JP2014203943A - 金属化フィルムコンデンサ - Google Patents

金属化フィルムコンデンサ Download PDF

Info

Publication number
JP2014203943A
JP2014203943A JP2013078296A JP2013078296A JP2014203943A JP 2014203943 A JP2014203943 A JP 2014203943A JP 2013078296 A JP2013078296 A JP 2013078296A JP 2013078296 A JP2013078296 A JP 2013078296A JP 2014203943 A JP2014203943 A JP 2014203943A
Authority
JP
Japan
Prior art keywords
film capacitor
capacitor
metallized film
lead terminal
metallicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013078296A
Other languages
English (en)
Other versions
JP6322804B2 (ja
JP2014203943A5 (ja
Inventor
浩 久保田
Hiroshi Kubota
浩 久保田
洋一 生越
Yoichi Ogose
洋一 生越
佐藤 慎也
Shinya Sato
慎也 佐藤
守裕 吉田
Morihiro Yoshida
守裕 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2013078296A priority Critical patent/JP6322804B2/ja
Publication of JP2014203943A publication Critical patent/JP2014203943A/ja
Publication of JP2014203943A5 publication Critical patent/JP2014203943A5/ja
Application granted granted Critical
Publication of JP6322804B2 publication Critical patent/JP6322804B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

【課題】ハイブリッド自動車等に使用される金属化フィルムコンデンサの信頼性の向上を目的とする。
【解決手段】本発明の金属化フィルムコンデンサ1は、対向する二極の金属蒸着電極と、これら金属蒸着電極の間に介在する誘電体フィルムとで形成されたコンデンサ素子2と、このコンデンサ素子2の両端面に設けられた一対のメタリコン電極3と、これらメタリコン電極3に接続され、コンデンサ素子2を外部と電気的に接続する引出端子4とを備え、メタリコン電極3は亜鉛を溶射することで形成され、引出端子4は銅にて形成され、メタリコン電極3と引出端子4は、間にアルミニウム箔5を介在させた状態で超音波接合を行うことで接合された構成となっている。この構成により本発明の金属化フィルムコンデンサ1は、超音波接合によるメタリコン電極3と引出端子4の接合強度を向上させることができ、信頼性の高いものとなっている。
【選択図】図2

