JP6182387B2 - Building structure with frame consisting of small RC pillars - Google Patents

Building structure with frame consisting of small RC pillars Download PDF

Info

Publication number
JP6182387B2
JP6182387B2 JP2013163843A JP2013163843A JP6182387B2 JP 6182387 B2 JP6182387 B2 JP 6182387B2 JP 2013163843 A JP2013163843 A JP 2013163843A JP 2013163843 A JP2013163843 A JP 2013163843A JP 6182387 B2 JP6182387 B2 JP 6182387B2
Authority
JP
Japan
Prior art keywords
column
small
diameter
crimping
building structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013163843A
Other languages
Japanese (ja)
Other versions
JP2015031134A (en
Inventor
直子 岡田
直子 岡田
和正 今井
和正 今井
博文 稲田
博文 稲田
秀介 黒岩
秀介 黒岩
努 小室
努 小室
健好 是永
健好 是永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2013163843A priority Critical patent/JP6182387B2/en
Publication of JP2015031134A publication Critical patent/JP2015031134A/en
Application granted granted Critical
Publication of JP6182387B2 publication Critical patent/JP6182387B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Joining Of Building Structures In Genera (AREA)

Description

本発明は、細径RC柱からなる架構を有する建築構造物に関する。   The present invention relates to a building structure having a frame made of a small-diameter RC column.

従来より一般に、細径RC柱は、水平力に抵抗できるように端部を剛接合する構造を採ると、水平耐力が小さいために、細径RC柱に大きな損傷が生じてしまうという問題が生じていた。
そこで、同一平面上に壁などの別途水平抵抗部材を設けて、細径RC柱2’には地震時水平変位に対する追従性のみを期待して、柱頭および柱脚を半剛接合4’とすることが一般的に行われている。半剛接合あるいはピン接合4'とすることで,細径RC柱2’に作用する応力を極力小さくして,水平変位追従性を向上させている(図7参照)。
In general, if a small RC column has a structure in which end portions are rigidly joined so as to resist horizontal force, the horizontal proof strength is small, so that there is a problem that the small RC column is greatly damaged. It was.
Therefore, a separate horizontal resistance member such as a wall is provided on the same plane, and the small-diameter RC column 2 'is expected to follow only the horizontal displacement during an earthquake, so that the column head and the column base are made semi-rigid joint 4'. It is generally done. By adopting a semi-rigid joint or pin joint 4 ′, the stress acting on the small-diameter RC column 2 ′ is reduced as much as possible to improve the horizontal displacement followability (see FIG. 7).

しかしながら、この従来の方法では、同一平面上に別途水平抵抗部材を設け、剛なスラブにより水平力を適切に伝達できるよう計画する必要があり、このため建物の平面計画に大きな制約を受けることとなる。   However, in this conventional method, it is necessary to provide a separate horizontal resistance member on the same plane so that the horizontal force can be appropriately transmitted by a rigid slab, and this is subject to great restrictions on the plan of the building. Become.

今井和正,村松晃次,岡田直子,寺嶋知宏,服部敦志,小室努:超高強度コンクリートを用いたRC長柱の構造性能(その1〜その3),日本建築学会大会学術講演梗概集,pp.319 – 324,2010.9Kazumasa Imai, Junji Muramatsu, Naoko Okada, Tomohiro Terashima, Satoshi Hattori, Tsutomu Komuro: Structural performance of RC long columns using ultra-high-strength concrete (Part 1 to Part 3), Abstracts of Annual Conference of Architectural Institute of Japan, pp. 319 – 324, 2010.9

本発明は、上述した種々の課題を解決するために創作されたもので、細径RC柱からなり、かつ平面計画の自由度を損なわずに水平力に対して抵抗し得る架構を有する建築構造物を簡単な構成によって提供することを目的とするものである。   The present invention was created to solve the various problems described above, and is an architectural structure having a frame made of a small-diameter RC column and capable of resisting horizontal force without impairing the degree of freedom in plan planning. The object is to provide an object with a simple configuration.

また、前記した梁あるいは基礎梁の圧着度合いを調整することにより、柱が損傷するより前に梁あるいは基礎梁が離間するよう制御して、細径RC柱を損傷しにくくすることをも目的とするものである。   Another object of the present invention is to make it difficult to damage the small-diameter RC column by adjusting the degree of pressure bonding of the beam or the foundation beam so that the beam or the foundation beam is separated before the column is damaged. To do.

