JP2014203396A - Magnetic quality discrimination apparatus, and magnetic quality discrimination method - Google Patents

Magnetic quality discrimination apparatus, and magnetic quality discrimination method Download PDF

Info

Publication number
JP2014203396A
JP2014203396A JP2013081489A JP2013081489A JP2014203396A JP 2014203396 A JP2014203396 A JP 2014203396A JP 2013081489 A JP2013081489 A JP 2013081489A JP 2013081489 A JP2013081489 A JP 2013081489A JP 2014203396 A JP2014203396 A JP 2014203396A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
coercive force
bias
magnetic body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013081489A
Other languages
Japanese (ja)
Inventor
上山 直樹
Naoki Kamiyama
直樹 上山
林 正明
Masaaki Hayashi
正明 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Glory Ltd
Original Assignee
Glory Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Glory Ltd filed Critical Glory Ltd
Priority to JP2013081489A priority Critical patent/JP2014203396A/en
Publication of JP2014203396A publication Critical patent/JP2014203396A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Inspection Of Paper Currency And Valuable Securities (AREA)

Abstract

PROBLEM TO BE SOLVED: To discriminate a plurality of sorts of magnetic substances having respectively different coercive forces.SOLUTION: A magnetic quality discrimination apparatus for detecting and discriminating magnetic quality of a magnetic substance contained in a paper sheet conveyed on a conveying path, comprises: a magnetism detection unit for generating a bias magnetic field defining a direction forming a predetermined angle with a conveying surface of the paper sheet as a magnetic field direction on the conveying path and detecting a magnetic quantity of the magnetic substance by a change in the bias magnetic field; and a magnetization unit arranged on the upstream side in the conveying direction as compared with the magnetism detection unit and capable of magnetizing the magnetic substance by generating a magnetization-magnetic field defining a direction different from the magnetic field direction of the bias magnetic field as a magnetic field direction on the conveying path. On a magnetism detection position by the magnetism detection unit, a low coersive force magnetic substance whose coersive force is smaller than a predetermined coersive force and another magnetic substance whose coersive force is larger than the predetermined coersive force are magnetized in respectively different magnetization directions by the magnetization-magnetic field and the bias magnetic field.

Description

この発明は、紙葉類の磁気を検知する磁気質判別装置及び磁気質判別方法に関し、特に、保磁力の異なる複数種類の磁性体を判別することができる磁気質判別装置及び磁気質判別方法に関する。   The present invention relates to a magnetic quality discriminating apparatus and a magnetic quality discriminating method for detecting the magnetism of a paper sheet, and more particularly to a magnetic quality discriminating apparatus and a magnetic quality discriminating method capable of discriminating a plurality of types of magnetic bodies having different coercive forces. .

従来、偽造防止の観点から、小切手や商品券等の紙葉類の印刷に磁性体を含んだ磁気インクが用いられている。磁気を利用したセキュリティ技術は年々高度化しており、最近の紙葉類では、1枚の紙葉類に磁気特性の異なる複数種類の磁性体が含まれる場合もある。このような紙葉類の真偽判定を行うためには、紙葉類に含まれるそれぞれの磁性体を判別する必要がある。   Conventionally, from the viewpoint of preventing forgery, magnetic ink containing a magnetic material is used for printing paper sheets such as checks and gift certificates. Security technology using magnetism is becoming more sophisticated year by year, and in recent paper sheets, a plurality of types of magnetic materials having different magnetic characteristics may be included in one paper sheet. In order to perform such authenticity determination of paper sheets, it is necessary to determine each magnetic body contained in the paper sheets.

紙葉類に含まれる複数種類の磁性体を判別する装置として、例えば、特許文献1には、保磁力が異なる磁性体を判別する装置が開示されている。この装置では、高保磁力の磁性体及び低保磁力の磁性体を高磁力の第1磁石によって同一の磁化方向に磁化してから第1センサによって両磁性体の磁気による検出信号を得る。その後、低磁力の第2磁石によって低保磁力の磁性体の磁化方向を変更してから、第2センサによって高保磁力の磁性体の磁気のみによる検出信号を得る。そして、高保磁力の磁性体及び低保磁力の磁性体から得られた第1センサによる検出信号と、高保磁力の磁性体から得られた第2センサによる検出信号との差分として低保磁力の磁性体のみから得られる検出信号を得るものである。   As an apparatus for discriminating a plurality of types of magnetic bodies contained in paper sheets, for example, Patent Document 1 discloses an apparatus for discriminating magnetic bodies having different coercive forces. In this apparatus, a magnetic material having a high coercive force and a magnetic material having a low coercive force are magnetized in the same magnetization direction by a first magnet having a high magnetic force, and then a detection signal based on the magnetism of both magnetic materials is obtained by a first sensor. Thereafter, the magnetization direction of the low coercivity magnetic material is changed by the low magnetism second magnet, and then a detection signal based only on the magnetism of the high coercivity magnetic material is obtained by the second sensor. The difference between the detection signal from the first sensor obtained from the high coercivity magnetic material and the low coercivity magnetic material and the detection signal from the second sensor obtained from the high coercivity magnetic material is the difference between the low coercivity magnetism. A detection signal obtained only from the body is obtained.

米国特許出願公開第2010/0327062号明細書US Patent Application Publication No. 2010/0327062

しかしながら、上記従来技術によれば、高磁力及び低磁力の2つの磁石と2つの磁気センサとが必要となるため、部品点数が増えて製造コストが増加するという問題があった。また、構造が複雑である上に磁気質判別装置のサイズが大きくなるという問題もあった。   However, according to the above-described prior art, two magnets with high magnetic force and low magnetic force and two magnetic sensors are required, so that there is a problem that the number of parts increases and the manufacturing cost increases. There is also a problem that the structure is complicated and the size of the magnetic quality discrimination device is increased.

本発明は、上述した従来技術による問題点を解消するためになされたもので、装置の小型化を実現しながら、保磁力の異なる複数種類の磁性体を判別することができる磁気質判別装置及び磁気質判別方法を提供することを目的とする。   The present invention has been made to solve the above-described problems caused by the prior art, and can realize a magnetic quality discrimination device capable of discriminating a plurality of types of magnetic bodies having different coercive forces while realizing downsizing of the device. An object is to provide a magnetic quality discrimination method.

上述した課題を解決し、目的を達成するために、本発明は、搬送路を搬送される紙葉類に含まれる磁性体の磁気質を検知して判別する磁気質判別装置であって、前記紙葉類の搬送面と所定角度を成す方向を磁界方向とするバイアス磁界を前記搬送路上に発生させて、前記バイアス磁界の変化を検出することにより前記磁性体の磁気量を検知する磁気検知ユニットと、前記磁気検知ユニットより搬送方向上流側に配置されて、前記バイアス磁界の磁界方向と異なる方向を磁界方向とする着磁磁界を前記搬送路上に発生させて前記磁性体を着磁する着磁ユニットとを備え、前記磁気検知ユニットによる磁気検知位置では、前記着磁磁界及び前記バイアス磁界によって、所定保磁力より保磁力が小さい低保磁力磁性体と前記所定保磁力より保磁力が大きい他の磁性体とを異なる磁化方向に磁化することを特徴とする。   In order to solve the above-described problems and achieve the object, the present invention is a magnetic quality discrimination device that detects and discriminates the magnetic quality of a magnetic material contained in a paper sheet conveyed on a conveyance path, A magnetic detection unit that detects a magnetic quantity of the magnetic body by generating a bias magnetic field on the transport path, the direction of which forms a predetermined angle with the transport surface of the paper sheet, on the transport path and detecting a change in the bias magnetic field And magnetizing the magnetic body by generating a magnetizing magnetic field on the transport path that is disposed upstream of the magnetic detection unit in the transport direction and having a magnetic field direction different from the magnetic field direction of the bias magnetic field. A low coercivity magnetic body having a coercive force smaller than a predetermined coercive force and a coercive force greater than the predetermined coercive force at the magnetic detection position by the magnetic detection unit. Characterized by magnetizing heard another a magnetic body in a different magnetization directions.

また、本発明は、上記発明において、前記着磁磁界の磁界強度は、判別対象とする磁性体のうち最大の保磁力を有する磁性体を飽和磁化状態に着磁する磁界強度に設定されて、前記バイアス磁界の磁界強度は、判別対象とする前記低保磁力磁性体を飽和磁化状態に磁化する磁界強度かつ前記他の磁性体を飽和磁化状態に磁化しない磁界強度に設定されることを特徴とする。   Further, the present invention is the above invention, wherein the magnetic field strength of the magnetizing magnetic field is set to a magnetic field strength that magnetizes a magnetic material having the largest coercive force among the magnetic materials to be discriminated in a saturated magnetization state, The magnetic field strength of the bias magnetic field is set to a magnetic field strength that magnetizes the low coercivity magnetic material to be discriminated into a saturated magnetization state and a magnetic field strength that does not magnetize the other magnetic material into a saturated magnetization state. To do.

また、本発明は、上記発明において、前記着磁磁界の磁界強度を判別対象のうち最大の保磁力を有する磁性体の保磁力の1.5倍以上に設定して、前記バイアス磁界の磁界強度を、判別する前記高保磁力磁性体のうち最小の保磁力を持つ磁性体の保磁力の2倍以下に設定することを特徴とする。   Further, the present invention is the above invention, wherein the magnetic field strength of the bias magnetic field is set to 1.5 times or more of the coercive force of the magnetic material having the largest coercive force among the objects to be discriminated in the above invention. Is set to be not more than twice the coercivity of the magnetic body having the minimum coercivity among the high coercivity magnetic bodies to be discriminated.

また、本発明は、上記発明において、磁性体の搬送方向を0度として、前記バイアス磁界の磁界方向を30〜60度又は120〜150度に設定して、前記着磁磁界の磁界方向を80〜100度を除く角度範囲に設定するか、又は前記バイアス磁界の磁界方向を−30〜−60度又は−120〜−150度に設定して、前記着磁磁界の磁界方向を80〜100度を除く角度範囲に設定することを特徴とする。   In the present invention, the magnetic material transport direction is set to 0 degree, the magnetic field direction of the bias magnetic field is set to 30 to 60 degrees or 120 to 150 degrees, and the magnetic field direction of the magnetizing magnetic field is set to 80 degrees. It is set to an angle range excluding -100 degrees, or the magnetic field direction of the bias magnetic field is set to -30 to -60 degrees or -120 to -150 degrees, and the magnetic field direction of the magnetizing magnetic field is 80 to 100 degrees. It is characterized in that it is set in an angle range excluding.

また、本発明は、上記発明において、前記磁気検知ユニットでは、磁性体を検知した検知信号の波形形状に基づいて、前記磁性体の保磁力を判別することを特徴とする。   The present invention is characterized in that, in the above-described invention, the magnetic detection unit determines a coercive force of the magnetic body based on a waveform shape of a detection signal obtained by detecting the magnetic body.

また、本発明は、上記発明において、磁性体を検知した検知信号がピーク位置に対して略左右対称な波形を示した場合に、前記磁性体は低保磁力磁性体であると判定することを特徴とする。   According to the present invention, in the above invention, when the detection signal for detecting the magnetic body shows a waveform that is substantially symmetrical with respect to the peak position, the magnetic body is determined to be a low coercivity magnetic body. Features.

また、本発明は、搬送路を搬送される紙葉類に含まれる磁性体の磁気質を検知して判別する磁気質判別方法であって、前記紙葉類の搬送面と所定角度を成す方向を磁界方向とするバイアス磁界を前記搬送路上に発生させて前記バイアス磁界の変化を検出することにより前記磁性体の磁気量を検知する磁気量検知工程と、前記磁気量検知工程で磁気量を検知する位置よりも搬送方向上流側で、前記バイアス磁界の磁界方向と異なる方向を磁界方向とする着磁磁界を前記搬送路上に発生させて前記磁性体を着磁する着磁工程とを含み、前記磁気量検知工程で磁気量を検知する際には、前記着磁磁界及び前記バイアス磁界によって、所定保磁力より保磁力が小さい低保磁力磁性体と前記所定保磁力より保磁力が大きい他の磁性体とを異なる磁化方向に磁化することを特徴とする。   The present invention is also a magnetic quality discrimination method for detecting and discriminating the magnetic quality of a magnetic material contained in a paper sheet transported on a transport path, wherein the direction forms a predetermined angle with the transport surface of the paper sheet A magnetic field detection step for detecting a magnetic amount of the magnetic body by detecting a change in the bias magnetic field by generating a bias magnetic field having a magnetic field direction on the transport path and detecting the magnetic amount in the magnetic amount detection step A magnetizing step of magnetizing the magnetic body by generating a magnetizing magnetic field on the transport path with a direction different from the magnetic field direction of the bias magnetic field on the upstream side in the transport direction from the position to be When detecting the amount of magnetism in the magnetism detection step, a low coercivity magnetic body having a coercive force smaller than a predetermined coercive force and other magnets having a coercive force larger than the predetermined coercive force by the magnetizing magnetic field and the bias magnetic field. Different magnetization direction from the body And characterized in that the magnetization.

本発明によれば、磁性体を含む紙葉類が搬送される搬送面と所定角度を成す磁界方向にバイアス磁界を発生して該バイアス磁界の変化に基づいて磁気を検知する磁気量検知型の磁気検知ユニットと、搬送方向上流側でバイアス磁界の磁界方向と異なる方向の着磁磁界を発生させる着磁ユニットとによって、磁気検知ユニットによる磁気検知時には、磁性体が保磁力に応じて異なる磁化方向に磁化されているので、磁性体の保磁力に応じて異なる検知波形を得て各磁性体を判別することができる。   According to the present invention, a magnetic quantity detection type that generates a bias magnetic field in a magnetic field direction that forms a predetermined angle with a transport surface on which a paper sheet including a magnetic material is transported and detects magnetism based on a change in the bias magnetic field. When the magnetic detection unit detects a magnetic field in a direction different from the magnetic field direction of the bias magnetic field on the upstream side in the conveyance direction, the magnetization direction of the magnetic material varies depending on the coercive force when the magnetic detection unit detects the magnetic field. Therefore, each magnetic body can be distinguished by obtaining different detection waveforms according to the coercive force of the magnetic body.

図1は、本実施形態に係る磁気質判別装置によって行う磁気質判別方法を説明する図である。FIG. 1 is a diagram for explaining a magnetic quality discrimination method performed by the magnetic quality discrimination apparatus according to the present embodiment. 図2は、着磁磁界及びバイアス磁界の磁界強度を説明する図である。FIG. 2 is a diagram for explaining the magnetic field strengths of the magnetizing magnetic field and the bias magnetic field. 図3は、磁性体の磁気検知時の磁化状態を説明する図である。FIG. 3 is a diagram for explaining the magnetization state at the time of magnetic detection of the magnetic material. 図4は、磁化状態と磁気センサによる検知信号との関係について説明する図である。FIG. 4 is a diagram for explaining the relationship between the magnetization state and the detection signal from the magnetic sensor. 図5は、磁気質判別装置によって得られる磁性体の検知信号について説明する図である。FIG. 5 is a diagram for explaining the detection signal of the magnetic material obtained by the magnetic quality discrimination device. 図6は、着磁磁界の磁界方向とバイアス磁界の磁界方向とが異なる磁気質判別装置について説明する図である。FIG. 6 is a diagram for explaining a magnetic quality discriminating apparatus in which the magnetic field direction of the magnetizing magnetic field is different from the magnetic field direction of the bias magnetic field. 図7は、図6に示す磁気質判別装置で判別対象とする磁性体が異なる場合の着磁磁界の磁界方向について説明する図である。FIG. 7 is a diagram for explaining the magnetic field direction of the magnetizing magnetic field when the magnetic material to be discriminated by the magnetic quality discriminating apparatus shown in FIG. 6 is different. 図8は、逆方向搬送の磁気質判別装置によって行う磁気質判別方法を説明する図である。FIG. 8 is a diagram for explaining a magnetic quality discrimination method performed by a magnetic material discrimination device for reverse conveyance. 図9は、逆方向搬送の磁気質判別装置によって得られる磁気検知信号について説明する図である。FIG. 9 is a diagram for explaining a magnetic detection signal obtained by the magnetic quality discrimination device for reverse conveyance.

以下に添付図面を参照して、この発明に係る磁気質判別装置及び磁気質判別方法の好適な実施形態を詳細に説明する。本実施形態に係る磁気質判別装置は、小切手、商品券、有価証券等の紙葉類で利用される様々な磁性体による磁気を検知して磁性体の種類を判別する機能を有する。磁気質判別装置は、例えば紙葉類処理装置内で、紙葉類に含まれる磁性体の種類を判別して真の紙葉類であるか否かを判定するために利用される。   Exemplary embodiments of a magnetic quality discrimination device and a magnetic quality discrimination method according to the present invention will be explained below in detail with reference to the accompanying drawings. The magnetic quality discriminating apparatus according to the present embodiment has a function of discriminating the type of magnetic material by detecting magnetism caused by various magnetic materials used in paper sheets such as checks, gift certificates, and securities. The magnetic quality determination device is used, for example, in a paper sheet processing apparatus to determine the type of a magnetic material contained in a paper sheet and determine whether it is a true paper sheet.

本実施形態に係る磁気質判別装置は、磁性体を検知した信号から、磁性体が高保磁力磁性体、中保磁力磁性体及び低保磁力磁性体のいずれであるかを判別することができる。判別対象とする磁性体は、保磁力が大きい順に、高保磁力磁性体、中保磁力磁性体、低保磁力磁性体となる。また、高保磁力磁性体、中保磁力磁性体及び低保磁力磁性体とは、高保磁力磁性体と中保磁力磁性体の保磁力の比、中保磁力磁性体と低保磁力磁性体の保磁力の比がそれぞれ2倍以上あるものを言うが、保磁力の比は10倍以上あることが好ましい。具体的には、例えば、磁気質判別装置1は、50Oeの磁性体を低保磁力磁性体、300Oeの磁性体を中保磁力磁性体、3000Oeの磁性体を高保磁力磁性体として判別を行うが、以下では、それぞれの磁性体を低保磁力磁性体、中保磁力磁性体、高保磁力磁性体と記載する。   The magnetic quality determination apparatus according to the present embodiment can determine whether the magnetic body is a high coercivity magnetic body, a medium coercivity magnetic body, or a low coercivity magnetic body from a signal detected from the magnetic body. The magnetic bodies to be discriminated are a high coercivity magnetic body, a medium coercivity magnetic body, and a low coercivity magnetic body in descending order of coercivity. The high coercivity magnetic body, the medium coercivity magnetic body, and the low coercivity magnetic body are the ratio of the coercivity between the high coercivity magnetic body and the medium coercivity magnetic body, and the coercivity magnetic body and the low coercivity magnetic body. The magnetic force ratio is 2 times or more, but the coercive force ratio is preferably 10 times or more. Specifically, for example, the magnetic quality discriminating apparatus 1 discriminates a 50 Oe magnetic body as a low coercivity magnetic body, a 300 Oe magnetic body as a medium coercivity magnetic body, and a 3000 Oe magnetic body as a high coercivity magnetic body. Hereinafter, each magnetic body is described as a low coercivity magnetic body, a medium coercivity magnetic body, and a high coercivity magnetic body.

図1は、本実施形態に係る磁気質判別装置1による磁気質判別方法を説明するための模式図である。図1(b)は磁気質判別装置1の概要を示し、同図(a)は保磁力が異なる3種類の磁性体の磁化状態を示している。   FIG. 1 is a schematic diagram for explaining a magnetic quality discrimination method by the magnetic quality discrimination apparatus 1 according to the present embodiment. FIG. 1B shows an outline of the magnetic quality discriminating apparatus 1, and FIG. 1A shows the magnetization states of three kinds of magnetic bodies having different coercive forces.

図1(b)に示すように、磁気質判別装置1は、装置上方を搬送される紙葉類100に含まれる磁性体を着磁するための着磁ユニット3と、紙葉類100に含まれる磁性体の磁気を検知するための磁気検知ユニット2とを有している。   As shown in FIG. 1B, the magnetic quality determination device 1 is included in a magnetizing unit 3 for magnetizing a magnetic material included in a paper sheet 100 conveyed above the device, and the paper sheet 100. And a magnetic detection unit 2 for detecting the magnetism of the magnetic body.

紙葉類100は、図示しない搬送機構によって、搬送路を図1(b)に示す矢印400の方向へ搬送される。磁気質判別装置1は搬送路の下方に設置され、磁気質判別装置1内では、着磁ユニット3が磁気検知ユニット2より搬送方向上流側に配置されている。紙葉類100に含まれる磁性体は着磁ユニット3の上方を通過する際に着磁される。そして、その後、紙葉類100がさらに搬送されて、磁気検知ユニット2の上方を通過する際に磁性体を検知する信号が取得され、得られた検知信号から磁性体の種類が判別される。   The paper sheet 100 is transported in the direction of the arrow 400 shown in FIG. 1B by a transport mechanism (not shown). The magnetic quality discriminating apparatus 1 is installed below the transport path. In the magnetic quality discriminating apparatus 1, the magnetizing unit 3 is arranged upstream of the magnetic detection unit 2 in the transport direction. The magnetic material included in the paper sheet 100 is magnetized when passing over the magnetizing unit 3. Then, after that, the paper sheet 100 is further conveyed, a signal for detecting the magnetic material is acquired when passing over the magnetic detection unit 2, and the type of the magnetic material is determined from the obtained detection signal.

着磁ユニット3は着磁磁石20を含み、磁界の方向が図1(b)に破線矢印で示す方向となるように着磁磁界を発生させる。着磁磁界は、判別対象とする磁性体の全てを飽和磁化状態に着磁する磁界強度を有している。具体的には、判別対象とする磁性体のうち最大の保磁力を有する高保磁力磁性体を飽和磁化状態に着磁するため、着磁磁界の磁界強度を、高保磁力磁性体の保磁力の1.5倍以上とする。ただし、着磁磁界の磁界強度は、高保磁力磁性体の保磁力の3倍以上とすることが好ましい。   The magnetizing unit 3 includes a magnetizing magnet 20 and generates a magnetizing magnetic field so that the direction of the magnetic field is the direction indicated by the broken line arrow in FIG. The magnetizing magnetic field has a magnetic field strength that magnetizes all of the magnetic materials to be discriminated in a saturated magnetization state. Specifically, in order to magnetize the high coercivity magnetic body having the maximum coercive force among the magnetic bodies to be discriminated into the saturation magnetization state, the magnetic field strength of the magnetization magnetic field is set to 1 of the coercivity of the high coercivity magnetic body. .5 times or more. However, the magnetic field strength of the magnetizing magnetic field is preferably at least three times the coercivity of the high coercivity magnetic body.

なお、磁性体検知時に、保磁力の異なる各磁性体の磁化方向を異なる方向とすることができれば、高保磁力磁性体を完全な飽和磁化状態に着磁する必要はなく、飽和磁化状態に近い状態に着磁できればよい。詳細については後述する。   If the magnetization direction of each magnetic body having a different coercive force can be made different when detecting the magnetic body, it is not necessary to magnetize the high coercivity magnetic body in a completely saturated magnetization state, and a state close to the saturation magnetization state. What is necessary is just to magnetize. Details will be described later.

磁気検知ユニット2は、バイアス磁界を発生させるためのバイアス磁石30と、バイアス磁界内を通過する磁性体を検知して信号を出力する磁気センサ10とを有している。バイアス磁石30は、その周囲に図1(b)に破線矢印で示すようにバイアス磁界を発生させる。磁気検知ユニット2では、磁気センサ10が、紙葉類100が搬送される搬送面(XY平面)と角度を成すように傾いた状態で配置されることを特徴としている。このような構成を有することにより、磁気センサ10からは、磁性体の磁気量に応じた検知信号が出力される。なお、本実施形態では、磁気センサ10が1つの磁気検出素子を含む場合を示すが、磁気センサ10が2つの磁気検出素子を含む態様であっても構わない。磁気センサ10は、磁性体が通過することにより、図1(b)で上下方向に揺らぐバイアス磁界の変化量を検出するように設置されている。例えば、磁気検出素子として磁気抵抗素子を利用して、この磁気抵抗素子の抵抗値の変化を電圧値の変化として出力し、この電圧値を磁性体の検出信号として利用する。このような磁気量検知型の磁気検知ユニット2の構成、機能及び動作については、例えば、日本特許第4894040号公報に開示されているので詳細な説明は省略する。   The magnetic detection unit 2 includes a bias magnet 30 for generating a bias magnetic field, and a magnetic sensor 10 that detects a magnetic material passing through the bias magnetic field and outputs a signal. The bias magnet 30 generates a bias magnetic field around it as shown by a broken line arrow in FIG. The magnetic detection unit 2 is characterized in that the magnetic sensor 10 is disposed in an inclined state so as to form an angle with a conveyance surface (XY plane) on which the paper sheet 100 is conveyed. With this configuration, the magnetic sensor 10 outputs a detection signal corresponding to the amount of magnetism of the magnetic material. In the present embodiment, the magnetic sensor 10 includes one magnetic detection element. However, the magnetic sensor 10 may include two magnetic detection elements. The magnetic sensor 10 is installed so as to detect the amount of change in the bias magnetic field that fluctuates in the vertical direction in FIG. For example, a magnetoresistive element is used as the magnetic detection element, a change in resistance value of the magnetoresistive element is output as a change in voltage value, and this voltage value is used as a detection signal for the magnetic material. Since the configuration, function, and operation of such a magnetic quantity detection type magnetic detection unit 2 are disclosed in, for example, Japanese Patent No. 4894040, detailed description thereof is omitted.

磁気検知ユニット2で発生させるバイアス磁界の磁界強度についても、着磁磁界の磁界強度と同様に、判別対象とする磁性体の保磁力に応じて設定される。図2は、磁気質判別装置1が判別対象とする低保磁力磁性体、中保磁力磁性体及び高保磁力磁性体の3種類の磁性体の飽和磁化曲線(B−H曲線)を模式的に示したものである。バイアス磁界の磁界強度は、中保磁力磁性体の保磁力602と高保磁力磁性体の保磁力603との間で、低保磁力磁性体を飽和磁化状態に着磁しながら中保磁力磁性体を飽和磁化状態に着磁することのないように設定される。例えば、中保磁力磁性体の保磁力602の1.5倍となるように設定する。なお、上述した着磁ユニット3による着磁磁界の磁界強度は、図2の点601に対応する。   The magnetic field strength of the bias magnetic field generated by the magnetic detection unit 2 is also set according to the coercive force of the magnetic material to be determined, similarly to the magnetic field strength of the magnetizing magnetic field. FIG. 2 schematically shows saturation magnetization curves (BH curves) of three types of magnetic materials, ie, a low coercive force magnetic material, a medium coercive force magnetic material, and a high coercive force magnetic material, which are to be determined by the magnetic quality determination device 1. It is shown. The magnetic field strength of the bias magnetic field is between the coercive force 602 of the medium coercive force magnetic material and the coercive force 603 of the high coercive force magnetic material, while the low coercive force magnetic material is magnetized in a saturated magnetization state. It is set so as not to be magnetized in the saturation magnetization state. For example, it is set to be 1.5 times the coercive force 602 of the medium coercive force magnetic body. The magnetic field strength of the magnetizing magnetic field by the magnetizing unit 3 described above corresponds to the point 601 in FIG.

次に、図1(b)に示す磁気質判別装置1によって、高保磁力磁性体、中保磁力磁性体、及び低保磁力磁性体の各磁性体を判別する方法について説明する。なお、以下では、磁界の方向を図中矢印と角度によって説明する。角度については、図1(a)右図に示すように、搬送方向400と一致するY軸正方向を0度として、搬送路上方となるZ軸正方向を90度、搬送方向400の逆方向となるY軸負方向を180度として表す。また、同じくY軸正方向を0度として、搬送路下方となるZ軸負方向を−90度、Y軸負方向を−180度として表すこととする。   Next, a method for discriminating each of the high coercive force magnetic material, the medium coercive force magnetic material, and the low coercive force magnetic material by the magnetic quality determination device 1 shown in FIG. 1B will be described. Hereinafter, the direction of the magnetic field will be described with reference to arrows and angles in the drawing. As for the angle, as shown in the right diagram of FIG. 1A, the positive Y-axis direction that coincides with the transport direction 400 is 0 degree, the positive Z-axis direction above the transport path is 90 degrees, and the reverse direction of the transport direction 400 The Y-axis negative direction is expressed as 180 degrees. Similarly, the positive Y-axis direction is 0 degree, the negative Z-axis direction below the transport path is -90 degrees, and the negative Y-axis direction is -180 degrees.

着磁ユニット3による着磁磁界の磁界強度は、例えば、図1(b)に示す着磁磁石20のS極側かつ搬送方向側のエッジに対応する搬送路上の位置P1で、高保磁力磁性体の保磁力(3000Oe)の1.5倍の強度(4500G)であるものとする。また、例えば、磁気検知ユニット2におけるバイアス磁界の磁界強度は、磁気センサ10により各磁性体の磁気を検知する搬送路上の位置P4で、中保磁力磁性体の保磁力(300Oe)の1.5倍(450G)であるものとする。   The magnetic field strength of the magnetizing magnetic field by the magnetizing unit 3 is, for example, a high coercive force magnetic body at a position P1 on the transport path corresponding to the S pole side and transport direction side edge of the magnetized magnet 20 shown in FIG. The coercive force (3000 Oe) is 1.5 times as strong (4500 G). Further, for example, the magnetic field intensity of the bias magnetic field in the magnetic detection unit 2 is 1.5 at the coercivity (300 Oe) of the medium coercivity magnetic body at the position P4 on the conveyance path where the magnetic sensor 10 detects the magnetism of each magnetic body. It is assumed that it is double (450G).

磁気センサ10により磁性体の磁気を検知する位置P4では、バイアス磁界の磁界方向302が30〜60度の間に設定される。位置P1の着磁磁界の磁界方向201は判別対象とする磁性体の保磁力に基づいて設定されるが、例えば、高保磁力磁性体を判別対象とする場合には−100〜−170度の範囲内となるように設定される。以下では、位置P1の磁界方向が−160度であるものとして説明する。   At the position P4 where the magnetic sensor 10 detects the magnetism of the magnetic material, the magnetic field direction 302 of the bias magnetic field is set between 30 and 60 degrees. The magnetic field direction 201 of the magnetizing magnetic field at the position P1 is set based on the coercive force of the magnetic body to be discriminated. For example, when the high coercive magnetic body is to be discriminated, the range is from −100 to −170 degrees. It is set to be inside. In the following description, it is assumed that the magnetic field direction at the position P1 is −160 degrees.

紙葉類100に含まれる磁性体が高保磁力磁性体(3000Oe)である場合には、着磁ユニット3の上方を搬送方向400へ搬送されると、着磁磁界の磁界強度(4500G)が強力であるため、図1(b)に示す位置P1を通過する際に、飽和磁化状態又は飽和磁化状態に近い状態に着磁される。このとき、図1(a)に示すように、高保磁力磁性体の磁化方向501aは、位置P1における着磁磁界の磁界方向201と同じ方向(−160度)となる。高保磁力磁性体は、その磁化方向が−150〜−170度の間で飽和磁化状態となる。   When the magnetic material included in the paper sheet 100 is a high coercive force magnetic material (3000 Oe), the magnetic field strength (4500 G) of the magnetizing magnetic field is strong when the magnetic material is conveyed in the conveying direction 400 above the magnetizing unit 3. Therefore, when passing through the position P1 shown in FIG. 1B, it is magnetized to a saturation magnetization state or a state close to the saturation magnetization state. At this time, as shown in FIG. 1A, the magnetization direction 501a of the high coercive force magnetic body is the same direction (−160 degrees) as the magnetic field direction 201 of the magnetization magnetic field at the position P1. The high coercive force magnetic body is in a saturation magnetization state when the magnetization direction is between −150 and −170 degrees.

紙葉類100は、図1(b)に示す位置P1を通過して、さらに搬送方向400へ搬送されるが、着磁磁界の磁界強度は徐々に弱まるため、この影響を受けることはない。このため、高保磁力磁性体の磁化状態は変化せず、位置P2を通過する際の高保磁力磁性体の磁化方向502aは、着磁位置P1での磁化方向501aを保った方向となる。   The paper sheet 100 passes through the position P1 shown in FIG. 1B and is further transported in the transport direction 400. However, since the magnetic field strength of the magnetizing magnetic field gradually weakens, the paper sheet 100 is not affected by this. For this reason, the magnetization state of the high coercive force magnetic body does not change, and the magnetization direction 502a of the high coercivity magnetic body when passing through the position P2 is a direction in which the magnetization direction 501a at the magnetization position P1 is maintained.

紙葉類100がさらに搬送されて、バイアス磁界に進入しても、バイアス磁界の磁界強度(450G)が高保磁力磁性体の保磁力(3000Oe)の1/6以下と弱いため影響を受けることはない。このため、位置P3を通過する際の磁化方向503a及び位置P4を通過する際の磁化方向504aについても、着磁時と同じ磁化方向501a(−160度)を保った方向となる。   Even if the paper sheet 100 is further conveyed and enters the bias magnetic field, the magnetic field strength (450G) of the bias magnetic field is affected by weakness of 1/6 or less of the coercive force (3000 Oe) of the high coercive magnetic body. Absent. For this reason, the magnetization direction 503a when passing through the position P3 and the magnetization direction 504a when passing through the position P4 are also directions in which the same magnetization direction 501a (−160 degrees) as that during magnetization is maintained.

紙葉類100に含まれる磁性体が中保磁力磁性体である場合には、図1(b)に示すように、着磁ユニット3の上方を搬送方向400へ搬送されると、高保磁力磁性体の場合と同様に位置P1で飽和磁化状態に着磁される。このときの中保磁力磁性体の磁化方向501bは、高保磁力磁性体の場合と同様に、位置P1での着磁磁界の磁界方向201と同じ方向となる。ところが、中保磁力磁性体では、高保磁力磁性体に比べて保磁力が小さいために、搬送方向400へ搬送される間、着磁磁界による影響を受け続け、磁化方向は着磁磁界の方向に応じて変化する。そして、位置P2を通過するときには、中保磁力磁性体の磁化方向502bは着磁磁界の磁界方向202と同じ方向(180度付近)となる。更に、搬送されると着磁磁界の磁界方向が180度から170度の方向に変化しながら磁界強度は減衰し、中保磁力磁性体の磁化への作用は無くなる。   When the magnetic material included in the paper sheet 100 is a medium coercive force magnetic material, as shown in FIG. 1B, when the magnetic material is conveyed in the conveying direction 400 above the magnetizing unit 3, the high coercive force magnetic property is obtained. As in the case of the body, it is magnetized to the saturation magnetization state at the position P1. At this time, the magnetization direction 501b of the medium coercivity magnetic body is the same as the magnetic field direction 201 of the magnetization magnetic field at the position P1, as in the case of the high coercivity magnetic body. However, since the coercive force of the medium coercive magnetic material is smaller than that of the high coercive force magnetic material, it is continuously influenced by the magnetizing magnetic field while being transported in the transporting direction 400, and the magnetization direction is in the direction of the magnetizing magnetic field. Will change accordingly. When passing through the position P2, the magnetization direction 502b of the medium coercive force magnetic body is the same direction (around 180 degrees) as the magnetic field direction 202 of the magnetization magnetic field. Further, when the magnetic field is conveyed, the magnetic field strength is attenuated while the magnetic field direction of the magnetizing magnetic field is changed from 180 degrees to 170 degrees, and there is no effect on the magnetization of the medium coercive force magnetic body.

紙葉類100がさらに搬送されて、バイアス磁界に進入すると、ここでもバイアス磁界による影響を受ける。位置P3では、位置P3のバイアス磁界の磁界方向301と一致する方向へ向けて、位置P2での磁化方向502bから僅かに回転した磁化方向503bとなる。そして、位置P4でも該位置でのバイアス磁界の方向302と一致する方向へ向けて、位置P3の磁化方向503bから僅かに回転した方向504bとなる。ただし、バイアス磁界の磁界強度(450G)は、中保磁力磁性体の保磁力(300Oe)を飽和磁化状態にする強度より小さいために、中保磁力磁性体の最終的な磁化方向は、着磁磁界を抜けるときの磁化方向502b(180度付近)と位置P4でのバイアス磁界の磁界方向302(30〜60度)との間の方向504bとなる。例えば、位置P4での中保磁力磁性体の磁化方向504bは120度付近となる。   When the paper sheet 100 is further conveyed and enters the bias magnetic field, it is also affected by the bias magnetic field. At the position P3, the magnetization direction 503b is slightly rotated from the magnetization direction 502b at the position P2 in a direction coinciding with the magnetic field direction 301 of the bias magnetic field at the position P3. The position P4 also becomes a direction 504b slightly rotated from the magnetization direction 503b at the position P3 toward the direction coincident with the direction 302 of the bias magnetic field at the position. However, since the magnetic field strength (450 G) of the bias magnetic field is smaller than the strength to make the coercive force (300 Oe) of the medium coercive force magnetic body in the saturation magnetization state, the final magnetization direction of the medium coercive force magnetic body is magnetized. This is a direction 504b between the magnetization direction 502b (around 180 degrees) when exiting the magnetic field and the magnetic field direction 302 (30 to 60 degrees) of the bias magnetic field at the position P4. For example, the magnetization direction 504b of the medium coercive force magnetic body at the position P4 is about 120 degrees.

紙葉類100に含まれる磁性体が低保磁力磁性体である場合には、図1(b)に示すように、着磁ユニット3の上方を搬送方向400へ搬送されると、他の磁性体の場合と同様に位置P1で飽和磁化状態に着磁される。このときの低保磁力磁性体の磁化方向501cは、他の磁性体と同様に、位置P1での着磁磁界の磁界方向201と同じ方向となる。ところが、低保磁力磁性体は保磁力が小さいために、搬送方向400へ搬送される間、着磁磁界による影響を受け続け、磁化方向は着磁磁界の方向に応じて変化する。このため、中保磁力磁性体と同様に、位置P2を通過するときの磁化方向502cは、着磁磁界の磁界方向202と同じ方向(180度付近)となる。   When the magnetic material included in the paper sheet 100 is a low coercive force magnetic material, as shown in FIG. As in the case of the body, it is magnetized to the saturation magnetization state at the position P1. At this time, the magnetization direction 501c of the low coercive force magnetic body is the same as the magnetic field direction 201 of the magnetizing magnetic field at the position P1, as with the other magnetic bodies. However, since the low coercive force magnetic body has a small coercive force, it continues to be influenced by the magnetizing magnetic field while being conveyed in the conveying direction 400, and the magnetization direction changes according to the direction of the magnetizing magnetic field. For this reason, similarly to the medium coercive force magnetic body, the magnetization direction 502c when passing through the position P2 is the same direction (around 180 degrees) as the magnetic field direction 202 of the magnetizing magnetic field.

紙葉類100がさらに搬送されて、バイアス磁界に進入すると、ここでもバイアス磁界による影響を受ける。位置P3では、低保磁力磁性体の磁化方向502cは該位置でのバイアス磁界の磁界方向301と同じ磁化方向503cとなり、位置P4でもバイアス磁界の方向302と同じ磁化方向504cとなる。バイアス磁界の磁界強度(450G)が低保磁力磁性体の保磁力(50Oe)より十分に大きく、低保磁力磁性体が各位置で飽和磁化状態となるために、各位置での低保磁力磁性体の磁化方向は、各位置でのバイアス磁界の方向と一致する方向となる。   When the paper sheet 100 is further conveyed and enters the bias magnetic field, it is also affected by the bias magnetic field. At the position P3, the magnetization direction 502c of the low coercive force magnetic body is the same magnetization direction 503c as the magnetic field direction 301 of the bias magnetic field at the position, and at the position P4, the magnetization direction 504c is the same as the bias magnetic field direction 302. Since the magnetic field strength (450G) of the bias magnetic field is sufficiently larger than the coercive force (50 Oe) of the low coercive force magnetic material, the low coercive force magnetic material is in a saturated magnetization state at each position. The magnetization direction of the body coincides with the direction of the bias magnetic field at each position.

磁性体を飽和磁化状態とするためには、保磁力の3倍の磁界強度が必要とされている。このため、磁気質判別装置1では、磁気センサ10による磁気を検知する位置P4でのバイアス磁界の磁界強度を、判別対象とする低保磁力磁性体の保磁力の3倍以上かつ中保磁力磁性体の保磁力の2倍以下としている。ただし、中磁力磁性体の保磁力に相当する磁界の近傍を除く。このバイアス磁界では中保磁力の磁性体の出力が0となる為である。例えば、保磁力50Oeの低保磁力磁性体を飽和磁化状態としながら、保磁力300Oeの中保磁力磁性体を飽和磁化状態に着磁することがないように、磁界強度を450Oeに設定する。これにより、低保磁力磁性体の位置P4での磁化方向504cを、位置P4でのバイアス磁界方向302と同じ方向とすることができる。これに対して、中保磁力磁性体の磁化方向はバイアス磁界内で変化するが、変化後もバイアス磁界の磁化方向302と一致しない方向となるように着磁磁界が設定されている。このため、位置P4での中保磁力磁性体の磁化方向504bと低保磁力磁性体の磁化方向504cとを異なる方向とすることができる。   In order to bring a magnetic material into a saturation magnetization state, a magnetic field strength that is three times the coercive force is required. For this reason, in the magnetic quality discriminating apparatus 1, the magnetic field intensity of the bias magnetic field at the position P4 where the magnetism is detected by the magnetic sensor 10 is more than three times the coercivity of the low coercivity magnetic material to be discriminated and the medium coercivity magnetism. The coercive force of the body is 2 times or less. However, the vicinity of the magnetic field corresponding to the coercive force of the medium magnetic material is excluded. This is because the output of the magnetic material having a medium coercive force becomes zero in this bias magnetic field. For example, the magnetic field strength is set to 450 Oe so that the low coercive force magnetic material having a coercive force of 50 Oe is in a saturation magnetization state and the medium coercivity magnetic material having a coercive force of 300 Oe is not magnetized in the saturation magnetization state. Thereby, the magnetization direction 504c of the low coercive force magnetic body at the position P4 can be set to the same direction as the bias magnetic field direction 302 at the position P4. On the other hand, the magnetization direction of the medium coercive force magnetic body changes within the bias magnetic field, but the magnetization magnetic field is set so as to be in a direction that does not coincide with the magnetization direction 302 of the bias magnetic field even after the change. For this reason, the magnetization direction 504b of the medium coercivity magnetic body at the position P4 and the magnetization direction 504c of the low coercivity magnetic body can be made different directions.

また、高保磁力磁性体では、バイアス磁界による影響を受けることなく着磁磁界の磁界方向201と同じ磁化方向501aを維持するが、着磁磁界の磁界方向201が、位置P4での中保磁力磁性体の磁化方向504b及び低保磁力磁性体の磁化方向504cと異なる方向となるように設定されているので、位置P4での高保磁力磁性体の磁化方向504aを、他の磁性体の磁化方向504b及び504cと異なる方向とすることができる。なお、高保磁力磁性体の磁化方向504aを、中保磁力磁性体及び低保磁力磁性体の磁化方向504b、504cと異なる方向とすることができれば、高保磁力磁性体を飽和着磁磁化状態に着磁する必要はなく、飽和着磁状態に近い状態に着磁する態様であっても構わない。   Further, in the high coercive force magnetic body, the same magnetization direction 501a as the magnetic field direction 201 of the magnetizing magnetic field is maintained without being affected by the bias magnetic field, but the magnetic field direction 201 of the magnetizing magnetic field is the medium coercive force magnetism at the position P4. The magnetization direction 504b of the high coercivity magnetic body at the position P4 is set to be different from the magnetization direction 504b of the body and the magnetization direction 504b of the low coercivity magnetic body. And 504c. If the magnetization direction 504a of the high coercivity magnetic body can be different from the magnetization directions 504b and 504c of the medium coercivity magnetic body and the low coercivity magnetic body, the high coercivity magnetic body is attached to the saturation magnetization magnetization state. There is no need to magnetize, and a mode of magnetizing in a state close to the saturation magnetization state may be used.

このように、磁気質判別装置1では、磁気検知ユニット2によって磁気を検知する搬送路上の位置P4で、高保磁力磁性体の磁化方向504a、中保磁力磁性体の磁化方向504b及び低保磁力磁性体の磁化方向504cが全て異なる方向となる点を1つの特徴としている。   As described above, in the magnetic quality discriminating apparatus 1, the magnetization direction 504a of the high coercivity magnetic body, the magnetization direction 504b of the medium coercivity magnetic body, and the low coercivity magnetism at the position P4 on the transport path where the magnetism detection unit 2 detects magnetism. One feature is that the magnetization directions 504c of the body are all different directions.

図1に示す磁気質判別装置1では、着磁ユニット3による着磁磁界の磁界強度を、高保磁力磁性体を飽和磁化状態に着磁可能な磁界強度として、バイアス磁界の磁界強度を高保磁力磁性体の磁化状態に影響しない磁界強度としている。また、高保磁力磁性体を飽和磁化状態に着磁する位置P1の着磁磁界の磁界方向201と、磁性体を検知する位置P4でのバイアス磁界の磁界方向302とを、これらの方向が原点に対して対向する象限内にある様に設定している。さらに、位置P4でのバイアス磁界の磁界強度を、低保磁力磁性体を飽和磁化状態に磁化する強度かつ中保磁力磁性体を飽和磁化状態に磁化しない強度としている。以上の通り設定することにより、位置P4において、高保磁力磁性体の磁化方向504aを着磁磁界の磁界方向201と同じ方向として、低保磁力磁性体の磁化方向504cをバイアス磁界の磁界方向302として、中保磁力磁性体の磁化方向504bを高保磁力磁性体の磁化方向504aと低保磁力磁性体の磁化方向504cとの間の方向とすることができる。なお、上述した着磁磁界の磁界方向及び磁界強度を実現することができれば、着磁ユニット3に含まれる磁石20の種類、数及び形状等は特に限定されない。   In the magnetic quality discriminating apparatus 1 shown in FIG. 1, the magnetic field strength of the magnetizing magnetic field by the magnetizing unit 3 is set to a magnetic field strength that can magnetize the high coercive force magnetic body in the saturated magnetization state, and the magnetic field strength of the bias magnetic field is set to the high coercive force magnetism. The magnetic field strength does not affect the magnetization state of the body. Further, the magnetic field direction 201 of the magnetizing magnetic field at the position P1 at which the high coercive force magnetic body is magnetized to the saturation magnetization state and the magnetic field direction 302 of the bias magnetic field at the position P4 at which the magnetic body is detected are used as the origin. On the other hand, it is set to be in the opposite quadrant. Further, the magnetic field intensity of the bias magnetic field at the position P4 is set to an intensity for magnetizing the low coercivity magnetic body in the saturation magnetization state and an intensity for not magnetizing the medium coercivity magnetic body in the saturation magnetization state. By setting as described above, at the position P4, the magnetization direction 504a of the high coercivity magnetic body is the same as the magnetic field direction 201 of the magnetization magnetic field, and the magnetization direction 504c of the low coercivity magnetic body is the magnetic field direction 302 of the bias magnetic field. The magnetization direction 504b of the medium coercivity magnetic body can be set to a direction between the magnetization direction 504a of the high coercivity magnetic body and the magnetization direction 504c of the low coercivity magnetic body. Note that the type, number, shape, and the like of the magnet 20 included in the magnetizing unit 3 are not particularly limited as long as the above-described magnetic field direction and magnetic field strength of the magnetizing magnetic field can be realized.

次に、このように、それぞれ異なる磁化方向に磁化された高保磁力磁性体、中保磁力磁性体及び低保磁力磁性体を、磁気検知ユニット2の磁気センサ10で検知した際に得られる検知信号について説明する。   Next, a detection signal obtained when the magnetic sensor 10 of the magnetic detection unit 2 detects the high coercivity magnetic body, the medium coercivity magnetic body, and the low coercivity magnetic body magnetized in different magnetization directions in this way. Will be described.

図3は、磁化方向507〜510に磁化された磁性体の直下近傍(約0.5mm位置)におけるZ軸方向の磁界分布を示している。磁化方向が上向き507のときにはZ軸方向の磁界分布は図3(a)の様になり、磁化方向が左向き508のときにはZ軸方向の磁界分布は図3(b)の様になり、磁化方向が斜め方向509、510の場合には図3(c)、(d)の様になる。バイアス磁石30によって発生するバイアス磁界中を、図3に示すように磁化された磁性体が通過するとバイアス磁界の方向及び密度に変化が生ずる。磁気センサ10は、このバイアス磁界の変化を検知信号として出力する。なお、図3の左方向が図1の180度方向、図3の上方向が図1の90度方向に対応している。   FIG. 3 shows the magnetic field distribution in the Z-axis direction in the vicinity immediately below (about 0.5 mm position) of the magnetic material magnetized in the magnetization directions 507 to 510. When the magnetization direction is upward 507, the magnetic field distribution in the Z-axis direction is as shown in FIG. 3A. When the magnetization direction is leftward 508, the magnetic field distribution in the Z-axis direction is as shown in FIG. 3 are oblique directions 509 and 510 as shown in FIGS. 3 (c) and 3 (d). When the magnetized magnetic material passes through the bias magnetic field generated by the bias magnet 30 as shown in FIG. 3, the direction and density of the bias magnetic field change. The magnetic sensor 10 outputs the change in the bias magnetic field as a detection signal. 3 corresponds to the 180 degree direction in FIG. 1, and the upper direction in FIG. 3 corresponds to the 90 degree direction in FIG.

図4は、バイアス磁界の変化と磁気センサ10による検知信号との関係を説明する図である。図4では、通過する磁性体の磁化方向を上部に示し、バイアス磁界の磁力線の変化を下部に示している。図4(a)に示すように、磁気センサ10が磁性体を検知する位置P4を磁化方向505の磁性体が通過すると、磁力線は破線で示した初期状態から実線で示すように上方向に変化する。このとき、磁気センサ10からはバイアス磁界の磁界方向の変化及び磁束密度の変化に応じた正出力の検知信号が得られるように設定されている。これに対して、図4(b)に示すように、磁気センサ10が磁性体を検知する位置P4を磁化方向506の磁性体が通過すると、磁力線は破線で示した初期状態から実線で示したように下方向に変化する。このとき、磁気センサ10からはバイアス磁界の磁界方向の変化及び磁束密度の変化に応じた負出力の検知信号が得られるように設定されている。   FIG. 4 is a diagram for explaining the relationship between the change in the bias magnetic field and the detection signal from the magnetic sensor 10. In FIG. 4, the magnetization direction of the passing magnetic material is shown in the upper part, and the change in the magnetic field lines of the bias magnetic field is shown in the lower part. As shown in FIG. 4A, when the magnetic body in the magnetization direction 505 passes through the position P4 where the magnetic sensor 10 detects the magnetic body, the magnetic field lines change upward from the initial state indicated by the broken line as indicated by the solid line. To do. At this time, the magnetic sensor 10 is set so as to obtain a positive output detection signal corresponding to the change in the magnetic field direction of the bias magnetic field and the change in the magnetic flux density. On the other hand, as shown in FIG. 4B, when the magnetic body in the magnetization direction 506 passes through the position P4 where the magnetic sensor 10 detects the magnetic body, the lines of magnetic force are shown as solid lines from the initial state shown by the broken lines. To change downward. At this time, the magnetic sensor 10 is set so that a negative output detection signal corresponding to a change in the magnetic field direction of the bias magnetic field and a change in the magnetic flux density can be obtained.

図5は、図1(b)に示す磁気質判別装置1で、高保磁力磁性体101、中保磁力磁性体102、低保磁力磁性体103及び積層磁性体104、105を磁気検知ユニット2で検知した際の検知信号の波形を示している。縦軸が磁気センサ10からの出力、横軸が時間を示しており、各磁性体を含む紙葉類100が位置P4を通過した際に磁気センサ10から出力される検知信号が図5に示す波形となる。図5では、各図の上部に各検知信号に対応する各磁性体101〜105を示している。   FIG. 5 shows a magnetic quality discriminating apparatus 1 shown in FIG. 1B, in which a high coercivity magnetic body 101, a medium coercivity magnetic body 102, a low coercivity magnetic body 103, and laminated magnetic bodies 104 and 105 are combined with the magnetic detection unit 2. The waveform of the detection signal at the time of detection is shown. The vertical axis indicates the output from the magnetic sensor 10, and the horizontal axis indicates time. FIG. 5 shows detection signals output from the magnetic sensor 10 when the paper sheet 100 including each magnetic material passes the position P4. It becomes a waveform. In FIG. 5, each magnetic body 101-105 corresponding to each detection signal is shown in the upper part of each figure.

図5(c)に示す低保磁力磁性体103では、略全域で正の出力を示し、波形はピーク位置に対して略左右対称な波形となる。低保磁力磁性体103については、バイアス磁界により飽和磁化される状態にあるため、磁気センサ10による検知信号の波形は、低保磁力磁性体が発する磁界によるものとはならない。低保磁力磁性体は透磁率が高く磁力線を集めるように作用することから、低保磁力磁性体が位置P4に近づくほど磁気センサ10から出力される検知信号の振幅が大きくなる。このため、低保磁力磁性体を検知して得られる検知信号は、位置P4近傍を通過する際に最大値を示して、その前後で略対称な波形を示す。   In the low coercivity magnetic body 103 shown in FIG. 5C, a positive output is shown in almost the entire region, and the waveform is substantially symmetrical with respect to the peak position. Since the low coercive magnetic body 103 is saturated and magnetized by the bias magnetic field, the waveform of the detection signal from the magnetic sensor 10 does not depend on the magnetic field generated by the low coercive magnetic body. Since the low coercivity magnetic body has a high magnetic permeability and acts to collect magnetic lines of force, the amplitude of the detection signal output from the magnetic sensor 10 increases as the low coercivity magnetic body approaches the position P4. For this reason, the detection signal obtained by detecting the low coercive force magnetic body shows a maximum value when passing through the vicinity of the position P4, and shows a substantially symmetrical waveform before and after that.

図5(b)は、中保磁力磁性体102の検知信号を示している。図1(b)に示す磁気質判別装置1の位置P4では、中保磁力磁性体の磁化方向は左斜め上方を向いている。このときの中保磁力磁性体の直下近傍でのZ軸方向の磁界分布は図3(d)のようになっており、この磁界分布の形を右からたどるように磁気信号が検知される。その結果、図5(b)に示すように、正の出力を示した後に負の出力を示す検知信号となる。低保磁力磁性体103と同様に略全域で正の出力となるが正の出力の波形はピーク位置に対して左右非対称な波形となることから、中保磁力磁性体102の検知信号と低保磁力磁性体103の検知信号とを区別することができる。   FIG. 5B shows a detection signal of the medium coercive force magnetic body 102. At position P4 of the magnetic quality determination device 1 shown in FIG. 1B, the magnetization direction of the medium coercive force magnetic body is directed obliquely upward to the left. At this time, the magnetic field distribution in the Z-axis direction in the vicinity immediately below the medium coercive force magnetic body is as shown in FIG. 3D, and a magnetic signal is detected so that the shape of this magnetic field distribution is traced from the right. As a result, as shown in FIG. 5B, a detection signal indicating a negative output after a positive output is obtained. As with the low coercivity magnetic body 103, a positive output is obtained in almost the entire region, but the waveform of the positive output is asymmetrical with respect to the peak position. It can be distinguished from the detection signal of the magnetic magnetic body 103.

図5(a)は、高保磁力磁性体101の検知信号を示している。図1(b)に示す磁気質判別装置1の位置P4では、高保磁力磁性体の磁化方向は左斜め下方を向いている。このときの高保磁力磁性体の直下近傍でのZ軸方向の磁界分布は図3(c)のようになっており、この磁界分布の形を右からたどるように磁気信号が検知される。その結果、図5(a)に示すように、正の出力を示した後に負の出力を示す検知信号となる。中保磁力磁性体102と同様に正の出力で左右非対称の波形を示すが、高保磁力磁性体101の検知信号は、検知信号の大半で負の出力を示すことから、高保磁力磁性体101の検知信号と、低保磁力磁性体103及び中保磁力磁性体102の検知信号とを区別することができる。   FIG. 5A shows a detection signal of the high coercivity magnetic body 101. At position P4 of the magnetic quality determination device 1 shown in FIG. 1B, the magnetization direction of the high coercive force magnetic body is directed diagonally downward to the left. The magnetic field distribution in the Z-axis direction in the vicinity immediately below the high coercive force magnetic body at this time is as shown in FIG. 3C, and a magnetic signal is detected so as to follow the shape of this magnetic field distribution from the right. As a result, as shown in FIG. 5A, a detection signal indicating a negative output after a positive output is obtained. Like the middle coercive force magnetic body 102, a positive output and a left-right asymmetric waveform are shown. However, the detection signal of the high coercivity magnetic body 101 shows a negative output in most of the detection signals. The detection signal can be distinguished from the detection signals of the low coercivity magnetic body 103 and the medium coercivity magnetic body 102.

図5(d)に示す高保磁力磁性体101と中保磁力磁性体102からなる積層磁性体104では、正の出力を示した後に負の出力を示す。積層磁性体104では、高保磁力磁性体101の検知信号と中保磁力磁性体102の検知信号を加算した波形となる。積層磁性体104の検知信号は、図5(a)に示す高保磁力磁性体101と同様に正負両方に振れる出力を示す。しかし、積層磁性体104の検知信号では高保磁力磁性体101の検知信号と異なり、正負の振幅が略同じ大きさとなることから、積層磁性体104の検知信号と高保磁力磁性体101の検知信号とを区別することができる。判別対象に含まれる積層磁性体が1種類のみで、高保磁力磁性体101と中保磁力磁性体102からなる積層磁性体104である場合は、この判別方法により当該積層磁性体104が紙葉類100上の所定の場所に存在していることを認識できる。   In the laminated magnetic body 104 composed of the high coercivity magnetic body 101 and the medium coercivity magnetic body 102 shown in FIG. 5D, a positive output is shown and then a negative output is shown. The laminated magnetic body 104 has a waveform obtained by adding the detection signal of the high coercivity magnetic body 101 and the detection signal of the medium coercivity magnetic body 102. The detection signal of the laminated magnetic body 104 shows an output that swings in both positive and negative directions, like the high coercivity magnetic body 101 shown in FIG. However, unlike the detection signal of the high coercivity magnetic body 101 in the detection signal of the laminated magnetic body 104, the positive and negative amplitudes are substantially the same. Therefore, the detection signal of the laminated magnetic body 104 and the detection signal of the high coercivity magnetic body 101 are Can be distinguished. When there is only one type of laminated magnetic body included in the discrimination target and the laminated magnetic body 104 is composed of the high coercive force magnetic body 101 and the medium coercive force magnetic body 102, the laminated magnetic body 104 is made of paper by this discrimination method. It can be recognized that it is present at a predetermined location on 100.

図5(e)に示す高保磁力磁性体101と低保磁力磁性体103からなる積層磁性体105では、正の出力を示した後に負の出力を示す。積層磁性体105では、高保磁力磁性体101の検知信号と低保磁力磁性体103の検知信号を加算した波形となる。積層磁性体105の検知信号は、図5(a)に示す高保磁力磁性体101と同様に正負両方に振れる出力を示す。しかし、積層磁性体105の検知信号では高保磁力磁性体101の検知信号と異なり、正負の振幅が略同じ大きさとなることから、積層磁性体105の検知信号と高保磁力磁性体101の検知信号とを区別することができる。判別対象に含まれる積層磁性体が1種類のみで、高保磁力磁性体101と低保磁力磁性体103からなる積層磁性体105である場合は、この判別方法により当該積層磁性体105が紙葉類100上の所定の場所に存在していることを認識できる。   The laminated magnetic body 105 composed of the high coercivity magnetic body 101 and the low coercivity magnetic body 103 shown in FIG. 5E shows a negative output after showing a positive output. The laminated magnetic body 105 has a waveform obtained by adding the detection signal of the high coercivity magnetic body 101 and the detection signal of the low coercivity magnetic body 103. The detection signal of the laminated magnetic body 105 shows an output that swings in both positive and negative directions, similarly to the high coercivity magnetic body 101 shown in FIG. However, unlike the detection signal of the high coercivity magnetic body 101 in the detection signal of the laminated magnetic body 105, the positive and negative amplitudes are substantially the same. Therefore, the detection signal of the laminated magnetic body 105 and the detection signal of the high coercivity magnetic body 101 are Can be distinguished. When there is only one type of laminated magnetic body included in the discrimination target and the laminated magnetic body 105 is composed of the high coercivity magnetic body 101 and the low coercivity magnetic body 103, the laminated magnetic body 105 is made of paper by this discrimination method. It can be recognized that it is present at a predetermined location on 100.

この積層磁性体の判別方法において、判別すべき積層磁性体が、高保磁力磁性体101と中保磁力磁性体102との組合せ、又は高保磁力磁性体101と低保磁力磁性体103との組合せのうち、両組合せが共存する場合を除き、検知された積層磁性体の信号は、積層磁性体が高保磁力磁性体101と中保磁力磁性体102からなる積層磁性体104、又は高保磁力磁性体101と低保磁力磁性体103からなる積層磁性体105であると判断できる。   In this laminated magnetic body discrimination method, the laminated magnetic body to be discriminated is a combination of the high coercivity magnetic body 101 and the medium coercivity magnetic body 102 or the combination of the high coercivity magnetic body 101 and the low coercivity magnetic body 103. Of these, except for the case where both combinations coexist, the detected signal of the laminated magnetic material is the laminated magnetic material 104 in which the laminated magnetic material is composed of the high coercive force magnetic material 101 and the medium coercive force magnetic material 102, or the high coercive force magnetic material 101. It can be determined that the laminated magnetic body 105 is composed of the low coercivity magnetic body 103.

なお、図5の(d)および(e)での積層磁性体の検知信号の説明では、共に高保磁力磁性体101が上層にある場合について説明したが、高保磁力磁性体101が下層にある積層磁性体の検知信号もそれぞれ同様となり、積層の位置関係には影響されない。   In the description of the detection signal of the laminated magnetic body in FIGS. 5D and 5E, the case where the high coercivity magnetic body 101 is in the upper layer has been described. The detection signals of the magnetic materials are also the same, and are not affected by the positional relationship of the layers.

なお、図5に示すように、高保磁力磁性体101、中保磁力磁性体102、低保磁力磁性体103、積層磁性体(104又は105)間で区別可能な波形を有する検知信号を得るためには、例えば、図1に示すように、着磁磁石20のエッジ部分で着磁磁界の方向201を−160度付近として、磁気センサ10に対応する位置P4のバイアス磁界の方向302を30〜60度とする。   As shown in FIG. 5, in order to obtain a detection signal having a waveform distinguishable among the high coercivity magnetic body 101, the medium coercivity magnetic body 102, the low coercivity magnetic body 103, and the laminated magnetic body (104 or 105). For example, as shown in FIG. 1, the direction 201 of the magnetic field at the edge portion of the magnetized magnet 20 is set to about −160 degrees, and the direction 302 of the bias magnetic field at the position P4 corresponding to the magnetic sensor 10 is set to 30˜. 60 degrees.

ただし、着磁位置P1における着磁磁界の方向201、磁気を検知する検知位置P4におけるバイアス磁界方向302及び搬送方向400の関係については、図1に示す関係に限定されるものではない。図6は、着磁磁界の磁界方向、バイアス磁界の磁界方向及び搬送方向が異なる磁気質判別装置1について説明する図である。図6(a)及び(c)は紙葉類100を順方向搬送する場合の関係を示し、同図(b)及び(d)は紙葉類100を逆方向搬送する場合の関係を示している。ここで、順方向搬送とは搬送方向400とバイアス磁界の磁界方向301との間の角度が90度以下となる場合を言い、逆方向搬送とは搬送方向400とバイアス磁界の磁界方向303との間の角度が90度以上となる場合を言う。   However, the relationship between the magnetization magnetic field direction 201 at the magnetization position P1, the bias magnetic field direction 302 and the transport direction 400 at the detection position P4 for detecting magnetism is not limited to the relationship shown in FIG. FIG. 6 is a diagram illustrating the magnetic quality determination device 1 in which the magnetic field direction of the magnetization magnetic field, the magnetic field direction of the bias magnetic field, and the transport direction are different. 6A and 6C show the relationship when the paper sheet 100 is conveyed in the forward direction, and FIGS. 6B and 6D show the relationship when the paper sheet 100 is conveyed in the reverse direction. Yes. Here, forward conveyance refers to a case where the angle between the conveyance direction 400 and the magnetic field direction 301 of the bias magnetic field is 90 degrees or less, and reverse conveyance refers to the conveyance direction 400 and the magnetic field direction 303 of the bias magnetic field. The case where the angle between them is 90 degrees or more.

図6(a)に示す順方向搬送は、図1に対応するもので、搬送方向400を0度方向、検知位置P4のバイアス磁界の方向301を30〜60度とする場合である。順方向搬送では、図6(a)左図に示すように、着磁磁界の方向201を−100〜−170度の間に設定する。   The forward conveyance shown in FIG. 6A corresponds to FIG. 1, and is a case where the conveyance direction 400 is 0 degree and the bias magnetic field direction 301 at the detection position P4 is 30 to 60 degrees. In the forward conveyance, as shown in the left diagram of FIG. 6A, the magnetizing magnetic field direction 201 is set between −100 and −170 degrees.

図6(b)に示す逆方向搬送の磁気検知ユニット2は、同図(a)に示す順方向搬送の磁気検知ユニット2をZ軸周りに180度反転して設置した状態にある。図6(b)に示す逆方向搬送の場合には、検知位置P4のバイアス磁界の磁界方向303が、順方向搬送の場合の磁界方向301をZ軸に対して反転した方向、すなわち120〜150度の方向となる。そして、着磁位置P1での着磁磁界の磁界方向203についても、同様に、順方向搬送の場合の磁界方向201をZ軸に対して反転した方向、すなわち−10〜−80度となる。このような着磁磁界の磁界方向203を実現するため、着磁ユニット3に含まれる着磁磁石20を搬送路の上方に設置している。   The magnetic detection unit 2 for reverse conveyance shown in FIG. 6B is in a state where the magnetic detection unit 2 for forward conveyance shown in FIG. In the case of reverse conveyance shown in FIG. 6B, the magnetic field direction 303 of the bias magnetic field at the detection position P4 is a direction obtained by reversing the magnetic field direction 301 with respect to the Z axis in the case of forward conveyance, that is, 120 to 150. The direction of the degree. Similarly, the magnetic field direction 203 of the magnetizing magnetic field at the magnetizing position P1 is a direction obtained by reversing the magnetic field direction 201 with respect to the Z axis in the case of forward conveyance, that is, −10 to −80 degrees. In order to realize such a magnetic field direction 203 of the magnetizing magnetic field, the magnetizing magnet 20 included in the magnetizing unit 3 is installed above the conveyance path.

図6(c)に示す順方向搬送の磁気検知ユニット2では、着磁磁界の磁界方向201は同図(a)に示す磁気検知ユニット2と同じ方向(−100〜−170度)であるが、バイアス磁界の磁界方向305が、同図(a)に示す磁気検知ユニット2のバイアス磁界の磁界方向301をY軸に対して反転した方向、すなわち−30〜−60度となっている。また、図6(d)に示す逆方向搬送の磁気検知ユニット2では、着磁磁界の磁界方向203は同図(b)に示す磁気検知ユニット2と同じ方向(−10〜−80度)であるが、バイアス磁界の磁界方向306が、同図(b)に示す磁気検知ユニット2のバイアス磁界の磁界方向303をY軸に対して反転した方向、すなわち−120〜−150度となっている。   In the forward direction magnetic detection unit 2 shown in FIG. 6C, the magnetic field direction 201 of the magnetization magnetic field is the same direction (−100 to −170 degrees) as that of the magnetic detection unit 2 shown in FIG. The magnetic field direction 305 of the bias magnetic field is a direction obtained by inverting the magnetic field direction 301 of the bias magnetic field of the magnetic detection unit 2 shown in FIG. 6D, the magnetic field direction 203 of the magnetizing magnetic field is the same direction (−10 to −80 degrees) as that of the magnetic detection unit 2 shown in FIG. 6B. However, the magnetic field direction 306 of the bias magnetic field is a direction obtained by reversing the magnetic field direction 303 of the bias magnetic field of the magnetic detection unit 2 shown in FIG. .

このように、搬送方向400を0度として、バイアス磁界の磁界方向と着磁磁界の磁界方向の組み合わせを、図6(a)に示す30〜60度と−100〜−170度、同図(b)に示す120〜150度と−10〜−80度、同図(c)に示す−30〜−60度と−100〜−170度、又は同図(d)に示す−120〜−150度と−10〜−80度に設定すれば、図5に示すように、高保磁力磁性体101、中保磁力磁性体102、低保磁力磁性体103、積層磁性体(104又は105)間で区別可能な波形を有する検知信号を得ることができる。   Thus, the conveyance direction 400 is 0 degree, and the combinations of the magnetic field direction of the bias magnetic field and the magnetic field direction of the magnetizing magnetic field are 30 to 60 degrees and -100 to -170 degrees shown in FIG. b) 120 to 150 degrees and −10 to −80 degrees, (c) −30 to −60 degrees and −100 to −170 degrees, or −120 to −150 illustrated in FIG. When the angle is set to −10 to −80 degrees, as shown in FIG. 5, the high coercivity magnetic body 101, the medium coercivity magnetic body 102, the low coercivity magnetic body 103, and the laminated magnetic body (104 or 105). A detection signal having a distinguishable waveform can be obtained.

また、図6では、高保磁力磁性体101、中保磁力磁性体102及び低保磁力磁性体103をそれぞれ判別する場合を示したが、例えば、低保磁力磁性体103と、その他の磁性体とを判別できればよい場合には、着磁磁界の磁界方向として設定可能な角度範囲が緩和される。図7は、図6に示す磁気質判別装置1で、低保磁力磁性体103と、その他の磁性体、すなわち高保磁力磁性体101、中保磁力磁性体102及び積層磁性体104とを判別する場合の着磁磁界の磁界方向とバイアス磁界の磁界方向との関係を説明する図である。図7(a)〜(d)が、それぞれ図6(a)〜(d)に対応している。   FIG. 6 shows the case where the high coercivity magnetic body 101, the medium coercivity magnetic body 102, and the low coercivity magnetic body 103 are discriminated. For example, the low coercivity magnetic body 103 and other magnetic bodies Can be discriminated, the angle range that can be set as the magnetic field direction of the magnetizing magnetic field is relaxed. FIG. 7 shows the magnetic quality discriminating apparatus 1 shown in FIG. 6 that discriminates the low coercivity magnetic body 103 and other magnetic bodies, that is, the high coercivity magnetic body 101, the medium coercivity magnetic body 102, and the laminated magnetic body 104. It is a figure explaining the relationship between the magnetic field direction of a magnetization magnetic field, and the magnetic field direction of a bias magnetic field in the case. FIGS. 7A to 7D correspond to FIGS. 6A to 6D, respectively.

具体的には、図6(a)に示す順方向搬送の磁気質判別装置1で、低保磁力磁性体103とその他の磁性体とを判別する場合には、 図7(a)に示すように、着磁磁界の磁界方向を80〜100度以外の方向に設定すればよい。同様に、図6(b)〜(d)に示す磁気質判別装置1でも、低保磁力磁性体103とその他の磁性体とを判別する場合には、 図7(b)〜(d)に示すように、着磁磁界の磁界方向を80〜100度以外の方向に設定すればよい。このように設定することで、図5に示すように、低保磁力磁性体103では正出力のみを示し、その他の磁性体では一部又は全部が負出力となるので、これらを判別することが可能となる。   Specifically, in the case of discriminating the low-coercivity magnetic body 103 from other magnetic bodies with the forward-conveyance magnetic quality discrimination apparatus 1 shown in FIG. 6A, as shown in FIG. 7A. In addition, the magnetic field direction of the magnetizing magnetic field may be set to a direction other than 80 to 100 degrees. Similarly, in the magnetic quality discriminating apparatus 1 shown in FIGS. 6B to 6D, when discriminating between the low coercive force magnetic body 103 and other magnetic bodies, the processes shown in FIGS. 7B to 7D are performed. As shown, the magnetic field direction of the magnetizing magnetic field may be set to a direction other than 80 to 100 degrees. By setting in this way, as shown in FIG. 5, the low coercive force magnetic body 103 shows only a positive output, and the other magnetic bodies have a part or all of a negative output. It becomes possible.

すなわち、搬送方向400を0度として、バイアス磁界の磁界方向を30〜60度又は120〜150度に設定して、着磁磁界の磁界方向を80〜100度を除く角度範囲に設定するか、又はバイアス磁界の磁界方向を−30〜−60度又は−120〜−150度に設定して着磁磁界の磁界方向を80〜100度を除く角度範囲に設定すれば、低保磁力磁性体103とその他の磁性体とを判別することができる。   That is, the conveyance direction 400 is set to 0 degree, the magnetic field direction of the bias magnetic field is set to 30 to 60 degrees or 120 to 150 degrees, and the magnetic field direction of the magnetization magnetic field is set to an angle range excluding 80 to 100 degrees, Alternatively, if the magnetic field direction of the bias magnetic field is set to −30 to −60 degrees or −120 to −150 degrees, and the magnetic field direction of the magnetizing magnetic field is set to an angle range excluding 80 to 100 degrees, the low coercive force magnetic body 103. And other magnetic materials can be discriminated.

図8は、図6(b)に示す逆方向搬送の場合の磁気質判別方法を説明するための模式図である。図8(b)は、磁気質判別装置1の概要を示し、同図(a)には、保磁力が異なる3種類の磁性体の磁化状態を示している。装置構成としては、着磁磁石20を含む着磁ユニット3が搬送路の上方に配置される点と、磁気センサ10及びバイアス磁石30を含む磁気検知ユニット2がZ軸周りに反転した形で配置される点とが、図1に示す磁気質判別装置1と異なっている。図8(b)に示す磁気質判別装置1では、着磁磁界の磁界方向203及びバイアス磁界の磁界方向303が、図1(b)に示す方向201及び302をZ軸に対して反転した方向となる。   FIG. 8 is a schematic diagram for explaining a magnetic quality determination method in the case of reverse conveyance shown in FIG. FIG. 8B shows an outline of the magnetic quality discriminating apparatus 1, and FIG. 8A shows the magnetization states of three types of magnetic bodies having different coercive forces. As a device configuration, the magnetizing unit 3 including the magnetizing magnet 20 is disposed above the conveyance path, and the magnetism detecting unit 2 including the magnetic sensor 10 and the bias magnet 30 is inverted around the Z axis. This is different from the magnetic quality discriminating apparatus 1 shown in FIG. In the magnetic quality discriminating apparatus 1 shown in FIG. 8B, the magnetic field direction 203 of the magnetization magnetic field and the magnetic field direction 303 of the bias magnetic field are directions in which the directions 201 and 302 shown in FIG. It becomes.

紙葉類100に含まれる磁性体が高保磁力磁性体である場合には、着磁ユニット3の下方を搬送方向400へ搬送されると、着磁磁界の磁界強度(4500G)が強力であるため、図8(b)に示す位置P1を通過する際に、飽和磁化状態又は飽和磁化状態に近い磁化状態に着磁される。このとき、図8(a)に示すように、高保磁力磁性体の磁化方向511aは、位置P1における着磁磁界の方向203と同じ方向(−20度)となる。紙葉類100が搬送方向400へ搬送されても、これ以降は、高保磁力磁性体の磁化状態を変えるほどの磁界が存在しないため、その後の磁化方向512a、513a及び514aは、着磁時の磁化方向511a、すなわち着磁磁界の磁界方向203と同じ方向のままとなる。   When the magnetic material included in the paper sheet 100 is a high coercive force magnetic material, the magnetic field strength (4500G) of the magnetic field is strong when the magnetic material is conveyed below the magnetization unit 3 in the conveyance direction 400. When passing the position P1 shown in FIG. 8B, the magnetized state is magnetized to a saturation magnetization state or a magnetization state close to the saturation magnetization state. At this time, as shown in FIG. 8A, the magnetization direction 511a of the high coercive force magnetic body is the same direction (−20 degrees) as the magnetization field direction 203 at the position P1. Even after the paper sheet 100 is transported in the transport direction 400, since there is no magnetic field enough to change the magnetization state of the high coercivity magnetic body, the subsequent magnetization directions 512a, 513a, and 514a The magnetization direction 511a, that is, the same direction as the magnetic field direction 203 of the magnetizing magnetic field remains.

紙葉類100に含まれる磁性体が中保磁力磁性体である場合には、位置P1で飽和磁化状態に着磁される。ところが、高保磁力磁性体に比べて保磁力が小さいために、搬送方向400へ搬送される間に、着磁磁界及びバイアス磁界による影響を受け続けて、位置P2での磁化方向512b、位置P3での磁化方向513bが変化する。最終的な磁化方向514bは、着磁磁界を抜けるときの位置P2の磁界方向204と、位置P4でのバイアス磁界の磁界方向303との間の方向となる。   When the magnetic body contained in the paper sheet 100 is a medium coercive force magnetic body, it is magnetized to a saturation magnetization state at the position P1. However, since the coercive force is smaller than that of the high coercive force magnetic body, it is continuously influenced by the magnetizing magnetic field and the bias magnetic field while being transported in the transporting direction 400, and at the magnetization direction 512b and the position P3 at the position P2. Changes the magnetization direction 513b. The final magnetization direction 514b is a direction between the magnetic field direction 204 at the position P2 when exiting the magnetizing magnetic field and the magnetic field direction 303 of the bias magnetic field at the position P4.

紙葉類100に含まれる磁性体が低保磁力磁性体である場合には、保磁力が小さいために、搬送方向400へ搬送される間、着磁磁界及びバイアス磁界による影響を受け続け、各位置P1〜P4での磁化方向511c〜514cは、その位置での磁界方向203、204、304及び303と同じ方向となる。   When the magnetic material included in the paper sheet 100 is a low coercive force magnetic material, since the coercive force is small, it is continuously influenced by the magnetizing magnetic field and the bias magnetic field while being conveyed in the conveying direction 400. The magnetization directions 511c to 514c at the positions P1 to P4 are the same as the magnetic field directions 203, 204, 304, and 303 at the positions.

このように、逆方向搬送の場合も、図1に示す順方向搬送の場合と同様に、磁性体を検知する検知位置P4で、高保磁力磁性体の磁化方向514a、中保磁力磁性体の磁化方向514b及び低保磁力磁性体の磁化方向514cを全て異なる方向とすることができる。これにより、図5に示す順方向搬送の検知信号と同様に、高保磁力磁性体101、中保磁力磁性体102、低保磁力磁性体103、積層磁性体(104又は105)間で異なる波形の検知信号を得ることができる。   Thus, also in the case of the reverse conveyance, as in the case of the forward conveyance shown in FIG. 1, the magnetization direction 514a of the high coercivity magnetic body and the magnetization of the medium coercivity magnetic body at the detection position P4 for detecting the magnetic substance. The direction 514b and the magnetization direction 514c of the low coercive force magnetic body can all be different directions. As a result, similar to the detection signal for forward conveyance shown in FIG. 5, the high coercivity magnetic body 101, the medium coercivity magnetic body 102, the low coercivity magnetic body 103, and the laminated magnetic body (104 or 105) have different waveforms. A detection signal can be obtained.

図9は、図8(b)に示す逆方向搬送の磁気質判別装置1で、高保磁力磁性体101、中保磁力磁性体102、低保磁力磁性体103及び積層磁性体104、105を磁気検知ユニット2で検知した際の検知信号の波形を示している。縦軸が磁気センサ10の出力、横軸が時間を示しており、各磁性体を含む紙葉類100が位置P4を通過した際に磁気センサ10から出力される検知信号が図9に示す波形となる。なお、図9でも、図5と同様に、各図の上部に検知信号に対応する各磁性体101〜105を示している。   FIG. 9 shows the magnetic material discrimination device 1 of the reverse conveyance shown in FIG. 8B. The high coercivity magnetic body 101, the medium coercivity magnetic body 102, the low coercivity magnetic body 103, and the laminated magnetic bodies 104 and 105 are magnetized. The waveform of the detection signal at the time of detecting with the detection unit 2 is shown. The vertical axis indicates the output of the magnetic sensor 10, and the horizontal axis indicates time. The detection signal output from the magnetic sensor 10 when the paper sheet 100 including each magnetic material passes the position P4 is a waveform shown in FIG. It becomes. 9 also shows the magnetic bodies 101 to 105 corresponding to the detection signals at the top of each figure, as in FIG.

図9(c)に示す低保磁力磁性体103の検知信号の波形は、逆方向搬送の場合でも、順方向搬送の場合と同様に、略全域で正の出力を示し、波形はピーク位置に対して略左右対称な波形となる。   The waveform of the detection signal of the low coercive force magnetic body 103 shown in FIG. 9C shows a positive output in almost the entire region, even in the case of reverse direction conveyance, and the waveform is at the peak position. On the other hand, the waveform is substantially symmetrical.

図9(b)に示す中保磁力磁性体102の検知信号では、略全域で正の出力を示す。この検知信号は、低保磁力磁性体103と同様に正の出力を示すが、ピーク位置に対して左右非対称な波形となることから、低保磁力磁性体103の検知信号と区別することができる。   In the detection signal of the medium coercive force magnetic body 102 shown in FIG. 9B, a positive output is shown in almost the entire region. Although this detection signal shows a positive output like the low coercive force magnetic body 103, it has a waveform that is asymmetrical with respect to the peak position, so that it can be distinguished from the detection signal of the low coercivity magnetic body 103. .

図9(a)に示す高保磁力磁性体101の検知信号では、負の出力を示した後に正の出力を示す。この検知信号は、検知信号の大半で負の出力を示すことから、低保磁力磁性体103及び中保磁力磁性体102の検知信号と区別することができる。   The detection signal of the high coercive force magnetic body 101 shown in FIG. 9A shows a negative output and then a positive output. Since this detection signal shows a negative output in most of the detection signals, it can be distinguished from the detection signals of the low coercivity magnetic body 103 and the medium coercivity magnetic body 102.

図9(d)及び(e)に示す積層磁性体104、105では、負の出力を示した後に正の出力を示す。図4(d)の積層磁性体104では、高保磁力磁性体101の出力と中保磁力磁性体102の波形を加算した波形となり、同図(e)の積層磁性体105では、高保磁力磁性体101と低保磁力磁性体103の波形を加算した波形となる。積層磁性体104、105の検知信号は、図9(a)に示す高保磁力磁性体101と同様に正負両方の出力を示す。しかし、積層磁性体104、105の検知信号では高保磁力磁性体101の検知信号と異なり正負の振幅が略同じ大きさとなることから、積層磁性体104、105の検知信号と高保磁力磁性体101の検知信号とを区別することができる。   In the laminated magnetic bodies 104 and 105 shown in FIGS. 9D and 9E, a negative output is shown and then a positive output is shown. In the laminated magnetic body 104 of FIG. 4D, a waveform obtained by adding the output of the high coercive magnetic body 101 and the waveform of the medium coercive magnetic body 102 is obtained. In the laminated magnetic body 105 of FIG. 101 and the low coercive force magnetic body 103 are added. Similar to the high coercivity magnetic body 101 shown in FIG. 9A, the detection signals of the laminated magnetic bodies 104 and 105 show both positive and negative outputs. However, unlike the detection signal of the high coercivity magnetic body 101, the positive and negative amplitudes of the detection signals of the laminated magnetic bodies 104 and 105 are substantially the same. Therefore, the detection signal of the laminated magnetic bodies 104 and 105 and the high coercivity magnetic body 101 A detection signal can be distinguished.

順方向搬送ではバイアス磁界内に進入してすぐに磁気を検知する位置P4に到達するが、逆方向搬送では、位置P4に至るまでの間に中保磁力磁性体102に対するバイアス磁界の影響が大きくなる。具体的には、バイアス磁界の影響を受けて中保磁力磁性体102の磁化量が減少し、図5(b)及び図9(b)の検知信号の比較から分かるように、逆方向搬送の検知信号は順方向搬送の検知信号より振幅が小さい波形となる。なお、高保磁力磁性体101については、保磁力に比べてバイアス磁界の磁界強度が小さいために、バイアス磁界の影響を受けることはない。   In the forward conveyance, the position P4 where the magnetism is detected immediately after entering the bias magnetic field is reached, but in the reverse conveyance, the influence of the bias magnetic field on the medium coercive force magnetic body 102 is large before reaching the position P4. Become. Specifically, the amount of magnetization of the medium coercive force magnetic body 102 decreases due to the influence of the bias magnetic field, and as can be seen from the comparison of the detection signals in FIG. 5B and FIG. The detection signal has a waveform with a smaller amplitude than that of the forward conveyance detection signal. The high coercivity magnetic body 101 is not affected by the bias magnetic field because the magnetic field strength of the bias magnetic field is smaller than the coercive force.

このように、順方向搬送と逆方向搬送とで磁性体の検知信号波形が異なるが、いずれの場合でも、高保磁力磁性体101、中保磁力磁性体102、低保磁力磁性体103、積層磁性体(104又は105)で異なる検知信号を示すため、検知信号に基づいて各磁性体101〜103のそれぞれ及び、104又は105を判別することができる。   As described above, the detection signal waveform of the magnetic material is different between the forward conveyance and the reverse conveyance. In any case, the high coercivity magnetic material 101, the medium coercivity magnetic material 102, the low coercivity magnetic material 103, and the laminated magnetic material. Since different detection signals are indicated by the body (104 or 105), each of the magnetic bodies 101 to 103 and 104 or 105 can be determined based on the detection signal.

検知信号に基づく高保磁力磁性体101、中保磁力磁性体102、低保磁力磁性体103のそれぞれ及び、積層磁性体(104又は105)の判別は、検知信号の振幅とピーク位置に対する信号波形の対称性とに基づいて判定する。例えば、負側のピーク位置の振幅が所定値より大きい場合は、負の出力が得られた時間と正の出力が得られた時間との割合から、検知信号の大半が負の出力であれば高保磁力磁性体101と判定し、そうでなければ積層磁性体104と判定する。また、負側のピーク位置の振幅が所定値より小さい場合は、正側の波形がピーク位置に対して略対称な波形であれば低保磁力磁性体103と判定し、非対称な波形であれば中保磁力磁性体102と判定する。なお、信号波形の対称性を判定する方法は特に限定されないが、例えば、ピーク位置から、両方向で振幅が0(ゼロ)となる位置までの横軸方向の距離を比較して対称性を判定してもよいし、元波形とピーク位置を軸として左右反転した波形との相関性から対称性を判定しても構わない。   Each of the high coercivity magnetic body 101, the medium coercivity magnetic body 102, the low coercivity magnetic body 103, and the laminated magnetic body (104 or 105) based on the detection signal is determined by the signal waveform with respect to the amplitude and peak position of the detection signal. Judgment based on symmetry. For example, if the amplitude of the negative peak position is greater than a predetermined value, if the majority of the detection signal is a negative output from the ratio of the time when the negative output is obtained and the time when the positive output is obtained, It is determined as the high coercive force magnetic body 101, otherwise, it is determined as the laminated magnetic body 104. Further, when the amplitude of the negative peak position is smaller than a predetermined value, if the positive waveform is substantially symmetrical with respect to the peak position, it is determined as the low coercivity magnetic body 103, and if it is an asymmetric waveform. The medium coercive force magnetic body 102 is determined. The method of determining the symmetry of the signal waveform is not particularly limited. For example, the symmetry is determined by comparing the distance in the horizontal axis direction from the peak position to the position where the amplitude is 0 (zero) in both directions. Alternatively, the symmetry may be determined from the correlation between the original waveform and the waveform reversed left and right around the peak position.

本実施形態に係る磁気質判別装置1によれば、高保磁力磁性体、中保磁力磁性体、低保磁力磁性体及び積層磁性体を判別できるので、紙葉類100の種類によって、含まれる磁性体が異なる場合でも、各紙葉類100に含まれる磁性体の種類を判別して、紙葉類100の真偽判定を行うことができる。また、紙葉類100に、各磁性体によりパターンが描かれている場合でもこれを認識することができる。また、各磁性体の組み合わせによりコードが形成されている場合でも、各磁性体を正確に判別してコードを認識することができる。   According to the magnetic quality determination device 1 according to the present embodiment, a high coercivity magnetic body, a medium coercivity magnetic body, a low coercivity magnetic body, and a laminated magnetic body can be determined. Even if the bodies are different, it is possible to determine the authenticity of the paper sheet 100 by determining the type of the magnetic material included in each paper sheet 100. In addition, even when a pattern is drawn on the paper sheet 100 with each magnetic material, this can be recognized. Further, even when a code is formed by a combination of magnetic materials, the code can be recognized by accurately identifying each magnetic material.

上述してきたように、本実施形態によれば、着磁ユニット3による着磁磁界の磁界強度及び磁界方向と、磁気検知ユニット2によるバイアス磁界の磁界強度及び磁界方向とを適切に設定することにより、磁気検知ユニット2により磁気を検知する位置で、各磁性体の磁化方向を異なる方向とすることができるので、磁気を検知した検知信号の特徴から各磁性体を判別することができる。   As described above, according to the present embodiment, the magnetic field strength and magnetic field direction of the magnetic field generated by the magnetic unit 3 and the magnetic field strength and magnetic field direction of the bias magnetic field generated by the magnetic detection unit 2 are set appropriately. Since the magnetization direction of each magnetic body can be set to a different direction at the position where the magnetic detection unit 2 detects magnetism, each magnetic body can be determined from the characteristics of the detection signal that has detected the magnetism.

例えば、着磁磁界の磁界強度を、高保磁力磁性体を飽和磁化状態にする磁界強度として、バイアス磁界の磁界強度を、低保磁力磁性体を飽和磁化状態としてかつ中保磁力磁性体を飽和磁化状態に磁化することのない磁界強度にすると共に、磁気検知ユニット2によって磁性体を検知する位置のバイアス磁界の方向を各磁性体を着磁する磁界の方向と異なる方向に設定することにより、検知信号の振幅及び波形から高保磁力磁性体、中保磁力磁性体、低保磁力磁性体及び積層磁性体を判別することができる。   For example, the magnetic field strength of the magnetizing magnetic field is set as the magnetic field strength that brings the high coercive force magnetic material into the saturation magnetization state, the magnetic field strength of the bias magnetic field is set as the low coercivity magnetic material in the saturation magnetization state, and the medium coercive force magnetic material is saturated in magnetization. Detection is performed by setting the magnetic field intensity so as not to be magnetized to the state and setting the direction of the bias magnetic field at the position where the magnetic substance is detected by the magnetic detection unit 2 to be different from the direction of the magnetic field magnetizing each magnetic substance. A high coercivity magnetic body, a medium coercivity magnetic body, a low coercivity magnetic body, and a laminated magnetic body can be distinguished from the amplitude and waveform of the signal.

また、例えば、1つの着磁磁石20のみで上述した着磁磁界を実現して、1つの磁気センサ10により検知信号を得て各磁性体を判別することができるので、磁気質判別装置1を小型かつ安価な装置とすることができる。   Further, for example, the above-described magnetizing magnetic field can be realized by only one magnetizing magnet 20, and each magnetic body can be discriminated by obtaining a detection signal by one magnetic sensor 10. A small and inexpensive device can be obtained.

以上のように、本発明は、小型の磁気質判別装置により保磁力の異なる複数の磁性体を検知して判別するために有用な技術である。   As described above, the present invention is a useful technique for detecting and discriminating a plurality of magnetic bodies having different coercive forces with a small magnetic quality discrimination device.

1 磁気質判別装置
2 磁気検知ユニット
3 着磁ユニット
10 磁気センサ
20 着磁磁石
30 バイアス磁石
100 紙葉類
DESCRIPTION OF SYMBOLS 1 Magnetic quality discrimination apparatus 2 Magnetic detection unit 3 Magnetization unit 10 Magnetic sensor 20 Magnetization magnet 30 Bias magnet 100 Paper sheets

Claims (7)

搬送路を搬送される紙葉類に含まれる磁性体の磁気質を検知して判別する磁気質判別装置であって、
前記紙葉類の搬送面と所定角度を成す方向を磁界方向とするバイアス磁界を前記搬送路上に発生させて、前記バイアス磁界の変化を検出することにより前記磁性体の磁気量を検知する磁気検知ユニットと、
前記磁気検知ユニットより搬送方向上流側に配置されて、前記バイアス磁界の磁界方向と異なる方向を磁界方向とする着磁磁界を前記搬送路上に発生させて前記磁性体を着磁する着磁ユニットと
を備え、
前記磁気検知ユニットによる磁気検知位置では、前記着磁磁界及び前記バイアス磁界によって、所定保磁力より保磁力が小さい低保磁力磁性体と前記所定保磁力より保磁力が大きい他の磁性体とを異なる磁化方向に磁化する
ことを特徴とする磁気質判別装置。
A magnetic quality discriminating device for detecting and discriminating the magnetic quality of a magnetic material contained in a paper sheet conveyed through a conveyance path,
Magnetic detection for detecting a magnetic quantity of the magnetic material by generating a bias magnetic field on the transport path having a direction that forms a predetermined angle with the transport surface of the paper sheet as a magnetic field direction and detecting a change in the bias magnetic field Unit,
A magnetizing unit that is disposed upstream of the magnetic detection unit in the transport direction and generates a magnetizing magnetic field on the transport path that has a magnetic field direction different from the magnetic field direction of the bias magnetic field to magnetize the magnetic body; With
At a magnetic detection position by the magnetic detection unit, a low coercivity magnetic body having a coercive force smaller than a predetermined coercive force is different from another magnetic body having a coercive force larger than the predetermined coercive force by the magnetization magnetic field and the bias magnetic field. Magnetic quality discriminating apparatus characterized by being magnetized in the magnetization direction.
前記着磁磁界の磁界強度は、判別対象とする磁性体のうち最大の保磁力を有する磁性体を飽和磁化状態に着磁する磁界強度に設定されて、
前記バイアス磁界の磁界強度は、判別対象とする前記低保磁力磁性体を飽和磁化状態に磁化する磁界強度かつ前記他の磁性体を飽和磁化状態に磁化しない磁界強度に設定される
ことを特徴とする請求項1に記載の磁気質判別装置。
The magnetic field strength of the magnetizing magnetic field is set to a magnetic field strength that magnetizes a magnetic material having the maximum coercive force among magnetic materials to be discriminated into a saturated magnetization state,
The magnetic field strength of the bias magnetic field is set to a magnetic field strength that magnetizes the low coercivity magnetic material to be discriminated into a saturated magnetization state and a magnetic field strength that does not magnetize the other magnetic material into a saturated magnetization state. The magnetic quality discrimination device according to claim 1.
前記着磁磁界の磁界強度を判別対象のうち最大の保磁力を有する磁性体の保磁力の1.5倍以上に設定して、
前記バイアス磁界の磁界強度を、判別する前記高保磁力磁性体のうち最小の保磁力を持つ磁性体の保磁力の2倍以下に設定する
ことを特徴とする請求項2に記載の磁気質判別装置。
The magnetic field strength of the magnetizing magnetic field is set to 1.5 times or more of the coercive force of the magnetic body having the largest coercive force among the discrimination targets,
3. The magnetic quality discriminating apparatus according to claim 2, wherein the magnetic field strength of the bias magnetic field is set to not more than twice the coercive force of the magnetic material having the minimum coercive force among the high coercive force magnetic materials to be discriminated. .
磁性体の搬送方向を0度として、
前記バイアス磁界の磁界方向を30〜60度又は120〜150度に設定して、前記着磁磁界の磁界方向を80〜100度を除く角度範囲に設定するか、又は
前記バイアス磁界の磁界方向を−30〜−60度又は−120〜−150度に設定して、前記着磁磁界の磁界方向を80〜100度を除く角度範囲に設定する
ことを特徴とする請求項1、2又は3に記載の磁気質判別装置。
The conveyance direction of the magnetic material is 0 degree,
The magnetic field direction of the bias magnetic field is set to 30 to 60 degrees or 120 to 150 degrees, and the magnetic field direction of the magnetization magnetic field is set to an angle range excluding 80 to 100 degrees, or the magnetic field direction of the bias magnetic field is set 4. The magnetic field direction of the magnetizing magnetic field is set to an angle range excluding 80 to 100 degrees by setting to -30 to -60 degrees or -120 to -150 degrees. The magnetic quality discrimination device described.
前記磁気検知ユニットでは、磁性体を検知した検知信号の波形形状に基づいて、前記磁性体の保磁力を判別することを特徴とする請求項1〜4のいずれか1項に記載の磁気質判別装置。   5. The magnetic quality determination according to claim 1, wherein the magnetic detection unit determines a coercive force of the magnetic body based on a waveform shape of a detection signal detected from the magnetic body. apparatus. 磁性体を検知した検知信号がピーク位置に対して略左右対称な波形を示した場合に、前記磁性体は低保磁力磁性体であると判定することを特徴とする請求項5に記載の磁気質判別装置。   6. The magnetism according to claim 5, wherein the magnetic body is determined to be a low coercivity magnetic body when a detection signal for detecting the magnetic body shows a waveform that is substantially symmetrical with respect to a peak position. Quality discrimination device. 搬送路を搬送される紙葉類に含まれる磁性体の磁気質を検知して判別する磁気質判別方法であって、
前記紙葉類の搬送面と所定角度を成す方向を磁界方向とするバイアス磁界を前記搬送路上に発生させて前記バイアス磁界の変化を検出することにより前記磁性体の磁気量を検知する磁気量検知工程と、
前記磁気量検知工程で磁気量を検知する位置よりも搬送方向上流側で、前記バイアス磁界の磁界方向と異なる方向を磁界方向とする着磁磁界を前記搬送路上に発生させて前記磁性体を着磁する着磁工程と
を含み、
前記磁気量検知工程で磁気量を検知する際には、前記着磁磁界及び前記バイアス磁界によって、所定保磁力より保磁力が小さい低保磁力磁性体と前記所定保磁力より保磁力が大きい他の磁性体とを異なる磁化方向に磁化する
ことを特徴とする磁気質判別方法。
A magnetic quality discrimination method for detecting and discriminating the magnetic quality of a magnetic material contained in a paper sheet conveyed through a conveyance path,
Magnetic quantity detection for detecting a magnetic quantity of the magnetic body by detecting a change in the bias magnetic field by generating a bias magnetic field on the conveyance path that has a magnetic field direction as a direction that forms a predetermined angle with the conveyance surface of the paper sheet. Process,
A magnetizing magnetic field having a magnetic field direction different from the magnetic field direction of the bias magnetic field is generated on the transport path upstream of the position where the magnetic quantity is detected in the magnetic quantity detection step. Including a magnetizing step of magnetizing,
When detecting the magnetic quantity in the magnetic quantity detection step, a low coercivity magnetic body having a coercive force smaller than a predetermined coercive force and a coercive force larger than the predetermined coercive force by the magnetization magnetic field and the bias magnetic field. A magnetic quality discrimination method comprising magnetizing a magnetic substance in a different magnetization direction.
JP2013081489A 2013-04-09 2013-04-09 Magnetic quality discrimination apparatus, and magnetic quality discrimination method Pending JP2014203396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013081489A JP2014203396A (en) 2013-04-09 2013-04-09 Magnetic quality discrimination apparatus, and magnetic quality discrimination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013081489A JP2014203396A (en) 2013-04-09 2013-04-09 Magnetic quality discrimination apparatus, and magnetic quality discrimination method

Publications (1)

Publication Number Publication Date
JP2014203396A true JP2014203396A (en) 2014-10-27

Family

ID=52353752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013081489A Pending JP2014203396A (en) 2013-04-09 2013-04-09 Magnetic quality discrimination apparatus, and magnetic quality discrimination method

Country Status (1)

Country Link
JP (1) JP2014203396A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017191823A1 (en) * 2016-05-06 2017-11-09 三菱電機株式会社 Magnetic sensor device
JP2020016555A (en) * 2018-07-26 2020-01-30 浜松光電株式会社 Magnetic substance detector

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06180304A (en) * 1992-12-11 1994-06-28 Glory Ltd Magnetism sensing method
JP2004199459A (en) * 2002-12-19 2004-07-15 National Printing Bureau Printed matter, authenticity determining method thereof, and authenticity determining device thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06180304A (en) * 1992-12-11 1994-06-28 Glory Ltd Magnetism sensing method
JP2004199459A (en) * 2002-12-19 2004-07-15 National Printing Bureau Printed matter, authenticity determining method thereof, and authenticity determining device thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017191823A1 (en) * 2016-05-06 2017-11-09 三菱電機株式会社 Magnetic sensor device
JP6289775B1 (en) * 2016-05-06 2018-03-07 三菱電機株式会社 Magnetic sensor device
CN109073715A (en) * 2016-05-06 2018-12-21 三菱电机株式会社 Magnet sensor arrangement
JP2020016555A (en) * 2018-07-26 2020-01-30 浜松光電株式会社 Magnetic substance detector
JP7186419B2 (en) 2018-07-26 2022-12-09 浜松光電株式会社 Magnetic body detection device

Similar Documents

Publication Publication Date Title
JP6049864B2 (en) Magnetic quality discrimination device and magnetic quality discrimination method
US9595152B2 (en) Magnetic property detection apparatus
JP6301709B2 (en) Magnetic quality discrimination device and magnetic quality discrimination method
US8544630B2 (en) Method and device for testing value documents
US10002267B2 (en) Method and apparatus for checking value documents
JP5889697B2 (en) Paper sheet magnetism evaluation apparatus and paper sheet magnetism evaluation method
US9703994B2 (en) Check of a security element furnished with magnetic materials
JP3283931B2 (en) Magnetic quality detector
US20200400759A1 (en) Magnetic sensor device
JP2014203396A (en) Magnetic quality discrimination apparatus, and magnetic quality discrimination method
WO2016170887A1 (en) Magnetic sensor device
JP3028380B2 (en) Magnetic quality detection method and magnetic quality detection device using the same
JP2016503891A (en) Measuring device for measuring the magnetic properties of its surroundings
JP3283930B2 (en) Magnetic material detection method
JP2006293574A (en) Paper sheet discrimination device and magnetic characteristic detection device
JP2005129009A (en) Paper sheet discriminating device and method
JP3799448B2 (en) Printed matter, authenticity determination method thereof, and authenticity determination device
JP3814692B2 (en) Printed matter, authenticity determination method thereof, and authenticity determination device
US11263854B2 (en) Magnetic testing of valuable documents
CN116168486A (en) Detection method and anti-counterfeiting detection structure of anti-counterfeiting element
JP2019179435A (en) Magnetic identification sensor and magnetic identification device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170627