Description

本発明は各種電子機器、電気機器、産業機器、自動車等に使用され、特に、ハイブリッド自動車のモータ駆動用インバータ回路の平滑用、フィルタ用、スナバ用に最適なフィルムコンデンサに関するものである。
近年、環境保護の観点から、あらゆる電気機器がインバータ回路で制御され、省エネルギー化、高効率化が進められている。中でも自動車業界においては、電気モータとエンジンで走行するハイブリッド車(以下、HEVと呼ぶ)が市場導入される等、地球環境に優しく、省エネルギー化、高効率化に関する技術の開発が活発化している。
HEV用の電気モータは使用電圧領域が数百ボルトと高いため、このような電気モータに関連して使用されるコンデンサとして、高耐電圧で低損失の電気特性を有する金属化フィルムコンデンサが注目されており、更に市場におけるメンテナンスフリー化の要望からも極めて寿命が長い金属化フィルムコンデンサを採用する傾向が目立っている。
このHEV用として用いられる金属化フィルムコンデンサは、金属化フィルムコンデンサの中でもコンデンサ容量が大きく、比較的大型の形状をなしている。これにともなってコンデンサ素子両端面のメタリコン電極に接合される引出端子も大きな電流容量が必要となり、例えば銅で形成された板状のバスバーなど比較的大型のものが用いられる。このような比較的大型な引出端子とメタリコン電極との接合には、一般に抵抗溶接よりもハンダ付けによる接合が適している。
しかしながら、引出端子が大型で熱容量が大きいため、ハンダ付け接合を行うためには、引出端子に高温のハンダゴテを長時間あてる必要がある。そして、このハンダゴテの熱がコンデンサ素子に伝わってしまうことがあった。コンデンサ素子には誘電体フィルムとして例えばポリプロピレンフィルムなどが用いられるが、このポリプロピレンフィルムは熱に対する耐性がさほど強くなく、ハンダ付け接合のための熱が伝わるとポリプロピレンフィルムが収縮したり、あるいは変性したりすることがある。このような状態のままのポリプロピレンフィルムを用いて金属化フィルムコンデンサを作製すると、そのコンデンサ特性が著しく低下してしまうことが考えられる。
このようなハンダ付け接合に纏わる課題の解決策として、特許文献1の金属化フィルムコンデンサ101では以下のような対策がなされていた。この特許文献1に記載の対策について図3を用いて説明する。図3は、特許文献1に記載の金属化フィルムコンデンサ101の構成を示す図である。
図3に示すように、特許文献1に記載の金属化フィルムコンデンサ101は、コンデンサ素子102と、その両端面に形成されたメタリコン電極103に接合された引出端子であるバスバー104にて構成され、特にそのバスバー104の形状に特徴がある。すなわち、バスバー104のメタリコン電極103との接合部側の端部には凸部105が形成されている。そして、この凸部105に図3の丸印で囲まれたハンダ付け範囲でハンダ付け接合を行うことで、熱容量の大きなバスバー104をコンデンサ素子102への熱ダメージが少ない状態で接合することを可能としている。
しかしながら、この特許文献1に記載の技術においても、ハンダゴテにてハンダを溶融させる温度まで凸部105を加熱するのにある程度の時間がかかるため、少なからずコンデンサ素子102に熱が伝わってしまい、ハンダ付け接合に纏わる課題の抜本的な解決には至っていない。
ここで、ハンダ付け接合以外の接合方法としては超音波による接合が考えられる。超音波接合とは接合対象である引出端子をメタリコン電極に加圧しながら押し当て、さらに超音波によって振動させることによって瞬時に溶融させ、接合させる方法である。この超音波接合によると、熱が発生するものの、溶接時間が極めて短いため、ハンダ付け接合と比較してコンデンサ素子に与える熱ダメージを少なくすることができる。
この超音波による接合方法は過去から存在し、例えば特許文献2に金属化フィルムコンデンサの引出端子と端面電極の接合に適用させた技術が記載されている。
特開2004−349447号公報 特開昭61−32508号公報
確かに、超音波による接合はコンデンサ素子に与える熱ダメージを極めて少なくすることができるものであった。
しかしながら、実際に超音波による接合を金属化フィルムコンデンサの引出端子とメタリコン電極に用いた例は少なく、現状として実用化には至っていないと言わざるを得ない。
これは、超音波による接合ではハンダ付けによる接合に比べその接合力が弱く、実使用時に剥離してしまう虞があるためと推測される。特に、上記のようなHEV用として用いられる金属化フィルムコンデンサは、高温多湿かつ強度の振動および衝撃が加えられる極めて過酷な外部環境に曝されるため、引出端子とメタリコン電極が強固に接合されていることが必須となる。
このような背景から、本発明者らは超音波接合を用いた金属化フィルムコンデンサのHEV用としての採用を目指して研究に取り組み、鋭意検討の結果、金属化フィルムコンデンサにおける新規の構成を見出した。
すなわち、本発明は、従来の超音波接合が有する課題を解決し、金属化フィルムコンデンサの引出端子とメタリコン電極を強固に接合し、HEV用として用いられることが可能な信頼性の高い金属化フィルムコンデンサを提供することを目的とするものである。