請求項1に係る発明は、 細径RC柱はプレキャストプレストレストコンクリート部材であり、前記細径RC柱の柱脚と梁等の接合部材が半剛接合あるいはピン接合され、
前記細径RC柱の柱頭側とプレキャストプレストレスト梁の柱梁接合部が柱通しとなるように形成され、かつ、該柱梁接合部が梁せいのほぼ中央高さ位置に並列に設置された圧着用PC鋼より線により圧着された架構を有する建築構造物とした。
ここで、半剛接あるいはピン接合される側の梁等の接合部材とは、梁の他に、基礎梁、床スラブ、柱なども含まれる。また、柱通しとなるように圧着される側の梁等の圧着接合部材とは、梁の他に、基礎梁、床スラブなども含まれる。
したがって、細径RC柱の下部側で接合する梁と上部側で接合する梁は、細径RC柱との接合方法により、半剛接合あるいはピン接合の場合は接合部材として、また、圧着接合される場合は圧着接合部材として細径RC柱と架構を構成する。
なお、本明細書において細径RC柱は、柱の部材長さを最も小さな柱幅で除した値が5以上のRC柱であることを意味している。
The invention according to claim 1, diameter RC column is precast prestressed preparative concrete member, the bonding member such as a column base and the beam of the small diameter RC column is semirigid junction or pin junction,
Crimping Column Joints of stigma side and precast prestressed beams of said small-diameter RC column is formed so that the posts through, and installed in parallel with the substantially central height position of the beam-column joints Gahari Seiko It was set as the building structure which has the frame crimped | bonded by the PC steel wire .
Here, the joining member such as the beam to be semi-rigidly or pin-joined includes a foundation beam, a floor slab, a column and the like in addition to the beam. Further, the crimping joining member such as a beam to be crimped so as to pass through a column includes a foundation beam, a floor slab, and the like in addition to the beam.
Therefore, the beam to be joined on the lower side of the small-diameter RC column and the beam to be joined on the upper side are joined as a joining member in the case of semi-rigid joining or pin joining, and crimp-bonded by the joining method with the small-diameter RC column. In this case, a small-diameter RC column and a frame are formed as a pressure bonding member.
In addition, in this specification, the small-diameter RC column means that the value obtained by dividing the column member length by the smallest column width is an RC column of 5 or more.

請求項2に係る発明は、細径RC柱はプレキャストプレストレストコンクリート部材であり、前記細径RC柱の柱脚とプレキャストプレストレスト梁等の柱梁接合部が柱通しとなるように形成され、かつ、該柱梁接合部が梁せいのほぼ中央高さ位置に並列に設置された圧着用PC鋼より線により圧着され、前記細径RC柱の柱頭側とプレキャストプレストレスト梁が半剛接合あるいはピン接合された架構を有する建築構造物としたIn the invention according to claim 2, the small-diameter RC column is a precast prestressed concrete member, and the column base of the small-diameter RC column and a column beam joint such as a precast prestressed beam are formed through the column, and The column beam joint is crimped by a crimping PC steel wire installed in parallel at the approximate center height of the beam, and the column head side of the small RC column and the precast prestressed beam are semi-rigidly joined or pin joined. The building structure has a frame .

請求項3に係る発明は、前記細径RC柱は、柱の全主筋が緊張材とされ、他端側の梁等の圧着接合部材がプレキャストコンクリート製であり、圧着用PC鋼材により前記細径RC柱と圧着することで、水平力に対して抵抗する架構とされ、圧着度合いを変化させることにより、圧着部の離間モーメントと離間後剛性を調整して、該細径RC柱に損傷が生じないよう前記細径RC柱の一端に生じる応力を制御することを特徴としている。
なお、本明細書においてPC鋼材は、PC鋼線、PC鋼より線、PC鋼棒または異形鉄筋を含むものとする。
In the invention according to claim 3, in the small-diameter RC column, all main bars of the column are made of tension material, and a pressure-bonding member such as a beam on the other end side is made of precast concrete. By crimping with the RC pillar, it is a frame that resists horizontal force. By changing the degree of crimping, the separation moment and post-separation rigidity of the crimping part are adjusted, and the small-diameter RC pillar is damaged. It is characterized in that the stress generated at one end of the small-diameter RC column is controlled so as not to occur.
In this specification, the PC steel material includes a PC steel wire, a PC steel strand, a PC steel bar, or a deformed reinforcing bar.

請求項4に係る発明は、前記半剛接合が、接合筋が細径RC柱断面略中央に埋設されて構成され、前記細径RC柱に生じる曲げモーメント応力が低減されていることを特徴としている。   The invention according to claim 4 is characterized in that the semi-rigid joint is configured such that a joining bar is embedded substantially at the center of a cross section of the thin RC column, and bending moment stress generated in the thin RC column is reduced. Yes.

請求項1に係る発明によれば、細径RC柱にプレストレスが導入されており、細径RC柱の一端と梁等の接合部材が半剛接合あるいはピン接合され、前記細径RC柱の他端と梁等の圧着接合部材の柱梁接合部が柱通しとなるように該圧着接合部材と圧着された架構を構成することにより、水平力に対して抵抗する建築構造物の架構とすることができる。
また、細径RC柱の一端と梁等の接合部材が半剛接合あるいはピン接合されているので、細径RC柱に生じる曲げモーメントが低減され、細径RC柱の損傷が抑えられる。一方で、細径RC柱の他端と梁とは圧着しているので、水平力に対して抵抗することができる。細径RC柱には、圧着度合いに応じて曲げモーメントが生じるが、細径RC柱にプレストレスが導入されているので、ひび割れ耐力および曲げ耐力が向上しており、柱が損傷しにくい。この架構であれば、従来のように別途水平抵抗部材を設ける必要がないので、建物の平面計画の自由度が増す。
According to the first aspect of the present invention, prestress is introduced into the small-diameter RC column, and one end of the small-diameter RC column and a joining member such as a beam are semi-rigidly joined or pin-joined. By constructing the frame bonded with the pressure bonding member so that the other end and the column beam bonding portion of the pressure bonding member such as a beam are passed through the column, the frame of the building structure resists horizontal force. be able to.
In addition, since one end of the small-diameter RC column and a joining member such as a beam are semi-rigidly or pin-joined, a bending moment generated in the small-diameter RC column is reduced, and damage to the small-diameter RC column is suppressed. On the other hand, since the other end of the small-diameter RC column and the beam are pressure-bonded, they can resist horizontal force. A bending moment is generated in the small-diameter RC column depending on the degree of pressure bonding. However, since prestress is introduced into the small-diameter RC column, crack strength and bending strength are improved, and the column is not easily damaged. With this frame, there is no need to provide a separate horizontal resistance member as in the prior art, so the degree of freedom in building plan planning increases.

請求項2に係る発明によれば、細径RC柱は、柱の全主筋または一部の主筋が緊張材とされ、主筋、シース管内のグラウトモルタル、シース管およびコンクリートの間の付着力により、コンクリートにプレストレスが導入される。主筋を緊張材とすることで、別途緊張材を配置する必要がないことから、細径RC柱のように断面が小さい場合でも配筋が簡素化されて錯綜しない。特に高強度コンクリートを用いる場合には柱断面が小さくなる傾向があるので、この方法は極めて有効である。
また、高強度コンクリートを用いてポストテンション方式にてプレストレスを導入する場合には、打設時にコンクリートの収縮に対して拘束力が小さいシース管のみが配設されていて、拘束力が大きい主筋が配設されていないので、コンクリートの収縮によるひび割れや初期応力が緩和される作用効果を奏することができる。
According to the invention according to claim 2, in the thin RC column, all or some of the main bars of the column are tension materials, and due to the adhesion between the main bars, the grout mortar in the sheath tube, the sheath tube and the concrete, Prestress is introduced into concrete. By using the main bar as the tension member, it is not necessary to separately arrange the tension member, so even when the cross section is small like a small-diameter RC column, the bar arrangement is simplified and not complicated. In particular, when using high-strength concrete, this method is extremely effective because the column cross section tends to be small.
In addition, when prestress is introduced by post-tension method using high-strength concrete, only the sheath tube having a small restraining force against the contraction of the concrete at the time of placing is disposed, and the main reinforcement having a large restraining force is provided. Since no is provided, it is possible to achieve an effect of reducing cracks and initial stress due to shrinkage of concrete.

請求項3に係る発明によれば、梁の軸方向に通る圧着用PC鋼材の緊張力、緊張位置、圧着部の梁せいを変化させることにより梁との圧着度合いを調整し、この圧着度合いの調整により、細径RC柱に生じる応力を制御することができるので、細径RC柱が損傷することを防止することができる。また、梁等の圧着接合部材は細径RC柱に圧着されているので、細径RC柱と梁等の圧着接合部材が離間して間隙が生じたとしても間隙は再び閉じられ、離間した状態が継続することはない。   According to the invention of claim 3, the degree of pressure-bonding with the beam is adjusted by changing the tension force, the tension position of the PC steel material for pressure-bonding passing in the axial direction of the beam, and the beam length of the pressure-bonding portion. Since the stress generated in the small-diameter RC column can be controlled by the adjustment, the small-diameter RC column can be prevented from being damaged. In addition, since the pressure bonding member such as a beam is pressure-bonded to the small-diameter RC column, even if a gap is generated by separating the small-diameter RC column and the pressure bonding member such as the beam, the gap is closed again and separated. Will not continue.

請求項4に係る発明によれば、柱端部に生じる曲げモーメントを低減するための半剛接合が、接合筋を細径RC柱断面略中央に埋設された接合筋用シース管に挿入することによって構成されており、柱の断面略中央に接合筋を配設するだけなので、本発明の細径RC柱のように断面が小さく、柱主筋あるいは緊張材の配筋が複雑な場合にも容易に配筋することができる。特に、150〜300N/mm2程度の高強度コンクリートを用いる場合には柱断面が小さくなるため、細径RC柱の断面略中央に接合筋を配設するだけの半剛接合構造は極めて有効である。 According to the fourth aspect of the present invention, the semi-rigid joint for reducing the bending moment generated at the column end portion is to insert the joining bar into the joining bar sheath tube embedded in the approximate center of the small-diameter RC column section. Since the connecting bar is only arranged at the center of the cross section of the column, the cross section is small as in the case of the small-diameter RC column of the present invention, and it is easy even when the column main bar or tension bar is complicated. Can be arranged. In particular, when high-strength concrete of about 150 to 300 N / mm 2 is used, the column cross-section becomes small. Therefore, a semi-rigid joint structure in which a joint bar is arranged at the approximate center of the cross-section of a small-diameter RC column is extremely effective. is there.

本発明の建築構造物の架構概念図である。It is a frame conceptual diagram of the building structure of the present invention. 本発明の実施例の架構の部分拡大図である。It is the elements on larger scale of the frame of the Example of this invention. 本発明の他の実施例の架構の部分拡大図である。It is the elements on larger scale of the frame of the other Example of this invention. 図2の細径RC柱のA−A線矢視図である。It is an AA arrow directional view of the small diameter RC pillar of FIG. 図2の細径RC柱のB−B線矢視図である。It is a BB line arrow directional view of the small diameter RC pillar of FIG. 図2の細径RC柱のC−C線矢視図である。It is CC arrow directional view of the small diameter RC pillar of FIG. 従来技術の建築構造物の架構概念図である。It is a frame conceptual diagram of the building structure of a prior art.

本実施例の建築構造物の架構1を概念的に説明する図1を参照して、本実施例の概略を説明する。
細径RC柱2にはプレストレスが導入されており、細径RC柱2一端部の端面は半剛接合4、もしくは、ピン接合4されている。
そして他の端部は梁と圧着され、この柱梁接合部5が柱通しとされた細径RC柱2と梁3の圧着構造が構成されている(後述、図2に圧縮構造50を示す)。
The outline of the present embodiment will be described with reference to FIG. 1 conceptually illustrating the frame 1 of the building structure of the present embodiment.
Prestress is introduced into the small-diameter RC column 2, and the end surface of one end of the small-diameter RC column 2 is semi-rigidly bonded 4 or pin-bonded 4.
The other end portion is pressure-bonded to the beam, and a compression structure of the small-diameter RC column 2 and the beam 3 in which the beam-column joint portion 5 is formed as a column is formed (a compression structure 50 is shown in FIG. 2 to be described later). ).

細径RC柱2の他の端部を柱通しで梁3と圧着させる構成とすることで、水平力に対して抵抗する建築構造物の架構1とすることができる。
細径RC柱2の他の端部には梁3の圧着度合いに応じて曲げモーメントが生じる。これに対しては、細径RC柱2にプレストレスを導入することにより、ひび割れ耐力および曲げ耐力を向上させて柱が損傷しにくい架構1を構成することができる。
なお、図1では、建物全体が本発明の架構1にて構築されているが、建物の一部分を本発明の架構1にて構築し、建物の他の部分を他の架構にて構築することもできる。
By adopting a configuration in which the other end of the small-diameter RC column 2 is pressure-bonded to the beam 3 through the column, the frame 1 of the building structure that resists horizontal force can be obtained.
A bending moment is generated at the other end of the small-diameter RC column 2 according to the degree of pressure bonding of the beam 3. In response to this, by introducing prestress to the small-diameter RC column 2, it is possible to improve the cracking strength and bending strength and to construct the frame 1 in which the column is not easily damaged.
In FIG. 1, the entire building is constructed with the frame 1 of the present invention. However, a part of the building is constructed with the frame 1 of the present invention, and the other part of the building is constructed with another frame. You can also.

本発明の架構1は、細径RC柱2に曲げモーメントが作用して一旦ひび割れが生じたとしても、細径RC柱2に導入されているプレストレスによってそのひび割れは閉じてひび割れは修復される。   In the frame 1 of the present invention, even if a bending moment acts on the small-diameter RC column 2 and a crack is generated once, the crack is closed by the prestress introduced into the small-diameter RC column 2 and the crack is repaired. .

さらに、後述する梁3の軸方向に通る圧着用PC鋼より線32の緊張力、緊張位置、圧着部の梁せい等を変化させることにより、梁3の離間モーメントと離間後の剛性を調整することができる。この梁の離間モーメントと離間後の剛性の調整により、細径RC柱2に生じる応力を制御することができるので、細径RC柱2が損傷しにくい。また、梁3は細径RC柱2に圧着されているので、細径RC柱2と梁3が離間して間隙が生じたとしても間隙は再び閉じられ、離間した状態が継続することはない。   Further, the separation moment of the beam 3 and the rigidity after separation are adjusted by changing the tension force, the tension position of the wire 32, the beam seizure of the crimping portion, etc. from the PC steel for crimping passing in the axial direction of the beam 3 described later. be able to. By adjusting the separation moment of the beam and the rigidity after separation, the stress generated in the small-diameter RC column 2 can be controlled, so that the small-diameter RC column 2 is not easily damaged. Further, since the beam 3 is pressure-bonded to the small-diameter RC column 2, even if the small-diameter RC column 2 and the beam 3 are separated and a gap is generated, the gap is closed again and the separated state does not continue. .

他方、細径RC柱2の一端部の端面は半剛接合4とされ、柱2に生じる応力は低減されている。この架構1であれば、従来のように別途水平抵抗部材を設ける必要がないので、建物の平面計画の自由度が増す。   On the other hand, the end surface of one end of the small-diameter RC column 2 is a semi-rigid joint 4, and the stress generated in the column 2 is reduced. With this frame 1, it is not necessary to provide a separate horizontal resistance member as in the prior art, so that the degree of freedom in building plan planning increases.

具体的な建築構造物の架構1を部分的に拡大して図2に示す。細径RC柱2の柱脚が半剛接合4される一方、柱頭側が梁3と圧着され、柱梁接合部5が柱通しで、細径RC柱2にはプレストレスが導入されている。本実施例では、細径RC柱2はプレキャストプレストレストコンクリート部材、梁3はプレキャスト部材である。また、本実施例では細径RC柱2には高強度コンクリートを用いている。   A concrete building structure 1 is partially enlarged and shown in FIG. The column base of the small-diameter RC column 2 is semi-rigidly bonded 4, the column head side is crimped to the beam 3, the column-beam connecting portion 5 is through the column, and prestress is introduced into the small-diameter RC column 2. In this embodiment, the small-diameter RC column 2 is a precast prestressed concrete member, and the beam 3 is a precast member. In this embodiment, high-strength concrete is used for the small-diameter RC column 2.

柱脚は、細径RC柱2の断面略中央に埋設されている接合筋用シース管42内に配設する接合筋41により、梁、基礎梁、床スラブあるいは柱等の接合部材43と半剛接合されている。
したがって、柱脚に生じる曲げモーメントが低減され、細径RC柱2の損傷が抑えられる。柱2の断面略中央に接合筋41を配設するだけなので、本発明の細径RC柱2のように断面が小さく、柱主筋あるいは緊張材21の配筋が複雑な場合にも容易に配筋することができる。
特に、本実施例のように150〜300N/mm2程度の高強度コンクリートを用いる場合には柱断面が小さくなる。このため細径RC柱2の断面略中央に接合筋41を配設するだけの半剛接合構造は極めて有効である。
The column base is connected to a joining member 43 such as a beam, a foundation beam, a floor slab, or a column by a joining bar 41 disposed in a joining bar sheath tube 42 embedded in a substantially central section of the thin RC column 2. It is rigidly joined.
Therefore, the bending moment generated in the column base is reduced, and damage to the small-diameter RC column 2 is suppressed. Since the joining bar 41 is only disposed at the substantially center of the cross section of the column 2, it is easily arranged even when the cross section is small and the bar main bar or the tension member 21 is complicated as in the small-diameter RC column 2 of the present invention. Can be streaked.
In particular, when a high-strength concrete of about 150 to 300 N / mm 2 is used as in this embodiment, the column cross section becomes small. For this reason, the semi-rigid joint structure in which the joint bar 41 is disposed at the approximate center of the cross section of the small-diameter RC column 2 is extremely effective.

細径RC柱2はプレキャスト部材から構成されているので、柱頭と柱脚には接合筋41挿入用のシース管42が埋設され、柱頭と柱脚の梁、基礎梁、床スラブ、柱等の接合部材43との目地6とシース管42内部がグラウトモルタルにより一体的に充填されている。
なお、接合筋41は、細径RC柱2の工場製作段階で、上層階細径RC柱2の柱脚に一体化されて柱2下方に突出した形態、下層階細径RC柱2の柱頭に一体化されて柱2上方に突出した形態、あるいは、細径RC柱2とは一体化されていない別部材の形態であってもよい。
また、細径RC柱2の半剛接合構造は上記の例に限定されるものではない。
さらに、半剛接合に代えてピン接合構造とすることもできる。
Since the small-diameter RC column 2 is composed of a precast member, a sheath tube 42 for insertion of the joining bar 41 is embedded in the stigma and pedestal, so that the column head and pedestal beam, foundation beam, floor slab, column, etc. The joint 6 with the joining member 43 and the inside of the sheath tube 42 are integrally filled with grout mortar.
The joining bars 41 are integrated with the column bases of the upper floor small diameter RC columns 2 and protrude below the columns 2 at the factory manufacturing stage of the small diameter RC columns 2. It is possible to adopt a form that is integrated with and protrudes above the pillar 2 or a form of another member that is not integrated with the small-diameter RC pillar 2.
Further, the semi-rigid joint structure of the small-diameter RC column 2 is not limited to the above example.
Further, a pin joint structure can be used instead of the semi-rigid joint.

細径RC柱2のプレストレスは、柱2の全主筋21を緊張材とし、主筋21、シース管22内のグラウトモルタル、シース管22およびコンクリートの間の付着力により、コンクリートにプレストレスが導入されている。   Prestress of the small-diameter RC column 2 uses all the main bars 21 of the column 2 as tension materials, and prestress is introduced into the concrete by the adhesion between the main bar 21, the grout mortar in the sheath tube 22, the sheath tube 22 and the concrete. Has been.

細径RC柱2にプレストレスを導入する手順は、例えば次のような方法を挙げることができる。
a、全主筋21位置に中空のシース管22が配設された状態で、コンクリートを打設する。
b、コンクリート硬化後に主筋21を柱主筋用シース管22内に挿入する。
c、主筋21を緊張し、その端部をナット等で仮定着する。
d、シース管22内にグラウトモルタルを充填する。
e、グラウトモルタルが硬化した後、ナット等の仮定着を解除し、主筋21、グラウトモルタル、シース管22およびコンクリート間の付着力により、細径RC柱2のコンクリートにプレストレスを導入する。細径RC柱2端部から突出する主筋21を切断する。
Examples of the procedure for introducing prestress into the small-diameter RC column 2 include the following method.
a. Concrete is placed in a state in which the hollow sheath tube 22 is disposed at the position of all the main bars 21.
b. After the concrete is hardened, the main bar 21 is inserted into the column main bar sheath tube 22.
c. The main muscle 21 is tensioned and its end is assumed to be worn with a nut or the like.
d. Fill the sheath tube 22 with grout mortar.
e. After the grout mortar has hardened, the assumed attachment of the nut or the like is released, and prestress is introduced into the concrete of the small-diameter RC column 2 by the adhesion between the main reinforcement 21, the grout mortar, the sheath tube 22 and the concrete. The main reinforcement 21 protruding from the end of the small-diameter RC column 2 is cut.

この柱2の全主筋21を緊張材として、細径RC柱2にプレストレスを導入する方法によれば、別途緊張材を配置する必要がないので、細径RC柱2のように断面が小さい場合でも配筋が複雑にならない。特に高強度コンクリートを用いる場合には柱断面が小さくなる傾向があるので、この方法は極めて有効である。   According to the method in which the prestress is introduced into the small-diameter RC column 2 using all the main bars 21 of the column 2 as the tension material, there is no need to separately arrange the tension material, so that the cross section is small like the small-diameter RC column 2. Even in this case, the reinforcement is not complicated. In particular, when using high-strength concrete, this method is extremely effective because the column cross section tends to be small.

また、上記の高強度コンクリートを用いる場合には、打設時にコンクリートの収縮に対して拘束が小さいシース管22のみが配設されていて、拘束力が大きい主筋21が配設されていないので、コンクリートの収縮によるひび割れや初期応力が緩和される作用効果を奏することができる。   In addition, when using the above high-strength concrete, only the sheath tube 22 having a small restraint against the contraction of the concrete at the time of placing is disposed, and the main bar 21 having a large restraining force is not disposed. The effect which the crack and the initial stress by shrinkage | contraction of concrete are relieved can be show | played.

なお、本実施例では全主筋を緊張材としたが、一部の主筋を緊張材としてもよい。
また、細径RC柱2のプレストレス導入手順は上記の例に限定されない。
さらに、細径RC柱にプレストレスを導入するための緊張材は、本実施例で示している主筋に限定するものではなく、図示しないがPC鋼線、PC鋼より線、PC鋼棒等でもよい。
In this embodiment, all the main muscles are used as tendons, but some main bars may be used as tendons.
Moreover, the prestress introduction | transduction procedure of the small diameter RC pillar 2 is not limited to said example.
Furthermore, the tension material for introducing the prestress into the small-diameter RC column is not limited to the main reinforcement shown in the present embodiment, and although not shown, a PC steel wire, a PC steel strand, a PC steel rod, etc. Good.

柱梁接合部5は圧着用PC鋼より線33により梁3と圧着されている。この構成とすることで、地震等の水平力に対して抵抗する建築構造物の架構1となる。
これにより、別途水平抵抗部材を設けなくてよいので、建物の平面計画の自由度が増す。
The column beam joint 5 is crimped to the beam 3 by a wire 33 from a crimping PC steel. By setting it as this structure, it becomes the frame 1 of the building structure which resists horizontal forces, such as an earthquake.
Thereby, since it is not necessary to provide a horizontal resistance member separately, the freedom degree of the plan of a building increases.

プレキャスト梁3と柱梁接合部5に、個別に圧着用PC鋼より線33のシース管34を設けて、圧着用PC鋼より線33を上記シース管34に挿入・緊張・定着し、シース管34および梁3と細径RC柱2の間の目地6をグラウトモルタルで充填する。
なお、細径RC柱2と細径RC柱2の間(最下層の柱脚にあっては接合部材との間)の目地6にもグラウトモルタルが充填されている。
The precast beam 3 and the column beam joint 5 are individually provided with a sheath tube 34 of a crimped PC steel strand 33, and the crimped PC steel strand 33 is inserted, tensioned and fixed in the sheath tube 34, and the sheath tube 34 and the joint 6 between the beam 3 and the small-diameter RC column 2 are filled with grout mortar.
In addition, the grout mortar is also filled in the joint 6 between the small-diameter RC column 2 and the small-diameter RC column 2 (in the lowermost column base, between the joint members).

本実施例では、圧着度合いを適宜定め、圧着部の離間モーメントと離間後剛性を調整している。
これにより、細径RC柱2の柱頭に生じる応力が、細径RC柱2に損傷が生じないよう制御される。
In the present embodiment, the degree of pressure bonding is appropriately determined, and the separation moment and post-separation rigidity of the pressure bonding portion are adjusted.
Thereby, the stress generated at the head of the thin RC column 2 is controlled so that the thin RC column 2 is not damaged.

圧着度合いは、抵抗する水平力と柱の耐力の関係に応じて定める。
大きな水平力に抵抗させる場合には、圧着部の離間モーメントを大きくする必要がある。ただし、柱に作用する応力が柱の耐力を超えない範囲とするために、離間モーメントや離間後の剛性は、可能な限り小さくすることが求められる。
離間モーメントや離間後剛性は、圧着力、圧着位置、圧着部の梁せい等で調整することができる。
The degree of pressure bonding is determined according to the relationship between the resisting horizontal force and the column strength.
When resisting a large horizontal force, it is necessary to increase the separation moment of the crimping portion. However, the separation moment and the rigidity after separation are required to be as small as possible so that the stress acting on the column does not exceed the proof stress of the column.
The separation moment and the post-separation rigidity can be adjusted by the crimping force, the crimping position, the beam of the crimping portion, and the like.

梁3は柱梁接合部5に圧着されているので、柱梁接合部5と梁3が離間して両者間に間隙が生じても、圧着用PC鋼より線33の緊張力により間隙は閉じる。
なお、細径RC柱2と梁3の圧着用PC鋼材は上記の例のようにPC鋼より線に限定されず、図示しないがPC鋼棒や異形鉄筋でもよい。
Since the beam 3 is crimped to the beam-to-column joint 5, even if the beam-to-column joint 5 and the beam 3 are separated and a gap is formed between them, the gap is closed by the tension of the wire 33 from the crimping PC steel. .
Note that the PC steel material for crimping the small-diameter RC column 2 and the beam 3 is not limited to the PC steel wire as in the above example, but may be a PC steel bar or a deformed reinforcing bar, although not shown.

他の実施例Other examples

上記した実施例は、細径RC柱2の柱脚が半剛接合、柱頭が梁3と圧着された圧着構造50とされていたが、この他の実施例は、図3に部分的に拡大して示されるように、実施例とは逆に柱頭側が半剛接合4、柱脚が梁と圧着された圧着構造50とされている。
すなわち、細径RC柱2の柱頭が半剛接合4される一方、柱脚が梁3あるいは基礎梁7と圧着され、柱梁接合部5が柱通しで、細径RC柱2にはプレストレスが導入されている。
本実施例においても、細径RC柱2はプレキャストプレストレストコンクリート部材、梁3と基礎梁7はプレキャスト部材であり、また、細径RC柱2には高強度コンクリートを用いている点においては、上記した実施例と同様である。
In the above-described embodiment, the columnar base of the small-diameter RC column 2 is semi-rigidly bonded and the column head is bonded to the beam 3, but the other embodiment is partially enlarged in FIG. As shown in the figure, the side of the stigma is a semi-rigid joint 4 and the column base is crimped to the beam, contrary to the embodiment.
That is, the column head of the small-diameter RC column 2 is semi-rigidly joined 4, the column base is crimped to the beam 3 or the foundation beam 7, the column-beam joint 5 is through the column, and the small-diameter RC column 2 is prestressed. Has been introduced.
Also in the present embodiment, the thin RC column 2 is a precast prestressed concrete member, the beam 3 and the foundation beam 7 are precast members, and the thin RC column 2 is made of high-strength concrete. This is the same as the embodiment described above.

これによれば、実施例と同様、細径RC柱の柱脚が柱通しで基礎梁と圧着されているので、水平力に対して抵抗する建築構造物の架構とすることができる。細径RC柱2の柱脚には梁3あるいは基礎梁7の圧着度合いに応じて曲げモーメントが生じるが、細径RC柱2にプレストレスを導入することにより、ひび割れ耐力および曲げ耐力を向上させて柱が損傷しにくい架構を構成することができる。   According to this, since the column base of the small-diameter RC column is pressure-bonded to the foundation beam through the column as in the embodiment, it can be a frame of a building structure that resists horizontal force. A bending moment is generated in the column base of the small-diameter RC column 2 according to the degree of pressure bonding of the beam 3 or the foundation beam 7. By introducing prestress to the small-diameter RC column 2, the crack strength and the bending strength are improved. Thus, it is possible to construct a frame in which the pillar is not easily damaged.

また、細径RC柱2に曲げモーメントが作用して一旦ひび割れが生じたとしても、細径RC柱2に導入されているプレストレスによってそのひび割れは閉じてひび割れは修復される。   Even if a bending moment acts on the small-diameter RC column 2 and a crack is generated once, the crack is closed by the prestress introduced into the small-diameter RC column 2 and the crack is repaired.

さらに、梁3あるいは基礎梁7の軸方向に通る圧着用PC鋼より線の緊張力を変化させることにより、梁との圧着度合いを調整することができる。この圧着度合いの調整により、細径RC柱2に生じる応力を制御することができるので、細径RC柱2が損傷しにくい。さらにまた、梁3あるいは基礎梁7は細径RC柱2に圧着されているので、細径RC柱2と梁3あるいは基礎梁7が離間して間隙が生じても間隙は再び閉じられ、離間した状態が継続することはない。   Furthermore, the degree of pressure bonding with the beam can be adjusted by changing the tension of the wire from the PC steel for pressure bonding passing in the axial direction of the beam 3 or the foundation beam 7. Since the stress generated in the small-diameter RC column 2 can be controlled by adjusting the degree of pressure bonding, the small-diameter RC column 2 is hardly damaged. Furthermore, since the beam 3 or the foundation beam 7 is pressure-bonded to the small-diameter RC column 2, even if the small-diameter RC column 2 and the beam 3 or the foundation beam 7 are separated to form a gap, the gap is closed again and separated. This condition will not continue.

他方、細径RC柱の柱頭の端面は半剛接合され、細径RC柱に生じる応力は低減されている。
この架構であれば、従来のように別途水平抵抗部材を設ける必要がないので、建物の平面計画の自由度が増す。
On the other hand, the end face of the head of the small-diameter RC column is semi-rigidly joined, and the stress generated in the small-diameter RC column is reduced.
With this frame, there is no need to provide a separate horizontal resistance member as in the prior art, so the degree of freedom in building plan planning increases.

1 建築構造物の架構
2 細径RC柱
21 柱主筋(プレストレス導入用緊張材)
22 柱主筋用シース管
23 柱せん断補強筋
3 梁(架構形態により接合部材または圧着接合部材となる)
31 梁主筋
32 梁せん断補強筋
33 圧着用PC鋼より線
34 圧着用PC鋼より線のシース管
4 半剛接合(ピン接合)
41 接合筋
42 接合筋用シース管
43 接合部材
5 柱梁接合部
50 柱と梁の圧着構造
6 目地
7 基礎梁(架構形態により圧着接合部材または接合部材となる)
1 Building Structure 2 Small RC Column 21 Column Main Reinforcement (Tension Material for Prestress Introduction)
22 Sheath tube 23 for column main reinforcement Column shear reinforcement 3 Beam (becomes a bonding member or a pressure bonding member depending on the frame configuration)
31 Beam Main Bar 32 Beam Shear Reinforcement 33 Crimping PC Steel Strand 34 Crimping PC Steel Strand Wire 4 Semi-rigid Joint (Pin Joint)
41 Joining bar 42 Joining sheath sheath tube 43 Joining member 5 Column-to-beam joint 50 Column-to-beam crimping structure 6 Joint 7 Foundation beam (becomes a crimping joining member or joining member depending on the frame configuration)

Claims (4)

細径RC柱はプレキャストプレストレストコンクリート部材であり、前記細径RC柱の柱脚と梁等の接合部材が半剛接合あるいはピン接合され、
前記細径RC柱の柱頭側とプレキャストプレストレスト梁の柱梁接合部が柱通しとなるように形成され、かつ、該柱梁接合部が梁せいのほぼ中央高さ位置に並列に設置された圧着用PC鋼より線により圧着された架構を有する建築構造物。
Diameter RC column is precast prestressed preparative concrete member, the bonding member such as a column base and the beam of the small diameter RC column is semirigid junction or pin junction,
Crimping Column Joints of stigma side and precast prestressed beams of said small-diameter RC column is formed so that the posts through, and installed in parallel with the substantially central height position of the beam-column joints Gahari Seiko A building structure with a frame crimped with PC steel strands.
細径RC柱はプレキャストプレストレストコンクリート部材であり、前記細径RC柱の柱脚とプレキャストプレストレスト梁等の柱梁接合部が柱通しとなるように形成され、かつ、該柱梁接合部が梁せいのほぼ中央高さ位置に並列に設置された圧着用PC鋼より線により圧着され、前記細径RC柱の柱頭側とプレキャストプレストレスト梁が半剛接合あるいはピン接合された架構を有する建築構造物。 The small-diameter RC column is a precast prestressed concrete member, and the column base of the small-diameter RC column and a column beam joint such as a precast prestressed beam are formed to be a column-through, and the column beam joint is a beam. A building structure having a frame which is crimped by a crimping PC steel wire installed in parallel at a substantially central height position, and the head side of the small-diameter RC column and the precast prestressed beam are semi-rigidly joined or pin-joined . 前記細径RC柱は、柱の全主筋が緊張材とされ、
前記柱梁接合部はプレキャストコンクリート製であり、圧着用PC鋼材により前記細径RC柱と圧着することで、水平力に対して抵抗する架構とされ、圧着度合いを変化させることにより、圧着部の離間モーメントと離間後剛性を調整して、該細径RC柱に損傷が生じないよう前記細径RC柱の一端に生じる応力を制御することを特徴とする請求項1乃至請求項2のいずれかに記載された建築構造物。
In the thin RC column, all main bars of the column are used as tendons,
The column beam joint is made of precast concrete, and is bonded to the small RC column with a PC steel material for crimping, thereby forming a frame that resists horizontal force, and by changing the degree of crimping, 3. The stress generated at one end of the small-diameter RC column is controlled by adjusting the separation moment and the post-separation rigidity so that the small-diameter RC column is not damaged. Building structure described in 1.
前記半剛接合は、接合筋が前記細径RC柱断面略中央に埋設されて構成され、前記細径RC柱に生じる曲げモーメント応力が低減されていることを特徴とする請求項1乃至請求項3のいずれかに記載された建築構造物。   2. The semi-rigid joint is configured such that a joining bar is embedded in a substantially center of a cross section of the small-diameter RC column, and bending moment stress generated in the small-diameter RC column is reduced. The building structure described in any one of 3.
JP2013163843A 2013-08-07 2013-08-07 Building structure with frame consisting of small RC pillars Expired - Fee Related JP6182387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013163843A JP6182387B2 (en) 2013-08-07 2013-08-07 Building structure with frame consisting of small RC pillars

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013163843A JP6182387B2 (en) 2013-08-07 2013-08-07 Building structure with frame consisting of small RC pillars

Publications (2)

Publication Number Publication Date
JP2015031134A JP2015031134A (en) 2015-02-16
JP6182387B2 true JP6182387B2 (en) 2017-08-16

Family

ID=52516688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013163843A Expired - Fee Related JP6182387B2 (en) 2013-08-07 2013-08-07 Building structure with frame consisting of small RC pillars

Country Status (1)

Country Link
JP (1) JP6182387B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6422803B2 (en) * 2015-03-18 2018-11-14 三井住友建設株式会社 Column base joint structure
JP7449126B2 (en) 2020-03-10 2024-03-13 株式会社竹中工務店 Column beam joint structure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4100713A (en) * 1976-12-16 1978-07-18 The Flexicore Co., Inc. Structural connection
JP2531038B2 (en) * 1991-07-08 1996-09-04 鹿島建設株式会社 Pillar PC structure
JP3138075B2 (en) * 1992-08-21 2001-02-26 中部電力株式会社 Reinforced concrete column and its manufacturing method
JP5196638B2 (en) * 2007-09-26 2013-05-15 大成建設株式会社 Column base semi-rigid joint building

Also Published As

Publication number Publication date
JP2015031134A (en) 2015-02-16

Similar Documents

Publication Publication Date Title
JP6171070B1 (en) Method of joining concrete columns and steel beams
JP6393170B2 (en) Design method for prestressed concrete beams.
KR102640461B1 (en) Method of introducing prestress to beam-column joint of pc structure in triaxial compression
KR20210031809A (en) Method of introducing prestress to beam-column joint in triaxial compression
JP2015004229A (en) Pc earthquake-poof joining structure and pc earthquake-proof joining method of column-beam of using steel frame pin
JP6182387B2 (en) Building structure with frame consisting of small RC pillars
JP6638905B2 (en) Beam-column connection structure and beam-column connection method
JP5757175B2 (en) Support pillar for high-rise building and its construction method
JP5087026B2 (en) Seismic reinforcement structure
JP6139120B2 (en) Pressure bonding structure of prestressed reinforced concrete column members and pressure bonding structure between prestressed reinforced concrete beam members and column members
JP2017133271A (en) Column beam joining structure and column beam joining method
JP2007191865A (en) Structure for jointing prestressed precast concrete member and member to be jointed, and prestressed precast concrete member
Johnston et al. Shake table testing of an integrated low-damage frame building
JP2011202420A (en) Structure and method for joining shaft member and rc member
JP5676800B1 (en) Method of introducing PS into constructed building later and its building
JP5301746B1 (en) Buildings using steel columns with seismic prestressing
JP5939707B2 (en) Reinforcement structure for beam-column joints
JP6836873B2 (en) Brace mounting structure and brace mounting method
JP6352092B2 (en) Junction structure
KR101621657B1 (en) Rahmen system advanced efficiency by plastic hinge/additional prestressing strand and precast girder unit manufacturing thereof and method constructing Rahmen bridge thereof
JP6312130B2 (en) Column beam structure and beam end members
JP2014190102A (en) Hybrid beam
JP7438065B2 (en) pillar structure
JP7137978B2 (en) Plate-shaped member for pillar
JP2016186223A (en) Seismic strengthening structure and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170322

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170322

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170724

R150 Certificate of patent or registration of utility model

Ref document number: 6182387

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees