2の両端X1,X2に、チャージ電圧を印加するために択一的に閉状態となる複数のスイッチSXa,SXb,SXcが設けられている。同様に、Y軸の静電容量センサー4における2つの可変容量コンデンサCY1,CY2の両端Y1,Y2にも、択一的に閉状態となる複数のスイッチSYa,SYb,SYcが設けられており、さらにZ軸の静電容量センサー5における可変容量コンデンサCZ1と静電容量不変のコンデンサCZ2との両端Z1,Z2にも、択一的に閉状態となる複数のスイッチSZa,SZb,SZcが設けられている。これら各静電容量センサー3,4,5の両端に設けられる各スイッチには、3値の電圧のいずれか、すなわち図2に示すように、基準電圧Vrefと、基準電圧Vrefよりも所定電圧Vcだけ高い電圧VHと、基準電圧Vrefよりも所定電圧Vcだけ低い電圧VLとのいずれかが接続されている。例えばVc=Vrefとした場合、VH=2・Vrefとなり、VL=0となる。そして上記各スイッチは、制御回路8によってオンオフ制御され、測定モード中は、Vref,VH,VLの3値で逐次切り替わるチャージ電圧が各静電容量センサー3,4,5の両端に印加される。
次に制御回路8による制御について説明する。図3は、制御回路8による制御動作のシーケンスを示す図である。図3(a)に示すように、制御回路8は、XYZ3軸の測定タイミングとなって各軸の加速度を順に測定していくとき、図3(a)に示すように、まずタイミングT0でX軸の静電容量センサー3を測定モードに移行させ、X軸の静電容量センサー3の両端X1,X2に互いに逆相となるチャージ電圧を印加することによってX軸方向の加速度に応じた可変容量コンデンサCX1,CX2の静電容量変化を測定する。このとき他のY軸及びZ軸の静電容量センサー4,5は、非測定モードである。そしてX軸の測定が終了すると、次に制御回路8は、タイミングT1でY軸の静電容量センサー4を測定モードにさせ、Y軸の静電容量センサー4の両端Y1,Y2に互いに逆相となるチャージ電圧を印加することによってY軸方向の加速度に応じた可変容量コンデンサCY1,CY2の静電容量変化を測定する。このとき他のX軸及びZ軸の静電容量センサー3,5は、非測定モードである。そして更にY軸の測定が終了すると、次に制御回路8は、タイミングT2でZ軸の静電容量センサー5を測定モードにさせ、Z軸の静電容量センサー5の両端Z1,Z2に互いに逆相となるチャージ電圧を印加することによってZ軸方向の加速度に応じた可変容量コンデンサCZ1の静電容量変化を測定する。このとき他のX軸及びY軸の静電容量センサー3,4は、非測定モードである。
このようにXYZ3軸の各静電容量センサー3,4,5が順に測定モードへ移行する期間は、センサーデバイス1の動作期間となっている。この動作期間が開始するタイミングはセンサーデバイス1において一定周期となっており、例えばタイミングT3でZ軸の測定が終了すると、その後は次の動作期間の開始タイミングとなるまでの間がセンサーデバイス1の休止期間となる。そして休止期間中は、センサー部2、CV変換回路6及びサンプリング回路7への通電を遮断しておくことにより、消費電力の低減を図ることができる。
制御回路8は、動作期間中においてX軸及びY軸の静電容量センサー3,4が測定モードにあるとき、Z軸の静電容量センサー5に対して予め容量安定化処理を行う。この容量安定化処理は、Z軸の静電容量センサー5の可変容量コンデンサCZ1に対して静電気力を発生させ、その静電気力による可動電極16の変位を、X軸及びY軸の測定中に予め安定化させておく処理である。すなわち、制御回路8は、X軸及びY軸の静電容量センサー3,4が測定モードにあるときに、Z軸の静電容量センサー5において可動電極16を予め固定電極17に向かって移動させるべく、チャージ電圧とは異なるパターンで互いに逆相となる駆動電圧をZ軸の静電容量センサー5の両端Z1,Z2に印加する。これにより、Z軸の可変容量コンデンサCZ1の静電容量は、図3(b)に示すように、タイミングT0で静電気力が生じていない状態の初期値C0から徐々に変化していくようになる。