上記課題を解決するために本発明の金属化フィルムコンデンサは、対向する二極の金属蒸着電極と、これら金属蒸着電極の間に介在する誘電体フィルムとで形成されたコンデンサ素子と、このコンデンサ素子の両端面に設けられた一対のメタリコン電極と、これらメタリコン電極に接続され、前記コンデンサ素子を外部と電気的に接続する引出端子とを備え、前記メタリコン電極は亜鉛を溶射することで形成され、前記引出端子は銅にて形成され、前記メタリコン電極と前記引出端子は、間にアルミニウム箔を介在させた状態で超音波接合を行うことで接合された構成となっている。
この構成により、金属化フィルムコンデンサの引出端子とメタリコン電極を強固に接合し、信頼性の高い金属化フィルムコンデンサを提供することができる。
これは、引出端子とメタリコン電極とをアルミニウム箔をその間に介在させた状態で超音波接合にて接合させたことによる。
この結果、従来接合力が弱く実使用時に剥離などの課題が生じていた銅にて形成された引出端子と亜鉛にて形成されたメタリコン電極の接合強度を向上させることができ、信頼性の高い金属化フィルムコンデンサを提供することができる。
実施の形態1の金属化フィルムコンデンサのコンデンサ素子の構成を示す斜視図 実施の形態1の金属化フィルムコンデンサの断面図 従来の金属化フィルムコンデンサの斜視図
(実施の形態1)
以下、図1ならびに図2を用いて、本実施の形態の金属化フィルムコンデンサ1の構成について説明する。
図1は本実施の形態の金属化フィルムコンデンサ1に用いるコンデンサ素子2の構成を示す斜視図、図2は本実施の形態の金属化フィルムコンデンサ1の構成を示す断面図である。
本実施の形態に用いられるコンデンサ素子2は、図1に示すように扁平型の形状を有している。この扁平型のコンデンサ素子2は、誘電体フィルムの片面または両面に金属蒸着電極を形成した金属化フィルムを一対とし、金属蒸着電極が誘電体フィルムを介して対向する状態で巻回して形成した巻回体を鉛直上下方向から押圧することで形成される。
本実施の形態のコンデンサ素子2においては、誘電体フィルムとしてポリプロピレンフィルムを用いているが、ポリプロピレンフィルム以外にもポリエチレンテレフタレートフィルムやポリエチレンナフタレートフィルム等を用いてもよい。
また、本実施の形態のコンデンサ素子2においては、アルミニウムを蒸着して金属蒸着電極を形成しているが、これ以外にも銅、亜鉛、マグネシウム等の金属や、あるいはこれらの合金を蒸着して形成してもよい。
さらに、本実施の形態のコンデンサ素子2の形状は上述したように巻回体を押圧して形成したため扁平型となっているが、押圧せずに断面円形の巻回体そのものをコンデンサ素子としてもよい。あるいは、金属化フィルムを積層して形成した断面四角形状のコンデンサ素子を用いてもよい。ただし、巻回体そのものをコンデンサ素子としたものよりも扁平型や断面四角形状の方がその側面が平面となり、所定の収納箇所への収納効率が優れている。特に、「背景技術」の項で説明したように本実施の形態の金属化フィルムコンデンサ1をHEV用として用いる場合は、その収納スペースが限られているため、扁平型や断面四角形状とすることが好ましい。
そして、本実施の形態のコンデンサ素子2には図1に示すように、その両端面にメタリコン電極3が形成されている。このメタリコン電極3は亜鉛を溶射することで形成されるため、多数の亜鉛の金属粒子どうしが溶着した状態となっており、その表面は粗く、細かい凹凸が存在した状態となっている。
このように両端面にメタリコン電極3が形成されたコンデンサ素子2にさらに引出端子4を超音波接合にて接合することで、図2に示すように本実施の形態の金属化フィルムコンデンサ1が作製される。特に、本実施の形態1の金属化フィルムコンデンサ1においてはメタリコン電極3と引出端子4の間にアルミニウム箔5を介在させた状態で超音波接合を行っている。
引出端子4は、コンデンサ素子2に形成されたメタリコン電極3を外部と電気的に接続させるための部材であり、本実施の形態の金属化フィルムコンデンサ1においては銅で形成された板状のバスバーを用いている。この引出端子4の厚さは超音波接合の可能な範囲の厚さであればよい。また、本実施の形態の金属化フィルムコンデンサ1では引出端子4として板状のバスバーを用いたが、これに限らず銅にて形成されたリード線を用いてもよい。
次に、本実施の形態の金属化フィルムコンデンサ1のポイントであるアルミニウム箔5について説明する。
本実施の形態の金属化フィルムコンデンサ1においては、メタリコン電極3と引出端子4の間にアルミニウム箔5が介在した状態となっており、上記超音波接合はこのようにメタリコン電極3と引出端子4の間にアルミニウム箔5を挟んだ状態で行われる。
本実施の形態においては、アルミニウム箔5として厚み50μm、15mm×20mmの矩形型の形状のものを用いた。なお、アルミニウム箔5は、その大きさ、形状が限定されたものではなく、超音波接合を行う範囲や、コンデンサ素子2の体格に合わせて適宜変更すればよい。
また、本実施の形態における金属化フィルムコンデンサ1の超音波接合の条件は、超音波の周波数が1.5以上2.5kHz以下、負荷応力が0.1以上0.5MPa以下、振動幅が45以上75μm以下、超音波接合時間が0.5以上2.0sec以下である。なお、これらの条件のうち、超音波接合時間の長短が最もコンデンサ素子2への熱ダメージに影響する。そこで、超音波接合時間を変更した金属化フィルムコンデンサ1の試料を多数用意し、コンデンサ特性を評価した結果、金属化フィルムコンデンサ1のコンデンサ特性を実質的に損なわないためには、超音波接合時間を3.0sec以下と設定することが好ましいとの知見を得た。より好ましくは2.0sec以下である。
