JP2014205597A - 単結晶シリコン引き上げ用シリカ容器及びその製造方法 - Google Patents

単結晶シリコン引き上げ用シリカ容器及びその製造方法 Download PDF

Info

Publication number
JP2014205597A
JP2014205597A JP2013085130A JP2013085130A JP2014205597A JP 2014205597 A JP2014205597 A JP 2014205597A JP 2013085130 A JP2013085130 A JP 2013085130A JP 2013085130 A JP2013085130 A JP 2013085130A JP 2014205597 A JP2014205597 A JP 2014205597A
Authority
JP
Japan
Prior art keywords
silica
powder
container
raw material
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013085130A
Other languages
English (en)
Other versions
JP5608258B1 (ja
Inventor
茂 山形
Shigeru Yamagata
茂 山形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2013085130A priority Critical patent/JP5608258B1/ja
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to KR1020147031698A priority patent/KR101645663B1/ko
Priority to US14/398,880 priority patent/US20150114284A1/en
Priority to PCT/JP2014/001681 priority patent/WO2014167788A1/ja
Priority to EP14782930.3A priority patent/EP2835452A4/en
Priority to CN201480001704.9A priority patent/CN104395509A/zh
Priority to TW103111810A priority patent/TWI516646B/zh
Application granted granted Critical
Publication of JP5608258B1 publication Critical patent/JP5608258B1/ja
Publication of JP2014205597A publication Critical patent/JP2014205597A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/09Other methods of shaping glass by fusing powdered glass in a shaping mould
    • C03B19/095Other methods of shaping glass by fusing powdered glass in a shaping mould by centrifuging, e.g. arc discharge in rotating mould

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

【課題】 単結晶シリコン引き上げの全工程において、高温度下におけるシリカ容器中のシリコン融液の湯面振動を抑制でき、かつ、単結晶シリコン中のボイドやピンホールと呼ばれる空隙欠陥の発生を抑制することができる単結晶シリコン引き上げ用シリカ容器を提供すること、及びそのようなシリカ容器の製造方法を提供する。【解決手段】 直胴部、湾曲部、及び底部を有する単結晶シリコン引き上げ用シリカ容器であって、容器外側が気泡を含有する不透明シリカガラスから成り、容器内側が透明シリカガラスから成り、前記直胴部、湾曲部、及び底部の内側表層部分において、結晶質シリカ粉が溶融した相と非晶質シリカ粉が溶融した相が粒状に混在する混合シリカ層を有し、前記底部の混合シリカ層の内表面上に底部シリカガラス層を有する単結晶シリコン引き上げ用シリカ容器。【選択図】 図1