そしてX軸及びY軸の測定と並行して、Z軸の可動電極16の移動を早期に収束させることができるようになり、Z軸の静電容量センサー5が測定モードへ移行するタイミングT2となるときには、Z軸の可変容量コンデンサCZ1の静電容量を、静電気力によって変化しない一定値Cdで安定させることができる。したがって、タイミングT2でY軸の静電容量センサー4の測定モードが終了すると、それに引き続いて速やかにZ軸の静電容量センサー5を測定モードへ移行させてZ軸の測定を開始することができるため、XYZ3軸全ての測定に要する時間を短縮することができる。またこれに伴い、休止期間を長期化することができるので、センサーデバイス1の消費電力を低減することが可能である。
図4は、センサーデバイス1が動作期間にあるときにXYZ3軸の各静電容量センサー3,4,5の両端に印加される電圧を示す図である。上述したようにタイミングT0〜T1の間は、X軸の静電容量センサー3が測定モードとなる。このとき、制御回路8は、X軸の静電容量センサー3に接続された複数のスイッチSXa,SXb,SXcのオンオフ制御を行うことにより、静電容量センサー3の両端X1,X2に対して基準電圧Vrefを中心にして一定周期且つ一定電圧幅(Vc)で極性が反転する波形のチャージ電圧を印加する。すなわち、制御回路8は、第1にスイッチSXbを閉状態として2つの端子X1,X2に同じ基準電圧Vrefを印加し、第2にスイッチSXaを閉状態として一方の端子X1に電圧VHを印加し、他方の端子X2に電圧VLを印加する。そして第3に再びスイッチSXbを閉状態として2つの端子X1,X2に同じ基準電圧Vrefを印加し、第4にスイッチSXcを閉状態として一方の端子X1に電圧VLを印加し、他方の端子X2に電圧VHを印加する。これら第1から第4までのオンオフ制御を行うことにより、制御回路8は、静電容量センサー3の両端X1,X2に対して1周期分のチャージ電圧を印加する。そして制御回路8は、X軸の静電容量センサー3が測定モードであるときに、上記のようなチャージ電圧を複数周期分(図4の例では4周期分)印加する。したがって、X軸の静電容量センサー3が測定モードのときには、一方の端子X1には図4の実線で示す電圧が印加され、他方の端子X2には破線で示す電圧が印加される。尚、タイミングT1〜T2においてY軸の静電容量センサー4が測定モードであるとき、及び、タイミングT2〜T3においてZ軸の静電容量センサー5が測定モードであるときにも、これと同様のチャージ電圧が印加される。またX軸及びY軸の静電容量センサー3,4が非測定モードのときには、図4に示すように基準電圧Vrefが印加される。
またX軸及びY軸の静電容量センサー3,4が測定モードにあるとき、Z軸の静電容量センサー5の両端Z1,Z2に印加される駆動電圧は、図4に示すように、基準電圧Vrefから同一極性方向に一定電圧幅(Vc)で振動する波形となっている。このとき、制御回路8は、Z軸の静電容量センサー5に接続された複数のスイッチSZa,SZb,SZcのうちの2つのスイッチSZa,SZbを交互にオンオフ制御することにより、静電容量センサー5の一方の端子Z1に対して基準電圧Vrefと電圧VHとが交互に切り替わる駆動電圧を印加し、他方の端子Z2に対して基準電圧Vrefと低電圧VLとが交互に切り替わる駆動電圧を印加する。
次にセンサーデバイス1が動作期間にあるときの動作について説明する。はじめに、各静電容量センサー3,4,5が測定モードにあるときに加速度に応じた静電容量変化を検知するための動作について説明する。図5は、X軸の静電容量センサー3が測定モードにあるときに2つの端子X1,X2に印加されるチャージ電圧の1周期Tsを示す図である。図5に示すようにチャージ電圧の1周期Tsは、第1区間Taと第2区間Tbと第3区間Tcと第4区間Tdとから成る。
制御回路8は、第1区間TaにおいてX軸の静電容量センサー3の両端X1,X2に印加するチャージ電圧を基準電圧Vrefにする。このとき、X軸の静電容量センサー3において2つの可変容量コンデンサCX1,CX2の間の電位Vinも基準電圧Vrefであるため、2つの可変容量コンデンサCX1,CX2には電荷蓄積が生じない。また制御回路8は、この第1区間TaにおいてCV変換回路6のスイッチSfを閉じることによってフィードバックコンデンサCfの電荷を放電させる。さらに制御回路8は、サンプリング回路7のスイッチSaを閉状態とし、スイッチSbを開状態とする。これにより、オペアンプ20にオフセット電圧があれば、そのオフセット電圧に応じた電荷をコンデンサCaに蓄積しておくことができる。
そして制御回路8は、第1区間Taから第2区間Tbへと遷移させるとき、CV変換回路6のスイッチSfを開放すると共に、静電容量センサー3の一方の端子X1に印加するチャージ電圧を基準電圧Vrefから電圧VHに切り替え、他方の端子X2に印加するチャージ電圧を基準電圧Vrefから電圧VLに切り替える。図6は、第1区間Taから第2区間Tbへ遷移したときの電荷移動を示す図である。図6に示すように第1区間Taから第2区間Tbへ遷移すると、可変容量コンデンサCX1,CX2のそれぞれに電荷が蓄積される。このとき、X軸方向の加速度が作用しており、可変容量コンデンサCX1の静電容量CがC+ΔCに変化し、可変容量コンデンサCX2の静電容量CがC−ΔCに変化していると仮定する。この場合、可変容量コンデンサCX1には電荷量Q=(C+ΔC)Vcが蓄積され、可変容量コンデンサCX2には電荷量Q=−(C−ΔC)Vcが蓄積される。このとき生じる電荷移動により、CV変換回路6のフィードバックコンデンサCfには、電荷量Q=−2ΔCVcが蓄積される。その結果、オペアンプ20の出力信号Voは、Vo=−2ΔCVc/Cf+Vrefとなり、サンプリング回路7のコンデンサCaの両端には、電位差−2ΔCVc/Cfが生じ、この電位差に応じた電荷QaがコンデンサCaに蓄積される。尚、Cfは、フィードバックコンデンサCfの静電容量である。
次に制御回路8は、第2区間Tbから第3区間Tcへと遷移させるとき、まずサンプリング回路7のスイッチSaを開放し、コンデンサCaに蓄積された電荷Qaを保存する。その後、静電容量センサー3の両端X1,X2に印加するチャージ電圧を再び基準電圧Vrefに切り替える。図7は、第2区間Tbから第3区間Tcへ遷移したときの電荷移動を示す図である。第3区間Tcにおいて静電容量センサー3の両端X1,X2が再び基準電圧Vrefに戻ると、第2区間Tbで2つの可変容量コンデンサCX1,CX2に蓄積された電荷を0にするための電荷移動が起こる。すなわち、図7に示すように、2つの可変容量コンデンサCX1,CX2の電荷量Qが共に0となり、フィードバックコンデンサCfの電荷量Qも0となる。その結果、オペアンプ20の出力信号Voは、Vo=Vrefとなる。そしてサンプリング回路7におけるコンデンサCaの出力側のノードaには、コンデンサCaに蓄積された電荷Qaに相当する電位Va=2ΔCVc/Cf+Vrefが現れる。
次に制御回路8は、第3区間Tcから第4区間Tdへと遷移させるとき、静電容量センサー3の一方の端子X1に印加するチャージ電圧を基準電圧Vrefから電圧VLに切り替え、他方の端子X2に印加するチャージ電圧を基準電圧Vrefから電圧VHに切り替える。図8は、第3区間Tcから第4区間Tdへ遷移したときの電荷移動を示す図である。図8に示すように第3区間Tcから第4区間Tdへ遷移すると、2つの可変容量コンデンサCX1,CX2のそれぞれに再び電荷が蓄積される。すなわち、可変容量コンデンサCX1には電荷量Q=−(C+ΔC)Vcが蓄積され、可変容量コンデンサCX2には電荷量Q=(C−ΔC)Vcが蓄積される。このとき生じる電荷移動により、CV変換回路6のフィードバックコンデンサCfには、電荷量Q=2ΔCVcが蓄積される。その結果、オペアンプ20の出力信号Voは、Vo=2ΔCVc/Cf+Vrefとなる。このとき、サンプリング回路7におけるコンデンサCaの出力側ノードaは、出力信号Voに対し、コンデンサCaに蓄積されている電荷Qaに相当する電位差を有するため、その出力側ノードaの電位Vaは、Va=4ΔCVc/Cf+Vrefとなる。したがって、この第4区間Tdでは、電位Vaに含まれる、可変容量コンデンサCX1,CX2の静電容量の変化分ΔCに相当する信号成分が第3区間Tcにおける信号成分よりも2倍に増幅された感度の高い信号となる。