このように、本実施の形態の金属化フィルムコンデンサ1ではアルミニウム箔5を介在させてメタリコン電極3と引出端子4を超音波接合にて接合したことにより、メタリコン電極3と引出端子4を強固に接合させることができる。これは以下の理由によるものと推測される。
まず、従来どおり、アルミニウム箔5を介在させずにメタリコン電極3と引出端子4を超音波接合にて接合させようとした場合、接合力が弱く、特に後述するようにヒートサイクル試験における接合力の低下が顕著に見られた。これはメタリコン電極3の表面が上述したように粗い状態となっており、凹凸が多数存在するため、メタリコン電極3の表面と引出端子4の表面とが実質的に接触している面積が小さいことに起因すると推測される。すなわち、超音波接合時の接合部材どうしの接触面積が乏しいため、超音波接合を行っても十分な接合力を確保できなかったと考えられる。
一方で、本実施の形態の金属化フィルムコンデンサ1のようにアルミニウム箔5を介在させた場合、まずアルミニウム箔5は表面が平坦となっているため、同様に平坦な表面を有する引出端子4と超音波接合時に十分な面積にて接触させ、接合させることができる。また、アルミニウム箔5とメタリコン電極3の接合に関しては、アルミニウム箔5は塑性変形し易いため、超音波接合時の振動により変形したアルミニウム箔5がメタリコン電極3の亜鉛の金属粒子間に入り込み、いわば金属粒子間の隙間が充填されたような状態で接合させることができる。この結果、本実施の形態の金属化フィルムコンデンサ1では十分な接合力にてメタリコン電極3と引出端子4を接合させることができると考えられる。
さらに、この理由に加え、これら本実施の形態の金属化フィルムコンデンサ1で用いたアルミニウム箔5がメタリコン電極3、引出端子4の間の熱膨張係数を有することも本発明の効果が得られる要因の一つであると推測される。
すなわち、従来のメタリコン電極3と引出端子4の接合ではこれらメタリコン電極3と引出端子4にそれぞれ用いた亜鉛と銅の熱膨張係数は、それぞれ30.2(×10−6/K)と16.5(×10−6/K)であり、少なからず乖離している。このため、外部から熱が与えられた際、それぞれの金属の熱膨張率の違いからメタリコン電極3と引出端子4の間に応力が発生し、この結果メタリコン電極3と引出端子4が剥離してしまうと考えられる。
一方で、アルミニウムの熱膨張係数は23.1(×10−6/K)であり、亜鉛と銅のほぼ中間の値を有する。したがって、メタリコン電極3と引出端子4の熱膨張率の差を緩和し、外部から熱が与えられた際のメタリコン電極3と引出端子4の応力の発生を抑制することができる。そして、この結果、メタリコン電極3と引出端子4の剥離を抑制することができる。
以上に述べた理由により、本実施の形態の金属化フィルムコンデンサ1は十分な接合力にてメタリコン電極3と引出端子4を接合させることができるものと推測される。
なお、本実施の形態の金属化フィルムコンデンサ1によると、例えばハンダ付け接合にてメタリコン電極と引出端子を接合させた場合に比べて、誘電体フィルムへの熱ダメージが軽減されるばかりでなく、接合したハンダ材料の経時的な劣化への対策を講ずる必要もない。また、ハンダ材料を使用する必要もないため、コスト的なメリットも得られる。
次に、本実施の形態の金属化フィルムコンデンサ1の接合力について検証するために行ったヒートサイクル試験ならびにその結果について以下に説明する。
このヒートサイクル試験では、それぞれ115℃、−40℃に内部を調整した2つの気槽を用意し、これら2つの気槽に1時間ずつ試料を入れる動作を1サイクルとして複数回繰り返し、サイクル数と試料の状態の関係を調査した。また、用意した試料の種類は、本実施の形態の金属化フィルムコンデンサ1および従来の金属化フィルムコンデンサ(すなわちメタリコン電極と引出端子とをアルミ箔を介さずに超音波接合にて接合したもの)の2種類であり、試料数はそれぞれの種類の金属化フィルムコンデンサに対し30個である。
このような条件の下、ヒートサイクル試験を行い、まずはサイクル数が300回の時点でそれぞれの金属化フィルムコンデンサの状態を確認した。確認の結果、それぞれ30個の試料のうち、本実施の形態の金属化フィルムコンデンサ1では全ての試料に剥離は確認されなかったが、一方で従来の金属化フィルムコンデンサにおいては22個の金属化フィルムコンデンサに剥離が確認され、メタリコン電極と引出端子が界面部分から剥がれ、分離した状態となっていた。
さらにヒートサイクル試験を続け、サイクル数が500回の時点でそれぞれの金属化フィルムコンデンサの状態を確認した。確認の結果、それぞれ30個の試料のうち、本実施の形態の金属化フィルムコンデンサ1では全ての試料に剥離は確認されなかった。一方で、従来の金属化フィルムコンデンサにおいては、6個の金属化フィルムコンデンサにおいてさらに剥離が確認され、したがって30個の試料のうち28個の試料が500回以下のサイクル数で剥離が確認されたことになる。