Description

本発明は、単結晶シリコンを引き上げるためのシリカ容器及びその製造方法に関する。
従来より、単結晶シリコン引き上げ用シリカルツボの製造方法としては、引用文献1及び引用文献2に記載されているような製造方法が使用されている。これらの方法は、回転する型枠の中に高純度化処理された石英粉を投入、成形した後、上部から電極を押し込み、電極に加電することによりアーク放電を起こし、雰囲気温度を石英粉の溶融温度域(1800〜2100℃程度と推定)まで上昇させて、石英粉を溶融、焼結させる方法である。しかし、このような製造されたシリカルツボの使用時において、溶融シリコンとシリカルツボとが反応して一酸化ケイ素(SiO)ガスが生じ、それが単結晶シリコンに気泡(ガス泡)として取り込まれ、ボイドやピンホールと呼ばれる空隙欠陥が生成する等の単結晶シリコンの品質上の問題が出ていた。
特に、単結晶シリコンの一般的な引き上げ法であるCZ法(チョクラルスキー法)では、ルツボと呼ばれるシリカ容器内の溶融シリコンの融液面(以下、単に「湯面」とも称する。)に種結晶を付け(シーディング)、次いで種結晶の直径を若干絞りつつ成長させ(ネッキング)、次いで直径を拡大させつつ大直径単結晶シリコンを作製し(ショルダーリング)、引き続いて大直径単結晶シリコンの直径を一定に保持しつつ引き上げて(プリング)、長軸寸法の単結晶シリコンを取り出している。この引き上げ時に、溶融シリコンの湯面が振動する現象(以下、この現象を単に「湯面振動」と称する。)が発生する。この湯面振動が発生するとシーディング、ネッキングやショルダーリングができなくなったり、引き上げ(プリング)中に単結晶シリコンの一部が多結晶化する問題が生じていた。この原因の一つとして、酸化ケイ素(SiO)ガス発生による湯面振動が考えられていた。引用文献1、2で作製されたシリカルツボでは、特に直径12インチ(30cm)〜18インチ(45cm)の大直径単結晶シリコンを引き上げるための直径30インチ(75cm)〜54インチ(135cm)の大型容器である場合、高い頻度で強い湯面振動が発生するため、早急なる解決が求められていた。以下、シリカルツボと石英ルツボは同意語である。シリカガラスと石英ガラスも同意語である。
引用文献3では、溶融シリコンの湯面振動が発生しない石英ガラスルツボとして、ルツボの壁のIR(赤外線)透過率を3〜30%に設定すること等が示されている。しかしこのような広い透過率範囲の物性を有する大形化した石英ガラスルツボを使用しても、大直径単結晶シリコン引き上げ時における湯面振動を抑制することはできなかった。
引用文献4では、溶融シリコンの湯面振動が発生しない石英ガラスルツボの製造方法として、ルツボ製造時にルツボ内側の雰囲気に水蒸気を導入することが示されており、ルツボ内側表層全体におけるOH基濃度を高めることが湯面振動抑制に好ましいとされている。しかし、このような製造方法による、大形化した石英ガラスルツボを使用しても大直径単結晶シリコン引き上げ時における湯面振動を抑制する効果は不充分であった。またルツボ内側のシリコン融液による侵蝕(エッチング)が激しく、ルツボの寿命は短いものとなっていた。
引用文献5では、単結晶シリコン引き上げ時の石英ガラスルツボにおいて、溶融シリコン湯面付近の石英ガラスルツボ内表面の帯状部分のみを天然石英ガラスとすることにより、湯面振動を防止できると示している。しかしこのルツボは、全合成石英ガラスルツボに比較して湯面振動が相対的に少ないというものであり、大直径単結晶シリコン引き上げ時における湯面振動を抑制する効果は不充分であった。
引用文献6では、溶融シリコンの湯面付近の石英ガラスルツボ内表面に、気泡含有量の多い部分を帯状に分布させることにより、湯面振動を防止できると示している。しかしこのルツボではある程度の湯面振動抑制効果は認められるものの、気泡含有量の多い帯状部分の溶融シリコンによる侵蝕(エッチング)量が大きく、ルツボの寿命は短いものとなってしまった。また帯状部分に含まれている気泡が単結晶シリコン中に取り込まれる確率が高くなり、しばしば単結晶シリコン中にボイドやピンホールという空隙欠陥が生成する問題があった。
引用文献7では、回転軸対称性を有する石英ガラスルツボの気泡含有率、肉厚、透過率を円周にわたって均質にすることにより、溶融シリコンの湯面振動が防止できると示している。ルツボの各種物性を円周にわたって回転軸対称に高精度で作製することは湯面振動防止の観点からは基本的に重要なことと考えられる。しかし、ある程度の物性変動が生じたとしても、該湯面振動を防止できることが求められていた。
引用文献8では、溶融シリコンの湯面付近の石英ガラスルツボ内表面に複数個の微小凹部を具え、かつその下部に複数個の気泡を具えることにより湯面振動を防止できると示している。しかしこのルツボでは単結晶シリコン製造における初期の湯面振動は抑制できるものの、微小凹部が溶解された後では、再び振動が発生するという問題があった。特に単結晶シリコンを複数本引き上げる(マルチプリング)場合、2本目以降製造時の湯面振動が激しくなるということがあった。
引用文献9では、石英ガラスルツボ内表面に、石英粉を用いたサンドブラスト処理をすることにより、帯状に粗面領域を作製し、湯面振動を防止できると示している。しかしこのようなルツボでは単結晶シリコン製造時の初期の湯面振動は抑制できるものの、その効果は長く続かないものであった。また1個のルツボによりマルチプリングをすることは困難であった。
引用文献10では、石英ルツボ内表面にシリカ粉を酸水素火炎で溶融して、OH基を500〜1500ppm含有するシリカガラス層を堆積することにより、湯面振動を防止することができると示している。しかしこの製法は工程が複雑化して高コストになるばかりではなく、湯面付近のシリコン融液によるエッチングが大きく、そのため湯面振動が徐々に激しくなったりルツボ寿命が短くなってしまうという欠点が生じていた。
特公平4−22861号公報 特公平7−29871号公報 特開2000−219593号公報 特開2001−348240号公報 特許第4338990号公報 特許第4390461号公報 特開2010−30884号公報 特開2011−105552号公報 国際公開第WO2011/158712号パンフレット 特開2012−17240号公報
本発明は前述のような問題に鑑みてなされたもので、単結晶シリコン引き上げの全工程において、高温度下におけるシリカ容器中のシリコン融液の湯面振動を抑制でき、かつ、単結晶シリコン中のボイドやピンホールと呼ばれる空隙欠陥の発生を抑制することができる単結晶シリコン引き上げ用シリカ容器を提供すること、及びそのようなシリカ容器の製造方法を提供することを目的とする。
本発明は、上記課題を解決するためになされたもので、直胴部、湾曲部、及び底部を有する単結晶シリコン引き上げ用シリカ容器の製造方法であって、第1の原料粉として、粒径が10〜1000μmである結晶質シリカ粉を作製する工程と、第2の原料粉として、粒径が50〜2000μmである結晶質シリカ粉と、粒径が50〜2000μmである非晶質シリカ粉との混合粉を作製する工程と、第3の原料粉として、粒径が10〜1000μmである結晶質シリカ粉を作製する工程と、前記第1の原料粉を、回転対称性を有する型枠の内側へ投入し、該型枠を回転させつつ該型枠の内壁に応じた所定の形状に仮成形して、該型枠内に第1の原料粉から成る第1の仮成形体を形成する工程と、前記第2の原料粉を、前記型枠内に形成した第1の仮成形体の内側に投入して前記第1の原料粉から成る部分及び前記第2の原料粉から成る部分を有する第2の仮成形体を、製造するシリカ容器の形状に応じた形状としてかつ、該製造するシリカ容器の直胴部、湾曲部、及び底部の内側表層部分に相当する位置において、前記第2の原料粉から成る部分を有するものとして形成する工程と、前記型枠を回転させつつ、前記第2の仮成形体の内側から放電加熱溶融法によって加熱することにより、前記第2の仮成形体のうち前記第2の原料粉から成る部分を結晶質シリカ粉が溶融した相と非晶質シリカ粉が溶融した相が粒状に混在する混合シリカ層とするとともに、容器外側が気泡を含有する不透明シリカガラスから成り、容器内側が透明シリカガラスから成るものとした直胴部、湾曲部、及び底部を有するシリカ容器を作製する工程と、該シリカ容器の上部から前記第3の原料粉を散布しながら放電加熱溶融法により溶融し、溶融した第3の原料粉を前記底部の内表面部分に付着させ底部シリカガラス層を形成する工程とを含むことを特徴とする単結晶シリコン引き上げ用シリカ容器の製造方法を提供する。
このような工程を有するシリカ容器の製造方法により、直胴部、湾曲部、及び底部の内側表層部分を、結晶質シリカ粉が溶融した相と非晶質シリカ粉が溶融した相が粒状に混在する混合シリカ層とし、底部の混合シリカ層の内表面上に底部シリカガラス層を有する単結晶シリコン引き上げ用シリカ容器を製造することができる。底部シリカガラス層に覆われていない、混合シリカ層が露出する部分は、シリカ容器内部に原料シリコン融液を保持した際に、シリコン融液によるエッチング(侵蝕)を受ける。このエッチングは非晶質シリカ粉が溶融した相の方が、結晶質シリカ粉が溶融した相より速く、エッチング量が大きい。このエッチング効果の違いにより、混合シリカ層の表面(原料シリコン融液との界面)に微小な凹凸が形成される。この微小な凹凸の存在により、高温度下におけるシリカ容器中のシリコン融液の湯面振動を抑制することができる。また、高温度下での使用が長時間にわたることにより混合シリカ層のエッチングが進んでも、この微小な凹凸は消滅せずに存在し続けるため、長時間にわたってシリコン融液の湯面振動を抑制することができる。
また、このシリカ容器は、直胴部及び湾曲部において、シリカ容器の内表面に上記混合シリカ層が露出しているため、単結晶シリコンを引き上げる方法の初期段階(シーディング、ネッキング、ショルダーリング等)及びそれより後の段階(プリング、テーリング)におけるシリコン融液の湯面振動を効果的に抑制することができる。また、シリカ容器の底部は底部シリカガラス層に覆われるため、底部には混合シリカ層に起因する凹凸は生じず、これによるガス泡の成長もない。そのため、シリコン融液中のガス泡に起因する、単結晶シリコン中のボイドやピンホールと呼ばれる空隙欠陥の発生を抑制することができる。
この場合、前記混合シリカ層を、前記シリカ容器の肉厚方向における厚さが2mm以上であるものとして形成することが好ましい。
このような厚さを有する混合シリカ層を形成することにより、製造したシリカ容器において原料シリコン融液の湯面振動の抑制をより確実に行い、その効果を持続させることができる。
また、前記第2の仮成形体の放電加熱溶融法による加熱を、該第2の仮成形体の外側から減圧しながら行うことが好ましい。
このように減圧しながら行う加熱により、容器外側の不透明シリカガラス及び容器内側の透明シリカガラスを効率よく作製することができる。
また、前記第2の原料粉において、前記結晶質シリカ粉のOH基濃度を50massppm以下とし、前記非晶質シリカ粉のOH基濃度を200〜2000ppmとすることが好ましい。
第2の原料粉を構成する両シリカ粉におけるOH基濃度をこのように設定することにより、作製される混合シリカ層の結晶質シリカ粉が溶融した相及び非晶質シリカ粉が溶融した相のシリコン融液に対するエッチング速度差をより顕著にすることができ、シリカ容器内表面の凹凸をより確実に形成させることができる。
また、前記第2の原料粉の不純物元素の濃度を、Li、Na、Kの各々について100massppb以下、Ca、Mgの各々について50massppb以下、Ti、Cr、Fe、Ni、Cu、Zn、Zr、Mo、W、Pbの各々について20massppb以下とすることが好ましい。
第2の原料粉の不純物元素濃度をこのようにすれば、作製される混合シリカ層がエッチングされる際に原料シリコン融液に取り込まれる不純物元素をより少なくすることができる。
また、本発明は、直胴部、湾曲部、及び底部を有する単結晶シリコン引き上げ用シリカ容器であって、容器外側が気泡を含有する不透明シリカガラスから成り、容器内側が透明シリカガラスから成り、前記直胴部、湾曲部、及び底部の内側表層部分において、結晶質シリカ粉が溶融した相と非晶質シリカ粉が溶融した相が粒状に混在する混合シリカ層を有し、前記底部の混合シリカ層の内表面上に底部シリカガラス層を有することを特徴とする単結晶シリコン引き上げ用シリカ容器を提供する。
このような混合シリカ層及び底部シリカガラス層等の構成を有するシリカ容器は、内部に原料シリコン融液を保持した際に、シリコン融液によるエッチングにより混合シリカ層の表面に微小な凹凸が形成される。この微小な凹凸の存在により、高温度下におけるシリカ容器中のシリコン融液の湯面振動を抑制することができる。また、このシリカ容器は、直胴部及び湾曲部において、シリカ容器の内表面に上記混合シリカ層が露出しているため、単結晶シリコンを引き上げる方法の初期段階及びそれより後の段階におけるシリコン融液の湯面振動を効果的に抑制することができる。また、シリカ容器の底部が底部シリカガラス層に覆われることにより、シリコン融液中のガス泡に起因する、単結晶シリコン中のボイドやピンホールと呼ばれる空隙欠陥の発生を抑制することができる。
この場合、前記混合シリカ層が、OH基濃度50massppm以下の結晶質シリカ粉及びOH基濃度200〜2000ppmの非晶質シリカ粉の混合粉を原料として形成されたものであることが好ましい。
混合シリカ層をこのようなOH基濃度の違いを有する2種のシリカ粉の混合粉を原料として形成されたものとすることにより、混合シリカ層の結晶質シリカ粉が溶融した相及び非晶質シリカ粉が溶融した相のシリコン融液に対するエッチング速度差をより顕著にすることができ、シリカ容器内表面の凹凸をより確実に形成させることができる。
また、前記混合シリカ層における不純物元素の濃度がLi、Na、Kの各々について100massppb以下、Ca、Mgの各々について50massppb以下、Ti、Cr、Fe、Ni、Cu、Zn、Zr、Mo、W、Pbの各々について20massppb以下であることが好ましい。
混合シリカ層の不純物元素濃度をこのようにすることにより、混合シリカ層がエッチングされる際に原料シリコン融液に取り込まれる不純物元素をより少なくすることができる。
本発明に係る単結晶シリコン引き上げ用シリカ容器の製造方法により、直胴部、湾曲部、及び底部の内側表層部分において、結晶質シリカ粉が溶融した相と非晶質シリカ粉が溶融した相が粒状に混在する混合シリカ層を有し、底部の混合シリカ層の内表面上に底部シリカガラス層を有する単結晶シリコン引き上げ用シリカ容器を製造することができる。
このような混合シリカ層及び底部シリカガラス層を有する本発明に係る単結晶シリコン引き上げ用シリカ容器は、内部に原料シリコン融液を保持した際に、混合シリカ層を構成する非晶質シリカ粉が溶融した相と結晶質シリカ粉が溶融した相のエッチング効果の差により混合シリカ層の表面に微小な凹凸が形成される。この微小な凹凸の存在により、高温度下におけるシリカ容器中のシリコン融液の湯面振動を抑制することができる。また、高温度下での使用が長時間にわたることにより混合シリカ層のエッチングが進んでも、この微小な凹凸は消滅せずに存在し続けるため、長時間にわたってシリコン融液の湯面振動を抑制する効果を維持することができる。長時間にわたって湯面振動を防止する効果が続くため、単結晶シリコンのマルチ引き上げ(マルチプリング)に特に有効であり、シリカ容器の寿命も長期にすることができる。また、このシリカ容器は、直胴部及び湾曲部において、シリカ容器の内表面に上記混合シリカ層が露出しているため、単結晶シリコンを引き上げる方法の初期段階及びそれより後の段階におけるシリコン融液の湯面振動を効果的に抑制することができる。また、シリカ容器の底部が底部シリカガラス層に覆われることにより、シリコン融液中のガス泡に起因する、単結晶シリコン中のボイドやピンホールと呼ばれる空隙欠陥の発生を抑制することができる。
本発明に係るシリカ容器の構造の一例を模式的に示す概略断面図である。 本発明に係るシリカ容器の構造の別の一例を模式的に示す概略断面図である。 本発明に係るシリカ容器の製造方法の一例の概略を示すフロー図である。 本発明に係るシリカ容器の製造方法において用いることができる型枠の一例を示す概略断面図である。 本発明に係るシリカ容器の製造方法において用いることができる型枠の別の一例を示す概略断面図である。 本発明に係るシリカ容器の製造方法における、第1の仮成形体を形成する工程の一例を模式的に示す概略断面図である。 本発明に係るシリカ容器の製造方法における、第2の仮成形体を形成する工程の一例を模式的に示す概略断面図である。 本発明に係るシリカ容器の製造方法における、第2の仮成形体を加熱する工程の一例の一部(放電加熱溶融前)を模式的に示す概略断面図である。 本発明に係るシリカ容器の製造方法における、第2の仮成形体を加熱する工程の一例の一部(放電加熱溶融中)を模式的に示す概略断面図である。 本発明に係るシリカ容器の製造方法における、底部シリカガラス層を形成する工程の一例を模式的に示す概略断面図である。 比較例1のシリカ容器の構造を模式的に示す概略断面図である。 比較例2のシリカ容器の構造を模式的に示す概略断面図である。 比較例3のシリカ容器の構造を模式的に示す概略断面図である。 比較例4のシリカ容器の構造を模式的に示す概略断面図である。
本発明に係る単結晶シリコン引き上げ用シリカ容器は、内部に単結晶シリコンの原料となる多結晶シリコン等を収容し、該多結晶シリコン等を溶融して原料シリコン融液とし、この融液から単結晶シリコンを引き上げるためのものである。本発明のシリカ容器は、大規模集積回路(LSI)用又は太陽光発電(太陽電池、PV)用に使用される単結晶シリコンを引き上げるためのシリカ容器として用いることができる。
以下、本発明に係る単結晶シリコン引き上げ用シリカ容器及びその製造方法について図面を参照しながら詳細に説明するが、本発明はこれらに限定されるものではない。以下では特に単結晶シリコン製造用の大口径シリカ容器のルツボを例として説明する。なお、本発明のシリカ容器とはシリカルツボのことを示す。
本発明に係る単結晶シリコン引き上げ用シリカ容器の構造の例を、図1及び図2に示した。図1に示したように、本発明に係るシリカ容器74は、回転軸対称性を有するルツボ形状であり、直胴部61、湾曲部62、及び底部63を有する。このとき、便宜上シリカ容器74の外径(D)の1/3を底部63の直径(D)とする。底部63は円形状の部分である。直胴部61は、シリカ容器74の上縁から高さ(H)の1/3の高さ部分までの間(高さH−H)の円筒状の部分である。またシリカ容器74の高さ(H)の1/3の高さ部分から底部63までの間(高さH)のうち、底部63以外を湾曲部62とする。
シリカ容器74は、直胴部61、湾曲部62、及び底部63の内側表層部分において、混合シリカ層53を有し、底部63の混合シリカ層53の内表面上に底部シリカガラス層55を有する。混合シリカ層53は結晶質シリカ粉が溶融した相と非晶質シリカ粉が溶融した相が粒状に混在して成るものである。混合シリカ層53は、均一なものではなく数100μm〜数1000μm単位で微細な粒状構造を有するものである。より具体的には、混合シリカ層53を構成する結晶質シリカ粉が溶融した相は、石英粉、水晶粉、クリストバライト粉等の結晶質シリカ粉を原料とし、混合シリカ層53を構成する非晶質シリカ粉が溶融した相は、火炎加水分解法による合成シリカガラス粉、酸水素ベルヌイ法による溶融シリカガラス粉等の非晶質シリカ粉を原料としている。すなわち、混合シリカ層53はこれらの混合粉を溶融して一体化したシリカ層である。
また、シリカ容器74は、容器外側が気泡を含有する不透明シリカガラスから成り、容器内側が透明シリカガラスから成る。シリカ容器74においてこのような2層構造とすることにより、高温度下のシリカ容器使用時において、シリカ容器74の内部の均熱性を確保することができる。この不透明シリカガラスは、通常、白色不透明である。透明シリカガラスは、実質的に気泡を含有しないため透明であり、通常、無色透明である。不透明シリカガラス51のかさ密度は、1.90〜2.15(g/cm)程度であり、透明シリカガラス52のかさ密度はほぼ2.20(g/cm)である。混合シリカ層53の位置を示すために、便宜上、図中には、混合シリカ層53以外の部分について不透明シリカガラス51及び透明シリカガラス52を示した。実際には、混合シリカ層53も、容器外側の領域に位置する部分は不透明シリカガラスから成り、容器内側の領域に位置する部分は透明シリカガラスから成る。
シリカ容器74に単結晶シリコン引き上げのための原料としてシリコン融液を保持した際に、シリカ容器74の内表面を構成するシリカ成分とシリコン融液との間の反応(溶融反応)により、シリカ容器74の内表面はシリコン融液によるエッチング(侵蝕)を受ける。このとき、底部シリカガラス層55に覆われていない、混合シリカ層53が露出する部分では、結晶質シリカ粉が溶融した相の方が、非晶質シリカ粉が溶融した相よりもエッチング量(侵蝕量)が少ない(すなわち、エッチング速度が遅い)ことから、結晶質シリカ粉が溶融した相の粒状構造の部分が凸部となり、非晶質シリカ粉が溶融した相が凹部となる。このエッチング効果の違いにより、混合シリカ層53の表面(原料シリコン融液との界面)に微小な凹凸が形成され、ザラザラした粗面へと変化する。この粗面の発生により、高温度下におけるシリカ容器中の溶融シリコンの湯面において微細振動が発生しづらいし、発生した場合においても、波のように発生する湯面振動を該粗面により抑制できることになる。これは海岸にテトラポットの波消しブロックを配置することにより、海面の波を止めることができる現象に似ている。このように、混合シリカ層53は、湯面振動抑制層として作用する。
また、高温度下での使用が長時間にわたることにより混合シリカ層53のエッチングが進んでも、本発明のシリカ容器74では、混合シリカ層53が一定の厚さを有するため、微小な凹凸(粗面)は消滅せずに存在し続け、長時間にわたってシリコン融液の湯面振動を抑制することができる。長時間にわたって湯面振動を防止する効果が続くため、単結晶シリコンのマルチ引き上げ(マルチプリング)に特に有効である。
混合シリカ層53は、シリカ容器74の直胴部、湾曲部、及び底部の内側表層部分に位置するように形成される。混合シリカ層53は、図1に示したように、シリコン融液と接しない直胴部のうち上端から一定の範囲には形成しなくてもよいが、シリカ容器74が原料シリコン融液を保持した際の初期の融液面(初期湯面)に相当する内表面上の位置を含む。また、図2に示したように、シリカ容器74の直胴部、湾曲部、及び底部の内側表層部分の全てを混合シリカ層53としてもよい。なお、図2においては便宜上透明シリカガラス(図1の「透明シリカガラス52」)を図示していないが、実際には、混合シリカ層53のうち容器内側の領域に位置する部分には透明シリカガラスから成る部分が存在する。
シリカ容器74は、直胴部61及び湾曲部62において、内表面に混合シリカ層53が露出しているため、単結晶シリコンを引き上げる方法の初期段階(シーディング、ネッキング、ショルダーリング等)及びそれより後の段階(プリング、テーリング)におけるシリコン融液の湯面振動を効果的に抑制することができる。単結晶シリコン引き上げの全工程における湯面振動を抑制することができるため、単結晶シリコンの3本以上のマルチ引き上げ(マルチプリング)に特に適している。
シリカ容器74の底部63の内表面に底部シリカガラス層55を形成するのは、シリカ容器74の底部63の直径は製造する単結晶シリコンの直径に近似するためである。シリカ容器74の底部63に混合シリカ層53の表面が存在すると、単結晶製造時において、底部63の内側表面にも凹凸が生成し、ザラザラした粗面へ変化する。この状態でシリカガラスとシリコン融液が反応した際に、酸化ケイ素(SiO)ガスが発生し、底部63の凹凸面上でガス泡が成長し、その後シリコン融液中へガス泡が上昇することにより、成長中の単結晶シリコンの中に取り込まれ、ボイドやピンホールと呼ばれる空隙欠陥が発生しやすくなってしまう。本発明のシリカ容器74の底部63は底部シリカガラス層55に覆われるため、底部63の内表面には混合シリカ層55に起因する凹凸は生じず、これによるガス泡の成長もない。そのため、シリコン融液中のガス泡に起因する、単結晶シリコン中のボイドやピンホールと呼ばれる空隙欠陥の発生を抑制することができる。
本発明に係るシリカ容器74であれば、特に直径12インチ(30cm)〜直径18インチ(45cm)の大直径単結晶シリコンを引き上げるための直径30インチ(75cm)〜直径54インチ(135cm)の大口径シリカ容器においても、単結晶シリコン引き上げの全工程にわたって、湯面振動の抑制を行うことができる。
混合シリカ層53は、シリカ容器74の肉厚方向における厚さが2mm以上であることが好ましい。原料シリコン融液を保持した状態での高温でのシリカ容器の使用中に混合シリカ層53は徐々にエッチングされて薄くなっていくが、混合シリカ層53の厚さを2mm以上とすることにより、長時間にわたって原料シリコン融液の湯面振動の抑制をより確実に行うことができる。
混合シリカ層53は、OH基濃度50massppm以下の結晶質シリカ粉及びOH基濃度200〜2000ppmの非晶質シリカ粉の混合粉を原料として形成されたものであることが好ましい。混合シリカ層53をこのようなOH基濃度の違いを有する2種のシリカ粉の混合粉を原料として形成されたものとすることにより、混合シリカ層53の結晶質シリカ粉が溶融した相及び非晶質シリカ粉が溶融した相のシリコン融液に対するエッチング速度差をより顕著にすることができ、シリカ容器74の内表面の凹凸をより確実に形成させることができる。結晶質シリカ粉が溶融した相のOH基濃度は結晶質シリカ粉のOH基濃度に、非晶質シリカ粉が溶融した相のOH基濃度は非晶質シリカ粉のOH基濃度に、それぞれ対応するが、シリカ容器74は1800℃程度以上のような高温の工程を経て製造されるため、多少の変動があるものと推定される。なお、混合シリカ層53全体のOH基濃度を測定した場合には、両原料粉のOH基濃度の平均程度の値となる。
混合シリカ層53は、原料シリコン融液を保持した際に、その界面からエッチングされるものである。そのため、混合シリカ層53を高純度のものとすることにより、混合シリカ層53から原料シリコン融液に取り込まれる不純物元素の量を低減することが好ましい。具体的には、混合シリカ層53における不純物元素の濃度がLi、Na、Kの各々について100massppb以下、Ca、Mgの各々について50massppb以下、Ti、Cr、Fe、Ni、Cu、Zn、Zr、Mo、W、Pbの各々について20massppb以下であることが好ましい。
底部シリカガラス層55も高純度であることが好ましく、具体的には、不純物元素の濃度がLi、Na、Kの各々について50massppb以下、Ca、Mgの各々について25massppb以下、Ti、Cr、Fe、Ni、Cu、Zn、Zr、Mo、W、Pbの各々について10massppb以下であり、厚さが200〜2000μmであることが好ましい。