制御回路8は、上記第4区間TdにおいてCV変換回路6から出力される出力信号Voをサンプリング回路7のコンデンサCaでサンプリングした後、スイッチSbを閉じることにより、サンプリング回路7からの出力信号Voutを出力する。このとき、スイッチSbを閉じることによってコンデンサCbへの電荷蓄積が行われるため、出力信号Voutは、コンデンサCbの電荷蓄積量に応じた電位となる。そしてコンデンサCbに電荷を蓄積した状態のまま、上述した第1区間Ta〜第4区間Tdの動作を複数回繰り返すことにより、出力信号Voutは、次第に上述した第4区間Tdにおける出力側ノードaの電位Va=4ΔCVc/Cf+Vrefに近づいていく。その結果、出力信号Voutは、最終的に、第1区間Ta〜第4区間Tdの動作を複数回繰り返した場合に、その都度、第4区間Tdにおいて出力側ノードaに現れる電位Vaの平均値として出力されるようになる。このような出力信号Voutは、オペアンプ20のオフセット電圧分などがキャンセルされた信号となる。
X軸の静電容量センサー3が測定モードにあるときには、上記のような第1区間Ta〜第4区間Tdにおける動作を複数周期分(例えば4周期分)繰り返すことによってサンプリング回路7から出力される出力信号Voutを後段回路で読み取ることにより、X軸の加速度を算出することができるようになる。尚、上記においては、X軸の静電容量センサー3が測定モードにあるときの動作を説明したが、Y軸及びZ軸の静電容量センサー4,5が測定モードにあるときも、これと同様である。ただし、Z軸の静電容量センサー5は、可変容量コンデンサCZ1が1つだけであるため、第2区間TbでフィードバックコンデンサCfに蓄積される電荷Qが−ΔCVcとなり、第4区間TdでフィードバックコンデンサCfに蓄積される電荷QがΔCVcとなる点が異なる。
次にX軸及びY軸の静電容量センサー3,4が測定モードにあるときに、Z軸の静電容量センサー5に対して行う容量安定化処理の動作について説明する。図9は、X軸又はY軸の静電容量センサー3,4が測定モードにあるときに、Z軸の静電容量センサー5の2つの端子Z1,Z2に印加される駆動電圧の1周期Tsを示す図である。図9に示すように駆動電圧の1周期Tsは、チャージ電圧の1周期Tsと同じ周期であり、しかもチャージ電圧と同じ第1区間Taと第2区間Tbと第3区間Tcと第4区間Tdとから成る。つまり、駆動電圧のデューティは、チャージ電圧のデューティに等しい。
制御回路8は、第1区間TaにおいてZ軸の静電容量センサー5の両端Z1,Z2に印加する駆動電圧を基準電圧Vrefにする。このとき、Z軸の静電容量センサー5において2つのコンデンサCZ1,CZ2には電荷蓄積が生じない。
そして第1区間Taから第2区間Tbへと遷移させるとき、制御回路8は、Z軸の静電容量センサー5の一方の端子Z1に印加する駆動電圧を基準電圧Vrefから電圧VHに切り替え、他方の端子Z2に印加するチャージ電圧を基準電圧Vrefから電圧VLに切り替える。図10は、第1区間Taから第2区間Tbへ遷移したときの電荷移動を示す図である。図10に示すように第1区間Taから第2区間Tbへ遷移すると、Z軸の静電容量センサー5において可変容量コンデンサCZ1とコンデンサCZ2とのそれぞれに電荷が蓄積される。このとき、Z軸方向の加速度が作用しており、可変容量コンデンサCZ1の静電容量CがC+ΔCに変化していると仮定する。この場合、可変容量コンデンサCZ1には電荷量Q=(C+ΔC)Vcが蓄積され、容量固定のコンデンサCZ2には電荷量Q=−CVcが蓄積される。このとき生じる電荷移動により、CV変換回路6のフィードバックコンデンサCfには、電荷量Q=−ΔCVcが蓄積される。その結果、オペアンプ20の出力信号Voは、Vo=−ΔCVc/Cf+Vrefとなり、サンプリング回路7のコンデンサCaの両端には、電位差−ΔCVc/Cfが生じ、この電位差に応じた電荷QzがコンデンサCaに蓄積される。このとき、可変容量コンデンサCZ1の可動電極16と固定電極17との間に電位差が生じるため、静電気力が発生し、可動電極16が固定電極17に向かって移動する。