これらの結果から、本実施の形態の金属化フィルムコンデンサ1の構成によると、従来の金属化フィルムコンデンサに比べ、メタリコン電極と引出端子の接合強度が大幅に改善されたことが明確に示された。
次に、500回のサイクル経過後の本実施の形態の金属化フィルムコンデンサ1の試料に対して剥離強度の検証を試みた。この検証は、試料の引出端子4であるバスバーの平面部分にコンデンサ素子2側からプッシュプルゲージを垂直にあて、徐々に押圧してメタリコン電極3と引出端子4が剥離した時点での剥離強度(kgf/cm)を測定するものである。
しかしながら、検証を行った全ての試料においてメタリコン電極3と引出端子4の界面部分では剥離せず、層状に積層されたメタリコン電極3部分が剥離するという結果となった。一般にメタリコン電極は金属を溶射して金属粒子を少しずつ積層させて形成するため、金属粒子が層状に積層された構造となっており、上記検証結果では、この積層された金属粒子の層間が剥離したものである。つまり、この結果は本実施の形態の金属化フィルムコンデンサ1のメタリコン電極3と引出端子4の接合強度がメタリコン電極3の層間の接合強度よりも強固であるということを示す。すなわち、この結果より本実施の形態の金属化フィルムコンデンサ1の構成によるとメタリコン電極3と引出端子4の接合強度が大幅に改善されていることは明らかである。なお、このようにメタリコン電極3と引出端子4の界面部分では剥離しなかったため、メタリコン電極3と引出端子4の剥離強度は測定できなかった。ただし、プッシュプルゲージにて測定された剥離強度、すなわちメタリコン電極3の層間の剥離強度の平均値は89.4(kgf/cm)であった。この値は、実使用を考慮したとき、HEV用フィルムコンデンサとして十分に採用し得る値である。
次に、本実施の形態の金属化フィルムコンデンサ1の効果について述べる。
これまで説明したように、本実施の形態の金属化フィルムコンデンサ1では、その独特の構成によりメタリコン電極3と引出端子4とが強固に接合された構成となっている。特に、ヒートサイクル試験における接合力の低下に関しては、上記検証結果のとおり従来の構成に比べ飛躍的に改善されたものとなっている。したがって、本実施の形態の金属化フィルムコンデンサ1は、その設置場所により必然的に高温下の外部環境に曝されるHEV用として最適である。
また、引出端子4は板状のバスバーあるいは、接合部分を平板状に加工したリード線であることが望ましい。この構成とすることで、超音波接合時にアルミニウム箔5との接触面積を確保することができ、メタリコン電極3と引出端子4とを十分な接合力で接合させることができる。
また、アルミニウム箔5の厚みは30μm以上75μm以下とすることが望ましい。30μmよりも薄いアルミニウム箔にて超音波接合を行った場合は、アルミニウム箔が超音波接合のエネルギーに耐え切れず破損し、75μmよりも厚いアルミニウム箔にて超音波接合を行った場合は、超音波接合のエネルギー不足で接合強度が弱く、本発明の効果を得ることができなかったためである。
また、本実施の形態の金属化フィルムコンデンサ1は超音波接合を用いているため、通常のハンダ付け接合に比べ、メタリコン電極3と引出端子4を接合させる際にコンデンサ素子2を形成する誘電体フィルムに与える熱ダメージが比較的抑制された構成となっている。加えて、本実施の形態の金属化フィルムコンデンサ1ではアルミニウム箔5をメタリコン電極3と引出端子4の間に介在させていることにより、超音波接合のエネルギーが引出端子4からメタリコン電極3に向かって適度に緩和され、メタリコン電極3への過剰なエネルギーの供給を抑制できる。この結果、メタリコン電極3における熱の発生を抑制することができ、従来のようにメタリコン電極3と引出端子4を直接超音波接合にて接合させた構成に比べ、コンデンサ素子2に与える熱ダメージをさらに軽減することができる。したがって、本実施の形態の金属化フィルムコンデンサ1は、元来熱に対する耐性が低いポリプロピレンフィルムなどを誘電体フィルムに用いた場合に特に好ましい構成となっている。
なお、ハンダ付け接合によりメタリコン電極と引出端子を接合した金属化フィルムコンデンサは以前よりHEVのモータ駆動用インバータ回路の平滑用、スナバ用、フィルタ用として用いられてきたが、一方で従来の超音波接合にてメタリコン電極と引出端子を接合した金属化フィルムコンデンサは「発明が解決しようとする課題」の項に示すとおり、その過酷な外部環境のためHEV用として採用された例は少ない。しかしながら、本実施の形態の金属化フィルムコンデンサ1は、上述の検証結果が示すとおり、従来の超音波接合を用いた金属化フィルムコンデンサに比べ、高温下における接合力の経時的な低下を大幅に改善したものであり、超音波接合を用いた金属化フィルムコンデンサのHEV用途としての採用に向けて大きく貢献するものである。
本発明による金属化フィルムコンデンサは、超音波接合による引出端子とメタリコン電極の接合強度を向上させることができ、信頼性の高いものとなっている。したがって、過酷な外部環境下で用いられ、特に高温下の状況で高い信頼性が強く要求されるハイブリッド車用のコンデンサとして好適に採用し得る。
1 金属化フィルムコンデンサ
2 コンデンサ素子
3 メタリコン電極
4 引出端子
5 アルミニウム箔

Claims (6)

  1. 対向する二極の金属蒸着電極と、これら金属蒸着電極の間に介在する誘電体フィルムとで形成されたコンデンサ素子と、
    このコンデンサ素子の両端面に設けられた一対のメタリコン電極と、
    これらメタリコン電極に接続され、前記コンデンサ素子を外部と電気的に接続する引出端子とを備え、
    前記メタリコン電極と前記引出端子は、間にアルミニウム箔を介在させた状態で超音波接合を行うことで接合された金属化フィルムコンデンサ。
  2. 前記メタリコン電極は亜鉛を溶射することで形成され、
    前記引出端子は銅にて形成された請求項1に記載の金属化フィルムコンデンサ。
  3. 前記引出端子は板状のバスバー、あるいは接合部分を平板状に加工したリード線である請求項1に記載の金属化フィルムコンデンサ。
  4. 前記アルミニウム箔の厚みは30μm以上75μm以下である請求項1に記載の金属化フィルムコンデンサ。
  5. 前記誘電体フィルムとして、ポリプロピレンフィルムを用いた請求項1に記載の金属化フィルムコンデンサ。
  6. 車両に搭載され、モータ駆動用インバータ回路の平滑用、スナバ用、フィルタ用として用いられる請求項1に記載の金属化フィルムコンデンサ。
JP2013078296A 2013-04-04 2013-04-04 金属化フィルムコンデンサの製造方法 Active JP6322804B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013078296A JP6322804B2 (ja) 2013-04-04 2013-04-04 金属化フィルムコンデンサの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013078296A JP6322804B2 (ja) 2013-04-04 2013-04-04 金属化フィルムコンデンサの製造方法

Publications (3)

Publication Number Publication Date
JP2014203943A true JP2014203943A (ja) 2014-10-27
JP2014203943A5 JP2014203943A5 (ja) 2016-05-19
JP6322804B2 JP6322804B2 (ja) 2018-05-16

Family

ID=52354124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013078296A Active JP6322804B2 (ja) 2013-04-04 2013-04-04 金属化フィルムコンデンサの製造方法

Country Status (1)

Country Link
JP (1) JP6322804B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11195662B2 (en) 2017-07-14 2021-12-07 Denso Corporation Film capacitor with a film winding core having metallikon electrodes and busbars on its ends

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59143315A (ja) * 1983-02-04 1984-08-16 マルコン電子株式会社 プラスチツクフイルムコンデンサの製造方法
JPH09108854A (ja) * 1995-10-12 1997-04-28 Yazaki Corp 導体間の接合方法及び導体間の接合構造
JP2004349447A (ja) * 2003-05-22 2004-12-09 Matsushita Electric Ind Co Ltd 金属化フィルムコンデンサとその集合体および金属化フィルムコンデンサ製造方法
JP2009541059A (ja) * 2006-06-20 2009-11-26 パルサー・ウェルディング・リミテッド 第1および第2の金属被加工物を高い圧力/高い速度によって溶接または接合する方法、ならびにそれによって作製される製造品
JP2012069840A (ja) * 2010-09-27 2012-04-05 Panasonic Corp ケースモールド型コンデンサ
JP2012129463A (ja) * 2010-12-17 2012-07-05 Adwelds:Kk 接合方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59143315A (ja) * 1983-02-04 1984-08-16 マルコン電子株式会社 プラスチツクフイルムコンデンサの製造方法
JPH09108854A (ja) * 1995-10-12 1997-04-28 Yazaki Corp 導体間の接合方法及び導体間の接合構造
JP2004349447A (ja) * 2003-05-22 2004-12-09 Matsushita Electric Ind Co Ltd 金属化フィルムコンデンサとその集合体および金属化フィルムコンデンサ製造方法
JP2009541059A (ja) * 2006-06-20 2009-11-26 パルサー・ウェルディング・リミテッド 第1および第2の金属被加工物を高い圧力/高い速度によって溶接または接合する方法、ならびにそれによって作製される製造品
JP2012069840A (ja) * 2010-09-27 2012-04-05 Panasonic Corp ケースモールド型コンデンサ
JP2012129463A (ja) * 2010-12-17 2012-07-05 Adwelds:Kk 接合方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11195662B2 (en) 2017-07-14 2021-12-07 Denso Corporation Film capacitor with a film winding core having metallikon electrodes and busbars on its ends

Also Published As

Publication number Publication date
JP6322804B2 (ja) 2018-05-16

Similar Documents

Publication Publication Date Title
EP2355208B1 (en) Electrical energy storage device
KR101297288B1 (ko) 단일 전지 및 이를 포함하는 동력 배터리 팩
US11217864B2 (en) Battery module having enhanced electrical connection stability
JP2008108584A (ja) リード部材とその接合方法及び非水電解質蓄電デバイス
US20130108908A1 (en) Power supply apparatus having plurality of battery cells
JP5556364B2 (ja) 金属リードとその製造方法
US9472351B2 (en) Solid electrolytic capacitor, electronic component module, method for producing solid electrolytic capacitor and method for producing electronic component module
KR102383415B1 (ko) 배터리 팩
JP6181057B2 (ja) 蓄電装置の製造方法及び蓄電装置
KR20190043922A (ko) 적층형 전자 부품 및 그 실장 기판
JPWO2012117522A1 (ja) コンデンサ装置
CN103177880A (zh) 固态电解电容器以及制造固态电解电容器的方法
KR101520168B1 (ko) 파우치형 리튬 이차 전지
JP6322804B2 (ja) 金属化フィルムコンデンサの製造方法
JP6385426B2 (ja) 電池の正負電極端子接続部材
JP2022049725A (ja) 二次電池用端子および二次電池用端子の製造方法
KR20190060312A (ko) 적층형 전자 부품
JP2012209027A (ja) ブスバー構造体
WO2016071982A1 (ja) 半導体モジュールおよび半導体モジュール用の導電部材
JP2012195312A (ja) 電池
JP3229238B2 (ja) 金属箔の超音波接合方法
JP5533479B2 (ja) 蓄電装置及び蓄電装置の製造方法
JP2015061007A (ja) コンデンサモジュール
CN113169425A (zh) 多层接触板及其方法
WO2023047945A1 (ja) コンデンサ

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160323

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160323

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180312

R151 Written notification of patent or utility model registration

Ref document number: 6322804

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151