また、図1及び図2のシリカ容器74における混合シリカ層53及び底部シリカガラス層55以外の部分(以下、「通常シリカ部分」とも称する)の純度は、用途にもよるが、シリカ(SiO)純度としてソーラー用単結晶引き上げ用では99.99mass%以上、LSI用単結晶引き上げ用では99.999mass%以上が好ましい。また、この通常シリカ部分を作製するための原料粉として例えばアルカリ金属元素Li、Na、Kの各々が10massppm程度含有されるシリカ原料粉を使った場合においても、例えば、通常シリカ部分のOH基濃度を10〜50massppmに設定し、同時にAlを5〜30massppmに設定することにより、これらアルカリ金属元素のような拡散係数の値の大きな元素をシリカ容器の肉厚中に吸着、閉じ込めておくことが可能となる。OH基含有の効果として、金属不純物元素を吸着、固定する良い効果があるが、高温度下における粘性度を低下させシリカ容器を変形させてしまうという負の効果もあるので、上記の範囲とすることが好ましい。Alについては、金属不純物元素を吸着、固定する効果とシリカガラスの高温度下における粘性度を向上させる良い効果があるが、被処理物のシリコン融液をAlで汚染するという負の効果もある。従ってAlを含有させる場合でも上記のように5〜30massppm(より好ましくは10〜20massppm)の範囲とすることが好ましい。
以下では、上記のようなシリカ容器74を製造することができる、本発明の単結晶シリコン引き上げ用シリカ容器の製造方法を具体的に説明する。
図1及び図2に示したシリカ容器74の製造方法を、図3を参照して説明する。
図3の(a)、(b)及び(c)に示したように、第1の原料粉11、第2の原料粉12及び第3の原料粉22を作製、準備する(工程(a)、工程(b)及び工程(c))。第1の原料粉11は後述の第1の仮成形体41の形成工程より前に準備すればよく、第2の原料粉12は後述の第2の仮成形体43の形成工程より前に準備すればよい。第3の原料粉22は後述の底部シリカガラス層55の形成工程より前に準備すればよい。
(第1の原料粉11の作製)
第1の原料粉11は、シリカ容器74のうち、混合シリカ層53及び底部シリカガラス層55以外の部分(通常シリカ部分)を構成する材料となるものである。第1の原料粉11としては、粒径が10〜1000μmである結晶質シリカ粉を作製、準備する(工程(a))。第1の原料粉11は例えば以下のようにして珪石塊を粉砕、整粒することにより作製することができるが、これに限定されない。
まず、直径5〜50mm程度の天然珪石塊(天然に産出する水晶、石英、珪石、珪質岩石、オパール石等)を大気雰囲気下、600〜1000℃の温度域にて1〜10時間程度加熱する。次いで該天然珪石塊を水中に投入し、急冷却後取出し、乾燥させる。この処理により、次のクラッシャー等による粉砕、整粒の処理を行いやすくできるが、この加熱急冷処理は行わずに粉砕処理へ進んでもよい。
次いで、該天然珪石塊をクラッシャー等により粉砕、整粒し、粒径を10〜1000μm、好ましくは50〜500μmに調整して天然珪石粉を得る。
次いで、この天然珪石粉を、傾斜角度を有するシリカガラス製チューブから成るロータリーキルンの中に投入し、キルン内部を塩化水素(HCl)又は、塩素(Cl)ガス含有雰囲気とし、800〜1100℃にて1〜100時間程度加熱することにより高純度化処理を行う。ただし高純度を必要としない製品用途では、この高純度化処理を行わずに次処理へ進んでもよい。
以上のような工程後に得られる第1の原料粉11は結晶質のシリカである。その他、高純度合成クリストバライト粉等の種々の結晶質シリカ粉を用いることもできる。
第1の原料粉11の粒径は、上記のように10〜1000μmとする。この粒径は50〜500μmとすることが好ましい。第1の原料粉11のシリカ純度(SiO)は、99.99mass%以上とすることが好ましく、99.999mass%以上とすることがさらに好ましい。
第1の原料粉11の純度が低い(悪い)場合、製造したシリカ容器74から内表面へ、さらには収容するシリコン融液への不純物金属元素の移動、拡散を防止するために、第1の原料粉11にAl、OH基を所定量含ませることができる。Alは、例えば硝酸塩、酢酸塩、炭酸塩、塩化物等を水又はアルコール溶液として、これら溶液の中にシリカ粉を投入、浸漬させ、次いで乾燥することにより得られる。OH基は天然珪石に当初から含んでいるもの、又は中間工程で混合する水分をその後の乾燥工程におけるガス雰囲気、処理温度、時間により調整することができる。不透明シリカガラス51及び透明シリカガラス52を構成するための第1の原料粉11のAlの含有量は上記のように5〜30massppmとすることが好ましい。第1の原料粉11のOH基濃度は10〜50massppmとすることができるが、上記のようにその後の工程でもOH基濃度を調整できる。
これらAl、OH基の含有が不純物金属元素のシリカガラス中の移動、拡散を防止するメカニズムの詳細は不明であるが、AlはSiと置換することにより不純物金属元素の陽イオン(カチオン)をシリカガラスネットワークの電荷バランスを保つという点から吸着、拡散防止するものと推定される。またOH基は水素イオンと金属イオンが置換することにより、これら不純物金属元素を吸着ないし拡散防止する効果が生ずるものと推定される。
(第2の原料粉の作製)
第2の原料粉12は、混合シリカ層53を構成するための材料となるものである。第2の原料粉12として、粒径が50〜2000μmである結晶質シリカ粉13と、粒径が50〜2000μmである非晶質シリカ粉14との混合粉を作製する(工程(b))。結晶質シリカ粉13及び非晶質シリカ粉14をそれぞれ別個に作製し、これを混合することにより第2の原料粉12を作製、準備することができる。
(結晶質シリカ粉13の作製)
結晶質シリカ粉13の作製は、基本的に上記の第1の原料粉11の作製と同様にできるが、粒径は粒径が50〜2000μmとする。このように比較的粗い方が混合シリカ層53の結晶質シリカ粉が溶融した相とした際にシリコン融液によりエッチングされにくいため好ましい。粒径は300〜1000μmとすることがさらに好ましい。また、結晶質シリカ粉13のOH基濃度は後述のように50massppm以下とすることが好ましい。結晶質シリカ粉が溶融した相自体はシリコン融液に対してエッチングされにくいものであるものの、結晶質シリカ粉13は、混合シリカ層53を構成する原料となるため、結晶質シリカ粉13には、Al自体によるシリコン融液の汚染を考慮してAl元素を含有させない方が良い。ただし、場合によっては結晶質シリカ粉13にもAlを含有させてもよい。
(非晶質シリカ粉14の作製)
非晶質シリカ粉14の材質としては、高純度化処理された天然石英粉、天然水晶粉、又はクリストバライト粉を酸水素火炎溶融してシリカガラス塊とした後、粉砕、整粒したものや、四塩化ケイ素(SiCl)等のケイ素化合物の酸水素火炎加水分解法による合成シリカガラス塊を粉砕、整粒したシリカガラス粉が挙げられる。第2の原料粉12の粒径は50〜2000μmとし、好ましくは300〜1000μmとする。純度はシリカ成分(SiO)99.999mass%以上、より具体的には不純物元素の濃度を、Li、Na、Kの各々について100massppb以下、Ca、Mgの各々について50massppb以下、Ti、Cr、Fe、Ni、Cu、Zn、Zr、Mo、W、Pbの各々について20massppb以下とすることが好ましい。
(第2の原料粉12の混合調整)
以上のようにして作製した結晶質シリカ粉13及び非晶質シリカ粉14を混合することにより第2の原料粉12を作製、準備することができる。混合シリカ層53がシリコン融液にエッチングされた際の粗面の構造を適切なものにするため、2種類のシリカ粉の混合比率は結晶質シリカ粉13が90〜20mass%とすることが好ましく、80〜50mass%とすることがより好ましい。残りの比率が非晶質シリカ粉14である。
第2の原料粉12において、結晶質シリカ粉13のOH基濃度を50massppm以下とし、非晶質シリカ粉14のOH基濃度を200〜2000ppmとすることが好ましい。結晶質シリカ粉13のOH基濃度は上記のように調整することができる。結晶質シリカ粉13の水蒸気放出量は2×1017(HO分子/g)以下とすることが好ましい。非晶質シリカ粉14のOH基濃度の調節は種々の公知の方法を用いることができる。例えば、上記高純度化処理された天然石英粉、天然水晶粉、又はクリストバライト粉を酸水素火炎溶融する場合には、酸水素火炎の酸素、水素の流量を調節することによって、非晶質シリカ粉14中のOH基濃度を調節することができる。また、四塩化ケイ素のケイ素化合物の酸水素火炎加水分解法による作製の場合には、原料である四塩化ケイ素の流量に比べて、酸素及び水素の流量を増やすことにより非晶質シリカ粉14中のOH基濃度を上昇させることができる。
(第3の原料粉の作製)
第3の原料粉22は底部シリカガラス層55の原料となるものである。第3の原料粉22として、粒径が10〜1000μmである結晶質シリカ粉を作製する(工程(c))。第3の原料粉22は、第1の原料粉11と同様の方法により作製、準備することができる。第3の原料粉22は、高純度であることが好ましい。純度はシリカ成分(SiO)99.999mass%以上、より具体的には不純物元素の濃度を、Li、Na、Kの各々について50massppb以下、Ca、Mgの各々について25massppb以下、Ti、Cr、Fe、Ni、Cu、Zn、Zr、Mo、W、Pbの各々について10massppb以下とすることが好ましい。
(第1の仮成形体の形成)
少なくとも第1の原料粉11を作製した後、図3の(d)に示すように、第1の原料粉11を、回転対称性を有する型枠の内側へ投入し、該型枠を回転させつつ該型枠の内壁に応じた所定の形状に仮成形して、該型枠内に第1の原料粉11から成る第1の仮成形体41を形成する(工程(d))。図4及び図5に、第1の原料粉11を仮成形する型枠の概略を表す断面図を示した。本発明で用いる型枠101、101’は、例えば、グラファイト、アルミナ等の耐熱性セラミック又は冷却システムを有する耐熱性金属から成り、回転対称性を有しており、型枠回転用モーター(不図示)により回転させることができる。また、図4に示したように、型枠101の内壁102には、減圧用の孔103が分配されて形成されていてもよい。減圧用の孔103は、減圧用の通路104に連なっている。また、型枠101を回転させるための回転軸106にも減圧用の通路105が通っており、ここから真空引きを行うことができるようになっている。本発明では、図5に示したような、減圧用の装備がない型枠101’を用いることもできる。この型枠101’の内壁102’には減圧用の孔が形成されておらず、回転軸106’にも減圧用の通路はない。以下では、図4に示した型枠101を用いた場合を例として説明するが、減圧を行わないこと以外は図5に示した型枠101’も同様に用いることができる。
工程(c)では、図4に示した型枠101の内壁102に、第1の原料粉11を導入し、第1の原料粉11を型枠101の内壁102に応じた所定の形状に仮成形して第1の仮成形体41とする(図6参照)。具体的には、型枠101を回転させつつ、徐々に第1の原料粉11を型枠101の内壁102に投入し、遠心力を利用して所定の厚さを有する容器形状に成形する。また内側から板状の内型枠(図示せず)を、回転する粉体に接触させることにより、第1の仮成形体41の肉厚を所定量に調整してもよい。この際、次の工程において第2の原料粉12を導入するための部位を残して調整する。図6には、第1の仮成形体41に凹部42を形成する場合を図示した。また、この第1の原料粉11の型枠101への供給方法は特に限定されないが、例えば、攪拌用スクリューと計量フィーダを備えるホッパーを用いることができる。この場合、ホッパーに充填された第1の原料粉11を、攪拌用スクリューで攪拌し、計量フィーダで供給量を調節しながら供給する。
次に、図3の(e)に示すように、第2の原料粉12を、型枠101内に形成した第1の仮成形体41の凹部42に投入する(工程(e))。これにより、第1の原料粉11から成る部分及び第2の原料粉12から成る部分を有する第2の仮成形体43を形成する。第2の仮成形体43の形状は製造するシリカ容器74の形状に応じた形状として、かつ、該製造するシリカ容器74の直胴部、湾曲部、及び底部の内側表層部分に相当する部分が第2の原料粉12から成るものとして形成する。第2の原料粉12は、少なくとも第1の原料粉11の一部により第1の仮成形体41が形成された後に投入されるが、必要に応じて第2の原料粉12の投入後にも第1の原料粉11の一部を投入して第2の仮成形体43の全体を形成することもできる。
図7に図示した例は、図1に示したシリカ容器74の形状に応じたものである。この場合、第2の原料粉12は第1の仮成形体41の内側(凹部42)に投入される。図2に示したシリカ容器74を製造する場合は、図2のシリカ容器74に応じた形状になるように第2の仮成形体43の形状を調節する。
次に、図3の(f)に示したように、型枠101を回転させつつ、第2の仮成形体43の内側から放電加熱溶融法によって加熱することにより、第2の仮成形体43のうち第2の原料粉12から成る部分を結晶質シリカ粉が溶融した相と非晶質シリカ粉が溶融した相が粒状に混在する混合シリカ層53とするとともに、容器外側が気泡を含有する不透明シリカガラス51から成り、容器内側が透明シリカガラス52から成るシリカ容器73とする(工程(f))。この第2の仮成形体43の放電加熱溶融法による加熱は、該第2の仮成形体43の外側から減圧しながら行うことが好ましい。減圧しながら行う加熱により、容器外側の不透明シリカガラス及び容器内側の透明シリカガラスを効率よく作製することができる。
この工程の様子を、図8及び図9に具体的に示した。このシリカ容器73を作製する装置は、上記の回転軸対称性を有する回転可能な型枠101の他、回転モーター(図示せず)、及び放電加熱溶融(アーク溶融、アーク放電溶融とも呼ばれる)の熱源となる炭素電極(カーボン電極)212、電線212a、高圧電源ユニット211、蓋213等から成る。カーボン電極212は2本又は3本が一般的である。電源は、交流又は直流の2種類が使用できる。さらに、第2の仮成形体43の内側から供給する雰囲気ガスを調整するための構成要素、例えば、水素ガス供給用ボンベ411、不活性ガス供給用ボンベ412、混合ガス供給管420、ガス混合器及び流量調節器421等を具備する。
第2の仮成形体43の溶融、焼結手順としては、炭素電極212間に加電を開始する前に、まず、水素含有ガスを、第2の仮成形体43の内側から供給し始めることが好ましい。具体的には、図8に示したように、水素ガス供給用ボンベ411から水素ガスを、不活性ガス供給用ボンベ412から不活性ガス(例えば、窒素(N)やアルゴン(Ar)、ヘリウム(He))を供給して混合し、混合ガス供給管420を通じて、第2の仮成形体43の内側から供給する。なお、符号510で示した白抜き矢印は混合ガスの流れを示す。
次に、上記のように混合ガスの供給を続けた状態で、第2の仮成形体43が入っている型枠101を一定速度で回転させつつ、脱ガス用真空ポンプ(図示せず)を起動させ、減圧用の孔103、減圧用の通路104、105を通じて第2の仮成形体43の外側から減圧するとともに炭素電極212間に加電を開始する。
炭素電極212間にアーク放電(図9の符号220で図示)が開始されると、第2の仮成形体43の内表面部はシリカ粉の溶融温度域(1800〜2000℃程度と推定)となり、最表層部から溶融が始まる。最表層部が溶融すると脱ガス真空ポンプによる真空引きの減圧度が増加し(急に圧力が低下し)、第1の原料粉11及び第2の原料粉12に含まれている水や酸素等の溶存ガスを脱ガスしつつ溶融シリカガラス層への変化が内側から外側へ進行することになる。
第2の仮成形体43の全厚さの内側3分の1から半分程度が溶融し透明シリカガラスとなり、残り外側3分の2から半分程度が焼結した不透明シリカとなるまでに加電による加熱を継続する。
この放電加熱溶融時の容器肉厚層内部の雰囲気ガスは電極の消耗を少なくする目的からは窒素(N)、アルゴン(Ar)、ヘリウム(He)等の不活性ガスを主成分としても良いが、溶融後のシリカガラス中の溶存ガスを少なくするために、上記のように、この工程では雰囲気ガスを水素含有ガスとすることが好ましい。この水素含有ガスは、例えば、水素ガスと、窒素ガス(N)、アルゴン(Ar)、ヘリウム(He)等の不活性ガスからなる混合ガスとすることができる。水素ガス(H)の含有比率は1vol.%以上とすることが好ましく、1〜10vol.%とすることがより好ましい。この理由は、例えば脱ガスしにくい酸素ガス(O)が水素と反応し水(HO)を生成し、水分子は酸素分子に比較して拡散係数が大きいため、外層の外部へ放出されやすくなるものと考えられる。また水素ガス(H)は分子半径が小さく拡散係数が大きいため、雰囲気ガスに含まれていても外層外部へ放出されやすい。
ここまでの工程で、混合シリカ層53を有し、容器外側が気泡を含有する不透明シリカガラスから成り、容器内側が透明シリカガラスから成るシリカ容器73が製造される(図9参照)。
次に、図3の(g)に示したように、シリカ容器73の底部に底部シリカガラス層55を形成して、本発明のシリカ容器74を製造する(工程(g))。この工程は、シリカ容器73の上部から第3の原料粉(底部シリカガラス層形成用原料粉)22を散布しながら放電加熱溶融法により溶融し、溶融した第3の原料粉22をシリカ容器73の底部の内表面部分に付着させることにより、底部シリカガラス層55を形成する。底部シリカガラス層55は、不純物元素の濃度がLi、Na、Kの各々について50massppb以下、Ca、Mgの各々について25massppb以下、Ti、Cr、Fe、Ni、Cu、Zn、Zr、Mo、W、Pbの各々について10massppb以下であり、厚さが200〜2000μmであるものとして形成することが好ましい。
これにより、図1に示したシリカ容器74を製造することができる。この工程による底部シリカガラス層55の基本的な形成方法は、例えば特許文献1及び特許文献2に示される内容に類似しているが、本発明においては、シリカ容器73の内表面のうち底部のみに形成する。
図10に示した、シリカ容器73の底部の内表面部分に底部シリカガラス層55を形成する装置は、工程(f)とほぼ同様であり、回転軸対称性を有するシリカ容器が設置されている回転可能な型枠101、回転モーター(図示せず)、及び第3の原料粉22が入った原料粉ホッパー303、攪拌用スクリュー304、計量フィーダ305、及び放電加熱溶融の熱源となる炭素電極212、電線212a、高圧電源ユニット211、蓋213等から成る。また、雰囲気ガスを調整する場合には、工程(f)と同様に、さらに、水素ガス供給用ボンベ411、不活性ガス供給用ボンベ412、混合ガス供給管420、ガス混合器及び流量調節器421等を具備していてもよい。これらの装置は工程(f)から続けて使用することができる。
底部シリカガラス層55を形成する方法としては、まず、型枠101を所定の回転速度に設定し、高圧電源ユニット211から徐々に高電圧を負荷するのと同時に原料ホッパー303から徐々に第3の原料粉22をシリカ容器73の上部から散布する。この時炭素電極212間に放電は開始されており、シリカ容器73内部はシリカ粉の溶融温度域(1800〜2000℃程度と推定)にあるため、散布された第3の原料粉22はシリカの溶融粒子となってシリカ容器73の内表面に付着していく。シリカ容器73の上部開口部に設置されている炭素電極212、原料粉投入口、蓋213はシリカ容器73に対してある程度位置が変化させられる機構となっており、これらの位置を変化させることにより、シリカ容器73の底部の所定の場所に所定の厚さで底部シリカガラス層55を形成することができる。
アーク放電溶融中のシリカ容器73内部の雰囲気ガスは炭素電極の消耗を少なくするために、窒素ガス(N)、アルゴン(Ar)、ヘリウム(He)等の不活性ガスを主成分とするが、水素ガス(H)、1〜10vol.%の混合雰囲気とすることにより、含有する気泡が少ない底部シリカガラス層55が得られる。
アーク放電溶融時に発生するカーボン微粒子、及びカーボンと酸素との化合物である一酸化炭素(CO)、二酸化炭素(CO)は底部シリカガラス層55中に残留した場合、単結晶シリコン引き上げ時に不純物として再発生し、該シリコンの品質を低下させる原因のひとつとなりうる。これを抑制するためには、シリカ容器73外部からクリーンな雰囲気ガスを一定流量で供給しつつ、容器内部のガスを一定流量で排出させて溶融中のシリカ容器内部を適切に換気することが好ましい。
以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらにより限定されるものではない。
(実施例1)
図3に示した工程(a)〜(g)に従い、図1に示す単結晶シリコン引き上げ用シリカ容器74を製造した。第1の原料粉11として、粒径50〜500μm、純度99.999mass%の天然石英粉(a)を準備した。この天然石英粉(a)の不純物濃度は表6に示したものである。第2の原料粉12として、天然石英粉(b)である結晶質シリカ粉13及び合成シリカガラス粉(a)である非晶質シリカ粉14の混合粉を準備した。非晶質シリカ粉14は、四塩化ケイ素SiClの酸水素火炎加水分解法により作製した合成シリカガラス粉である。この天然石英粉(b)及び合成シリカガラス粉(a)の不純物元素濃度、OH基濃度、HO分子放出量は表7及び表8に示したものである。結晶質シリカ粉13と非晶質シリカ粉14の混合比率は40:60(質量%比)とした。
図4、図6及び図7に示したグラファイト型枠101を回転させつつ第1の原料粉11及び第2の原料粉12を投入し、第2の仮成形体43とした。次いで図8及び図9に示した装置を用いて、第2の仮成形体43の内部雰囲気を乾燥したN95vol.%、H5vol.%の混合ガスとし、外周部から吸気減圧しつつ、第2の仮成形体43内部で放電加熱溶融を行い、シリカ容器73を作製した。このシリカ容器73の底部に底部シリカガラス層55を、溶融雰囲気ガスをN95vol.%、H5vol.%として形成して、図1に示すシリカ容器74を製造した。この際の底部シリカガラス層55のための原料粉(第3の原料粉21)は、表9に示す不純物濃度、OH基濃度及びHO分子放出量である合成クリストバライト粉(a)とした。
(実施例2)
図1に示したシリカ容器74を製造した。製造条件は、結晶質シリカ粉(天然石英粉(b)と非晶質シリカ粉(合成シリカガラス粉(a))の混合比率を60:40(質量比)とし、溶融雰囲気ガスをN50vol.%、H10vol.%、He40vol.%とし、底部シリカガラス層55を実施例1よりも厚く形成した以外は実施例1と同様である。
(実施例3)
図1に示したシリカ容器74を製造した。製造条件は、結晶質シリカ粉(天然石英粉(b)と非晶質シリカ粉(合成シリカガラス粉(a))の混合比率を80:20(質量比)とし、底部シリカガラス層55を実施例1よりも厚く形成した以外は実施例1と同様である。
(実施例4)
図2に示したシリカ容器74、すなわち、混合シリカ層53を内表層上端まで形成したシリカ容器74を製造した。その他の製造条件は、非晶質シリカ粉14として表8に示した合成シリカガラス粉(b)を用いたこと、溶融雰囲気ガスをN90vol.%、H10vol.%としたこと、及び底部シリカガラス層55を実施例1よりも厚く形成したこと以外は実施例1と同様である。
(実施例5)
実施例4と同様の方法により図2に示したシリカ容器74を製造したが、結晶質シリカ粉(天然石英粉(b))と非晶質シリカ粉(合成シリカガラス粉(b))の混合比率を60:40(質量比)とし、溶融雰囲気ガスをN95vol.%、H5vol.%とした。
(実施例6)
実施例5と同様の方法により図2に示したシリカ容器74を製造したが、結晶質シリカ粉(天然石英粉(b))と非晶質シリカ粉(合成シリカガラス粉(b))の混合比率を80:20(質量比)とした。
(比較例1)
原料粉として天然石英粉を用いて、減圧アーク放電溶融法により、図11に示したシリカ容器91を製造した。シリカ容器91は本発明の混合シリカ層53に相当する部分はなく、容器外側が気泡を含有する不透明シリカガラス81から成り、容器内側82が透明シリカガラスから成る。
(比較例2)
図12に示したシリカ容器92を製造した。まず、原料粉として天然石英粉を用いて、常圧アーク放電溶融法により、容器外側が気泡を含有する不透明シリカガラス81から成り、容器内側82が透明シリカガラスから成るシリカ容器を作製し、その底部に合成クリストバライト粉を原料として底部シリカガラス層85を形成した。
(比較例3)
図13に示した、容器内側全面に混合シリカ層83を有し、その外側は不透明シリカガラス81から成るシリカ容器93を製造した。すなわち、シリカ容器93は、底部シリカガラス層を形成しないこと以外は、実施例4〜6と同様の構成である。具体的な製造方法は、底部シリカガラス層を形成しないことの他、非晶質シリカ粉として合成シリカガラス粉(a)を用いたこと以外は、実施例5と同様である。
(比較例4)
図14に示したシリカ容器94を製造した。シリカ容器94は、結晶質シリカ粉(天然石英粉(b))と非晶質シリカ粉(合成石英ガラス粉)の混合比率を50:50(質量%比)とし、混合シリカ層53を直胴部のみ(直胴部における高さ(幅)を150mmとした)に厚さ2mmで形成し、底部シリカガラス層55を形成しなかったこと以外は実施例1と同様に製造したものである。
[実施例及び比較例における評価方法]
各実施例及び比較例において用いた原料粉及び製造したシリカ容器の物性、特性評価を以下のようにして行った。
各原料粉の粒径測定:
光学顕微鏡又は電子顕微鏡で各原料粉の二次元的形状観察及び面積測定を行った。次いで、粒子の形状を真円と仮定し、その面積値から直径を計算して求めた。この手法を統計的に繰り返し行い、粒径の範囲(この範囲の中に99mass%以上の原料粉が含まれる)の値として、表1〜5に示した。
シリカ容器の層厚測定:
シリカ容器をカッターで切断し、断面をスケールで測定することにより求めた。
OH基濃度測定:
OH基濃度は、赤外線吸収分光光度法で測定を行った。OH基濃度への換算は、以下の文献に従う。
Dodd, D. M. and Fraser, D. B. (1966) Optical determination of OH in fused silica. Journal of Applied Physics, vol.37, P.3911.
不純物金属元素濃度分析:
不純物金属元素濃度が比較的低い(ガラスが高純度である)場合は、プラズマ発光分析法(ICP−AES)又はプラズマ質量分析法(ICP−MS)で行い、不純物金属元素濃度が比較的高い(ガラスが低純度である)場合は、原子吸光光度法(AAS)で行った。アルカリ金属元素Li、Na、K、アルカリ土類金属元素Ca、Mg、遷移金属元素Ti、Cr、Fe、Ni、Cu、Zn、Zr、Mo、W、Pbの15元素の濃度分析を行った。
Oガス放出量の測定方法:
各原料粉から2g程度サンプリングし、これを真空チャンバー内に設置し、1000℃真空下におけるガス放出量を測定した。詳細は以下の文献に従う。
Nasu, S. et al. (1990) “Gas release of various kinds of vitreous silica” ,Journal of Illuminating Engineering Institute of Japan, vol.74, No.9, pp. 595−600.
単結晶シリコン引き上げ時の湯面振動評価:
直径800mm(32インチ)のシリカ容器の中に純度99.99999999mass%の金属ポリシリコンを投入し、昇温を行いシリコン融液とした。その際、実施例1〜3では、シリコン湯面はシリカ容器の混合シリカ層の上端近くになるように設定されていた。CZ装置内をアルゴン(Ar)ガス100%雰囲気とし、単結晶シリコンの種結晶を回転させつつ下部へ移動させ、順次シーディング、ネッキング、ショルダーリング、プリング、テーリングを進めた。湯面振動の程度の評価は下記の通りとした。矢印の前は1回目の単結晶シリコン引き上げの際の評価を示し、矢印の後は2回目の単結晶シリコン引き上げの際の評価を示す。
・湯面振動が無く、シーディング、ネッキング、ショルダーリング、プリング、テーリングの全てが順調に行えた。 ○(良好)
・湯面振動が若干あったが、シーディング、ネッキングの工程を複数回繰り返すことによりショルダーリング、プリング、テーリングまで行えた。 △(やや良好)
・湯面振動が激しくシーディング、ネッキング、ショルダーリングを行うことが不可能であった。 ×(不良)
単結晶シリコン連続引き上げ(マルチ引き上げ)評価:
製造したシリカ容器の中に純度99.99999999mass%の金属ポリシリコンを投入し、昇温を行いシリコン融液とし、次いで単結晶シリコンの引き上げを3回繰り返して行い(マルチ引き上げ)、単結晶シリコン育成の成功率として評価した。引き上げ条件は、引き上げ装置(CZ装置)内をアルゴン(Ar)ガス100%雰囲気とし、引き上げ速度1mm/分、単結晶シリコン寸法は直径300mm、長さ900mm、単結晶シリコンの引き上げ1回当たりの操業時間は約30時間とした。単結晶シリコン育成3回繰り返しの成功比率の分類は以下の通りとした。
・単結晶シリコンインゴット3本の引き上げに成功した ○(良好)
・単結晶シリコンインゴット2本の引き上げに成功した △(やや良好)
・単結晶シリコンインゴット引き上げは1本であった ×(不良)
ボイドとピンホールの評価:
引き上げた単結晶シリコンにおけるボイドとピンホールの評価を以下のように行った。前記の単結晶シリコン連続引き上げにおいて、各単結晶シリコンマルチ引き上げ後の1本目の単結晶シリコンの任意の部位から、直径300mm、厚さ200μmの両面研磨仕上げのシリコンウェーハ各200枚を作製した。次いで各々のシリコンウェーハの両面に存在するボイドとピンホールの個数をパーティクル検出器により測定し、統計的に数値処理を行いシリコンウェーハ200枚当たりの欠陥の無い枚数を求めた。その結果、ボイドもピンホールも検出されないシリコンウェーハ枚数に応じて以下のような評価とした。ただし検出可能なボイドとピンホールの直径は50μm以上であった。
・無欠陥シリコンウェーハ枚数 200枚〜199枚 ○(良好)
・無欠陥シリコンウェーハ枚数 198枚〜197枚 △(やや良好)
・無欠陥シリコンウェーハ枚数 196枚以下 ×(不良)
実施例1〜6、比較例1〜4で製造したそれぞれのシリカ容器の製造条件と、測定した物性値、評価結果をまとめ、下記の表1〜9に示した。
Figure 2014205597
Figure 2014205597
Figure 2014205597
Figure 2014205597
Figure 2014205597
Figure 2014205597
Figure 2014205597
Figure 2014205597
Figure 2014205597
表1〜9からわかるように、実施例1〜6では、単結晶シリコン引き上げ時に湯面振動を抑制することができ、マルチ引き上げを順調に行うことができた。また、実施例1〜6では、単結晶シリコンにボイドやピンホールと呼ばれる空隙欠陥がほとんど導入されなかった。比較例1、2では湯面振動が発生し、特に引き上げ工程の初期段階より大きく発生した。比較例4でも特に2本目の単結晶シリコン引き上げ工程より湯面振動が発生した。
比較例3では湯面振動の発生はほとんどなかったが、ボイド、ピンホール評価は非常に悪かった。
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は単なる例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
11…第1の原料粉、 12…第2の原料粉、 13…結晶質シリカ粉、
14…非晶質シリカ粉、 22…第3の原料粉(底部シリカガラス層用原料粉)、
41…第1の仮成形体、 42…第1の仮成形体の凹部、 43…第2の仮成形体、
51…不透明シリカガラス(容器外側)、 52…透明シリカガラス(容器内側)、
53…混合シリカ層、 55…底部シリカガラス層、
61…直胴部、 62…湾曲部、 63…底部、
73…シリカ容器、 74…本発明のシリカ容器、
101、101’…型枠、 102、102’…内壁、 103…減圧用の孔、
104、105…減圧用の通路、 106、106’…回転軸、
211…高電圧電源ユニット、 212…炭素電極、 212a…電線、
213…蓋、 220…アーク放電、
303…ホッパー、 304…攪拌用スクリュー、 305…計量フィーダ、
411…水素ガス供給用ボンベ、 412…不活性ガス供給用ボンベ、
420…混合ガス供給管、 421…ガス混合器及び流量調節器、
510…混合ガスの流れ。
従来より、単結晶シリコン引き上げ用シリカルツボの製造方法としては、特許文献1及び特許文献2に記載されているような製造方法が使用されている。これらの方法は、回転する型枠の中に高純度化処理された石英粉を投入、成形した後、上部から電極を押し込み、電極に加電することによりアーク放電を起こし、雰囲気温度を石英粉の溶融温度域(1800〜2100℃程度と推定)まで上昇させて、石英粉を溶融、焼結させる方法である。しかし、このような製造されたシリカルツボの使用時において、溶融シリコンとシリカルツボとが反応して一酸化ケイ素(SiO)ガスが生じ、それが単結晶シリコンに気泡(ガス泡)として取り込まれ、ボイドやピンホールと呼ばれる空隙欠陥が生成する等の単結晶シリコンの品質上の問題が出ていた。
特に、単結晶シリコンの一般的な引き上げ法であるCZ法(チョクラルスキー法)では、ルツボと呼ばれるシリカ容器内の溶融シリコンの融液面(以下、単に「湯面」とも称する。)に種結晶を付け(シーディング)、次いで種結晶の直径を若干絞りつつ成長させ(ネッキング)、次いで直径を拡大させつつ大直径単結晶シリコンを作製し(ショルダーリング)、引き続いて大直径単結晶シリコンの直径を一定に保持しつつ引き上げて(プリング)、長軸寸法の単結晶シリコンを取り出している。この引き上げ時に、溶融シリコンの湯面が振動する現象(以下、この現象を単に「湯面振動」と称する。)が発生する。この湯面振動が発生するとシーディング、ネッキングやショルダーリングができなくなったり、引き上げ(プリング)中に単結晶シリコンの一部が多結晶化する問題が生じていた。この原因の一つとして、酸化ケイ素(SiO)ガス発生による湯面振動が考えられていた。特許文献1、2で作製されたシリカルツボでは、特に直径12インチ(30cm)〜18インチ(45cm)の大直径単結晶シリコンを引き上げるための直径30インチ(75cm)〜54インチ(135cm)の大型容器である場合、高い頻度で強い湯面振動が発生するため、早急なる解決が求められていた。以下、シリカルツボと石英ルツボは同意語である。シリカガラスと石英ガラスも同意語である。
特許文献3では、溶融シリコンの湯面振動が発生しない石英ガラスルツボとして、ルツボの壁のIR(赤外線)透過率を3〜30%に設定すること等が示されている。しかしこのような広い透過率範囲の物性を有する大形化した石英ガラスルツボを使用しても、大直径単結晶シリコン引き上げ時における湯面振動を抑制することはできなかった。
特許文献4では、溶融シリコンの湯面振動が発生しない石英ガラスルツボの製造方法として、ルツボ製造時にルツボ内側の雰囲気に水蒸気を導入することが示されており、ルツボ内側表層全体におけるOH基濃度を高めることが湯面振動抑制に好ましいとされている。しかし、このような製造方法による、大形化した石英ガラスルツボを使用しても大直径単結晶シリコン引き上げ時における湯面振動を抑制する効果は不充分であった。またルツボ内側のシリコン融液による侵蝕(エッチング)が激しく、ルツボの寿命は短いものとなっていた。
特許文献5では、単結晶シリコン引き上げ時の石英ガラスルツボにおいて、溶融シリコン湯面付近の石英ガラスルツボ内表面の帯状部分のみを天然石英ガラスとすることにより、湯面振動を防止できると示している。しかしこのルツボは、全合成石英ガラスルツボに比較して湯面振動が相対的に少ないというものであり、大直径単結晶シリコン引き上げ時における湯面振動を抑制する効果は不充分であった。
特許文献6では、溶融シリコンの湯面付近の石英ガラスルツボ内表面に、気泡含有量の多い部分を帯状に分布させることにより、湯面振動を防止できると示している。しかしこのルツボではある程度の湯面振動抑制効果は認められるものの、気泡含有量の多い帯状部分の溶融シリコンによる侵蝕(エッチング)量が大きく、ルツボの寿命は短いものとなってしまった。また帯状部分に含まれている気泡が単結晶シリコン中に取り込まれる確率が高くなり、しばしば単結晶シリコン中にボイドやピンホールという空隙欠陥が生成する問題があった。
特許文献7では、回転軸対称性を有する石英ガラスルツボの気泡含有率、肉厚、透過率を円周にわたって均質にすることにより、溶融シリコンの湯面振動が防止できると示している。ルツボの各種物性を円周にわたって回転軸対称に高精度で作製することは湯面振動防止の観点からは基本的に重要なことと考えられる。しかし、ある程度の物性変動が生じたとしても、該湯面振動を防止できることが求められていた。
特許文献8では、溶融シリコンの湯面付近の石英ガラスルツボ内表面に複数個の微小凹部を具え、かつその下部に複数個の気泡を具えることにより湯面振動を防止できると示している。しかしこのルツボでは単結晶シリコン製造における初期の湯面振動は抑制できるものの、微小凹部が溶解された後では、再び振動が発生するという問題があった。特に単結晶シリコンを複数本引き上げる(マルチプリング)場合、2本目以降製造時の湯面振動が激しくなるということがあった。
特許文献9では、石英ガラスルツボ内表面に、石英粉を用いたサンドブラスト処理をすることにより、帯状に粗面領域を作製し、湯面振動を防止できると示している。しかしこのようなルツボでは単結晶シリコン製造時の初期の湯面振動は抑制できるものの、その効果は長く続かないものであった。また1個のルツボによりマルチプリングをすることは困難であった。
特許文献10では、石英ルツボ内表面にシリカ粉を酸水素火炎で溶融して、OH基を500〜1500ppm含有するシリカガラス層を堆積することにより、湯面振動を防止することができると示している。しかしこの製法は工程が複雑化して高コストになるばかりではなく、湯面付近のシリコン融液によるエッチングが大きく、そのため湯面振動が徐々に激しくなったりルツボ寿命が短くなってしまうという欠点が生じていた。
(結晶質シリカ粉13の作製)
結晶質シリカ粉13の作製は、基本的に上記の第1の原料粉11の作製と同様にできるが、粒径は50〜2000μmとする。このように比較的粗い方が混合シリカ層53の結晶質シリカ粉が溶融した相とした際にシリコン融液によりエッチングされにくいため好ましい。粒径は300〜1000μmとすることがさらに好ましい。また、結晶質シリカ粉13のOH基濃度は後述のように50massppm以下とすることが好ましい。結晶質シリカ粉が溶融した相自体はシリコン融液に対してエッチングされにくいものであるものの、結晶質シリカ粉13は、混合シリカ層53を構成する原料となるため、結晶質シリカ粉13には、Al自体によるシリコン融液の汚染を考慮してAl元素を含有させない方が良い。ただし、場合によっては結晶質シリカ粉13にもAlを含有させてもよい。
図4、図6及び図7に示したグラファイト型枠101を回転させつつ第1の原料粉11及び第2の原料粉12を投入し、第2の仮成形体43とした。次いで図8及び図9に示した装置を用いて、第2の仮成形体43の内部雰囲気を乾燥したN95vol.%、H5vol.%の混合ガスとし、外周部から吸気減圧しつつ、第2の仮成形体43内部で放電加熱溶融を行い、シリカ容器73を作製した。このシリカ容器73の底部に底部シリカガラス層55を、溶融雰囲気ガスをN95vol.%、H5vol.%として形成して、図1に示すシリカ容器74を製造した。この際の底部シリカガラス層55のための原料粉(第3の原料粉22)は、表9に示す不純物濃度、OH基濃度及びHO分子放出量である合成クリストバライト粉(a)とした。

Claims (8)

  1. 直胴部、湾曲部、及び底部を有する単結晶シリコン引き上げ用シリカ容器の製造方法であって、
    第1の原料粉として、粒径が10〜1000μmである結晶質シリカ粉を作製する工程と、
    第2の原料粉として、粒径が50〜2000μmである結晶質シリカ粉と、粒径が50〜2000μmである非晶質シリカ粉との混合粉を作製する工程と、
    第3の原料粉として、粒径が10〜1000μmである結晶質シリカ粉を作製する工程と、
    前記第1の原料粉を、回転対称性を有する型枠の内側へ投入し、該型枠を回転させつつ該型枠の内壁に応じた所定の形状に仮成形して、該型枠内に第1の原料粉から成る第1の仮成形体を形成する工程と、
    前記第2の原料粉を、前記型枠内に形成した第1の仮成形体の内側に投入して前記第1の原料粉から成る部分及び前記第2の原料粉から成る部分を有する第2の仮成形体を、製造するシリカ容器の形状に応じた形状としてかつ、該製造するシリカ容器の直胴部、湾曲部、及び底部の内側表層部分に相当する位置において、前記第2の原料粉から成る部分を有するものとして形成する工程と、
    前記型枠を回転させつつ、前記第2の仮成形体の内側から放電加熱溶融法によって加熱することにより、前記第2の仮成形体のうち前記第2の原料粉から成る部分を結晶質シリカ粉が溶融した相と非晶質シリカ粉が溶融した相が粒状に混在する混合シリカ層とするとともに、容器外側が気泡を含有する不透明シリカガラスから成り、容器内側が透明シリカガラスから成るものとした直胴部、湾曲部、及び底部を有するシリカ容器を作製する工程と、
    該シリカ容器の上部から前記第3の原料粉を散布しながら放電加熱溶融法により溶融し、溶融した第3の原料粉を前記底部の内表面部分に付着させ底部シリカガラス層を形成する工程と
    を含むことを特徴とする単結晶シリコン引き上げ用シリカ容器の製造方法。
  2. 前記混合シリカ層を、前記シリカ容器の肉厚方向における厚さが2mm以上であるものとして形成することを特徴とする請求項1に記載の単結晶シリコン引き上げ用シリカ容器の製造方法。
  3. 前記第2の仮成形体の放電加熱溶融法による加熱を、該第2の仮成形体の外側から減圧しながら行うことを特徴とする請求項1又は請求項2に記載の単結晶シリコン引き上げ用シリカ容器の製造方法。
  4. 前記第2の原料粉において、前記結晶質シリカ粉のOH基濃度を50massppm以下とし、前記非晶質シリカ粉のOH基濃度を200〜2000ppmとすることを特徴とする請求項1ないし請求項3のいずれか1項に記載の単結晶シリコン引き上げ用シリカ容器の製造方法。
  5. 前記第2の原料粉の不純物元素の濃度を、Li、Na、Kの各々について100massppb以下、Ca、Mgの各々について50massppb以下、Ti、Cr、Fe、Ni、Cu、Zn、Zr、Mo、W、Pbの各々について20massppb以下とすることを特徴とする請求項1ないし請求項4のいずれか1項に記載の単結晶シリコン引き上げ用シリカ容器の製造方法。
  6. 直胴部、湾曲部、及び底部を有する単結晶シリコン引き上げ用シリカ容器であって、
    容器外側が気泡を含有する不透明シリカガラスから成り、容器内側が透明シリカガラスから成り、
    前記直胴部、湾曲部、及び底部の内側表層部分において、結晶質シリカ粉が溶融した相と非晶質シリカ粉が溶融した相が粒状に混在する混合シリカ層を有し、
    前記底部の混合シリカ層の内表面上に底部シリカガラス層を有する
    ことを特徴とする単結晶シリコン引き上げ用シリカ容器。
  7. 前記混合シリカ層が、OH基濃度50massppm以下の結晶質シリカ粉及びOH基濃度200〜2000ppmの非晶質シリカ粉の混合粉を原料として形成されたものであることを特徴とする請求項6に記載の単結晶シリコン引き上げ用シリカ容器。
  8. 前記混合シリカ層における不純物元素の濃度がLi、Na、Kの各々について100massppb以下、Ca、Mgの各々について50massppb以下、Ti、Cr、Fe、Ni、Cu、Zn、Zr、Mo、W、Pbの各々について20massppb以下であることを特徴とする請求項6又は請求項7に記載の単結晶シリコン引き上げ用シリカ容器。
JP2013085130A 2013-04-08 2013-04-15 単結晶シリコン引き上げ用シリカ容器及びその製造方法 Active JP5608258B1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2013085130A JP5608258B1 (ja) 2013-04-15 2013-04-15 単結晶シリコン引き上げ用シリカ容器及びその製造方法
US14/398,880 US20150114284A1 (en) 2013-04-08 2014-03-25 Silica container for pulling single crystal silicon and method for manufacturing the same
PCT/JP2014/001681 WO2014167788A1 (ja) 2013-04-08 2014-03-25 単結晶シリコン引き上げ用シリカ容器及びその製造方法
EP14782930.3A EP2835452A4 (en) 2013-04-08 2014-03-25 SILICON DIOXIDE TIP FOR PULLING A SILICONE INCRISTAL AND METHOD FOR THE PRODUCTION THEREOF
KR1020147031698A KR101645663B1 (ko) 2013-04-08 2014-03-25 단결정 실리콘 인상용 실리카 용기 및 그 제조방법
CN201480001704.9A CN104395509A (zh) 2013-04-08 2014-03-25 单晶硅提拉用二氧化硅容器及其制造方法
TW103111810A TWI516646B (zh) 2013-04-08 2014-03-28 Silicone container for single crystal silicon pulling and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013085130A JP5608258B1 (ja) 2013-04-15 2013-04-15 単結晶シリコン引き上げ用シリカ容器及びその製造方法

Publications (2)

Publication Number Publication Date
JP5608258B1 JP5608258B1 (ja) 2014-10-15
JP2014205597A true JP2014205597A (ja) 2014-10-30

Family

ID=51840541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013085130A Active JP5608258B1 (ja) 2013-04-08 2013-04-15 単結晶シリコン引き上げ用シリカ容器及びその製造方法

Country Status (1)

Country Link
JP (1) JP5608258B1 (ja)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2864066B2 (ja) * 1991-12-24 1999-03-03 三菱マテリアルクォーツ株式会社 シリコン単結晶引上げ用石英ルツボとその製造方法
JP4702898B2 (ja) * 2007-09-18 2011-06-15 信越石英株式会社 シリコン単結晶引上げ用石英ガラスルツボの製造方法

Also Published As

Publication number Publication date
JP5608258B1 (ja) 2014-10-15

Similar Documents

Publication Publication Date Title
WO2014167788A1 (ja) 単結晶シリコン引き上げ用シリカ容器及びその製造方法
JP5608257B1 (ja) 単結晶シリコン引き上げ用シリカ容器及びその製造方法
JP4907735B2 (ja) シリカ容器及びその製造方法
JP5462423B1 (ja) 単結晶シリコン引き上げ用シリカ容器及びその製造方法
JP4903288B2 (ja) シリカ容器及びその製造方法
TWI445675B (zh) Silica container and method of manufacturing the same
KR101504953B1 (ko) 단결정 실리콘 인상용 실리카 용기 및 그 제조 방법
JP5497247B1 (ja) 単結晶シリコン引き上げ用シリカ容器及びその製造方法
JP5308594B1 (ja) 単結晶シリコン引き上げ用シリカ容器及びその製造方法
JP5595615B2 (ja) 単結晶シリコン引き上げ用シリカ容器及びその製造方法
JP5608258B1 (ja) 単結晶シリコン引き上げ用シリカ容器及びその製造方法

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20140714

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140829

R150 Certificate of patent or registration of utility model

Ref document number: 5608258

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250