JP2019179435A - Magnetic identification sensor and magnetic identification device - Google Patents

Magnetic identification sensor and magnetic identification device Download PDF

Info

Publication number
JP2019179435A
JP2019179435A JP2018068714A JP2018068714A JP2019179435A JP 2019179435 A JP2019179435 A JP 2019179435A JP 2018068714 A JP2018068714 A JP 2018068714A JP 2018068714 A JP2018068714 A JP 2018068714A JP 2019179435 A JP2019179435 A JP 2019179435A
Authority
JP
Japan
Prior art keywords
magnetic
medium
magnetic field
coercive force
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018068714A
Other languages
Japanese (ja)
Inventor
川瀬 正博
Masahiro Kawase
正博 川瀬
純喜 中村
Sumiyoshi Nakamura
純喜 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Electronics Inc
Original Assignee
Canon Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Electronics Inc filed Critical Canon Electronics Inc
Priority to JP2018068714A priority Critical patent/JP2019179435A/en
Publication of JP2019179435A publication Critical patent/JP2019179435A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Inspection Of Paper Currency And Valuable Securities (AREA)

Abstract

To provide a magnetic identification sensor and a magnetic identification device capable of simultaneously reading a magnetic print pattern on a medium and determining a coercivity level of the medium with simple magnetizing means and one magnetic detection element.SOLUTION: A sensor body 4 includes a sliding member 5, magnets 7 and 8, and a magnetic detection element 9 disposed immediately below the sliding member 5, and is disposed between a transport paths 10 and 11. The sliding member 5 has a surface opposed to the surface on which the magnets 7 and 8 and the magnetic detection element 9 are disposed as a sliding surface 6, and a magnetic medium 1 is transported in contact with the sliding surface 6. The magnet 7 has an NS direction perpendicular to the sliding surface 6 and can generate a magnetic field intensity sufficient to magnetically saturate all magnetic printing parts of a magnetic medium 1 on the sliding surface 6. The magnet 8 is disposed such that the NS direction is perpendicular to the sliding surface 6 and the NS direction is opposed to the magnet 7, and has a magnetic field intensity that allows magnetization reversal of only a part of the magnetic printing part having a small coercivity.SELECTED DRAWING: Figure 1

Description

本発明は、紙幣等のように磁性体を含んだ磁気インクの印刷もしくは磁性の箔帯を組み込んだ紙状の媒体に対して磁気の検知を行い、種類判別や真贋判定を行う磁気識別センサ及び磁気識別装置に関する。   The present invention relates to a magnetic identification sensor that performs magnetic detection on a paper-like medium in which a magnetic ink containing magnetic material such as banknotes or a paper-like medium incorporating a magnetic foil band is incorporated, and performs type determination and authenticity determination. The present invention relates to a magnetic identification device.

従来、紙幣の識別では、印刷された磁気インクを磁気センサ内の磁石等の磁界印加手段により磁化し、印刷パターンに関わる磁界の変化を磁気検出素子により磁界検知し、磁気パターンの認識から種類判別や真贋判定を行っている。   Conventionally, in banknote recognition, printed magnetic ink is magnetized by a magnetic field application means such as a magnet in a magnetic sensor, a change in the magnetic field related to the print pattern is detected by a magnetic detection element, and the type is determined from recognition of the magnetic pattern. And authenticity judgment.

近年では偽造防止の向上策として新しい技術が組み込まれてきているが、その中で、保磁力Hcの高い磁気印刷部が設けられたものが登場し、その部分を識別する技術が必要となってきた。   In recent years, new technologies have been incorporated as measures for preventing counterfeiting. Among them, those with a magnetic printing part having a high coercive force Hc have appeared, and a technique for identifying the part has become necessary. It was.

これまで、磁気媒体には残留磁化Brの大きい硬磁性の磁気印刷の他に、残留磁化Brの極めて小さい軟磁性を持つ磁気印刷部を組み込んだものがあり、その対応としては、媒体に与える磁界を変えて、複数のセンサで比較する方法が提案されている(特許文献1、2参照)。   Until now, in addition to hard magnetic printing with a large residual magnetization Br, there are magnetic media that incorporate a magnetic printing section with a soft magnetism with a very small residual magnetization Br. A method of comparing with a plurality of sensors has been proposed (see Patent Documents 1 and 2).

特許第5889697号公報Japanese Patent No. 5889697 特開2006−127167号公報JP 2006-127167 A 特表2008−517360号公報Special table 2008-517360 gazette

しかしながら、この方法は、保磁力の高い磁気印刷部も検知可能と思われるが、センサを複数個使用する必要があり、装置が大きくなることやコストの点で不利となる。また、別の方法では、高低の保磁力の異なる媒体の検知方法についての記載があるが、上下に磁石を用意する必要があり、着磁方法が複雑となり、1つの磁気検出素子で検知する方法にもなっていない(特許文献3参照)。   However, although this method seems to be able to detect a magnetic printing part having a high coercive force, it is necessary to use a plurality of sensors, which is disadvantageous in terms of an increase in size and cost. In another method, there is a description of a method for detecting a medium having different coercive forces of high and low, but it is necessary to prepare magnets at the top and bottom, which complicates the magnetizing method, and is a method for detecting by one magnetic detection element. (See Patent Document 3).

このように、保磁力の高低を含む磁気媒体の種類を判別する磁気検知方法の提案はこれまで数多くなされているが、2つ以上のセンサの出力を比較する必要があったり、着磁方法が複雑だったりするという課題がある。   As described above, there have been many proposals of a magnetic detection method for discriminating the type of a magnetic medium including the level of coercive force. However, it is necessary to compare the outputs of two or more sensors, or there is a magnetization method. There is a problem that it is complicated.

本発明は、このような課題に鑑みてなされたもので、その目的とするところは、簡易な磁化手段と1つの磁気検出素子で、媒体の磁気印刷パターンの読み取りとその中にある保磁力の高低の判別を同時に行うことができる磁気識別センサおよび磁気識別装置を提供することにある。   The present invention has been made in view of such problems. The object of the present invention is to read a magnetic print pattern on a medium and to measure the coercive force contained therein with a simple magnetizing means and one magnetic detection element. It is an object of the present invention to provide a magnetic identification sensor and a magnetic identification device capable of simultaneously performing high / low discrimination.

上記の課題を解決するために、本発明の一態様は、搬送される媒体を磁化し、磁化された前記媒体の磁界強度分布を識別する磁気識別センサであって、前記媒体の磁性体部を第1の方向に磁化する第1の磁界ピークを発生させ、前記第1の磁界ピークから前記媒体の搬送方向下流側に、前記第1の方向に磁化された前記磁性体部の一部のみを前記第1の方向と逆向きの第2の方向に磁化する第2の磁界ピークを発生させる媒体磁化手段と、前記媒体磁化手段から前記媒体の搬送方向下流側に配置された、前記媒体が発生する磁界強度分布を検出する磁気検出素子と、を備えたことを特徴とする。   In order to solve the above-described problem, an aspect of the present invention is a magnetic identification sensor that magnetizes a medium to be conveyed and identifies a magnetic field strength distribution of the magnetized medium, and includes a magnetic body portion of the medium. A first magnetic field peak that is magnetized in a first direction is generated, and only a part of the magnetic body portion magnetized in the first direction is provided downstream from the first magnetic field peak in the transport direction of the medium. A medium magnetizing unit that generates a second magnetic field peak that is magnetized in a second direction opposite to the first direction, and the medium that is disposed downstream of the medium magnetizing unit in the transport direction of the medium is generated. And a magnetic detection element for detecting a magnetic field intensity distribution.

別の態様では、さらに、前記磁性体部は、高保磁力部と低保磁力部とを含み、前記第1の磁界ピークは、前記高保磁力部の保磁力以上の磁界強度であり、前記第2の磁界ピークは、前記低保磁力部の保磁力以上で、前記高保磁力部の保磁力よりも小さい磁界強度であることを特徴とする。   In another aspect, the magnetic body portion further includes a high coercive force portion and a low coercive force portion, and the first magnetic field peak has a magnetic field strength equal to or higher than the coercive force of the high coercive force portion, The magnetic field peak is a magnetic field strength that is equal to or greater than the coercive force of the low coercive force portion and smaller than the coercive force of the high coercive force portion.

別の態様では、さらに、前記媒体磁化手段は、第1および第2の磁石を含み、前記第1の磁石は、NS方向が前記媒体の搬送方向に対して垂直になるよう配置され、前記第2の磁石は、NS方向が前記第1のNS方向と逆向きとなるよう配置されたことを特徴とする。   In another aspect, the medium magnetizing means further includes first and second magnets, and the first magnet is arranged such that an NS direction is perpendicular to a conveyance direction of the medium, and the first magnet The second magnet is arranged such that the NS direction is opposite to the first NS direction.

別の態様では、さらに、前記第1の磁石の磁界強度は2kエルステッド(以下Oeと略す)以上で、前記第2の磁石の磁界強度は0.8kOe以上で2kOeより小さくしたことを特徴とする。   In another aspect, the magnetic field strength of the first magnet is 2 k Oersted (hereinafter abbreviated as Oe) or more, and the magnetic field strength of the second magnet is 0.8 kOe or more and less than 2 kOe. .

別の態様では、さらに、前記媒体磁化手段は、NS方向が逆向きの2対の磁極を有する多極の磁石を含むことを特徴とする。   In another aspect, the medium magnetizing means further includes a multipolar magnet having two pairs of magnetic poles whose NS directions are opposite to each other.

別の態様では、さらに、前記媒体磁化手段は、1対の磁極を有する磁石を含み、前記磁石は、NS方向が前記媒体の搬送方向に平行になるよう配置されたことを特徴とする。   In another aspect, the medium magnetizing means further includes a magnet having a pair of magnetic poles, and the magnet is arranged so that an NS direction is parallel to a transport direction of the medium.

別の一態様は、磁気識別装置であって、磁気識別センサと、前記磁気識別センサで検出された前記媒体が発生する磁界強度分布に基づき、前記磁性体部の磁化方向を識別し、前記磁化方向に応じて前記磁性体部の保磁力を識別する識別部と、を備えたことを特徴とする。   Another aspect is a magnetic identification device that identifies a magnetization direction of the magnetic body portion based on a magnetic identification sensor and a magnetic field intensity distribution generated by the medium detected by the magnetic identification sensor, and the magnetization And an identification unit for identifying the coercive force of the magnetic body according to the direction.

本発明によれば、簡易な磁化手段と1つの磁気検出素子で、媒体の磁気印刷パターンの読み取りとその中にある保磁力の高低の判別を同時に行うことができる。   According to the present invention, it is possible to simultaneously read a magnetic print pattern of a medium and determine the level of coercivity in the medium with a simple magnetizing means and one magnetic detection element.

(a)は、本発明の実施形態1に係る磁気識別センサの構成例を表す斜視外観図であり、(b)は、磁気検出素子の一例としてフラックスゲートセンサの構成例を示す図である。(A) is a perspective appearance figure showing the example of composition of the magnetic discernment sensor concerning Embodiment 1 of the present invention, and (b) is the figure showing the example of composition of the fluxgate sensor as an example of a magnetic sensing element. (a)は、本発明の実施形態1に係る磁気識別センサの構成例を表す断面図であり、(b)は、磁石の摺動面上での搬送方向の磁界Hxの分布を示した様子を示す図であり、(c)は、低保磁力印刷部および高保磁力印刷部のX方向の磁界成分HxもしくはX方向に直交するZ方向の磁界成分Hzの磁界強度分布を示す図である。(A) is sectional drawing showing the structural example of the magnetic identification sensor which concerns on Embodiment 1 of this invention, (b) is a mode which showed distribution of the magnetic field Hx of the conveyance direction on the sliding surface of a magnet (C) is a figure which shows the magnetic field strength distribution of the magnetic field component Hx of the X direction of the low coercive force printing part and the high coercive force printing part or the magnetic field component Hz of the Z direction orthogonal to the X direction. 飽和磁化を100%として低保磁力印刷部2と高保磁力印刷部3の磁化特性を示す図である。It is a figure which shows the magnetization characteristic of the low coercive force printing part 2 and the high coercive force printing part 3 by making saturation magnetization into 100%. NS方向が逆の2対の磁極を持った多極の磁石の構成例を示す図である。It is a figure which shows the structural example of the multipolar magnet which has two pairs of magnetic poles with NS direction opposite. 磁気媒体として用意したテスト媒体の構成を示す図である。It is a figure which shows the structure of the test medium prepared as a magnetic medium. (a)は、磁化手段として1つの磁石のみを用いた場合の磁気検出素子からの出力波形を示す図であり、(b)は、磁化手段として2つの磁石を用いた場合の磁気検出素子9からの出力波形を示す図である。(A) is a figure which shows the output waveform from the magnetic detection element at the time of using only one magnet as a magnetization means, (b) is the magnetic detection element 9 at the time of using two magnets as a magnetization means. It is a figure which shows the output waveform from. 本発明の実施形態1に係る磁気識別センサであって、搬送方向が両方向となる別の構成例を示す図である。It is a magnetic identification sensor which concerns on Embodiment 1 of this invention, Comprising: It is a figure which shows another structural example from which a conveyance direction becomes both directions. 本発明の実施形態2に係る磁気識別センサの構成例を表す斜視外観図である。It is a perspective appearance figure showing the example of composition of the magnetic discernment sensor concerning Embodiment 2 of the present invention. (a)は、本発明の実施形態2に係る磁気識別センサの構成例を表す断面図であり、(b)は、磁石の摺動面上での搬送方向の磁界Hxの分布を示した様子を示す図である。(A) is sectional drawing showing the structural example of the magnetic identification sensor which concerns on Embodiment 2 of this invention, (b) is a mode which showed distribution of the magnetic field Hx of the conveyance direction on the sliding surface of a magnet FIG. (a)は、磁石および磁気検出素子を搬送方向に対して直交するY方向に複数個並べた磁気識別センサの構成例を示す図であり、(b)は、対向ローラーで摺動面上を磁気媒体が搬送される様子を示す図である。(A) is a figure which shows the structural example of the magnetic identification sensor which arranged two or more magnets and the magnetic detection elements in the Y direction orthogonal to a conveyance direction, (b) is on a sliding surface with an opposing roller. It is a figure which shows a mode that a magnetic medium is conveyed. 紙葉類取引装置の概略図である。It is the schematic of a paper sheet transaction apparatus. 紙葉類取引装置の制御ユニットの構成例を示す図である。It is a figure which shows the structural example of the control unit of a paper sheet transaction apparatus.

以下、本発明の実施の形態について、詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

(実施形態1)
図1(a)に、本発明の実施形態1に係る磁気識別センサの構成例を表す斜視外観図を示す。識別対象となる紙状の磁気媒体1と、センサ本体4を構成する磁石7、8および磁気検出素子9との位置関係を表す斜視外観図である。
(Embodiment 1)
FIG. 1A is a perspective external view showing a configuration example of a magnetic identification sensor according to Embodiment 1 of the present invention. 2 is a perspective external view showing a positional relationship between a paper-like magnetic medium 1 to be identified, magnets 7 and 8 and a magnetic detection element 9 constituting a sensor body 4. FIG.

センサ本体4は、摺動部材5、摺動部材5の直下に配置された磁石7、8および磁気検出素子9を含み、搬送路10、11の間に配置される。摺動部材5は、磁石7、8および磁気検出素子9が配置された面と対向する面を摺動面6とし、磁気媒体1は摺動面6に接した状態で搬送される。摺動部材5は、銅合金などの非磁性金属とする。   The sensor body 4 includes a sliding member 5, magnets 7 and 8 and a magnetic detection element 9 disposed immediately below the sliding member 5, and is disposed between the conveyance paths 10 and 11. The sliding member 5 has a surface facing the surface on which the magnets 7 and 8 and the magnetic detection element 9 are disposed as a sliding surface 6, and the magnetic medium 1 is conveyed in contact with the sliding surface 6. The sliding member 5 is made of a nonmagnetic metal such as a copper alloy.

磁石7は、NS方向が摺動面6に対して垂直で、摺動面6上で磁気媒体1の全ての磁気印刷部を磁気飽和させるのに十分な磁界強度を発生させられるものとする。磁石8は、NS方向が摺動面6に対して垂直で、磁石7とはNS方向が逆になるように配置され、一部の保磁力の小さい磁気印刷部の一部分のみを磁化反転させる磁界強度を有する。   The magnet 7 has a NS direction perpendicular to the sliding surface 6 and can generate a magnetic field intensity sufficient to magnetically saturate all the magnetic printing portions of the magnetic medium 1 on the sliding surface 6. The magnet 8 is arranged so that the NS direction is perpendicular to the sliding surface 6 and the NS direction is opposite to the magnet 7, and a magnetic field that reverses the magnetization of only a part of the magnetic printing part having a small coercive force. Has strength.

図1(b)に、磁気検出素子9の一例としてフラックスゲートセンサの構成例を示す。磁気検知素子9は、磁気媒体1の搬送方向の磁界Hxまたはそれに対して垂直な磁界Hzのいずれかを検出可能な磁気検出素子であり、例えば図1(b)に示すフラックスゲートセンサとすることができる。フラックスゲートセンサの検知面21は、パーマロイ、アモルファス、微結晶構造等の高透磁率の細長い磁性薄膜22と、銅やアルミ等の導電性金属薄膜による平面コイル23とが不図示の絶縁膜を介して積層され、それぞれ電極24に引き出されている。磁界検知方向は、磁性薄膜22の長手方向である。   FIG. 1B shows a configuration example of a fluxgate sensor as an example of the magnetic detection element 9. The magnetic detection element 9 is a magnetic detection element that can detect either the magnetic field Hx in the conveyance direction of the magnetic medium 1 or the magnetic field Hz perpendicular to the magnetic field 1 and is, for example, a fluxgate sensor shown in FIG. Can do. On the detection surface 21 of the fluxgate sensor, an elongated magnetic thin film 22 having a high magnetic permeability such as permalloy, amorphous, or microcrystalline structure and a planar coil 23 made of a conductive metal thin film such as copper or aluminum are interposed via an insulating film (not shown). Are stacked and drawn to the electrode 24, respectively. The magnetic field detection direction is the longitudinal direction of the magnetic thin film 22.

実施形態1に係る磁気識別センサは、上流側の搬送路10から搬送されてきた磁気媒体1がセンサ本体4上に達すると、磁石7で磁気媒体1全体の磁化方向を揃え、磁石8で保磁力の低い磁気印刷部の一部のみを磁化反転させた後、磁気検出素子9で磁気媒体1の磁気検知を行う。   In the magnetic identification sensor according to the first embodiment, when the magnetic medium 1 conveyed from the upstream conveyance path 10 reaches the sensor body 4, the magnet 7 aligns the magnetization direction of the entire magnetic medium 1 and the magnet 8 maintains the magnetization direction. After reversing the magnetization of only a part of the magnetic printing portion having a low magnetic force, the magnetic detection of the magnetic medium 1 is performed by the magnetic detection element 9.

本発明において主な識別対象とする磁気媒体1は、紙幣の様に紙に磁性体を含んだインクを印刷した矩形状の複数の磁気印刷部を有し、その磁気印刷部に保磁力Hcが小さい低保磁力印刷部2と保磁力Hcの大きい高保磁力印刷部3とが含まれるものとする。低保磁力印刷部2は、従来のように摺動部の位置において0.8kOe程度の磁界を発生する磁気センサで検知ができるもので、ガンマヘマタイト(γ−Fe23)やマグネタイト(Fe34)等の酸化鉄が含まれた顔料が主に使われる。高保磁力印刷部3は、保磁力Hcが2kOeを超え、記憶媒体に使われるメタル磁気記録材料、イプシロン酸化鉄(ε−Fe23)やストロンチウムフェライト(SrO・6Fe23)等の磁性体が使われる。 The magnetic medium 1 as a main identification target in the present invention has a plurality of rectangular magnetic printing parts in which ink containing a magnetic material is printed on paper like bills, and the magnetic printing part has a coercive force Hc. A small low coercive force printing unit 2 and a high coercive force printing unit 3 having a large coercive force Hc are included. The low coercive force printing portion 2 can be detected by a magnetic sensor that generates a magnetic field of about 0.8 kOe at the position of the sliding portion as in the prior art, and includes gamma hematite (γ-Fe 2 O 3 ) and magnetite (Fe Pigments containing iron oxide such as 3 O 4 ) are mainly used. The high coercive force printing unit 3 has a coercive force Hc of over 2 kOe, and magnetic materials such as metal magnetic recording materials used for storage media, epsilon iron oxide (ε-Fe 2 O 3 ) and strontium ferrite (SrO · 6Fe 2 O 3 ). The body is used.

本発明では、磁気媒体1の磁気パターンを識別するために、磁気印刷部を保磁力の大きさに応じて磁化方向を変える必要がある。しかし、磁気検知するまでは磁気媒体1の各磁気印刷部の磁化状態は不明であるため、先ず保磁力の大小を問わず全ての磁気印刷部を磁気飽和させ、低保磁力印刷部2および高保磁力印刷部3の磁化方向を揃える。そのために磁石7は、摺動面6上で高保磁力印刷部3の保磁力Hcを十分に超える磁界強度を発生するものとする。例えば、磁石7による磁化レベルは、高保磁力印刷部3の飽和磁化を100として、その80%以上とすることが望ましい。   In the present invention, in order to identify the magnetic pattern of the magnetic medium 1, it is necessary to change the magnetization direction of the magnetic printing unit according to the coercive force. However, since the magnetization state of each magnetic printing part of the magnetic medium 1 is unknown until magnetism is detected, all the magnetic printing parts regardless of the coercive force are first magnetically saturated, and the low coercive force printing part 2 and the high coercive printing part 2 are detected. The magnetization direction of the magnetic printing unit 3 is aligned. Therefore, the magnet 7 generates a magnetic field intensity sufficiently exceeding the coercive force Hc of the high coercive force printing unit 3 on the sliding surface 6. For example, the magnetization level by the magnet 7 is desirably 80% or more of the saturation magnetization of the high coercive force printing unit 3 as 100.

一方、磁石8は、磁石7で同一方向に磁化された磁気印刷部のうち、低保磁力印刷部2のみを磁化反転させることが可能な磁界強度を発生するものとする。すなわち、磁石8は、低保磁力媒体2の保磁力Hcb以上で高保磁力媒体3の保磁力Hcaより小さい磁界強度を有する。   On the other hand, the magnet 8 generates a magnetic field intensity that can reverse the magnetization of only the low coercive force printing unit 2 among the magnetic printing units magnetized in the same direction by the magnet 7. That is, the magnet 8 has a magnetic field strength that is greater than or equal to the coercive force Hcb of the low coercive force medium 2 and smaller than the coercive force Hca of the high coercive force medium 3.

図2(a)〜(c)に、磁石7、8からの磁界と低保磁力印刷部2、高保磁力印刷部3の磁化の関係を詳細に説明する。図2(a)に、本発明の実施形態1に係る磁気識別センサの構成例を表す断面図を示す。磁石7、8からは、図2(a)に示すように摺動面6側の磁極からそれぞれΦpとΦmの磁束が発生し、摺動面6上を通過する磁気媒体1はその磁束を受ける。磁気媒体1の磁気印刷部は磁気媒体1の面内方向に磁化され易いため、磁化レベルは搬送方向成分の磁界Hxに依存する。   2A to 2C, the relationship between the magnetic fields from the magnets 7 and 8 and the magnetization of the low coercive force printing unit 2 and the high coercive force printing unit 3 will be described in detail. FIG. 2A is a cross-sectional view illustrating a configuration example of the magnetic identification sensor according to the first embodiment of the invention. As shown in FIG. 2A, the magnets 7 and 8 generate Φp and Φm magnetic fluxes from the magnetic poles on the sliding surface 6 side, and the magnetic medium 1 passing on the sliding surface 6 receives the magnetic fluxes. . Since the magnetic printing portion of the magnetic medium 1 is easily magnetized in the in-plane direction of the magnetic medium 1, the magnetization level depends on the magnetic field Hx of the transport direction component.

図2(b)に、磁石7、8の摺動面6上での搬送方向の磁界Hxの分布を示した様子を示す。磁石7上を通過した磁気印刷部は、抜け側(搬送方向上流側)の大きなピークの磁界ピークHaにより磁化される。上述のように全ての磁気印刷部の磁化方向を揃えるため、磁石7の摺動面6上での磁界ピークHaは、高保磁力印刷部3の保磁力Hca以上に設定されている。   FIG. 2B shows the distribution of the magnetic field Hx in the transport direction on the sliding surface 6 of the magnets 7 and 8. The magnetic printing part that has passed over the magnet 7 is magnetized by a magnetic field peak Ha having a large peak on the exit side (upstream side in the transport direction). As described above, the magnetic field peak Ha on the sliding surface 6 of the magnet 7 is set to be equal to or greater than the coercive force Hca of the high coercive force printing unit 3 in order to align the magnetization directions of all the magnetic printing units.

図3に、飽和磁化を100%として低保磁力印刷部2と高保磁力印刷部3の磁化特性を示す。図3の磁化率Jで80%を目安とすると、磁石7の磁界ピークHaは高保磁力印刷部3の保磁力Hcaから20%程度は大きくすることが望ましい。高保磁力印刷部3の保磁力Hcaは、よく使われるもので2kOeであることが多く、磁石7の磁力は、最低2.2kOe以上が好ましく、より好ましくは2.4kOe程度から3kOeあたりの磁界強度を有するものが望ましい。   FIG. 3 shows the magnetization characteristics of the low coercive force printing unit 2 and the high coercive force printing unit 3 with a saturation magnetization of 100%. Assuming that 80% is the susceptibility J in FIG. 3, the magnetic field peak Ha of the magnet 7 is desirably about 20% larger than the coercive force Hca of the high coercive force printing unit 3. The coercive force Hca of the high coercive force printing unit 3 is often used and is often 2 kOe, and the magnetic force of the magnet 7 is preferably at least 2.2 kOe, more preferably about 2.4 kOe to 3 kOe. It is desirable to have

磁石7上を通過し、さらに磁石8上を通過した磁気印刷部は、図2(b)に示すように抜け側(搬送方向上流側)の磁界ピークHbにより磁気検出素子9で検知される磁化状態が確定する。上述したように、磁石8では低保磁力印刷部2のみを磁化反転させるため、磁石8の摺動面6上での磁界ピークHbは、低保磁力印刷部2の保磁力Hcb以上で高保磁力印刷部3の保磁力Hcaより小さい磁界強度を有するように磁力が調整されている。低保磁力印刷部2の保磁力Hcbは、既存紙幣における使用実績で0.8kOeあれば十分磁化できているので、磁石8の磁力は、概ね0.8kOe以上で2kOeより小さく設定するのが実用的と思われる。   The magnetic printing section that has passed over the magnet 7 and further passed over the magnet 8 has a magnetization detected by the magnetic detection element 9 by a magnetic field peak Hb on the exit side (upstream side in the transport direction) as shown in FIG. The state is confirmed. As described above, since the magnet 8 reverses the magnetization of only the low coercive force printing unit 2, the magnetic field peak Hb on the sliding surface 6 of the magnet 8 is higher than the coercive force Hcb of the low coercive force printing unit 2. The magnetic force is adjusted to have a magnetic field strength smaller than the coercive force Hca of the printing unit 3. The coercive force Hcb of the low coercive force printing unit 2 is sufficiently magnetized as long as 0.8 kOe is used in existing banknotes. Therefore, it is practical to set the magnetic force of the magnet 8 to be approximately 0.8 kOe or more and smaller than 2 kOe. It seems to be the target.

整理すると、本発明では、磁石7、8による摺動面6上での磁界強度と磁気媒体1の磁気印刷部の保磁力との関係は、磁界強度を絶対値表現での序列で示すと、以下の条件を満たす。   To summarize, in the present invention, the relationship between the magnetic field strength on the sliding surface 6 by the magnets 7 and 8 and the coercive force of the magnetic printing portion of the magnetic medium 1 is represented by the order of the magnetic field strength in absolute value expression: The following conditions are met.

|Ha|>|Hca|>|Hb|>|Hcb| (1)
高保磁力印刷部3の保磁力Hcaが2kOeあたりを前提とすれば、磁石7による摺動面6上の磁界ピークHaは2kOe以上に設定し、磁石8の摺動面6上の磁界ピークHbは0.8kOe以上で2kOeより小さくするのが好ましい。
| Ha |> | Hca |> | Hb |> | Hcb | (1)
Assuming that the coercive force Hca of the high coercive force printing unit 3 is about 2 kOe, the magnetic field peak Ha on the sliding surface 6 by the magnet 7 is set to 2 kOe or more, and the magnetic field peak Hb on the sliding surface 6 of the magnet 8 is It is preferably 0.8 kOe or more and less than 2 kOe.

尚、磁界ピークHa、Hbの調整は、磁石7、8の磁力の大きさ、磁極面の大きさ、摺動面6との距離、磁石間の距離等により可能である。   The magnetic field peaks Ha and Hb can be adjusted by the magnitude of the magnetic force of the magnets 7 and 8, the magnitude of the magnetic pole surface, the distance from the sliding surface 6, the distance between the magnets, and the like.

このような磁界強度を有する磁石7、8上を通過した低保磁力印刷部2および高保磁力印刷部3は、図2(a)に示すように、NS方向が相対的に逆になるよう磁化される。この低保磁力印刷部2および高保磁力印刷部3から出る磁束を、X方向の磁界成分HxもしくはX方向に直交するZ方向の磁界成分Hz(またはY方向の磁界成分Hy)として磁気検出素子9でとらえることになるが、その磁界強度の分布を図2(c)に示す。   As shown in FIG. 2A, the low coercive force printing unit 2 and the high coercive force printing unit 3 that have passed over the magnets 7 and 8 having such a magnetic field strength are magnetized so that the NS direction is relatively reversed. Is done. The magnetic detection element 9 uses the magnetic flux emitted from the low coercive force printing unit 2 and the high coercive force printing unit 3 as a magnetic field component Hx in the X direction or a magnetic field component Hz in the Z direction perpendicular to the X direction (or a magnetic field component Hy in the Y direction). The distribution of the magnetic field intensity is shown in FIG. 2 (c).

磁界成分Hxは、量的な波形として検知でき、磁気検出素子9の出力をDC増幅すれば検出感度を高めることができる。また、磁気検出素子9と磁気媒体1との距離が離れても減衰がなだらかであるため、摺動面6から1mm近くまで離しても検出可能である。一方、磁界成分Hzは、磁界成分Hxの微分的な波形となり、周波数の高い成分が多くなるため、磁気検出素子9は先端を摺動面6にできるだけ近づけた方が分解能を高くできる。磁気媒体1は、できるだけ摺動面6に接するように搬送するのが望ましいが、0.2〜0.3mm程度の浮きであれば問題ない。   The magnetic field component Hx can be detected as a quantitative waveform, and if the output of the magnetic detection element 9 is DC amplified, the detection sensitivity can be increased. Further, since the attenuation is gentle even if the distance between the magnetic detection element 9 and the magnetic medium 1 is increased, detection is possible even when the distance from the sliding surface 6 is close to 1 mm. On the other hand, the magnetic field component Hz becomes a differential waveform of the magnetic field component Hx, and a component having a high frequency increases. Therefore, the resolution of the magnetic detection element 9 can be improved by bringing the tip as close as possible to the sliding surface 6. The magnetic medium 1 is preferably conveyed so as to be in contact with the sliding surface 6 as much as possible, but there is no problem if it floats about 0.2 to 0.3 mm.

磁気検出素子9の一例としては図1(b)にフラックスゲート(FG)センサを示したが、磁気検出素子9は特定の素子に制約されるものではなく、磁気抵抗素子(SMR,AMR,GMR等)、磁気インピーダンス素子(MI)等でもよい。また、磁気検出素子9は、各種素子の特性に応じて、X方向またはZ方向(X方向に直交する方向)の磁界2成分のどちらかを検知可能なように配置すればよい。いずれの磁気検出素子を用いても、上記式(1)に示す条件を満たす2つの磁石を用いて磁化された磁気媒体1であれば、微分的な波形であれ、量的な波形であれ、極性の差異、すなわちNS方向の差異を反映した磁界分布を示す1つの磁気検出素子の出力波形から保磁力の高低の識別ができる。本発明で重要なのは、磁気媒体1の保磁力に応じた磁化のさせ方であって、磁気検出素子9の種類や検知方向に対する制約はない。   As an example of the magnetic detection element 9, a fluxgate (FG) sensor is shown in FIG. 1 (b). However, the magnetic detection element 9 is not limited to a specific element, and a magnetoresistive element (SMR, AMR, GMR). Or a magnetic impedance element (MI). Further, the magnetic detection element 9 may be arranged so as to detect either the X direction or the Z direction (direction perpendicular to the X direction) of the magnetic field according to the characteristics of the various elements. Whichever magnetic detection element is used, if the magnetic medium 1 is magnetized using two magnets satisfying the condition shown in the above formula (1), whether it is a differential waveform or a quantitative waveform, The level of coercive force can be identified from the output waveform of one magnetic detection element showing the magnetic field distribution reflecting the difference in polarity, that is, the difference in NS direction. What is important in the present invention is how to magnetize in accordance with the coercive force of the magnetic medium 1, and there are no restrictions on the type and detection direction of the magnetic detection element 9.

次に、下記構成の磁気識別センサを用いて実際に検出された波形を検証した結果について説明する。   Next, the result of verifying the waveform actually detected using the magnetic identification sensor having the following configuration will be described.

図5に、磁気媒体1として用意したテスト媒体の構成を示す。この磁気媒体1は、厚み0.1mmの矩形の紙に、ガンマヘマタイト(γ−Fe23)の磁性体を含んだ保磁力Hc=0.6kOeを有する低保磁力印刷部2と、メタル磁気記録材料の磁性体を含んだ保磁力Hc=2kOeを有する高保磁力印刷部3とが印刷され、それぞれの矩形状のパターンサイズは0.75×1.5mmとした。 FIG. 5 shows the configuration of a test medium prepared as the magnetic medium 1. The magnetic medium 1 includes a rectangular paper having a thickness of 0.1 mm, a low coercive force printing portion 2 having a coercive force Hc = 0.6 kOe containing a magnetic material of gamma hematite (γ-Fe 2 O 3 ), a metal A high coercive force printing portion 3 having a coercive force Hc = 2 kOe including a magnetic material of a magnetic recording material was printed, and each rectangular pattern size was set to 0.75 × 1.5 mm.

磁石7は残留磁束密度1.3TのNd−Fe−B系の磁石で、磁極サイズ10×0.8mmでNS間隔1.6mmとし、図2(b)で示した磁界ピークHaは2.8kOeとなった。磁石8は磁石7と同じ材質で、磁極サイズを半分の10×0.4mm、NS間隔は同じ1.6mmとして磁力を落とし、NS方向を逆にして下流側に設置した。磁界ピークHbは1.35kOeとなった。これら磁石7、8の磁極の幅を10mmと広く取っておけば、対象の磁気検知部が搬送ずれを起こしても、確実に媒体を磁化でき、安定した磁界が得られる。   The magnet 7 is an Nd—Fe—B magnet having a residual magnetic flux density of 1.3 T, the magnetic pole size is 10 × 0.8 mm, the NS interval is 1.6 mm, and the magnetic field peak Ha shown in FIG. 2B is 2.8 kOe. It became. The magnet 8 was made of the same material as the magnet 7, and the magnetic pole size was reduced to 10 × 0.4 mm, the NS interval was the same 1.6 mm, the magnetic force was reduced, and the NS direction was reversed and the magnet 8 was installed downstream. The magnetic field peak Hb was 1.35 kOe. If the widths of the magnetic poles of these magnets 7 and 8 are set as wide as 10 mm, the medium can be surely magnetized and a stable magnetic field can be obtained even if the target magnetic detection unit is displaced.

磁気検出素子9には、搬送方向(X方向)に直交する方向の磁界成分Hzを検知する検知幅1.6mmのフラックスゲートセンサを用い、磁界分布を微分的な波形でとらえる構成とした。   As the magnetic detection element 9, a flux gate sensor having a detection width of 1.6 mm for detecting a magnetic field component Hz in a direction orthogonal to the transport direction (X direction) is used, and the magnetic field distribution is captured with a differential waveform.

このような構成のセンサ本体4を図5に示す磁気媒体1に対し、矢印で示すラインに沿い、磁石7側から走査した。   The sensor body 4 having such a configuration was scanned from the magnet 7 side along the line indicated by the arrow with respect to the magnetic medium 1 shown in FIG.

図6(a)に、磁化手段として磁石7のみを用いた場合の磁気検出素子9からの出力波形を示し、図6(b)に、磁化手段として磁石7、8を用いた場合の磁気検出素子9からの出力波形を示す。磁石7のみで磁化した場合は、低保磁力印刷部2と高保磁力印刷部3とに対応する波形の立上りはどちらも下向きで、極性が揃っていることを示している(図6(a))。一方、磁化手段として磁石7に磁石8を追加すると、低保磁力印刷部2に対応する波形の立上りのみ上向きになり、低保磁力印刷部2の極性のみが反転していることを示している(図6(b))。このように本発明では、例えば偽造された紙幣において、高保磁力印刷部3があるべき位置に低保磁力の磁性体が使用されている場合は、1つの磁気検出素子9で検出した出力波形の位相から簡単に真贋判定を行うことができる。   FIG. 6A shows an output waveform from the magnetic detection element 9 when only the magnet 7 is used as the magnetization means, and FIG. 6B shows magnetic detection when the magnets 7 and 8 are used as the magnetization means. The output waveform from the element 9 is shown. When only the magnet 7 is magnetized, the rising edges of the waveforms corresponding to the low coercive force printing unit 2 and the high coercive force printing unit 3 are both downward, indicating that the polarities are aligned (FIG. 6A). ). On the other hand, when the magnet 8 is added to the magnet 7 as the magnetizing means, only the rising edge of the waveform corresponding to the low coercive force printing unit 2 is upward, and only the polarity of the low coercive force printing unit 2 is reversed. (FIG. 6B). As described above, in the present invention, for example, in a forged banknote, when a low coercive force magnetic material is used at a position where the high coercive force printing unit 3 should be, the output waveform detected by one magnetic detection element 9 is used. Authentication can be easily determined from the phase.

尚、本発明は、位相の反転の有無だけでなく、個々の波形の振幅電圧の大きさも同時に識別できるため、従来の振幅電圧パターンの識別機能を残しながら、容易に保磁力判別の機能を追加できる。   In addition, since the present invention can identify not only the presence / absence of phase inversion but also the amplitude voltage of each waveform at the same time, a function for easily determining the coercive force is added while retaining the conventional amplitude voltage pattern identification function. it can.

実施形態1では磁化手段として上述のように2つの磁石7、8を使用したが、磁化手段の変形例として、この磁石7、8を一体化し、図4に示すように着磁の治具を工夫してNS方向が逆の2対の磁極を持った多極の磁石12を用いることもできる。この場合、磁極面の比率Wa:Wbを調整することで、摺動面6上の磁界ピークHa、Hbを調整することができる。   In the first embodiment, the two magnets 7 and 8 are used as the magnetizing means as described above. However, as a modification of the magnetizing means, the magnets 7 and 8 are integrated and a magnetizing jig is used as shown in FIG. A multipolar magnet 12 having two pairs of magnetic poles whose NS directions are reversed can be used. In this case, the magnetic field peaks Ha and Hb on the sliding surface 6 can be adjusted by adjusting the ratio Wa: Wb of the magnetic pole surfaces.

また、図7に、搬送方向が両方向となる磁気識別センサの構成例を示す。磁気検出素子9を挟むように、両側に磁石7、8と磁石7′、8′とを配置するようにすればよい。尚、磁石の極性は、磁石7−磁石8間および磁石7′−磁石8′間で極性が互いに逆になっていればよく、突入側(外側)の磁石極性がN極に限定されるものではない。   FIG. 7 shows a configuration example of a magnetic identification sensor in which the transport direction is both directions. The magnets 7 and 8 and the magnets 7 'and 8' may be arranged on both sides so as to sandwich the magnetic detection element 9. The polarity of the magnet is only required to be reversed between the magnet 7 and the magnet 8 and between the magnet 7 'and the magnet 8', and the magnet polarity on the entry side (outside) is limited to the N pole. is not.

(実施形態2)
図8に、本発明の実施形態2に係る磁気識別センサの構成例を表す斜視外観図を示す。実施形態1では、2つの磁石7、8、または2対の磁極を有する多極の磁石12を用いて、それらのNS方向を摺動面6に対して垂直に配置したが、実施形態2では、1対の磁極を持った1つの磁石13のみを用い、そのNS方向を摺動面6に対して平行に配置する。磁石13は、磁極間に当たる部分で発生する強い磁界で磁気媒体1の磁化方向を揃え、抜け側(搬送方向下流側)の磁極付近で発生する磁界方向が磁極間に対して反転した弱い磁界で低保磁力印刷部2のみ磁化反転させるように調整されている。
(Embodiment 2)
FIG. 8 is a perspective external view showing a configuration example of a magnetic identification sensor according to Embodiment 2 of the present invention. In the first embodiment, two magnets 7 and 8 or a multipolar magnet 12 having two pairs of magnetic poles are used to arrange their NS directions perpendicular to the sliding surface 6. Only one magnet 13 having a pair of magnetic poles is used, and its NS direction is arranged parallel to the sliding surface 6. The magnet 13 is a weak magnetic field in which the magnetization direction of the magnetic medium 1 is aligned with a strong magnetic field generated in a portion between the magnetic poles, and the magnetic field direction generated in the vicinity of the magnetic pole on the exit side (downstream in the transport direction) is reversed with respect to the magnetic poles. Only the low coercive force printing unit 2 is adjusted to reverse the magnetization.

図9(a)に、本発明の実施形態2に係る磁気識別センサの構成例を表す断面図を示す。また図9(b)に、磁石13の摺動面6上での搬送方向の磁界Hxの分布を示した様子を示す。図9(a)、(b)に示すように、磁石13のNS極間でX方向の磁界成分Hxはその中央で最大となり、ここでの最大磁界強度により磁界ピークHaが決まる。また、抜け側の磁極、ここではS極近傍では、磁束Φpとは逆方向の磁束Φmが発生しており、S極面に直交する磁束Φmにより磁界ピークHbが決まる。この磁界ピークHa、Hbの数値の大きさと低保磁力印刷部2、高保磁力印刷部3の保磁力Hcb、Hcaとの関係は実施形態1の式(1)と同じである。   FIG. 9A is a cross-sectional view illustrating a configuration example of the magnetic identification sensor according to the second embodiment of the present invention. FIG. 9B shows the distribution of the magnetic field Hx in the transport direction on the sliding surface 6 of the magnet 13. As shown in FIGS. 9A and 9B, the magnetic field component Hx in the X direction between the NS poles of the magnet 13 becomes maximum at the center, and the magnetic field peak Ha is determined by the maximum magnetic field strength here. In addition, in the vicinity of the magnetic pole on the exit side, here the S pole, a magnetic flux Φm in the direction opposite to the magnetic flux Φp is generated, and the magnetic field peak Hb is determined by the magnetic flux Φm orthogonal to the S pole surface. The relationship between the magnitudes of the magnetic field peaks Ha and Hb and the coercive forces Hcb and Hca of the low coercive force printing unit 2 and the high coercive force printing unit 3 is the same as the equation (1) in the first embodiment.

磁界ピークHa、Hbは、磁石13のNS間隔Lや磁極の面積を調整すれば、磁界ピークHa、Hbそれぞれの大きさ、それらのバランスを調整することができる。また、図9(a)に示すように、磁石13のNS方向を摺動面6に平行な軸まわり(θ方向)に回転させ、磁石13の中央付近と磁極との距離を変えることや、摺動面6に垂直なZd方向に移動させることによっても、磁界ピークHa、Hbそれぞれの大きさ、それらのバランスを調整することが可能である。   The magnetic field peaks Ha and Hb can be adjusted by adjusting the NS interval L of the magnet 13 and the area of the magnetic poles, and the magnitude and balance of the magnetic field peaks Ha and Hb. Further, as shown in FIG. 9A, the NS direction of the magnet 13 is rotated around an axis parallel to the sliding surface 6 (θ direction) to change the distance between the center of the magnet 13 and the magnetic pole, It is also possible to adjust the magnitudes of the magnetic field peaks Ha and Hb and their balance by moving them in the Zd direction perpendicular to the sliding surface 6.

実施形態1、2では、単一の磁気識別センサの構成で説明しているが、磁石13および磁気検出素子9を搬送方向に対して直交するY方向に複数個並べる構成にも、当然のことながら対応できる。図10(a)に、磁石13および磁気検出素子9を搬送方向に対して直交するY方向に複数個並べた磁気識別センサの構成例を示す。センサ本体4、摺動部材5の幅は、識別する紙幣等の磁気媒体の幅に応じて設定すればよい。磁石13は、紙幣のどこに磁気情報があっても着磁できるように隙間なく並べることで検知漏れを無くすことが出来る。本発明の構成は、搬送方向に対して垂直方向に伸ばすことは容易であり、自由度が高い。   In the first and second embodiments, the configuration of a single magnetic identification sensor is described. However, it is a matter of course that a plurality of magnets 13 and magnetic detection elements 9 are arranged in the Y direction orthogonal to the transport direction. It can respond. FIG. 10A shows a configuration example of a magnetic identification sensor in which a plurality of magnets 13 and magnetic detection elements 9 are arranged in the Y direction orthogonal to the transport direction. What is necessary is just to set the width | variety of the sensor main body 4 and the sliding member 5 according to the width | variety of magnetic media, such as a banknote to identify. The magnets 13 can eliminate detection omissions by arranging them without gaps so that they can be magnetized wherever magnetic information is present. The configuration of the present invention is easy to extend in the direction perpendicular to the transport direction and has a high degree of freedom.

磁気検出素子9も磁石13と並行して置かれるが、検知単位としてのトラックは必要な単位に分割して、マルチチャンネルのセンサとして機能させる。磁気検出素子9からの出力信号は、摺動面6と反対側に用意された回路基板でシリアル出力に変換されて、制御ユニットに送信される。   The magnetic detection element 9 is also placed in parallel with the magnet 13, but the track as a detection unit is divided into necessary units to function as a multi-channel sensor. An output signal from the magnetic detection element 9 is converted into a serial output by a circuit board prepared on the side opposite to the sliding surface 6 and transmitted to the control unit.

磁気媒体としての紙幣は、図10(b)のように対向ローラー30で摺動面6上では浮かないようにして搬送され、磁石からの磁界による磁気媒体の磁化や磁化された磁気媒体からの磁界強度を安定して検出できるようにする。対向ローラー30以外には、ウレタン系のスポンジで隙間を規制するものや、ブラシのように少し圧を掛けて抑えるものでもよい。   The bill as a magnetic medium is conveyed so as not to float on the sliding surface 6 by the opposing roller 30 as shown in FIG. 10B, and the magnetic medium is magnetized by the magnetic field from the magnet or from the magnetized magnetic medium. To enable stable detection of magnetic field strength. In addition to the facing roller 30, a urethane sponge may be used to restrict the gap, or a brush may be used to suppress the gap by applying a little pressure.

図11に、紙葉類取引装置(紙幣取引装置)の概略図を示す。本発明の磁気識別センサは、このような紙葉類取引装置への組込が想定され、紙葉類取引装置の具体的な例としては銀行等金融機関やコンビニエンスストア等に設置される現金自動取引装置(ATM)がある。   In FIG. 11, the schematic of a paper sheet transaction apparatus (banknote transaction apparatus) is shown. The magnetic identification sensor of the present invention is assumed to be incorporated into such a paper sheet transaction apparatus, and a specific example of the paper sheet transaction apparatus is an automatic cash machine installed in a financial institution such as a bank or a convenience store. There is a transaction device (ATM).

紙葉類取引装置100は、顧客の操作を受け付けるタッチパネル部104が入力手段として装置表面に設置され、その近くの紙幣投入口103より振り込みの場合に紙幣を投入する。   In the paper sheet transaction apparatus 100, a touch panel unit 104 that receives a customer's operation is installed on the surface of the apparatus as an input unit, and a banknote is inserted from a banknote insertion slot 103 nearby.

紙幣投入口103から投入された紙幣は、搬送路105上をローラー106により搬送されていき、先ず鑑別部101で金種判別や真偽判別を行う。鑑別部101は、光学センサ31及び磁気識別センサ4等の複数のセンサを搭載したメカユニットとなっている。メカやセンサの制御及び信号の受け取りは制御ユニット102で行い、金種や真偽判定を経て搬送路105下流で振り分けをし、各金種がそれぞれの金種別収納庫108A〜108Dに入れられる。偽造券については、スイッチバックでもとに戻すか、リジェクト収納箱107に入れられる。   A bill inserted from the bill insertion slot 103 is transported on a transport path 105 by a roller 106, and first, the discrimination unit 101 performs denomination determination and authenticity determination. The discrimination unit 101 is a mechanical unit on which a plurality of sensors such as the optical sensor 31 and the magnetic identification sensor 4 are mounted. Control of the mechanism and sensor and reception of the signal are performed by the control unit 102, and after the denomination and authenticity determination, sorting is performed downstream of the conveyance path 105, and each denomination is put into the respective denomination storages 108A to 108D. The counterfeit ticket is returned to the original by switchback or is put into the reject storage box 107.

図12に、紙葉類取引装置の制御ユニットの構成例を示す。CPU201は、ROM202にある鑑別装置制御、金種判定制御、真偽判定制御、閾値設定等のプログラムを利用して、鑑別部101を制御する。各種センサのデータはRAM203に格納され、それぞれの閾値に照らし合わせて判定を行う。本発明の磁気識別センサから出力された出力波形も、真偽判定のプログラムに読み込まれ、金種毎に予め記録された高保磁力印刷部および低保磁力印刷部の位置情報に基づき、位相が反転する位置が記録された情報と対応するか否か判定を行うことになる。CPU201は、通信部204を介してホストコンピュータ300とデータの送受信が可能にされている。   FIG. 12 shows a configuration example of the control unit of the paper sheet transaction apparatus. The CPU 201 controls the discrimination unit 101 using programs such as discrimination device control, denomination determination control, authenticity determination control, and threshold setting in the ROM 202. Data of various sensors is stored in the RAM 203, and a determination is made in light of each threshold value. The output waveform output from the magnetic identification sensor of the present invention is also read into the authenticity determination program, and the phase is inverted based on the position information of the high coercive force printing unit and the low coercive force printing unit recorded in advance for each denomination. It is determined whether or not the corresponding position corresponds to the recorded information. The CPU 201 can exchange data with the host computer 300 via the communication unit 204.

従来の磁気媒体内の磁性体の種類の識別には、複雑な磁石構成や2つ以上の磁気検出素子を用いる必要から、1つのセンサにまとめることが困難で、省スペースやコスト上の課題が大きかった。   The identification of the type of magnetic material in a conventional magnetic medium requires the use of a complicated magnet configuration and two or more magnetic detection elements, making it difficult to combine them into a single sensor, resulting in space-saving and cost issues. It was big.

以上説明してきたように本発明は、高い保磁力の磁性体の検知に特化して、識別精度を上げるニーズに対しては、磁気印刷部の磁化方向が保磁力に応じて逆になるよう設計された磁界強度分布を発生させる磁化手段で磁気媒体を磁化することにより、1つの磁気検出素子で検出された磁気媒体の磁界強度分布から高保磁力印刷部を簡単で高精度に検出できる。本発明は、従来の磁気識別センサに対して、低コストで識別精度を向上させる機能を付与できる。   As described above, the present invention is specially designed to detect a magnetic material having a high coercive force, and is designed so that the magnetization direction of the magnetic printing part is reversed according to the coercive force for the need to increase the identification accuracy. By magnetizing the magnetic medium with the magnetizing means for generating the magnetic field intensity distribution, the high coercive force printing portion can be detected easily and with high accuracy from the magnetic field intensity distribution of the magnetic medium detected by one magnetic detection element. The present invention can provide a conventional magnetic identification sensor with a function of improving identification accuracy at low cost.

1 磁気媒体
2 低保磁力印刷部
3 高保磁力印刷部
4 センサ本体
5 摺動部材
6 摺動面
7、8、7′、8′、12、13 磁石
9 磁気検出素子
10、11 搬送路
30 対向ローラー
31 光学センサ
100 紙葉類取引装置
101 識別部
102 制御ユニット
103 紙幣投入口
104 タッチパネル部
105 搬送路
106 ローラー
107 リジェクト収納箱
108A〜108D 金種別収納箱
DESCRIPTION OF SYMBOLS 1 Magnetic medium 2 Low coercive force printing part 3 High coercive force printing part 4 Sensor main body 5 Sliding member 6 Sliding surface 7, 8, 7 ', 8', 12, 13 Magnet 9 Magnetic detection element 10, 11 Conveyance path 30 Opposite Roller 31 Optical sensor 100 Paper sheet transaction apparatus 101 Identification unit 102 Control unit 103 Banknote slot 104 Touch panel unit 105 Transport path 106 Roller 107 Reject storage box 108A-108D Money storage box

Claims (7)

搬送される媒体を磁化し、磁化された前記媒体の磁界強度分布を識別する磁気識別センサであって、
前記媒体の磁性体部を第1の方向に磁化する第1の磁界ピークを発生させ、前記第1の磁界ピークから前記媒体の搬送方向下流側に、前記第1の方向に磁化された前記磁性体部の一部のみを前記第1の方向と逆向きの第2の方向に磁化する第2の磁界ピークを発生させる媒体磁化手段と、
前記媒体磁化手段から前記媒体の搬送方向下流側に配置された、前記媒体が発生する磁界強度分布を検出する磁気検出素子と、
を備えたことを特徴とする磁気識別センサ。
A magnetic identification sensor that magnetizes a medium to be conveyed and identifies a magnetic field strength distribution of the magnetized medium,
A first magnetic field peak that magnetizes the magnetic body portion of the medium in a first direction is generated, and the magnetism magnetized in the first direction downstream from the first magnetic field peak in the transport direction of the medium. Medium magnetization means for generating a second magnetic field peak for magnetizing only a part of the body part in a second direction opposite to the first direction;
A magnetic detection element that is disposed downstream of the medium magnetization means in the conveyance direction of the medium and detects a magnetic field intensity distribution generated by the medium;
A magnetic identification sensor comprising:
前記磁性体部は、高保磁力部と低保磁力部とを含み、
前記第1の磁界ピークは、前記高保磁力部の保磁力以上の磁界強度であり、
前記第2の磁界ピークは、前記低保磁力部の保磁力以上で、前記高保磁力部の保磁力よりも小さい磁界強度であることを特徴とする請求項1に記載の磁気識別センサ。
The magnetic body portion includes a high coercive force portion and a low coercive force portion,
The first magnetic field peak is a magnetic field strength equal to or higher than the coercive force of the high coercive force portion,
2. The magnetic identification sensor according to claim 1, wherein the second magnetic field peak has a magnetic field strength that is equal to or greater than a coercive force of the low coercive force portion and smaller than a coercive force of the high coercive force portion.
前記媒体磁化手段は、第1および第2の磁石を含み、
前記第1の磁石は、NS方向が前記媒体の搬送方向に対して垂直になるよう配置され、
前記第2の磁石は、NS方向が前記第1のNS方向と逆向きとなるよう配置されたことを特徴とする請求項1又は2に記載の磁気識別センサ。
The medium magnetization means includes first and second magnets,
The first magnet is arranged so that an NS direction is perpendicular to a conveyance direction of the medium,
3. The magnetic identification sensor according to claim 1, wherein the second magnet is arranged such that an NS direction is opposite to the first NS direction. 4.
前記第1の磁石の磁界強度は2kOe以上で、前記第2の磁石の磁界強度は0.8kOe以上で2kOeより小さくしたことを特徴とする請求項1乃至3のいずれか1項に記載の磁気識別センサ。   The magnetic field strength according to any one of claims 1 to 3, wherein the magnetic field strength of the first magnet is 2 kOe or more, and the magnetic field strength of the second magnet is 0.8 kOe or more and less than 2 kOe. Identification sensor. 前記媒体磁化手段は、NS方向が逆向きの2対の磁極を有する多極の磁石を含むことを特徴とする請求項1又は2に記載の磁気識別センサ。   The magnetic identification sensor according to claim 1, wherein the medium magnetization unit includes a multipolar magnet having two pairs of magnetic poles whose NS directions are opposite to each other. 前記媒体磁化手段は、1対の磁極を有する磁石を含み、
前記磁石は、NS方向が前記媒体の搬送方向に平行になるよう配置されたことを特徴とする請求項1又は2に記載の磁気識別センサ。
The medium magnetization means includes a magnet having a pair of magnetic poles,
The magnetic identification sensor according to claim 1, wherein the magnet is arranged so that an NS direction is parallel to a conveyance direction of the medium.
請求項1乃至6のいずれか1項に記載された磁気識別センサと、
前記磁気識別センサで検出された前記媒体が発生する磁界強度分布に基づき、前記磁性体部の磁化方向を識別し、前記磁化方向に応じて前記磁性体部の保磁力を識別する識別部と、
を備えたことを特徴とする磁気識別装置。
A magnetic identification sensor according to any one of claims 1 to 6,
An identification unit that identifies a magnetization direction of the magnetic body unit based on a magnetic field intensity distribution generated by the medium detected by the magnetic identification sensor, and identifies a coercive force of the magnetic body unit according to the magnetization direction;
A magnetic identification device comprising:
JP2018068714A 2018-03-30 2018-03-30 Magnetic identification sensor and magnetic identification device Pending JP2019179435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018068714A JP2019179435A (en) 2018-03-30 2018-03-30 Magnetic identification sensor and magnetic identification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018068714A JP2019179435A (en) 2018-03-30 2018-03-30 Magnetic identification sensor and magnetic identification device

Publications (1)

Publication Number Publication Date
JP2019179435A true JP2019179435A (en) 2019-10-17

Family

ID=68278663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018068714A Pending JP2019179435A (en) 2018-03-30 2018-03-30 Magnetic identification sensor and magnetic identification device

Country Status (1)

Country Link
JP (1) JP2019179435A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2687344B2 (en) * 1987-03-31 1997-12-08 トツパン・ム−ア株式会社 Magnetic medium and its confirmation method
JP2008517360A (en) * 2004-10-14 2008-05-22 ギーゼッケ ウント デフリエント ゲーエムベーハー Security element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2687344B2 (en) * 1987-03-31 1997-12-08 トツパン・ム−ア株式会社 Magnetic medium and its confirmation method
JP2008517360A (en) * 2004-10-14 2008-05-22 ギーゼッケ ウント デフリエント ゲーエムベーハー Security element

Similar Documents

Publication Publication Date Title
US8581578B2 (en) Magnetic pattern detection device
US8910869B2 (en) Method and apparatus for checking value documents
US8387879B2 (en) Magnetic sensor for checking value document
JPH07168903A (en) Magnetic head device and measuring method of magnetic hysteresis characteristic
US20090152356A1 (en) Non-contact magnetic pattern recognition sensor
JPWO2014168180A1 (en) Magnetic quality discrimination device and magnetic quality discrimination method
US20150212167A1 (en) Magnetic sensor
US10001533B2 (en) Magnetic property determination apparatus and magnetic property determination method
JP3283931B2 (en) Magnetic quality detector
JP2006293575A (en) Apparatus and method for identifying paper sheet
JPS63317891A (en) Bond inspector
US10222431B2 (en) Measuring device with pre-magnetizing magnet
JP3028380B2 (en) Magnetic quality detection method and magnetic quality detection device using the same
JP2019179435A (en) Magnetic identification sensor and magnetic identification device
JP2006293574A (en) Paper sheet discrimination device and magnetic characteristic detection device
JP3283930B2 (en) Magnetic material detection method
JP3799448B2 (en) Printed matter, authenticity determination method thereof, and authenticity determination device
CN113302693B (en) Magnetic identification sensor
JP2004199460A (en) Printed matter, authenticity determining method thereof, and authenticity determining device thereof
JP2022189283A (en) Magnetic identification sensor and magnetic identification device
JP7461200B2 (en) Paper sheet identification device, paper sheet processing device, and paper sheet identification method
CN112329902B (en) Magnetic anti-counterfeiting element and magnetic anti-counterfeiting product
US20060110023A1 (en) Document validation device
WO2015003415A1 (en) Magnetic sensor, method for quantitatively identifying magnetic hysteresis loop characteristics of magnetic code, automatic teller machine and currency detector
JP5445213B2 (en) Magnetic recording medium and magnetic recording method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220621