次に第2区間Tbから第3区間Tcへと遷移させるとき、制御回路8は、Z軸の静電容量センサー5の両端Z1,Z2に印加する駆動電圧を再び基準電圧Vrefに切り替える。図11は、第2区間Tbから第3区間Tcへ遷移したときの電荷移動を示す図である。第3区間Tcにおいて静電容量センサー5の両端Z1,Z2が再び基準電圧Vrefに戻ると、第2区間Tbで2つのコンデンサCZ1,CZ2に蓄積された電荷を0にするための電荷移動が起こる。すなわち、図11に示すように、可変容量コンデンサCZ1と、容量固定のコンデンサCZ2との電荷量Qが共に0となり、フィードバックコンデンサCfの電荷量Qも0となる。その結果、オペアンプ20の出力信号Voは、Vo=Vrefとなる。そしてサンプリング回路7におけるコンデンサCaの出力側のノードaには、Vo=Vrefの電位にコンデンサCaに蓄積されている電荷Qzに相当する電位(ΔCVc/Cf)を加えた電位Va=ΔCVc/Cf+Vrefが現れる。
次に第3区間Tcから第4区間Tdへと遷移させるとき、制御回路8は、Z軸の静電容量センサー5の一方の端子Z1に印加する駆動電圧を基準電圧Vrefから再び電圧VHに切り替え、他方の端子Z2に印加するチャージ電圧を基準電圧Vrefから再び電圧VLに切り替える。このとき、可変容量コンデンサCZ1の可動電極16と固定電極17との間に再び電位差が生じるため、静電気力が発生し、可動電極16が固定電極17に向かって移動する。図12は、第3区間Tcから第4区間Tdへ遷移したときの電荷移動を示す図である。図12に示すように第3区間Tcから第4区間Tdへ遷移すると、可変容量コンデンサCZ1及びコンデンサCZ2のそれぞれに再び電荷が蓄積される。すなわち、可変容量コンデンサCZ1には電荷量Q=(C+ΔC)Vcが蓄積され、容量固定のコンデンサCZ2には電荷量Q=−CVcが蓄積される。そしてCV変換回路6のフィードバックコンデンサCfが電荷量Q=−ΔCVcとなり、その結果、オペアンプ20の出力信号Voは、再びVo=−ΔCVc/Cf+Vrefとなる。このとき、サンプリング回路7におけるコンデンサCaの出力側ノードaは、出力信号Voに対し、コンデンサCaに蓄積されている電荷Qzに相当する電位差(ΔCVc/Cf)を有するため、その出力側ノードaの電位Vaは、Va=Vrefとなる。つまり、この第4区間Tdでは、Z軸の静電容量センサー5に対して図9に示す駆動電圧を印加することによる影響が取り除かれることになる。
したがって、X軸又はY軸の静電容量センサー3,4が測定モードにあるとき、上述したように第4区間Tdにおいてサンプリング回路7のスイッチSbを閉じて出力信号Voutを取り出すことにより、Z軸の静電容量センサー5に対する駆動電圧の印加による影響をキャンセルした出力信号Voutを得ることができるようになる。それ故、測定モードにあるX軸又はY軸の測定結果に影響を与えることなく、X軸又はY軸の測定動作と並行してZ軸の静電容量センサー5の可変容量コンデンサCZ1に予め静電気力を発生させることが可能であり、X軸及びY軸の測定が終了したときには速やかにZ軸の静電容量センサー5を測定モードへ移行させてZ軸の測定を早期に開始することができる。
以上のように、このセンサーデバイス1においては、制御回路8が、XYZ3軸の静電容量センサー3,4,5のそれぞれに対し、所定のチャージ電圧を時分割で順次印加していくことにより、3つの静電容量センサー3,4,5のうちから一の静電容量センサーを選択して測定モードに順次移行させるものであり、X軸又はY軸の静電容量センサー3,4が測定モードにあるときには、Z軸の静電容量センサー5に対して可動電極16を固定電極17に向かって移動させるためにチャージ電圧とは異なるパターンの駆動電圧を印加する。そのため、X軸又はY軸の測定中に、Z軸の静電容量センサー5における可変容量コンデンサCZ1の静電容量を安定させることができる。その結果、X軸及びY軸の測定が終了したときには、従来よりも速やかにZ軸の静電容量センサー5を測定モードへ移行させることができるため、3軸全ての測定に要する時間を短縮できる。尚、X軸及びY軸の測定が終了した時点でZ軸の容量安定化処理が終了していない場合であっても、X軸又はY軸の測定中にZ軸の容量安定化処理を開始することができるため、従来よりも早期にZ軸の静電容量センサー5を測定モードへ移行させることができる点に変わりはない。
(変形例)
以上、本発明に関する幾つかの実施形態について説明したが、本発明は上述した内容のものに限定されるものではなく、種々の変形例が適用可能である。以下、いくつかの変形例について説明する。
第1に、図13は、センサーデバイス1の他の回路構成の一例を示す図である。この回路構成におけるCV変換回路6は、図13に示すように、全差動オペアンプ20aを備えて構成される。全差動オペアンプ20aの反転入力端子には、センサー部2からの出力端子が接続される。全差動オペアンプ20aの反転入力端子と非反転出力端子との間には、フィードバックコンデンサCf1とスイッチSf1とが並列接続される。スイッチSf1はコンデンサCf1に蓄積された電荷を放電させるためのものであり、上述した制御回路8によってオンオフ制御される。一方、全差動オペアンプ20aの非反転入力端子にはコンデンサ30が接続される。このコンデンサ30の静電容量は、センサー部2の出力端子から見たときのセンサー部2の全静電容量と等しくなるように予め設計されている。そして全差動オペアンプ20aの非反転入力端子と反転出力端子との間には、フィードバックコンデンサCf2とスイッチSf2とが並列接続される。コンデンサCf2は、コンデンサCf1と同容量である。スイッチSf2はコンデンサCf2に蓄積された電荷を放電させるためのものであり、上述した制御回路8によってスイッチSf1と同じタイミングでオンオフ制御される。尚、全差動オペアンプ20aは、反転入力端子の電位Vinと非反転入力端子の電位Vipとが等しくなるように動作するが、図示を省略する入力コモンモードフィードバック回路によってこれらの電位Vip,Vinが所定の基準電圧Vrefで互いに等しくなるように制御される。尚、サンプリング回路7は、上記実施形態で説明した構成が全差動オペアンプ20aの非反転出力端子と反転出力端子とのそれぞれに設けられたものとなっている。
このようなCV変換回路6は、センサー部2に設けられた各静電容量センサー3,4,5が測定モードにあるとき、加速度が作用して可変容量コンデンサの静電容量が変化すると、その静電容量変化によって移動する電荷量に応じた電荷をフィードバックコンデンサCf1,Cf2のそれぞれに蓄積し、静電容量の変化分ΔCに応じた差動出力信号Vop,Vonを出力する。また、このようなCV変換回路6は、センサー部2及びコンデンサ30のそれぞれに外乱ノイズによる電荷が注入された場合には、全差動オペアンプ20の差動出力によってその外乱ノイズをキャンセルすることができるという利点がある。そして本発明は、図13に示すような回路構成にも適用し得るものであり、上記実施形態で説明した作用効果に何ら変わりはない。
第2に、上記実施形態では、センサーデバイス1が加速度を測定するものである場合を例示したが、センサーデバイス1の測定対象は必ずしも加速度に限られるものではなく、例えば角速度を測定するものであっても良いし、また圧力を測定するものであっても良い。
第3に、上記実施形態では、サンプリング回路7に出力相関二重サンプリング回路を採用した場合を例示したが、上記以外の構成のサンプリング回路を採用しても良い。
1:センサーデバイス、2:センサー部、3,4,5:静電容量センサー、6:CV変換回路、7:サンプリング回路、8:制御回路

Claims (3)

  1. 第1の軸方向に移動可能な可動電極を挟んで一対の固定電極が設けられ、各固定電極と可動電極とによって直列接続された2つの可変容量コンデンサが構成される第1の静電容量センサーと、
    前記第1の軸方向と直交する第2の軸方向に移動可能な可動電極を挟んで一対の固定電極が配置され、各固定電極と可動電極とによって直列接続された2つの可変容量コンデンサが構成される第2の静電容量センサーと、
    前記第1及び第2の軸方向に直交する第3の軸方向に移動可能な可動電極及び該可動電極に対向して配置される固定電極によって構成される可変容量コンデンサと、一対の固定電極からなる静電容量不変のコンデンサとを直列接続して構成される第3の静電容量センサーと、
    前記第1乃至第3の静電容量センサーのそれぞれの両端の固定電極に対し、互いに逆相のチャージ電圧を時分割で順次印加していくことにより、前記第1乃至第3の静電容量センサーのうちから一の静電容量センサーを選択して測定モードに順次移行させる制御回路と、
    を備え、
    前記制御回路は、前記第1又は第2の静電容量センサーが測定モードにあるとき、前記第3の静電容量センサーの両端の固定電極に対して前記チャージ電圧とは異なる互いに逆相の駆動電圧を印加することにより、前記第3の静電容量センサーにおける可変容量コンデンサの静電気力による静電容量変化を安定化させることを特徴とするセンサーデバイス。
  2. 前記制御回路は、前記第1乃至第3の静電容量センサーのうちの測定モードにある静電容量センサーの両端の固定電極に対し、所定の基準電圧を中心にして一定周期且つ一定電圧幅で極性が反転するチャージ電圧を印加するものであり、前記第1又は第2の静電容量センサーが測定モードにあるときには、前記第3の静電容量センサーの両端の固定電極に対し、前記チャージ電圧と同一周期であり、且つ、前記基準電圧から同一極性方向に一定電圧幅で振動する駆動電圧を印加することを特徴とする請求項1に記載のセンサーデバイス。
  3. 前記第1乃至第3の静電容量センサーのそれぞれにおける可変容量コンデンサの静電容量変化に対応した信号を出力するCV変換回路と、
    前記第1乃至第3の静電容量センサーのそれぞれが測定モードにあるとき、前記CV変換回路の信号出力を所定のタイミングでサンプリングして出力するサンプリング回路と、
    を更に備え、
    前記サンプリング回路は、前記第1又は第2の静電容量センサーが測定モードにあるとき、前記第1又は第2の静電容量センサーの両端の固定電極に印加される前記チャージ電圧の極性が反転した後に、前記CV変換回路の信号出力をサンプリングして出力することにより、前記駆動電圧による前記第3の静電容量センサーからの電荷移動をキャンセルして出力することを特徴とする請求項2に記載のセンサーデバイス。
JP2013093345A 2013-04-26 2013-04-26 センサーデバイス Expired - Fee Related JP6056636B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013093345A JP6056636B2 (ja) 2013-04-26 2013-04-26 センサーデバイス

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013093345A JP6056636B2 (ja) 2013-04-26 2013-04-26 センサーデバイス

Publications (2)

Publication Number Publication Date
JP2014215194A true JP2014215194A (ja) 2014-11-17
JP6056636B2 JP6056636B2 (ja) 2017-01-11

Family

ID=51941064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013093345A Expired - Fee Related JP6056636B2 (ja) 2013-04-26 2013-04-26 センサーデバイス

Country Status (1)

Country Link
JP (1) JP6056636B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018084580A (ja) * 2016-11-24 2018-05-31 イーエム・ミクロエレクトロニク−マリン・エス アー 静電容量式加速度計

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001296311A (ja) * 2000-04-17 2001-10-26 Yoshinobu Matsumoto 3軸加速度センサ
JP2002031644A (ja) * 2000-07-17 2002-01-31 Yazaki Corp 3軸加速度センサ及びそのz軸依存性の補正方法
JP2011075435A (ja) * 2009-09-30 2011-04-14 Alps Electric Co Ltd 静電容量検出センサ
US20110154906A1 (en) * 2009-12-24 2011-06-30 Em Microelectronic-Marin Sa Method of measuring a physical parameter and electronic interface circuit for a capacitive sensor for implementing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001296311A (ja) * 2000-04-17 2001-10-26 Yoshinobu Matsumoto 3軸加速度センサ
JP2002031644A (ja) * 2000-07-17 2002-01-31 Yazaki Corp 3軸加速度センサ及びそのz軸依存性の補正方法
JP2011075435A (ja) * 2009-09-30 2011-04-14 Alps Electric Co Ltd 静電容量検出センサ
US20110154906A1 (en) * 2009-12-24 2011-06-30 Em Microelectronic-Marin Sa Method of measuring a physical parameter and electronic interface circuit for a capacitive sensor for implementing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018084580A (ja) * 2016-11-24 2018-05-31 イーエム・ミクロエレクトロニク−マリン・エス アー 静電容量式加速度計

Also Published As

Publication number Publication date
JP6056636B2 (ja) 2017-01-11

Similar Documents

Publication Publication Date Title
EP2647593B1 (en) Noise reduction method for mems sensors using chopping circuits
JP3262013B2 (ja) 容量型センサインターフェース回路
CN107508601B (zh) 基于对合并式mems加速计传感器斩波的降噪方法及电子电路
KR102034604B1 (ko) Asic 집적 캐패시터를 구비한 미소 기전 시스템 가속도계의 자가 테스트
US6257061B1 (en) Capacitive physical-quantity detection apparatus
JPH09264905A (ja) 容量型センサインターフェース回路
JP4899781B2 (ja) 容量式力学量検出装置
Santana et al. A 3-axis accelerometer and strain sensor system for building integrity monitoring
JP2003121457A (ja) 容量式物理量センサ
EP3112880B1 (en) Mems sensor devices having a self-test mode
ITTO20010157A1 (it) Metodo e circuito di rilevamento di spostamenti tramite sensori micro-elettro-meccanici con compensazione di capacita' parassite e di movime
EP2966456A1 (en) Electronic measurement circuit for a capacitive sensor
JP2014020827A (ja) 静電容量型センサの検出回路
JP5974851B2 (ja) センサーデバイス
JP2009097932A (ja) 容量型検出装置
EP3404422B1 (en) System including a capacitive transducer and an excitation circuit for such a transducer and a method for measuring acceleration with such a system
JP2017518518A (ja) 加速度計
JP4765708B2 (ja) 容量式物理量センサ
JP2011107086A (ja) 静電容量検出回路、圧力検出装置、加速度検出装置、および、マイクロフォン用トランスデューサ
JP6056636B2 (ja) センサーデバイス
US10393769B2 (en) Microelectromechanical device and a method of damping a mass thereof
JP2002098712A (ja) 容量式物理量検出装置
WO2015098893A1 (ja) 容量トリミング回路
JP2005017216A (ja) 3軸加速度センサ
KR102028255B1 (ko) 용량성 가속도계

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150401

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160105

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161121

R150 Certificate of patent or registration of utility model

Ref document number: 6056636

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees