JP2014188066A - 被検体情報取得装置およびその制御方法 - Google Patents

被検体情報取得装置およびその制御方法 Download PDF

Info

Publication number
JP2014188066A
JP2014188066A JP2013064510A JP2013064510A JP2014188066A JP 2014188066 A JP2014188066 A JP 2014188066A JP 2013064510 A JP2013064510 A JP 2013064510A JP 2013064510 A JP2013064510 A JP 2013064510A JP 2014188066 A JP2014188066 A JP 2014188066A
Authority
JP
Japan
Prior art keywords
subject
unit
light
acoustic wave
information acquiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013064510A
Other languages
English (en)
Inventor
Yasushi Asao
恭史 浅尾
Takuji Oishi
卓司 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2013064510A priority Critical patent/JP2014188066A/ja
Publication of JP2014188066A publication Critical patent/JP2014188066A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

【課題】光音響診断において、音響波検出器への光照射により生じるノイズを抑える。
【解決手段】光源からの光を照射する照射部と、照射部から出射したのち、被検体に照射される光に起因して発生する音響波を受信する検出部と、照射部から出射したのち、検出部に照射される光の強度を低減させる強度低減部と、検出部が受信した音響波を用いて被検体内部の特性情報を取得する処理部を有する被検体情報取得装置を用いる。
【選択図】図1

Description

本発明は、被検体情報取得装置およびその制御方法に関する。
医療分野において、生体内部を非侵襲的にイメージングすることができる装置の一つとして、近年、光音響効果を用いて生体機能情報が得られる光音響診断装置の研究が進められている。光音響効果とは、光源から発生したパルス光を被検体に照射すると、被検体内で伝播・拡散した光エネルギーを内部組織が吸収することによって音響波(光音響波)が発生する現象である。光音響診断装置は、この音響波を解析して、音響波発生源となる内部組織を画像化する。
音響波解析は、次のように行われる。まず、受信された音響波の時間による変化を複数の個所で検出し、得られた信号を数学的に解析処理、すなわち再構成する。そして、被検体内部の光学特性値に関連した情報を三次元で可視化する。再構成手法の一つにバックプロジェクションがある。これは、被検体中の音の伝播速度を考慮し、各受信信号を逆に伝搬させ、重ね合わせることで信号源を特定する計算手法である。
パルス光に近赤外光を用いた場合、血管像をイメージングすることができる。その理由は、近赤外光は生体の大部分を構成する水を透過しやすく、血液中のヘモグロビンで吸収されやすい性質を持つためである。さらに、異なる波長のパルス光による血管像を比較することによって、機能情報である血液中の酸素飽和度を測定することができる。悪性腫瘍周辺の血液は良性腫瘍周辺の血液より酸素飽和度が低くなっていると考えられているので、酸素飽和度を知ることによって腫瘍の良悪鑑別を行えるようになると期待されている。
光音響波の強度pは式(1)の関係で表わされるように、光吸収体に到達する光の強度φに依存する。
p=Γ・φ・μ …(1)
ここでΓはグリューナイゼン定数、μは光吸収係数である。この式で表わされるように、光吸収体の光吸収係数が大きな値だったとしても、光吸収体に到達する光が少なければ発生する音響波は小さい。逆に、光吸収係数がそれほど大きくない場合でも、光吸収体に到達する光が多ければ発生する音響波は大きくなる。
この原理を応用した構成が提案されている。特許文献1は、反射部材を音響波検出器の表面に設置する構成である。非特許文献1は、被検体に対して複数の方向から光照射を行う構成である。
米国特許出願公開第2010/0053618号公報
Fukutani et al., Proc.IEEE Ultrason. Symp., P5-M2-5 (2010)
光音響診断装置において、パルス光源、被検体および音響波検出器の間の位置関係が、「パルス光源−被検体−音響波検出器」の順となっている場合、以下の課題が生じる。診
断装置は様々な大きさの被検体を診断することを想定して、大きめのサイズで作られる。そして、想定される最大サイズよりも小さい被検体を診断する場合、上記の位置関係が、「パルス光源−(ブランク)−音響波検出器」の順になる場合(場所)がある。つまり被検体がない場所では、音響波検出器の表面に直接光が照射される。また、反射などによってパルス光が音響波検出器に照射される場合がある。このように直接音響波検出器にパルス光が照射されると、音響波検出器自身による光吸収によって光音響波を生じる。以下の記載では、このような、本来測定すべき被検体以外からの信号を、ノイズと呼ぶ。
ノイズを減少させるためには、音響波検出器の光吸収量を減らす必要がある。そこで特許文献1は、反射部材を音響波検出器の表面に設置し、音響波検出器の表面で吸収される光を少なくしている。これにより、音響波検出器による光吸収量を減少させ、ノイズを減らす効果を得ることができる。なお、特許文献1では、光源から音響波検出器に直接照射されたパルス光を反射させる構成ではなく、生体に照射された光が生体中を拡散し、生体から放射される光を、音響波検出器前面にて反射させる構成が想定されている。
特許文献1の手法は一定の効果が得られるものの、上記のように、「パルス光源−被検体−音響波検出器」という位置関係となっている場合、被検体がない場所では、音響波検出器の表面に直接光が照射される。こうして音響波検出器に直接光が照射されることによるノイズの影響は、音響波検出器の光吸収係数が小さい場合においても、問題になり得る。特に、被検体として数センチメートル以上の厚みを有し、深い領域の測定を行うためには、強い光量のパルス光を使わざるを得ない。このような場合、ノイズの影響が顕著に現れる。
光は瞬間的に音響波検出器および被検体に到達し、ほぼ同時に音響波を発生させる。一方、音響波は、媒体の音速と伝達距離に応じて定まる伝達時間がかかる。そのため、パルス光照射後、音響波検出器は、最初に大きな信号(音響波検出器自身の光音響効果に由来)を受信し、この信号の応答が終わらないうちに、被検体内部からの信号を受信する。その結果、これら2つの信号を時間的にも分離することは難しい。さらに、この信号を用いて再構成した画像にも、被検体外からの信号に由来するアーティファクトが重畳されてしまう。
非特許文献2には、生体内の深部診断を目的として、音響波検出器と対向する位置に加え、音響波検出器の近傍にも光源を追加する構成が開示されている。これにより、被検体に対して複数の方向から光を照射し、光量を増加させられる。この構成においては、複数の光源からのパルス光によるノイズの影響を、同時に解決する必要がある。
さらに光音響診断装置では、オペレーション中の被検体の異状をモニタリングするために、測定中の被検体を観察可能であることが好ましい。
本発明は上記課題に鑑みてなされたものであり、その目的は、光音響診断において、音響波検出器への光照射により生じるノイズを抑えることである。
本発明は、以下の構成を採用する。すなわち、
光源からの光を照射する照射部と、
前記照射部から出射したのち、被検体に照射される光に起因して発生する音響波を受信する検出部と、
前記照射部から出射したのち、前記検出部に照射される光の強度を低減させる強度低減部と、
前記検出部が受信した音響波を用いて前記被検体内部の特性情報を取得する処理部と、
を有することを特徴とする被検体情報取得装置である。
本発明はまた、以下の構成を採用する。すなわち、
光源からの光を被検体に照射する照射部と、
音響波を受信する検出部と、
前記照射部から出射したのち、前記検出部に照射される光の強度を低減させる強度低減部と、
前記検出部が受信した音響波を用いて前記被検体内部の特性情報を取得する処理部と、を有する被検体情報取得装置の制御方法であって、
前記検出部が、前記照射部から出射したのち、前記被検体に照射される光に起因して発生する音響波を受信するステップと、
前記処理部が、前記検出部が受信した音響波を用いて前記被検体内部の特性情報を取得するステップと、
を有することを特徴とする被検体情報取得装置の制御方法である。
本発明によれば、光音響診断において、音響波検出器への光照射により生じるノイズを抑えることができる。
音響波検出器に対する偏光板の配置を示す図。 偏光板の形状を調整する手法を示す図。 光音響診断装置の構成を示す図。 光音響診断装置の動作を示すフロー図。 偏光フィルムの構成を示す図。 装置に被検体を設置した様子を示す図。 ワイヤーグリッド型偏光板を設置した様子を示す図。 斜め偏光板を用いた保持板の構成を示す図。 斜め偏光板を用いた保持板の上面図。 斜め偏光板を用いた場合の光照射の様子を示す図。 反射偏光板を用いた保持板の構成を示す図。 反射偏光板を配置する向きを示す図。 本発明により取得される画像を示す図。
以下に図面を参照しつつ、本発明の好適な実施の形態について説明する。ただし、以下に記載されている構成部品の寸法、材質、形状およびそれらの相対配置などは、発明が適用される装置の構成や各種条件により適宜変更されるべきものであり、この発明の範囲を以下の記載に限定する趣旨のものではない。
本発明の被検体情報取得装置は、被検体への光(電磁波)の照射に起因して被検体内で発生し伝播した音響波を受信して、被検体の特性情報である被検体情報を画像データとして取得する光音響効果を利用した装置である。取得される被検体情報とは、光照射によって生じた音響波の発生源分布、被検体内の初期音圧分布、あるいは初期音圧分布から導かれる光エネルギー吸収密度分布や吸収係数分布、組織を構成する物質の濃度分布などを示す特性情報である。組織を構成する物質とは、例えば、酸素飽和度分布や酸化・還元ヘモグロビン濃度分布などの血液成分、あるいは脂肪、コラーゲン、水分などである。
本発明でいう音響波とは、典型的には超音波であり、音波、音響波と呼ばれる弾性波を含む。光音響効果により発生した音響波のことを、光音響波または光超音波と呼ぶ。本発
明の装置は、探触子等の音響波検出器によって被検体内で発生又は反射して伝播した音響波を受信する。
本発明は、光音響波の解析に画像データを生成し、その画像に基づく診断を可能にする光音響診断装置に適用できる。以下の記載では、被検体情報取得装置の代表例として、このような光音響診断装置について説明する。また本発明は、被検体情報取得装置の制御方法や、情報処理装置に制御方法を実行させるためのプログラムとして捉えることもできる。
<基本的な実施形態>
本発明の基本的な実施形態について説明する。まず、本発明の特徴である偏光板の配置について図1を用いて説明する。被検体102は測定対象であり、保持板105とは直接もしくは間接的に接している。パルス光101を照射することによって被検体102の内部にある光吸収体から音響波が発生する。音響波検出器104は、被検体102を介してパルス光101の出射端と対向しており、被検体からの音響波を受信する。本発明においては、パルス光101として偏光を用いる点に特徴がある。
本実施形態ではパルス光の進行方向は図1におけるZ軸方向(紙面上下方向)とし、Y軸方向(紙面垂直方向)に振動し、光軸を有する直線偏光を用いるものとする。偏光板103はY軸方向に吸収軸を有するものである。このような配置の結果、図1に示すように、被検体にはパルス光が直接照射される。一方、偏光板の吸収軸とパルス光の偏光軸とが共にY軸方向であり、一致しているため、音響波取得用のパルス光は音響波検出器には直接照射されない。
一方、X軸方向(紙面左右方向)に振動子、偏光軸を有する光は偏光板を透過する。その結果、音響波検出器と同じサイドから目視で被検体の状態を観察したり、測定中の被検体の様子をカメラでモニタリングしたりすることが可能となる。あるいは音響波取得のために照射する光の波長帯でのみ偏光能を示し、目視やカメラ観察に用いる波長帯では偏光能を示さない、いわゆるカラー偏光子に類するものを使用しても良い。
ところがこの場合、照射されたパルス光を偏光板が吸収することに起因して、光音響波が発生してしまう。この光音響波が音響波検出器に到達すると、ノイズの原因となる。そこで、この偏光板に由来するノイズ成分を、被検体に由来する音響波から分離できるように、被検体、偏光板、音響波検出器を設置する必要がある。
図1の例では、偏光板由来の音響波を分離するために、偏光板から発生した音響波が音響波検出器に伝わらないようにする絶縁層を設けている。すなわち、音響波検出器と偏光板との間に音響波絶縁層106を設ける。音響波絶縁層106の例としては、層状の気体(空気など)からなる気層が考えられる。ここで音響波の絶縁は完全でない場合でも、音響波の抑制の程度に応じて、一定のノイズを低減する効果を生じ得る。音響波絶縁層は、本発明の抑制部に相当する。
ここで、光の吸収能力はノイズ除去効果に直接寄与しているので、偏光板は吸収軸方向に関しては光を完全に吸収するものが望ましい。しかし、光を完全には吸収できない偏光板であっても、その吸収能力に応じたノイズ除去効果が得られる。また、十分なノイズ除去効果を得るためには、偏光板を透過した光によって生じる音響波検出器表面からの音響波が、被検体内の吸収体からの光音響信号よりも、所望するSN比に応じて小さくなければならない。多くの場合、偏光板によって70%程度の光を吸収できれば、効果が見られる。また同様の観点から、偏光板の吸収軸とパルス光の偏光軸のずれが約17度以内であれば、偏光板によって光の透過量を減少させることができるので、一定のノイズ除去効果を得ることが可能である。
音響波絶縁層として気層を用いる場合、材質としては空気が好適である。しかし、音響波検出器の検出面や偏光板と音響インピーダンスが異なる気体であれば利用可能である。
さらに、音響波絶縁層として金属などの音響反射材や、樹脂などの音響吸収材を用いても良い。音響波の絶縁は、光の遮蔽と同様に、絶縁能力に応じてノイズ除去効果が得られる。そのため、音響波を完全に絶縁できない場合でも、絶縁能力に応じた効果が得られる。つまり、偏光板から生じた音響波の一部が音響波検出器に伝達してしまったとしても、その偏光板に由来する音響波が、被検体内の吸収体で発生した音響波よりも小さければよい。なお本発明の主旨に鑑み、ここで用いる音響吸収剤は光透過性を有するものが好ましい。
偏光板の形状の調整方法について説明する。本実施形態では、基本的な概念を説明するために、形状の調整を手動で行う方法について記載する。しかし、後述の実施形態2以降で説明するように、形状調整が自動的に行われたり、形状によらずに機能を実現できたりすることが望ましい。
図2は、偏光板の形状調整方法について説明した図である。図中、紙面の手前から奥に向かうZ軸方向にパルス光が照射され、紙面の奥に音響波検出器があるものとする。被検体201は透明の保持板によって保持されており、その手前側に偏光板202が配置されている。ここではフィルム状の偏光板202を被検体201の外形に合わせるように切り取り加工した後、被検体の形状に合わせて配置する。このとき、図示したように、破線で表される被検体201の輪郭の内側に、偏光板202が入り込むようにすれば、光が音響波検出器まで到達しない。また、偏光板202から発生する光音響波が音響波検出器に伝播しないように、偏光板と保持板との間には空気層が存在している。
次に、図3を参照して、光音響診断装置の構成要素について説明する。装置は、光源301、光照射装置302、保持板304、偏光板305、音響波検出器306、信号処理装置307、情報処理装置308、表示装置309からなっている。測定対象は被検体303である。
(光源)
光源301はパルス光を発生させる装置である。光源としては大出力を得るため、レーザーが望ましいが、発光ダイオードやキセノンランプなどのパルス光源を用いてもよい。光音響波を効果的に発生させるためには、被検体の熱特性に応じて十分短い時間に光を照射させなければならない。被検体が生体の場合、光源301から発生するパルス光のパルス幅は数十ナノ秒以下にすることが望ましい。また、パルス光の波長は生体の窓と呼ばれる近赤外領域であり、700nm〜1200nm程度が望ましい。この領域の光は比較的生体深部まで到達することができ、深部の情報を得ることができる。生体表面部の測定に限定すれば、500〜700nm程度の可視光から近赤外領域も使用してもよい。さらに、パルス光の波長は観測対象に応じて、測定すべき被検体の吸収係数が背景の吸収係数よりも高いこと、など様々な要件を勘案し、適切に設定する。
上述の通り、本発明で用いる光源は被検体に照射する際には偏光特性を有することが必要である。一般にレーザーは偏光が出力されるため、その偏光を保持したまま被検体に照射すれば光利用効率の点で有利である。ただし、後述する光照射装置における最終段階、すなわち光を出射する時点で偏光特性を付与すればよいため、光源として偏光を出力させることは必須要件ではない。
(光照射装置)
光照射装置302は、光源301で発生させたパルス光を被検体303へ導く装置である。具体的には光ファイバーやレンズ、ミラー、拡散板などの光学機器である。また、これらの光学機器を用いて、パルス光の照射形状や光密度を変更することもある。光学機器はここにあげたものだけに限定されない。被検体に光を所望の形状や密度で照射できれば
、どのようなものでもよい。光照射装置は、本発明の照射部に相当する。
本発明では被検体に光を照射する際に偏光を用いる。そのため、上述の通り、光源が偏光特性を有しているのであれば、その偏光を維持する光学系を採用することが好ましい。光学系の中にバンドルファイバーを用いたり、拡散板を用いたりするなど、偏光特性が維持できない場合には、光照射装置の最終段で偏光板を用いるのが簡便である。その場合、光のロスを防ぐために、偏光ビームスプリッター(PBS)を用いるのが有効である。つまりPBSで偏光を分離させ、所望方向の偏光軸を有する偏光を被検体に照射すると共に、所望と異なる方向の偏光はλ/2板で偏光方向を所望とする方向に回転させて被検体に光照射するとよい。こうした偏光を用いる際の光利用効率の改善手法として、一般的な液晶プロジェクターに使用される技術を応用することが可能である。
なおここで用いる偏光は、後述する偏光板との組み合わせにおいて適切な偏光方向を決定すればよく、直線偏光あるいは円偏光のいずれでもよい。また、上述の通り偏光板での完全な光遮蔽がなくても、本発明の機能を発揮することができる。そのため、若干の楕円偏光成分が残存していても問題にならないような設計も可能である。
(被検体)
被検体303は測定対象である。被検体303として、生体または、生体の音響特性と光学特性を模擬したファントムを用いる。光音響診断装置では被検体の内部に存在する光吸収係数の大きい光吸収体をイメージングできるが、生体の場合、イメージングの対象はヘモグロビン、水、メラニン、コラーゲン、脂質などが挙げられる。ファントムの場合は、上記の生体成分の光学特性を模擬した物質を、光吸収体として内部に封入する。また、生体は形状、特性に個人差、個体差がある。
(保持板)
保持板304は被検体を安定に保持する部材である。同時に、生体内の深部領域を測定するために、被検体に圧力を加えて厚みを減少させる目的でも利用できる。本実施形態では2枚の保持板を用いて被検体を保持する構成を想定しているが、3枚以上の板を用いて保持しても良い。また、被検体を乗せる台座として1枚のみの板を用いる場合についても、その台座に用いる板を保持板と呼ぶことができる。保持板(典型的には音響波検出器と被検体の間のもの)は、本発明の保持部に相当する。
2枚の保持板を用いる場合、音響波検出器と被検体の間に保持板(保持板Bと称する)がある場合には、被検体から生じる音響波がなるべく減衰しないような材質を用いることが好ましい。アクリル、PETなどの樹脂を用いることが可能である。特に、ポリメチルペンテンを好適に用いることができる。もう一方の保持板(保持板Aと称する)については音響波を伝搬させる機能が不要であるので、ガラスや樹脂など、どの様な素材を用いても良い。ただしこの保持板Aを介して光照射装置302の光を被検体に照射する場合には、光透過性の高い素材を用いることが好ましい。
(偏光板)
偏光板305は、パルス光が音響波検出器306に直接照射されるのを防ぐために、光照射装置302の出射端と音響波検出器305の間に設置される。その結果、被検体303にはパルス光が直接当たるが、音響波検出器306にはパルス光が直接当たらなくなる。ただし、偏光板305にはパルス光が直接照射されるため、偏光板305から大きな音響波が発生する。この偏光板305由来の音響波はノイズとしてふるまうため、被検体303内の光吸収体に由来する音響波と分離する必要がある。例えば、上述のように空気層を設けて音響波を絶縁することが好ましい。本実施形態では、偏光板が本発明の強度低減部に相当する。また、他の実施形態においても、所定の方向の変更のみを透過させることで音響波検出器に到達する光量を低減させる偏光特性を持つ部材が、本発明の強度低減部に相当する。
偏光板305は被検体303の形状に応じて、形状を調整することが望ましい。ただし
、あらかじめ、形状の相異なる複数の偏光板305を用意しておき、被検体303に合わせて選ぶ方法でも良い。また、逆に偏光板305の形状に合わせて被検体303の形状を調整してもよい。また、偏光板305として、短冊状にカットした多くの板片を準備しておき、被検体を保持した後で被検体の上下左右の適切な位置に挿入する方法もある。
(音響波検出器)
音響波検出器306は音響波を電気信号に変換する受信素子を含む。受信素子が1次元又は2次元に配列された音響検出器であれば、光音響測定時間の短縮や、SN比の向上が期待できる。音響波検出器が被検体より小さい場合、被検体上を走査させれば良い。あるいは、複数の音響波検出器を別々の場所に設置しても良い。音響波検出器306は、被検体内で発生した音響波を受信する際、反射や減衰が起こりにくくするために、被検体303と音響的に結合される必要がある。そのために、音響波検出器306と被検体303の間に音響マッチングジェルや水、オイルなどの音響整合材を配置することが望ましい。音響波検出器は感度が高く、周波数帯域が広いものが望ましい。例えばPZT、PVDF、cMUT、ファブリペロー干渉計を用いた音響波検出器が挙げられる。音響波検出器は、本発明の検出部に相当する。
(信号処理装置)
信号処理装置307は音響波検出器306で得られた電気信号を増幅し、デジタル信号へと変換するものである。効率的にデータを取得するため、音響波検出器の受信素子数と同じだけAnalog−digital Converter(ADC)があることが望ましいが、一つのADCを時分割で切り替えて使用してもよい。
(情報処理装置)
情報処理装置308は信号処理装置307によって得られたデジタル信号を処理することによって、画像データを再構成するものである。情報処理装置として、具体的にはコンピュータ、電気回路などが挙げられる。この時の処理方法は、微分処理した信号を重ね合わせるユニバーサルバックプロジェクション法が望ましいが、画像を再構成できる方法ならどのような方法であってもよい。情報処理装置は、本発明の処理部に相当する。
(表示装置)
表示装置309は情報処理装置308で生成された画像データに基づき、被検体内部を画像化して表示する。具体的にはコンピュータやテレビなどのディスプレイが挙げられる。表示装置は、本発明の表示部に相当する。
次に図4を用いて動作フローについて述べる。
まず、ステップS401にて、被検体を装置に設置する。このとき保持板等を用いて被検体を適切な形状に調整する。次に、ステップS402にて、偏光板を装置に設置する。そしてステップS403にて、被検体の形状に合わせて偏光板の形状を調整する。偏光板の種類によっては、先に形状を調整してから設置する。こうして測定準備が完了したのち、本装置を動作させる。
ステップS404にて、光源からパルス光を被検体に照射する。すると、被検体が存在しない領域では偏光板が光を吸収するため、音響波検出器までは光が届かず、音響は検出器からのノイズは抑えられる。また、偏光板から発生した音響波は音響波検出器に届かないので、被検体からの音響波のみを分離して取得できる。
ステップS405にて、音響波検出器が音響波を受信し、電気信号に変換する。そしてステップS406にて各種の信号処理や、バックプロジェクション等による画像データの生成を行う。そしてステップS407にて被検体の画像を表示する。
本実施形態にかかる光音響診断装置によれば、音響波検出器表面では音響波を発生しな
い上、代わりに発生した偏光板からの音響波は音響波検出器に伝達されない。そのため、取得された電気信号からノイズ成分を除去できるので、画質の向上を図ることができる。また、保持板Bの外側から被検体の様子を観察することも可能である。
<実施形態2>
実施形態2では、偏光板としてフィルム状の柔らかい物を用いる場合を説明する。これは、基本的な実施形態で述べた偏光板の形状制御を不要にすることを狙いとしている。
一般に偏光板は、例えばTAC(トリアセチルセルロース)などからなる基材を用い、一定の厚みをもたせて安定にハンドリングできるようにしている。しかし、偏光板の機能自体は、ヨウ素系の吸収体を一方向に延伸させることによって光吸収の異方性を付与して発現させているものであり、この光吸収に寄与する厚みはミクロンオーダーである。そのため、基材として、厚みが薄いものを用いれば、非常に柔らかい偏光フィルムを作成可能である。例えば一般的な偏光板は基材の厚みが200ミクロン程度であるため、文具の下敷き程度の硬さを有するが、50ミクロン程度に薄くすれば食品用のラップ材程度の柔らかさに設定することができる。
図5に、吸収軸501の方向(Y方向)に吸収特性を持つ、柔らかい偏光フィルム502を模式的に示す。上述の通り、この偏光板の吸収軸501の方向は所定の方向よりも17度程度ずれても本発明の機能は満たす。したがって、ハンドリング時にフィルムが歪んだり延伸されたりしても、その量が軽微であれば、一定の光遮断効果を発揮するので、ノイズを抑えることができる。
図6に、本実施形態における被検体の設置例を示す。被検体601は、Y軸方向(紙面に垂直な方向)に吸収軸を有する偏光フィルム602に包まれるようにして、保持板A(603)に接している。この状態で、保持板B(604)を徐々に被検体に近づけ、「保持板B−偏光フィルム−被検体」の順になるように密着させる。これにより、被検体と音響波検出器606との間に空気層が存在せず、被検体が存在しない領域では偏光フィルムと音響波検出器との間に空気層が存在する、という状況を作ることが可能となる。
この状況下で、保持板A側からY軸方向に偏光軸を有する偏光パルス605を照射する。まず、被検体601が存在しない領域では、偏光フィルムによって光が吸収されるので、保持板Bもしくは音響波検出器への光は遮られる。なお、その際、偏光フィルムから音響波が発生するが、偏光フィルムと音響波検出器との間に空気層が存在するために、音響波検出器に到達することはない。
一方、被検体601が存在する領域では、被検体により光が吸収され、測定すべき音響波が発生する。被検体からの音響波は、偏光フィルムと保持板Bを介して音響波検出器に到達する。このときの偏光フィルムの影響については、偏光フィルムの厚みを光音響波の波長よりも薄く設定すれば無視することが可能である。例えば、フィルムの厚みが100ミクロン以下であれば、数MHzの超音波からなる光音響波の伝播には影響することはない。
以上述べたように、本実施形態によれば、形状の調整が容易な偏光フィルムを用いて測定を行うため、設置に時間がかからず被検体(被検者)への負担を軽減することができる。また基本的な実施形態と同様、ノイズの少ない光音響画像が得られるという利点は享受できる。さらに、偏光フィルムは吸収軸以外の偏光方向に対する光透過性を有するため、保持板B側から被検体の様子を観察することが可能である。
さらに本実施形態において、非特許文献1のように、音響波検出器側からの光照射を行うことも可能である(図6に符号607で示す)。これにより、光が到達する範囲を広げ
たり、光の強度を強めたりできるので、被検体の深部をより良好に画像化できるようになる。この場合、パルス光607の偏光方向をX軸方向となるように調整することで、偏光フィルムを透過させることできる。その際、パルス光607が音響波検出器に入射しないように、光源からの出射端を配置することが好ましい。パルス光607を出射する出射端は、本発明の第2の照射部に相当する。
<実施形態3>
本実施形態では、偏光板として一般に用いられる吸収型偏光板ではなく、特定の偏光を反射し、それと垂直方向の偏光を透過するような反射偏光板を採用する。これにより、上記実施形態2で述べた、偏光フィルムで被検体を包むような測定時の手技が不要となる。
反射偏光板の代表例として、ワイヤーグリッド型偏光板が知られている。これは適切な間隔で直線状の金属ワイヤーを並べることによって、ワイヤー群と平行方向の光を反射させ、ワイヤー群と垂直方向の光を透過させる性質を有している。
図7はワイヤーグリッド型偏光板を用いた例を示している。ここで、ワイヤー群はY軸に平行に並べられているように配置する。そうすることで、Y軸方向に偏光軸を有する偏光パルス光705はワイヤーグリッド偏光板702にて反射し、音響波検出器706へのパルス光の到達が防止されるので、ノイズの発生を抑制できる。
なお図7では、反射偏光板702を保持板B(704)と被検体701の間に配置しているが、保持板B(704)と音響波検出器706との間に反射偏光板702を配置しても良い。
このように本実施形態によれば、実施形態2のような測定時の手技が不要となるため、設置に時間がかからず被検体(被検者)への負担を軽減することができる。なお、ノイズの少ない光音響画像が得られるという利点はそのまま享受できる。さらに、保持板Bの外側から被検体の様子を観察することが可能である。
さらに本実施形態において、非特許文献1のように、音響波検出器側からの光照射を行うことも可能である(図7に符号707で示す)。これにより深部の診断を良好に行うことができる。この場合、パルス光707の偏光方向をX軸方向となるように調整することで、ワイヤーグリッド偏光板702を透過させることできる。
<実施形態4>
本実施形態は、偏光板を配置する角度を適切化することにより、特別な手技を実施しなくとも本発明の目的を果たすことを狙いとする。特に、平面波回避のために斜め偏光板を用いる方法について説明する。
実施形態1および2では、パルス光照射時に偏光板から発せられる光音響波が音響波検出器に到達するのを防ぐために空気層を設けた。ここで、音響波検出器は一般に指向性を有している。つまり、正面から受信した音響波は感度良く電気信号に変換することが可能であるが、斜め方向から受信した音響波に対する感度は極めて悪い。音響波検出器の指向性は、設計や素子の種類にも依存するが、一般的には、正面が最も感度がよく、極角方向に20度程度傾いた方向から到達する超音波はほとんど受信できない。本実施形態4ではこの音響波検出器の指向性を利用する。
図8は本実施形態に用いる保持板B(801)を表している。この保持板Bには、平面状の偏光板802が複数内蔵されている。保持板Bの法線と、偏光板の法線とは、所定の角度だけ傾いている。ここでいう所定の角度とは、音響波検出器の指向性、および保持板Bと音響波検出器直上にある素材の音速からスネルの法則によって求められる角度を考慮して求められる。音響波検出器として上述した一般的なものを利用し、かつ、保持板Bと
してポリメチルペンテン等の樹脂板803を利用する場合、保持板Bの法線の方向と偏光板の法線の方向とのなす角が45度以上であれば、偏光板からの音響波はほとんど検出されない。また、偏光板は、保持板Bの法線方向から観察した際に隙間(偏光板の存在しない領域)が無いように、密に配列させている。
図9は保持板B(901)の上面図である。保持板B内には、上述したように、複数の偏光板902が所定の角度で斜めに配置されている。光照射後、偏光板の光吸収によって、偏光板の法線方向に平面波903が発せられる。平面波(音響波)903は、保持板B内では偏光板の法線方向に伝搬し、保持板Bから外に出ると屈折波904となる。本図のように、外部の音速が保持板内よりも遅い場合には、音響波は、保持板Bの法線に近づく方向に屈折する。その後、音響波検出器905に屈折波が到達する。ところが、この音響波検出器には指向性が存在し、音響波の検出可能範囲906が限定されている。そのため、検出可能範囲から外れた方向から到達する屈折波904はほとんど検出されず、ノイズの原因となることはない。
図10に、実施形態4にかかる保持板B(1004)を光音響診断装置に適用した様子を示す。保持板A(1003)側から照射されるパルス光1005は、Y軸方向に特性を持つ偏光である。被検体1001の存在しない領域に照射されたパルス光が保持板B内の偏光板1002によって吸収されると、偏光板自身から光音響波が生じる。しかしこの音響波の進行方向は音響波検出器1006の検出可能範囲から外れているため、ノイズの原因にはならない。
このように本実施形態によれば、音響波検出器に光が照射されないため、ノイズの少ない光音響画像が得られる。さらに、保持板Bの外側から被検体の様子を観察することが可能である。
さらに本実施形態において、非特許文献1のように、音響波検出器側からの光照射を行うことも可能である(図10に符号1007で示す)。これにより深部の診断を良好に行うことができる。この場合、パルス光1007の偏光方向をX軸方向となるように調整するで、偏光板を透過させることが可能となる。
<実施形態5>
本実施形態では、実施形態4と同様の構成を採用し、かつ実施形態3と同様に反射偏光板を採用することにより、特別な手技を実施しなくとも本発明の目的を果たすことを狙いとする。すなわち、平面波回避のための斜め偏光板と、反射偏光板を組み合わせる手法である。
図7を参照しつつ実施形態3で述べたように、ワイヤーグリッド偏光板に代表される反射偏光板を採用することによって、音響波検出器への直接の光照射を抑制できる。ところが、反射偏光板の種類や個体差によっては、反射率が不十分な場合もある。その場合、反射偏光板による光吸収が多少なりとも行われるので、音響波が発生してしまい、ノイズの原因となる。
このようなノイズを抑制するために本実施形態では、実施形態3にかかる反射偏光板を、保持板内に斜めに配置する構成を採用する。その際には以下の点で注意が必要である。図8や図9に示すような偏光板を斜めに配置する構成を採用するにあたって、簡単のため、全ての反射偏光板の法線方向が平行になるように配置され、かつ、保持板Bの法線と反射偏光板の法線とのなす角が45度である構成を仮定する。この配置において、図11のようにY軸方向の偏光軸を有するパルス光1101が保持板B(1102)に照射されると、反射偏光板1103によってパルス光の進行方向が直角方向に変化する。そのパルス
光は隣接する反射偏光板によって更に反射され、音響波検出器の方向に進行する。その結果、音響波検出器(図示せず)に直接パルス光が到達することになり、ノイズの原因となる。
そこで本実施形態では、図12に示すように、保持板B(1202)内において、隣接する反射偏光板1203同士で向きを変えて並置する。これにより、反射偏光板1203に到達した光が音響波検出器に届くことがなく、再び光照射装置の方向に戻すことが可能となる。反射偏光板の配置角度としては例えば、隣接する偏光板同士が、保持板Bの法線方向の平面を挟んで対称となるような角度が考えられる。
図12のような配置であれば、パルス光1201は音響波検出器に到達することはない。同時に、反射偏光板によって発生したわずかな光音響波についても音響波検出器が検知することがなくなる。
このように本実施形態によれば、音響波検出器に光が照射されないため、ノイズの抑制が可能となる。さらに、保持板Bの外側から被検体の様子を観察することが可能である。
<実施例>
本発明の効果を表す実施例について、上述の基本的な実施形態を採用した場合について説明する。被検体1301は半球状のファントムであり、ファントム母材の音響特性及び光学特性は生体に近づけたものを用いる。ファントム内部には光吸収体が表面から5mm程度の位置に設置されている。光吸収体の光吸収係数は、ファントム母材の光吸収係数に対して、約5倍とする。また、保持板として厚さ10mmのポリメチルペンテン二枚を利用して、被検体の両側に密着させて保持する。さらに片側の保持板の向こう側(被検体と接していない側の面)に1mmの油層を設け、その油層を通して音響波検出器を保持板に密着させる。油層に用いたのはひまし油である。音響波検出器の受信素子には、受信部の直径が2mm、中心周波数1MHzで帯域80%のPZTを用いた。この受信素子を平面方向に18×18個並べて、一つの音響波検出器とする。また、音響波検出器はXYステージに接続されており、受信素子が並んだ受信面を被検体に向けつつ、被検体表面を走査できる。
保持板の法線方向をZ軸、Z軸と直交し水平方向となる軸をX軸、XZ平面と直交する軸をY軸とする。被検体を保持した状態で、光源から、Z軸方向に伝搬しY軸方向の偏光方向を有するパルス光を照射する。照射光として、Nd:YAGレーザーを用いて波長1064nmのナノ秒オーダーのパルス光を用いた。光源は、被検体を間において、音響波検出器と逆の面から光を照射する。このとき、Y軸方向に吸収軸を有する偏光板を被検体の形状に合わせて切り取り、音響波検出器が接していない方の保持板に貼り付けて固定する。
かかる装置により、パルス光の照射、音響波信号の収集、走査を繰り返すことにより、全信号データが得られた。この時用いられるアナログデジタルコンバータは、サンプリング周波数20MHz、分解能12bitである。デジタル信号に対してバックプロジェクションを用いて再構成を行い、三次元画像データを取得する。また、比較のために偏光板を設置せずに、同様の測定を行う。
図13(a)に偏光板を設置している場合の、図13(b)に偏光板を設置していない場合の、三次元画像データのMIP(Maximum Intensity Projection)図を示す。図13(b)にあるように、偏光板を設置しない場合は内部に設置されている三本の光吸収体は見えているものの、被検体外形1302の外側に大きなノイズ1303が発生している。このノイズは被検体内部の方まで浸食している。
一方、偏光板を設置した場合は、図13(a)にあるように、被検体外形の外側のノイ
ズは発生せず、光吸収体が浮かび上がって見えている。また、光吸収体の部分のシグナルノイズ比は、偏光板がない場合は2.8だったのに対し、偏光板がある場合は4.2となり、画質の改善がみられる。
以上のように、本発明によって、ノイズの発生を抑え、高品位の画質を有する画像が得られる。なお実施形態2〜5にしたがって同様に実施を行なっても、本実施例と同様に高い品位の画像を得ることが可能である。
また上記の説明では直線偏光を用いた場合について説明を行ったが、円偏光、楕円偏光のパルス光、ならびにそれに対応して適切に設計された偏光板を用いても、同様の効果が得られる。
301:光源,302:光照射装置,304:保持板,305:偏光板,306:音響波検出器,308:情報処理装置

Claims (23)

  1. 光源からの光を照射する照射部と、
    前記照射部から出射したのち、被検体に照射される光に起因して発生する音響波を受信する検出部と、
    前記照射部から出射したのち、前記検出部に照射される光の強度を低減させる強度低減部と、
    前記検出部が受信した音響波を用いて前記被検体内部の特性情報を取得する処理部と、を有することを特徴とする被検体情報取得装置。
  2. 前記強度低減部は、前記照射部から出射したのち、前記被検体を介することなく前記検出部に照射される光の強度を低減させる
    ことを特徴とする請求項1に記載の被検体情報取得装置。
  3. 前記検出部は、前記被検体を介して前記照射部と対向する位置に配置されており、
    前記強度低減部は、前記照射部と前記検出部との間に前記被検体が存在しない領域に配置される
    ことを特徴とする請求項1または2に記載の被検体情報取得装置。
  4. 前記照射部は、所定の方向に偏光軸を有する偏光を照射し、
    前記強度低減部は、前記所定の方向に偏光軸を有する偏光を透過させない部材である
    ことを特徴とする請求項3に記載の被検体情報取得装置。
  5. 前記強度低減部は、偏光板である
    ことを特徴とする請求項4に記載の被検体情報取得装置。
  6. 前記強度低減部は、前記被検体の形状に合わせて形状を調整された偏光板である
    ことを特徴とする請求項5に記載の被検体情報取得装置。
  7. 前記強度低減部は、短冊状にカットされた複数の偏光板である
    ことを特徴とする請求項5に記載の被検体情報取得装置。
  8. 前記強度低減部は、前記所定の方向に偏光軸を有する偏光を反射させる反射偏光板である
    ことを特徴とする請求項5に記載の被検体情報取得装置。
  9. 前記強度低減部は、ワイヤーグリッド型偏光板である
    ことを特徴とする請求項8に記載の被検体情報取得装置。
  10. 前記強度低減部は、偏光フィルムである
    ことを特徴とする請求項4に記載の被検体情報取得装置。
  11. 前記被検体を保持する保持部をさらに有し、
    前記強度低減部は、前記保持部の内部に配置された複数の偏光板である
    ことを特徴とする請求項4に記載の被検体情報取得装置。
  12. 前記保持部の法線の方向と前記複数の偏光板の法線の方向が所定の角度をなす
    ことを特徴とする請求項11に記載の被検体情報取得装置。
  13. 前記所定の角度は、前記検出部が前記音響波を受信するときの指向性に基づいて定まる
    ことを特徴とする請求項12に記載の被検体情報取得装置。
  14. 前記強度低減部は、前記保持部の内部に配置された複数の反射偏光板であり、
    前記複数の反射偏光板は、隣接するもの同士が向きを変えて配置されている
    ことを特徴とする請求項11に記載の被検体情報取得装置。
  15. 前記被検体を保持する保持部をさらに有し、
    前記検出部は、前記保持部を介して前記被検体に接している
    ことを特徴とする請求項1ないし10のいずれか1項に記載の被検体情報取得装置。
  16. 前記検出部は、前記保持部の表面を走査して複数の位置で前記音響波を受信する
    ことを特徴とする請求項15に記載の被検体情報取得装置。
  17. 前記強度低減部と前記検出部との間に設けられ、前記強度低減部に照射される光に起因して発生する音響波の伝搬を抑制する抑制部をさらに有する
    ことを特徴とする請求項1ないし16のいずれか1項に記載の被検体情報取得装置。
  18. 前記抑制部は、気体からなる層である
    ことを特徴とする請求項17に記載の被検体情報取得装置。
  19. 前記被検体を介して前記照射部と対向する位置から、前記被検体に対して、前記所定の方向とは異なる方向の偏光軸を有する偏光を照射する第2の照射部をさらに有する
    ことを特徴とする請求項4に記載の被検体情報取得装置。
  20. 前記光源は、偏光であるレーザーを出力し、
    前記照射部は、前記レーザーの偏光特性を保ったまま照射を行う
    ことを特徴とする請求項3または4に記載の被検体情報取得装置。
  21. 前記照射部は、前記光源から導かれた光に偏光特性を付与してから照射を行う
    ことを特徴とする請求項3または4に記載の被検体情報取得装置。
  22. 前記特性情報に基づいて、前記被検体内部の画像を表示する表示部をさらに有する
    ことを特徴とする請求項1ないし19のいずれか1項に記載の被検体情報取得装置。
  23. 光源からの光を被検体に照射する照射部と、
    音響波を受信する検出部と、
    前記照射部から出射したのち、前記検出部に照射される光の強度を低減させる強度低減部と、
    前記検出部が受信した音響波を用いて前記被検体内部の特性情報を取得する処理部と、を有する被検体情報取得装置の制御方法であって、
    前記検出部が、前記照射部から出射したのち、前記被検体に照射される光に起因して発生する音響波を受信するステップと、
    前記処理部が、前記検出部が受信した音響波を用いて前記被検体内部の特性情報を取得するステップと、
    を有することを特徴とする被検体情報取得装置の制御方法。
JP2013064510A 2013-03-26 2013-03-26 被検体情報取得装置およびその制御方法 Pending JP2014188066A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013064510A JP2014188066A (ja) 2013-03-26 2013-03-26 被検体情報取得装置およびその制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013064510A JP2014188066A (ja) 2013-03-26 2013-03-26 被検体情報取得装置およびその制御方法

Publications (1)

Publication Number Publication Date
JP2014188066A true JP2014188066A (ja) 2014-10-06

Family

ID=51835037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013064510A Pending JP2014188066A (ja) 2013-03-26 2013-03-26 被検体情報取得装置およびその制御方法

Country Status (1)

Country Link
JP (1) JP2014188066A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10481103B2 (en) 2017-10-20 2019-11-19 Toyota Jidosha Kabushiki Kaisha Inspection device, inspection facility and inspection device failure confirmation method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136321A (ja) * 2007-12-03 2009-06-25 Nippon Telegr & Teleph Corp <Ntt> 成分濃度測定装置
JP2009136320A (ja) * 2007-12-03 2009-06-25 Nippon Telegr & Teleph Corp <Ntt> 成分濃度測定装置
JP2011083531A (ja) * 2009-10-19 2011-04-28 Canon Inc 音響波測定装置、音響波画像化装置および音響波測定装置の制御方法
JP2011097990A (ja) * 2009-11-04 2011-05-19 Canon Inc 生体情報取得装置
JP2011229735A (ja) * 2010-04-28 2011-11-17 Canon Inc 測定装置
JP2011229756A (ja) * 2010-04-28 2011-11-17 Canon Inc 光音響イメージング装置、光音響イメージング方法
JP2011255028A (ja) * 2010-06-10 2011-12-22 Canon Inc 光音響測定装置
JP2012173246A (ja) * 2011-02-24 2012-09-10 Fujifilm Corp 光音響画像化装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136321A (ja) * 2007-12-03 2009-06-25 Nippon Telegr & Teleph Corp <Ntt> 成分濃度測定装置
JP2009136320A (ja) * 2007-12-03 2009-06-25 Nippon Telegr & Teleph Corp <Ntt> 成分濃度測定装置
JP2011083531A (ja) * 2009-10-19 2011-04-28 Canon Inc 音響波測定装置、音響波画像化装置および音響波測定装置の制御方法
JP2011097990A (ja) * 2009-11-04 2011-05-19 Canon Inc 生体情報取得装置
JP2011229735A (ja) * 2010-04-28 2011-11-17 Canon Inc 測定装置
JP2011229756A (ja) * 2010-04-28 2011-11-17 Canon Inc 光音響イメージング装置、光音響イメージング方法
JP2011255028A (ja) * 2010-06-10 2011-12-22 Canon Inc 光音響測定装置
JP2012173246A (ja) * 2011-02-24 2012-09-10 Fujifilm Corp 光音響画像化装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10481103B2 (en) 2017-10-20 2019-11-19 Toyota Jidosha Kabushiki Kaisha Inspection device, inspection facility and inspection device failure confirmation method

Similar Documents

Publication Publication Date Title
US10709419B2 (en) Dual modality imaging system for coregistered functional and anatomical mapping
US9757092B2 (en) Method for dual modality optoacoustic imaging
AU2012332233B2 (en) Dual modality imaging system for coregistered functional and anatomical mapping
US10433732B2 (en) Optoacoustic imaging system having handheld probe utilizing optically reflective material
JP5661451B2 (ja) 被検体情報取得装置及び被検体情報取得方法
WO2015118881A1 (en) Photoacoustic apparatus and signal processing method
JP6012386B2 (ja) 被検体情報取得装置およびその制御方法
JP5627360B2 (ja) 光音響イメージング装置およびその制御方法
JP5675390B2 (ja) 測定装置
JP2011072721A (ja) 測定装置
JP2014066701A (ja) 被検体情報取得装置
JP6678189B2 (ja) 音響光学撮像方法およびシステム
JP2017047177A (ja) 被検体情報取得装置および被検体情報取得装置の制御方法
JP6184146B2 (ja) 被検体情報取得装置およびその制御方法
JP2017047178A (ja) 被検体情報取得装置
KR20130131422A (ko) 측정 장치
JP5932814B2 (ja) 被検体情報取得装置
JP6456129B2 (ja) 被検体情報取得装置およびその制御方法ならびに光量制御方法
JP2013103064A (ja) 音響波取得装置
JP2014188066A (ja) 被検体情報取得装置およびその制御方法
JP2017047056A (ja) 被検体情報取得装置
JP2015062551A (ja) 被検体情報取得装置およびその制御方法
JP6188843B2 (ja) 生体検査装置
JP2012090862A (ja) 光音響検査用探触子および光音響検査装置
WO2020008824A1 (ja) 音響波プローブおよび音響波プローブの設置方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170815