JP2014190102A - Hybrid beam - Google Patents

Hybrid beam Download PDF

Info

Publication number
JP2014190102A
JP2014190102A JP2013067940A JP2013067940A JP2014190102A JP 2014190102 A JP2014190102 A JP 2014190102A JP 2013067940 A JP2013067940 A JP 2013067940A JP 2013067940 A JP2013067940 A JP 2013067940A JP 2014190102 A JP2014190102 A JP 2014190102A
Authority
JP
Japan
Prior art keywords
reinforced concrete
steel
hybrid
steel frame
beam part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013067940A
Other languages
Japanese (ja)
Inventor
Singh Ravi
ラヴィ シング
Masashi Matsudo
正士 松戸
Hitoshi Sasaki
仁 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Corp
Original Assignee
Fujita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Corp filed Critical Fujita Corp
Priority to JP2013067940A priority Critical patent/JP2014190102A/en
Publication of JP2014190102A publication Critical patent/JP2014190102A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Joining Of Building Structures In Genera (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hybrid beam that is advantageous in suppressing shear cracking of a reinforced concrete beam part and damaging of a header part of the reinforced concrete beam part when a giant earthquake occurs.SOLUTION: A hybrid beam 10 is laid between mutually opposed reinforced concrete columns 12. The hybrid beam 10 includes a steel-frame beam part 20 as a center part of a steel frame 16 laid between the reinforced concrete columns 12, and also includes a reinforced concrete beam part 22, formed by covering the steel frame 16 with reinforced concrete, at both end parts of the steel frame beam part 20. In the reinforced concrete beam part 22, a plurality of lateral reinforcement bars 26 such as rib bars are embedded at intervals in the lengthwise direction of the steel frame 16. In both lengthwise end parts of the reinforced concrete beam part 22, an integrated reinforcement bar part 28 having the lateral reinforcement bars 26 closely arranged is embedded. Fiber-reinforced concrete is used as concrete C which constitutes the reinforced concrete beam part 22.

Description

本発明は、端部が鉄筋コンクリート造で中央が鉄骨造のハイブリッド梁(複合梁)に関する。   The present invention relates to a hybrid beam (composite beam) having a reinforced concrete structure at the end and a steel structure at the center.

近年高層の建物の梁躯体として、鉄筋コンクリート(RC)と鉄骨(S)造とで構成された複合構造のハイブリッド梁(複合梁)が採用されてきている。
ハイブリッド梁は、両端部をRCで覆った鉄骨が、RC造等の柱間に架け渡されて接合されたものであり、S造である中央部が鉄骨梁部、鉄骨がRCで覆われた両端部が鉄筋コンクリート梁部となっている。
ハイブリッド梁は、中央部がS造であることから梁自重が軽減され、梁のロングスパン化を可能とした建物が得られる新しい構法として注目されている。
In recent years, hybrid beams (composite beams) having a composite structure composed of reinforced concrete (RC) and steel (S) structures have been adopted as beam frames for high-rise buildings.
The hybrid beam is a steel frame with both ends covered with RC, spanned between columns such as RC structure, and the center part of S structure is the steel beam part and the steel frame is covered with RC. Both ends are reinforced concrete beams.
The hybrid beam is attracting attention as a new construction method that can reduce the weight of the beam because the center part is S-structured, and that allows the building to be made long span.

一方、ハイブリッド梁において、鉄筋コンクリート梁部は短いため、ハイブリッド梁先端に作用する荷重から鉄筋コンクリート梁部には大きなせん断力が伝達される。
通常、RC造の梁では、せん断力はコンクリート強度と横補強筋量に影響され、決定される。
そこで、従来、ハイブリッド梁の鉄筋コンクリート梁部に伝達されるせん断力を保持するため、鉄筋コンクリート梁部には、普通コンクリート(高強度コンクリートを含む)と、多い量の横補強筋が用いられている。
On the other hand, since the reinforced concrete beam portion is short in the hybrid beam, a large shearing force is transmitted to the reinforced concrete beam portion from the load acting on the tip of the hybrid beam.
Usually, in RC beams, the shear force is determined by the concrete strength and the amount of lateral reinforcement.
Therefore, conventionally, in order to maintain the shearing force transmitted to the reinforced concrete beam portion of the hybrid beam, ordinary concrete (including high-strength concrete) and a large amount of lateral reinforcing bars are used for the reinforced concrete beam portion.

特開2011−196147JP2011-196147

しかしながら、このような従来技術でも、大地震時に、鉄筋コンクリート梁部のせん断ひび割れや、梁主筋の先端に取り付けた定着金物の押し出しによる鉄筋コンクリート梁部の小口部分の損傷が目立つのが現状である。
特に、鉄筋コンクリート梁部の塑性変形角2%以上を確保するには、せん断補強係数3%以上必要である。
本発明は前記事情に鑑み案出されたものであって、大地震時に、鉄筋コンクリート梁部のせん断ひび割れや、鉄筋コンクリート梁部の小口部分の損傷を抑制する上で有利なハイブリッド梁を提供することにある。
However, even in such a conventional technology, at the time of a large earthquake, the current situation is that the crack of the reinforced concrete beam part due to the shear crack of the reinforced concrete beam part or the extrusion of the fixing metal attached to the tip of the beam main bar is conspicuous.
In particular, in order to secure a plastic deformation angle of 2% or more of the reinforced concrete beam portion, a shear reinforcement coefficient of 3% or more is necessary.
The present invention has been devised in view of the above circumstances, and is to provide a hybrid beam advantageous in suppressing shear cracks in a reinforced concrete beam portion and damage to a small portion of the reinforced concrete beam portion at the time of a large earthquake. is there.

上述した目的を達成するために、本発明は、対向する鉄筋コンクリート柱間に架け渡される鉄骨の中央部が鉄骨梁部とされ、前記鉄骨梁部の両端部が、前記鉄骨が鉄筋コンクリートで覆われた鉄筋コンクリート梁部とされたハイブリッド梁であって、前記鉄筋コンクリート梁部の前記柱側の端部と前記鉄骨梁側の端部に、横補強筋を密に配した集中補強筋部が埋設され、前記鉄筋コンクリート梁部を構成するコンクリートは、繊維補強コンクリートであることを特徴とする。   In order to achieve the above-described object, the present invention is such that the central part of a steel frame spanned between opposing reinforced concrete columns is a steel beam part, and both ends of the steel beam part are covered with reinforced concrete. It is a hybrid beam that is a reinforced concrete beam portion, and a concentrated reinforcing bar portion in which lateral reinforcing bars are densely arranged is embedded in an end portion on the column side and an end portion on the steel beam side of the reinforced concrete beam portion, The concrete constituting the reinforced concrete beam portion is a fiber reinforced concrete.

本発明のハイブリッド梁によれば、鉄筋コンクリート梁部を構成するコンクリートに繊維補強コンクリートを用いることで、大地震時に生じる鉄筋コンクリート梁部のせん断ひび割れの度合いを改善でき、また、定着金物の押し出しによる鉄筋コンクリート梁部の小口部分の損傷を抑制する上で有利となる。
また、せん断補強係数を3%以上にでき、鉄筋コンクリート梁部の塑性変形角2%以上を確保する上で有利となる。
したがって、ハイブリッド梁の鉄筋コンクリート梁部の靱性を向上することが可能となる。
また、鉄筋コンクリート梁部に設ける横補強筋の量を低減でき、施工を簡略化する上で有利となる。
According to the hybrid beam of the present invention, by using fiber reinforced concrete for the concrete constituting the reinforced concrete beam portion, the degree of shear cracking of the reinforced concrete beam portion caused by a large earthquake can be improved, and the reinforced concrete beam by the extrusion of the fixing hardware This is advantageous in suppressing damage to the fore edge portion of the portion.
Further, the shear reinforcement coefficient can be 3% or more, which is advantageous in securing a plastic deformation angle of 2% or more of the reinforced concrete beam portion.
Therefore, the toughness of the reinforced concrete beam portion of the hybrid beam can be improved.
In addition, the amount of lateral reinforcing bars provided in the reinforced concrete beam portion can be reduced, which is advantageous in simplifying the construction.

本実施の形態のハイブリッド梁の概略図である。It is the schematic of the hybrid beam of this Embodiment. 本実施の形態のハイブリッド梁の鉄筋コンクリート梁部の概略図である。It is the schematic of the reinforced concrete beam part of the hybrid beam of this Embodiment. 本実施の形態のハイブリッド梁の鉄筋コンクリート梁部の詳細を示す斜視図である。It is a perspective view which shows the detail of the reinforced concrete beam part of the hybrid beam of this Embodiment. (A)は本実施の形態のハイブリッド梁の鉄骨梁部に荷重Pが作用した説明図、(B)は荷重Pにより鉄骨梁部と鉄筋コンクリート梁部に生じる曲げモーメント図、(C)は荷重Pにより鉄骨梁部と鉄筋コンクリート梁部に生じるせん断力図である。(A) is an explanatory diagram in which a load P acts on the steel beam portion of the hybrid beam of the present embodiment, (B) is a bending moment diagram generated in the steel beam portion and the reinforced concrete beam portion by the load P, (C) is a load P It is a shear-force figure which arises in a steel frame beam part and a reinforced concrete beam part by.

以下、本発明の実施の形態を図示例と共に説明する。
図1に示すように、ハイブリッド梁10は、互いに対向する鉄筋コンクリート柱12間に架け渡されるものである。
鉄筋コンクリート柱12は、プレキャスト部材であってもよく、現場打ちコンクリートにより形成されていてもよい。図3において、符号1202は、鉄筋コンクリート柱12に配筋される柱主筋、符号1204は帯筋を示している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the hybrid beam 10 is bridged between reinforced concrete columns 12 facing each other.
The reinforced concrete column 12 may be a precast member or may be formed of cast-in-place concrete. In FIG. 3, reference numeral 1202 indicates a column main reinforcing bar arranged in the reinforced concrete column 12, and reference numeral 1204 indicates a band reinforcing bar.

ハイブリッド梁10は、鉄筋コンクリート柱12間に架け渡される鉄骨16の中央部が鉄骨梁部20とされ、鉄骨梁部20の両端部が、鉄骨16が鉄筋コンクリートで覆われた鉄筋コンクリート梁部22とされている。
鉄骨16には、I鋼やH鋼等、従来公知の型鋼が用いられ、鉄骨16は、図1〜図3に示すように、鉄筋コンクリート柱12の側面まで延在しており、柱梁接合部に貫通していない。
鉄骨梁部20の上面には、頭付きスタッド2022が複数立設され、床スラブ24との結合強度が高められている。
In the hybrid beam 10, the central portion of the steel frame 16 spanned between the reinforced concrete columns 12 is a steel beam portion 20, and both ends of the steel beam portion 20 are reinforced concrete beam portions 22 in which the steel frame 16 is covered with reinforced concrete. Yes.
As the steel frame 16, a conventionally known mold steel such as I steel or H steel is used, and the steel frame 16 extends to the side surface of the reinforced concrete column 12 as shown in FIGS. Not penetrated.
A plurality of headed studs 2022 are erected on the upper surface of the steel beam portion 20 to enhance the bonding strength with the floor slab 24.

鉄筋コンクリート梁部22には、あばら筋等の横補強筋26が鉄骨16の長手方向に間隔をおいて複数埋設されている。
また、鉄筋コンクリート梁部22の長手方向の両端部には、横補強筋26を密に配した集中補強筋部28が埋設され、鉄骨梁部20から鉄筋コンクリート梁部22への応力の伝達が効果的になされるように図られている。
また、鉄筋コンクリート梁部22の上下部には、横補強筋26、集中補強筋部28の内側に沿って鉄骨16と平行に延在する複数の梁主筋30が設けられ、梁主筋30の端部には定着金物32が取着されている。
この複数の梁主筋30は、鉄筋コンクリート柱12へのハイブリッド梁10の接合用のものであり、鉄筋コンクリート梁部22の端面から突出し、鉄筋コンクリート柱12に埋設される。
A plurality of lateral reinforcing bars 26 such as ribs are embedded in the reinforced concrete beam portion 22 at intervals in the longitudinal direction of the steel frame 16.
Further, concentrated reinforcing bars 28 in which lateral reinforcing bars 26 are densely arranged are embedded at both ends in the longitudinal direction of the reinforced concrete beam part 22, and it is effective to transmit stress from the steel beam part 20 to the reinforced concrete beam part 22. It is planned to be made.
A plurality of beam main bars 30 extending in parallel with the steel frame 16 along the inner sides of the lateral reinforcing bars 26 and the concentrated reinforcing bar sections 28 are provided at the upper and lower portions of the reinforced concrete beam section 22. A fixing hardware 32 is attached to the front.
The plurality of beam main bars 30 are for joining the hybrid beam 10 to the reinforced concrete column 12, protrude from the end surface of the reinforced concrete beam portion 22, and are embedded in the reinforced concrete column 12.

鉄筋コンクリート梁部22はプレキャスト部材、あるいは、鉄筋コンクリート梁部22を構成するコンクリートCは、現場打ちコンクリートにより形成されている。
そして、コンクリートCには、繊維補強コンクリートが用いられている。
繊維補強コンクリートは、普通コンクリート(高強度コンクリートを含む)に比べて粘り強く、鉄筋コンクリート梁部22の靱性を高める上で有利となる。
繊維補強コンクリートとして、コンクリートにアラミド繊維が混入されたものなどが使用可能である。
The reinforced concrete beam portion 22 is a precast member, or the concrete C constituting the reinforced concrete beam portion 22 is formed of cast-in-place concrete.
For the concrete C, fiber reinforced concrete is used.
The fiber reinforced concrete is more tenacious than ordinary concrete (including high-strength concrete) and is advantageous in increasing the toughness of the reinforced concrete beam portion 22.
As fiber reinforced concrete, concrete in which aramid fibers are mixed can be used.

図4(A)に示すように、鉄筋コンクリート梁部22の長手方向の両端部に集中補強筋部28が埋設されハイブリッド梁10の鉄骨梁部20に荷重Pが作用した場合、生じる曲げモーメントとせん断力は次の通りである。
図4(B)に示すように、鉄骨梁部20では、鉄骨16に作用する曲げモーメントM1は、鉄筋コンクリート梁部22に近づくにつれて(詳細には、鉄骨梁部20側の集中補強筋部28に近づくにつれて)大きくなる。また、鉄筋コンクリート梁部22では、鉄骨16に作用する曲げモーメントM2は、鉄筋コンクリート柱12に近づくにつれて小さくなり、コンクリートCに作用する曲げモーメントM3は、鉄筋コンクリート柱12に近づくにつれて大きくなる。
図4(C)に示すように、鉄骨梁部20では、鉄骨16に作用するせん断力F1は一定である。また、鉄筋コンクリート梁部22でも、鉄骨16に作用するせん断力F2とコンクリートCに作用するせん断力F3(詳細には、鉄骨梁部20側の集中補強筋部28から鉄筋コンクリート柱12までのコンクリートCに作用するせん断力)は一定であり、コンクリートCに作用するせん断力F3は、鉄骨16に作用するせん断力F2よりも大きい。
したがって、コンクリートCに繊維補強コンクリートを用いると、コンクリートCに作用する曲げモーメントM3、コンクリートCに作用するせん断力F3に対して鉄筋コンクリート梁部22が粘り強くなる。
As shown in FIG. 4 (A), when the concentrated reinforcing bars 28 are embedded at both ends in the longitudinal direction of the reinforced concrete beam portion 22 and a load P acts on the steel beam portion 20 of the hybrid beam 10, bending moment and shear are generated. The forces are as follows.
As shown in FIG. 4 (B), in the steel beam portion 20, the bending moment M1 acting on the steel frame 16 approaches the reinforced concrete beam portion 22 (specifically, on the concentrated reinforcing bar portion 28 on the steel beam portion 20 side). It gets bigger as you get closer. Further, in the reinforced concrete beam portion 22, the bending moment M <b> 2 acting on the steel frame 16 decreases as it approaches the reinforced concrete column 12, and the bending moment M <b> 3 acting on the concrete C increases as it approaches the reinforced concrete column 12.
As shown in FIG. 4C, in the steel beam portion 20, the shear force F1 acting on the steel frame 16 is constant. Further, also in the reinforced concrete beam portion 22, the shear force F2 acting on the steel frame 16 and the shear force F3 acting on the concrete C (specifically, on the concrete C from the concentrated reinforcing bar portion 28 on the steel beam portion 20 side to the reinforced concrete column 12). The shearing force F3 acting on the concrete C is larger than the shearing force F2 acting on the steel frame 16.
Therefore, when fiber reinforced concrete is used for the concrete C, the reinforced concrete beam portion 22 becomes tenacious against the bending moment M3 acting on the concrete C and the shearing force F3 acting on the concrete C.

したがって、本実施の形態のハイブリッド梁10によれば、鉄筋コンクリート梁部22を構成するコンクリートCに繊維補強コンクリートを用いることで、大地震時に生じる鉄筋コンクリート梁部22のせん断ひび割れの度合いを改善でき、また、定着金物30の押し出しによる鉄筋コンクリート梁部22の小口部分の損傷を抑制する上で有利となる。
また、鉄筋コンクリート梁部22の塑性変形角2%以上を確保する上で有利となる。
したがって、ハイブリッド梁10の鉄筋コンクリート梁部22の靱性を向上することが可能となる。
また、鉄筋コンクリート梁部22に設ける横補強筋26の量を低減でき、施工を簡略化する上で有利となる。
Therefore, according to the hybrid beam 10 of the present embodiment, by using fiber reinforced concrete for the concrete C constituting the reinforced concrete beam portion 22, the degree of shear cracking of the reinforced concrete beam portion 22 that occurs during a large earthquake can be improved. This is advantageous in suppressing damage to the small edge portion of the reinforced concrete beam portion 22 due to the extrusion of the fixing hardware 30.
Further, it is advantageous in securing a plastic deformation angle of 2% or more of the reinforced concrete beam portion 22.
Therefore, the toughness of the reinforced concrete beam portion 22 of the hybrid beam 10 can be improved.
Further, it is possible to reduce the amount of the horizontal reinforcing bars 26 provided in the reinforced concrete beam portion 22, which is advantageous in simplifying the construction.

10……ハイブリッド、12……鉄筋コンクリート柱、16……鉄骨、20……鉄骨梁部、22……鉄筋コンクリート梁部、24……床スラブ、26……横補強筋、28……集中補強筋部、30……定着金物、C……コンクリート。   10 ... Hybrid, 12 ... Reinforced concrete column, 16 ... Steel, 20 ... Steel beam, 22 ... Reinforced concrete beam, 24 ... Floor slab, 26 ... Horizontal reinforcement, 28 ... Concentrated reinforcement , 30 ... Fixing hardware, C ... Concrete.

Claims (2)

対向する鉄筋コンクリート柱間に架け渡される鉄骨の中央部が鉄骨梁部とされ、前記鉄骨梁部の両端部が、前記鉄骨が鉄筋コンクリートで覆われた鉄筋コンクリート梁部とされたハイブリッド梁であって、
前記鉄筋コンクリート梁部の前記柱側の端部と前記鉄骨梁側の端部に、横補強筋を密に配した集中補強筋部が埋設され、
前記鉄筋コンクリート梁部を構成するコンクリートは、繊維補強コンクリートである、
ことを特徴とするハイブリッド梁。
The center part of the steel frame spanned between the reinforced concrete columns facing each other is a steel beam part, and both ends of the steel beam part are reinforced concrete beam parts in which the steel frame is covered with reinforced concrete,
Concentrated reinforcing bar portions in which lateral reinforcing bars are densely arranged are embedded in the column side end and the steel beam side end of the reinforced concrete beam part,
The concrete constituting the reinforced concrete beam portion is fiber reinforced concrete,
A hybrid beam characterized by that.
前記繊維補強コンクリートを構成する繊維は、アラミド繊維である、
ことを特徴とする請求項1記載のハイブリッド梁。
The fiber constituting the fiber reinforced concrete is an aramid fiber,
The hybrid beam according to claim 1.
JP2013067940A 2013-03-28 2013-03-28 Hybrid beam Pending JP2014190102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013067940A JP2014190102A (en) 2013-03-28 2013-03-28 Hybrid beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013067940A JP2014190102A (en) 2013-03-28 2013-03-28 Hybrid beam

Publications (1)

Publication Number Publication Date
JP2014190102A true JP2014190102A (en) 2014-10-06

Family

ID=51836637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013067940A Pending JP2014190102A (en) 2013-03-28 2013-03-28 Hybrid beam

Country Status (1)

Country Link
JP (1) JP2014190102A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104790521A (en) * 2015-05-02 2015-07-22 许耿群 Novel steel-concrete combined beam
JP2020165144A (en) * 2019-03-29 2020-10-08 株式会社フジタ Beam structure, support member for beam main reinforcement, and reinforcement method for beam main reinforcement

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01268947A (en) * 1988-04-21 1989-10-26 Taisei Corp Beam with reinforced concrete end and steel central structure
JP2001115418A (en) * 1999-10-20 2001-04-24 Ohbayashi Corp Structure of hollow concrete column
JP2001173155A (en) * 1999-12-14 2001-06-26 Asanuma Corp Rc steel beam at the end portion
JP2003336349A (en) * 2002-05-23 2003-11-28 Hiroshi Kuramoto Composite structural member of reinforced concrete
JP2005030195A (en) * 2003-06-17 2005-02-03 Shimizu Corp Structure and its construction method
JP2009215748A (en) * 2008-03-10 2009-09-24 Penta Ocean Construction Co Ltd Composite structure beam, and building structure having composite structure beam
US20100031605A1 (en) * 2007-04-26 2010-02-11 Won-Kee Hong Composite concrete column and construction method using the same
US20100071315A1 (en) * 2008-09-22 2010-03-25 Composite Frame, Inc. Composite concrete column and construction method using the same
JP2012087518A (en) * 2010-10-19 2012-05-10 Shimizu Corp Mixed structure beam
JP2012162865A (en) * 2011-02-03 2012-08-30 Takenaka Komuten Co Ltd Junction structure of steel frame member
JP2013136878A (en) * 2011-12-28 2013-07-11 Tokyu Construction Co Ltd Composite structure and construction

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01268947A (en) * 1988-04-21 1989-10-26 Taisei Corp Beam with reinforced concrete end and steel central structure
JP2001115418A (en) * 1999-10-20 2001-04-24 Ohbayashi Corp Structure of hollow concrete column
JP2001173155A (en) * 1999-12-14 2001-06-26 Asanuma Corp Rc steel beam at the end portion
JP2003336349A (en) * 2002-05-23 2003-11-28 Hiroshi Kuramoto Composite structural member of reinforced concrete
JP2005030195A (en) * 2003-06-17 2005-02-03 Shimizu Corp Structure and its construction method
US20100031605A1 (en) * 2007-04-26 2010-02-11 Won-Kee Hong Composite concrete column and construction method using the same
JP2009215748A (en) * 2008-03-10 2009-09-24 Penta Ocean Construction Co Ltd Composite structure beam, and building structure having composite structure beam
US20100071315A1 (en) * 2008-09-22 2010-03-25 Composite Frame, Inc. Composite concrete column and construction method using the same
JP2012087518A (en) * 2010-10-19 2012-05-10 Shimizu Corp Mixed structure beam
JP2012162865A (en) * 2011-02-03 2012-08-30 Takenaka Komuten Co Ltd Junction structure of steel frame member
JP2013136878A (en) * 2011-12-28 2013-07-11 Tokyu Construction Co Ltd Composite structure and construction

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104790521A (en) * 2015-05-02 2015-07-22 许耿群 Novel steel-concrete combined beam
JP2020165144A (en) * 2019-03-29 2020-10-08 株式会社フジタ Beam structure, support member for beam main reinforcement, and reinforcement method for beam main reinforcement

Similar Documents

Publication Publication Date Title
JP2020200759A5 (en)
JP2017133277A (en) Column beam joining structure and column beam joining method
KR20120084394A (en) Steel composite beam
KR101577327B1 (en) Hybrid composite girder
KR101396440B1 (en) Hybrid beam with reinforced end portions
JP6479352B2 (en) Hybrid beam
JP2014190102A (en) Hybrid beam
KR100939970B1 (en) A method of constructing a complex girder and its structure
KR20130090664A (en) Method for reinforcing hollow core slab and hollow core slab thereof
KR101458435B1 (en) Half precast concrete column manufacturing method using saddle-type ties and dual hoops and constructing method using the same
JP6121772B2 (en) Hybrid beam
JP6646206B2 (en) Joint structure of RC members
JP5049328B2 (en) Seismic reinforcement structure
JP5144182B2 (en) Seismic reinforcement structure and seismic reinforcement method for existing buildings
KR101579269B1 (en) Attachable Reinforcing Member and Reinforcing Structure Using the Same
JP6428027B2 (en) Column rebar connection panel and rebar structure
JP2008169672A (en) Construction method of concrete beam, concrete beam, joining method of pc beam member and joining structure of pc beam member
JP6182387B2 (en) Building structure with frame consisting of small RC pillars
JP2019173548A (en) Corner part structure of reinforcement bar concrete structure
KR101724122B1 (en) Prestressed concrete girder having reinforcing member and the construction method thereof
JP6638906B2 (en) Beam-column connection structure and beam-column connection method
JP6968047B2 (en) Seismic retrofitting
JP6312130B2 (en) Column beam structure and beam end members
JP6352092B2 (en) Junction structure
CN204112582U (en) Combination multi-ribbed plate and assembling slab column system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180109