JP2014185373A - Removal device for rare earth impurities in nickel electroplating solution - Google Patents

Removal device for rare earth impurities in nickel electroplating solution Download PDF

Info

Publication number
JP2014185373A
JP2014185373A JP2013061649A JP2013061649A JP2014185373A JP 2014185373 A JP2014185373 A JP 2014185373A JP 2013061649 A JP2013061649 A JP 2013061649A JP 2013061649 A JP2013061649 A JP 2013061649A JP 2014185373 A JP2014185373 A JP 2014185373A
Authority
JP
Japan
Prior art keywords
plating solution
plating
heating
rare earth
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013061649A
Other languages
Japanese (ja)
Other versions
JP6119353B2 (en
Inventor
Masanao Kamachi
蒲池政直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2013061649A priority Critical patent/JP6119353B2/en
Priority to CN201410113723.2A priority patent/CN104073865B/en
Priority to CN201420137298.6U priority patent/CN204125559U/en
Publication of JP2014185373A publication Critical patent/JP2014185373A/en
Application granted granted Critical
Publication of JP6119353B2 publication Critical patent/JP6119353B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemically Coating (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a device which removes relatively easily and efficiently rare earth impurities dissolved in the plating solution in plating a rare earth magnet because ingredients of the rare earth magnet dissolve in the plating solution and becomes a possible cause for poor plating.SOLUTION: Rare earth impurities are precipitated by warming a nickel electroplating solution containing dissolved rare earth impurities by the warming means 7 in a plating tank provided with warming means 7, cooling means 8 and separation removal means 9. After the warmed plating solution is cooled to a temperature for plating treatment by the cooling means 8, the plating solution after separation removal of the precipitation of rare earth impurities by the separation removal means 9 is circulated, while the concentration of the impurities in the plating solution in the plating tank is decreased.

Description

本発明は、電気ニッケルめっき液中の希土類不純物を除去する除去装置に関する。   The present invention relates to a removal apparatus for removing rare earth impurities in an electronickel plating solution.

希土類系磁石の中で特にR−Fe−B系焼結磁石(RはYを含む希土類元素のうち少なくとも一種以上でありNdを必ず含む)は、磁気特性が高く、広く使用されているが、主たる成分として含有されているNdやFeは非常に錆びやすい。このため耐食性を向上させることを目的として、磁石表面に防錆被膜が施される。中でも電気ニッケルめっきは硬度も高く、めっき工程の管理が無電解めっきに比較して簡便であり、本系磁石にも広く採用されている。
上記電気ニッケルめっきによるめっき被膜の成長過程のごく初期においては、成膜と同時に被めっき物の成分がめっき液中に溶解することがある。
特にめっき液のpHが酸性側に傾いている場合や被めっき物がめっき液に溶解しやすい場合、めっき液に被めっき物が溶解し不純物としてめっき液中に蓄積する。
R−Fe−B系焼結磁石の場合は、主成分であるNd等の希土類元素やFeがめっき液に溶解し不純物となる。
よって継続してめっき処理を行うとめっき液中に磁石素材の主成分であるNd等の希土類不純物やFeが溶解し蓄積していく。不純物が無い状態でめっきを行うためにはめっき処理毎に新しいめっき液を建浴することが必要となる。製造工程においてめっき処理毎に新たなめっき液を建浴することはコストアップとなり困難である。実質的には不可能といえる。
Among rare earth magnets, R—Fe—B based sintered magnets (R is at least one of rare earth elements including Y and necessarily contains Nd) have high magnetic properties and are widely used. Nd and Fe contained as main components are very rusting. For this reason, a rust preventive film is given to the magnet surface for the purpose of improving corrosion resistance. In particular, electronickel plating has high hardness, and the management of the plating process is simpler than electroless plating, and is widely adopted for this magnet.
In the very initial stage of the growth process of the plating film by the electro nickel plating, the components of the object to be plated may be dissolved in the plating solution simultaneously with the film formation.
In particular, when the pH of the plating solution is inclined to the acidic side or when the object to be plated is easily dissolved in the plating solution, the object to be plated dissolves in the plating solution and accumulates as impurities in the plating solution.
In the case of an R—Fe—B based sintered magnet, a rare earth element such as Nd, which is a main component, or Fe dissolves in the plating solution and becomes an impurity.
Therefore, when the plating process is continuously performed, rare earth impurities such as Nd and Fe, which are main components of the magnet material, are dissolved and accumulated in the plating solution. In order to perform plating without impurities, it is necessary to build a new plating solution for each plating process. In the manufacturing process, it is difficult to build a new plating solution for each plating process because the cost increases. It is virtually impossible.

電気ニッケルめっきの場合は、一般的にめっき液中に不純物が含有されていると、光沢の変化や被めっき物との密着不良、やけ(焦げ)などが発生し易い。
例えば、希土類元素がめっき液中に不純物として蓄積し一定量以上になると、めっき被膜と磁石素材の間で密着性が低下し剥離が発生したり、めっき被膜成膜中の電流断続を起因とする層内剥離である2重めっきが発生する。
密着性が低下し2重めっきのような不良が発生するか否かはめっき液の組成やめっき条件によるが、本発明者の実験によると希土類不純物量が700ppm(主にNd不純物)を超えると発生しやすくなる。さらにバレル方式によるめっきは、局部的に大きな電流が被めっき物に流れるため、2重めっきが発生しやすいことも確認している。
工業的量産規模で電気ニッケルめっきを実施する場合に、電気ニッケルめっき液中の希土類不純物が全くない状態を維持することは、製造コストの観点からも非現実的であり、一般的に採用されていない。しかし、品質管理の観点から希土類不純物量が700ppmを超えず、低く管理するのが望ましい。
In the case of electro-nickel plating, generally, if an impurity is contained in the plating solution, a change in gloss, poor adhesion with the object to be plated, or burn (burn) is likely to occur.
For example, if a rare earth element accumulates as an impurity in the plating solution and exceeds a certain amount, adhesion between the plating film and the magnet material decreases, causing peeling, or current interruption during plating film formation. Double plating which is in-layer peeling occurs.
Whether or not a defect such as double plating occurs due to a decrease in adhesion depends on the composition of the plating solution and the plating conditions. According to the experiments by the present inventors, when the amount of rare earth impurities exceeds 700 ppm (mainly Nd impurities). It tends to occur. Furthermore, it has also been confirmed that the plating by the barrel method is likely to cause double plating because a large current flows locally to the object to be plated.
Maintaining the absence of rare earth impurities in the electronickel plating solution when performing electronickel plating on an industrial mass production scale is impractical from the viewpoint of manufacturing cost and is generally adopted. Absent. However, from the viewpoint of quality control, the amount of rare earth impurities does not exceed 700 ppm, and it is desirable to manage it low.

電気ニッケルめっき液に溶解しているFeなどの不純物を除去する方法としては、めっき液に炭酸ニッケル等のニッケル化合物を添加し、めっき液のpHを上げ(同時に活性炭を添加し有機不純物を除去する場合もある)、さらにエアー攪拌することで不純物を析出させ、その後、濾過する方法や、めっき液中に鉄の網や板を浸漬し、低電流密度で陰極電解する方法が一般的に行われている。
これらの方法は電気ニッケルめっき液に溶解した鉄や有機物の不純物を除去する方法としては有効だが、希土類不純物を除去することは極めて困難である。
特許文献1には、希土類金属の精製や分離に使用される薬剤を用い、電気ニッケルめっき液から希土類不純物を除去する方法及び装置が開示されている。
この方法は、電気ニッケルめっき液中の希土類不純物を低減する方法の一つとして有効と考えられる。
しかし、この方法の実現のためには、複雑な工程を採用する必要があり効率的でなく、しかも、特別な薬剤が必要である。このようなことから、装置も操作が煩雑となり、必然的に構成も複雑となる。
As a method of removing impurities such as Fe dissolved in the electric nickel plating solution, a nickel compound such as nickel carbonate is added to the plating solution, and the pH of the plating solution is increased (at the same time, activated carbon is added to remove organic impurities). In some cases, impurities are precipitated by further agitation with air, followed by filtration, or by immersing an iron net or plate in the plating solution and cathodic electrolysis at a low current density. ing.
These methods are effective as a method for removing impurities of iron and organic matter dissolved in the electro nickel plating solution, but it is extremely difficult to remove rare earth impurities.
Patent Document 1 discloses a method and apparatus for removing rare earth impurities from an electronickel plating solution using a chemical used for purification and separation of rare earth metals.
This method is considered to be effective as one of the methods for reducing rare earth impurities in the electronickel plating solution.
However, in order to realize this method, it is necessary to employ a complicated process, which is not efficient, and a special drug is required. For this reason, the operation of the apparatus is complicated and the configuration is inevitably complicated.

特開平7−62600号公報Japanese Patent Laid-Open No. 7-62600

本発明は、比較的簡単な構成からなり、操作性が良く、比較的簡便で効率よく電気ニッケルめっき液中の希土類不純物を除去できる除去装置を提供することを目的とするものである。   An object of the present invention is to provide a removal device that has a relatively simple structure, has good operability, is relatively simple and can efficiently remove rare earth impurities in an electronickel plating solution.

請求項1に記載する本発明は、電気ニッケルめっき液中の希土類不純物の除去装置であって、希土類不純物を含む電気ニッケルめっき液を加温する加温手段、前記加温手段による加温により析出した析出物を含む電気ニッケルめっき液を冷却する冷却手段、前記冷却手段により冷却された電気ニッケルめっき液から前記析出物を分離し除去する分離除去手段を有することを特徴とする除去装置である。
請求項2に記載する本発明は、前記加温手段は、前記希土類不純物を含む電気ニッケルめっき液を80℃以上に加温することができ、前記冷却手段は、前記加温手段により加温された前記析出物を含む電気ニッケルめっき液を加温前の温度に冷却することができることを特徴とする請求項1に記載の除去装置である。
請求項3に記載する本発明は、前記加温手段は、加温ヒーター又は加温用熱交換器であり、前記冷却手段は、冷却パイプ又は冷却用熱交換器であることを特徴とする請求項1または2に記載の除去装置である。
請求項4に記載する本発明は、前記分離除去手段は、濾過器又は沈降槽であることを特徴とする請求項1〜3のいずれかに記載の除去装置である。
請求項5に記載する本発明は、前記加温手段、冷却手段及び分離除去手段が、前記加温手段を介して希土類不純物を含む電気ニッケルめっき液を溜める貯液槽に接続されていることを特徴とする請求項1〜4のいずれかに記載の除去装置である。
請求項6に記載する本発明は、前記貯液槽がめっき槽であり、前記分離除去手段により前記析出物が除去された電気ニッケルめっき液を前記めっき槽に戻すことが可能に接続されていることを特徴とする請求項5に記載の除去装置である。
請求項7に記載する本発明は、前記めっき槽と加温手段との間に、前記めっき槽に溜められた希土類不純物を含む電気ニッケルめっき液を加温手段に移動する移動手段としてポンプを配置したことを特徴とする請求項6に記載の除去装置である。
The present invention according to claim 1 is an apparatus for removing rare earth impurities in an electronickel plating solution, which is a heating means for heating an electronickel plating solution containing rare earth impurities, and is deposited by heating by the heating means. And a separation / removal means for separating and removing the precipitate from the electrolytic nickel plating solution cooled by the cooling means.
According to the second aspect of the present invention, the heating means can heat the electro nickel plating solution containing the rare earth impurities to 80 ° C. or more, and the cooling means is heated by the heating means. The removal apparatus according to claim 1, wherein the electrolytic nickel plating solution containing the precipitate can be cooled to a temperature before heating.
The present invention described in claim 3 is characterized in that the heating means is a heating heater or a heating heat exchanger, and the cooling means is a cooling pipe or a cooling heat exchanger. Item 3. The removing device according to Item 1 or 2.
The present invention described in claim 4 is the removing apparatus according to any one of claims 1 to 3, wherein the separation and removal means is a filter or a sedimentation tank.
The present invention described in claim 5 is characterized in that the heating means, the cooling means, and the separation and removal means are connected to a liquid storage tank for storing an electro nickel plating solution containing rare earth impurities via the heating means. It is a removal apparatus in any one of Claims 1-4 characterized by the above-mentioned.
The present invention described in claim 6 is connected so that the liquid storage tank is a plating tank, and the electrolytic nickel plating liquid from which the precipitate is removed by the separation and removal means can be returned to the plating tank. The removal apparatus according to claim 5.
In the present invention described in claim 7, a pump is disposed between the plating tank and the heating means as a moving means for moving the electro nickel plating solution containing rare earth impurities stored in the plating tank to the heating means. The removal apparatus according to claim 6, wherein

本発明によれば、比較的簡単な構成からなり、操作性が良い、電気ニッケルめっき液中の希土類不純物の除去装置が提供でき、この除去装置によって、電気ニッケルめっき液中の希土類不純物を、複雑な工程を採用せず、かつ特別の薬剤を使用することなく比較的簡便に効率的に除去することができる。そのため、特にR−Fe−B系焼結磁石への電気ニッケルめっきの品質安定化とコストダウンを実現できる。さらに、希土類不純物(析出物)を分離除去した電気ニッケルめっき液をめっき槽に戻す構成を採用することで、電気ニッケルめっき処理中に連続して希土類不純物を除去することが可能となり、品質の安定しためっき処理を効率的に実現することが可能となる。   According to the present invention, it is possible to provide a device for removing rare earth impurities in an electronickel plating solution that has a relatively simple configuration and good operability. Therefore, it can be removed relatively easily and efficiently without employing a simple process and without using a special drug. For this reason, it is possible to achieve the stabilization of the quality of electro nickel plating and the cost reduction especially for the R—Fe—B based sintered magnet. Furthermore, by adopting a configuration in which the electronickel plating solution from which the rare earth impurities (precipitates) are separated and removed is returned to the plating tank, the rare earth impurities can be removed continuously during the electronickel plating process, resulting in stable quality. It is possible to efficiently realize the plated process.

本発明の電気ニッケルめっき液中の希土類不純物を除去する除去装置を含む電気ニッケルめっき装置の一例を示す模式図である。It is a schematic diagram which shows an example of the electro nickel plating apparatus containing the removal apparatus which removes the rare earth impurities in the electro nickel plating liquid of this invention. 濾過後めっき液中の希土類不純物としてのNd量を示すICP発光分析装置による分析結果である。(温度を変更した場合)It is an analysis result by the ICP emission spectrometer which shows the amount of Nd as a rare earth impurity in the plating solution after filtration. (When the temperature is changed) 濾過後めっき液中の希土類不純物としてのNd量を示すICP発光分析装置による分析結果である。(加温保持時間が24時間以下の変化)It is an analysis result by the ICP emission spectrometer which shows the amount of Nd as a rare earth impurity in the plating solution after filtration. (Change of heating retention time less than 24 hours)

本発明は、電気ニッケルめっき液中の希土類不純物の除去装置であって、希土類不純物を含む電気ニッケルめっき液を加温する加温手段、前記加温手段による加温により析出した析出物を含む電気ニッケルめっき液を冷却する冷却手段、前記冷却手段により冷却された電気ニッケルめっき液から前記析出物を分離し除去する分離除去手段を有することを特徴とする除去装置である。 The present invention relates to an apparatus for removing rare earth impurities in an electronickel plating solution, the heating means for heating the electronickel plating solution containing the rare earth impurities, and the electricity containing the precipitate deposited by the heating by the heating means. It is a removing device comprising cooling means for cooling the nickel plating solution, and separation / removal means for separating and removing the precipitate from the electric nickel plating solution cooled by the cooling means.

本発明において、希土類不純物とは、例えば、R−Fe−B系焼結磁石(Rは、Yを含む希土類元素のうち少なくとも一種以上でありNdを必ず含む)を電気ニッケルめっきする際、めっき液に溶解するR成分であり、めっき液中ではそのほとんどがイオンの状態で存在するため、そのままでは濾過捕集が困難なものを指す。本発明の除去装置は、イオンの状態で存在する希土類不純物を、例えば濾過器等の公知の分離除去手段で捕集可能な固体の析出物として析出するためにめっき液を加温する加温手段を必須の構成とする。また、この析出物を沈降や濾過によりめっき液から分離除去する分離除去手段とともに、この分離除去を効率的に行うために前記加温手段によって加温された析出物を含むめっき液を冷却する冷却手段を必須の構成とするものである。なお、本発明の除去装置は、上記R−Fe−B系焼結磁石を電気ニッケルめっきする際、めっき液に溶解するR成分の除去に限定されることなく、同様にめっき液中でイオンの状態で存在する希土類不純物の除去において、適用できる。   In the present invention, the rare earth impurity is, for example, an electroplating solution for electro-nickel plating of an R—Fe—B based sintered magnet (R is at least one of rare earth elements including Y and must contain Nd). In the plating solution, most of it is in an ionic state, so that it is difficult to collect by filtration as it is. The removal apparatus of the present invention is a heating means for heating a plating solution to deposit rare earth impurities present in an ionic state as solid precipitates that can be collected by a known separation and removal means such as a filter. Is an essential configuration. In addition to separation / removal means for separating and removing the precipitate from the plating solution by sedimentation or filtration, cooling for cooling the plating solution containing the precipitate heated by the heating means in order to efficiently perform the separation / removal. The means is an essential component. The removal device of the present invention is not limited to the removal of the R component dissolved in the plating solution when electroplating the R-Fe-B sintered magnet, but similarly, the removal of ions in the plating solution It can be applied in the removal of rare earth impurities present in the state.

本発明の除去装置を構成する加温手段は、めっき液中にイオン状態で存在する希土類不純物を分離除去手段にて捕集可能な析出物として析出させることが可能な温度に加温することができればよく、めっき液の組成や量、めっき液中の希土類不純物量、要求される処理時間等に応じてそのめっき液の加温温度を調整可能な構造を有する手段が望ましい。
本発明者の実験によれば、通常、60℃以上の加温が可能であれば、上記析出物の析出が可能となる。工業規模にて一層有効に活用するためには、希土類不純物を含むめっき液を80℃以上に加温することができる加温手段を選定するのが望ましい。上記加温温度が高いほど希土類不純物の除去効率(析出物の析出効率)が上昇する傾向にあり、その上限は特に限定する必要はないが、作業性や安全性の観点、さらにめっき液の組成への影響等からめっき液の沸点未満とするのが望ましい。
めっき液を沸点以上に加温すると、めっき液から水が急激に蒸発し、めっき液を構成する成分が急激に析出する。めっき液の沸点は組成によって変動するが、例えばワット浴の沸点は約102℃となる。
このようにめっき液の沸点はモル沸点上昇により上昇するため、水の沸点である100℃を上限として管理すれば、組成の異なるめっき液の不純物除去にも対応可能である。
The heating means constituting the removal apparatus of the present invention may be heated to a temperature at which rare earth impurities present in an ionic state in the plating solution can be deposited as precipitates that can be collected by the separation and removal means. A means having a structure capable of adjusting the heating temperature of the plating solution in accordance with the composition and amount of the plating solution, the amount of rare earth impurities in the plating solution, the required treatment time, and the like is desirable.
According to the experiment of the present inventor, usually, if heating at 60 ° C. or higher is possible, the precipitate can be deposited. In order to utilize it more effectively on an industrial scale, it is desirable to select a heating means capable of heating a plating solution containing rare earth impurities to 80 ° C. or higher. The higher the heating temperature, the higher the removal efficiency of rare earth impurities (precipitation efficiency of precipitates). The upper limit is not particularly limited, but from the viewpoint of workability and safety, the composition of the plating solution It is desirable that the temperature be lower than the boiling point of the plating solution because of its influence on the surface.
When the plating solution is heated to a boiling point or higher, water is rapidly evaporated from the plating solution, and components constituting the plating solution are rapidly precipitated. The boiling point of the plating solution varies depending on the composition. For example, the boiling point of the watt bath is about 102 ° C.
As described above, since the boiling point of the plating solution rises due to an increase in the molar boiling point, if the upper limit is 100 ° C., which is the boiling point of water, it is possible to cope with the removal of impurities from plating solutions having different compositions.

上記の加温を実現する具体的な加温手段としては、加温ヒーター、加温用熱交換器等を採用することができる。このような加温手段を用いて希土類不純物を含む電気ニッケルめっき液を60℃以上に加温すること、さらに80℃から100℃の範囲、さらに望ましくは90℃から95℃の範囲に加温することで目的とする希土類不純物の除去を効率的に実現することが可能となる。
なお、本発明の除去装置を構成する各部材において、上記加温の範囲(加温によるめっき液の温度)に応じて耐熱性の高いものを使用することが必要となることから、この温度が高くなるほど必然的に装置全体のコストアップを招くことにもなる。上記加温温度範囲、特に望ましい加温温度範囲で実施することが結果的に装置のコストアップの抑制にも寄与する。
As specific heating means for realizing the above heating, a heating heater, a heating heat exchanger, or the like can be employed. Using such a heating means, the electronickel plating solution containing rare earth impurities is heated to 60 ° C. or higher, and further heated to a range of 80 ° C. to 100 ° C., more preferably 90 ° C. to 95 ° C. This makes it possible to efficiently remove the target rare earth impurities.
In addition, in each member which comprises the removal apparatus of this invention, since it is necessary to use a thing with high heat resistance according to the said heating range (temperature of the plating solution by heating), this temperature is The higher the cost, the higher the overall cost of the apparatus. Implementing in the above-mentioned heating temperature range, particularly a desirable heating temperature range, contributes to the suppression of the cost increase of the apparatus as a result.

また、上記加温中に析出物の析出を促進するために、加温状態においてめっき液を攪拌することが望ましく、上記加温手段に付属して公知の攪拌機を設置するのが望ましい。
例えば、空気撹拌、撹拌羽の回転またはポンプによる循環等による拡販を実現する構成のものが採用される。
In order to promote precipitation of precipitates during the heating, it is desirable to stir the plating solution in a warmed state, and it is desirable to install a known stirrer attached to the warming means.
For example, the thing of the structure which implement | achieves sales expansion by air stirring, rotation of a stirring blade, or circulation with a pump is employ | adopted.

めっき液は、上記温度に加温した後、析出物(希土類不純物)を分離除去する前に冷却するのが望ましい。すなわち、めっき液の取り扱いが煩雑になるだけでなく、加温したままのめっき液を分離除去手段、例えば濾過器のフィルターに通すと、フィルターの寿命が極端に短くなったり、場合によってはフィルターが破損してしまい、目的とする効率的な希土類不純物の除去が達成できない恐れがある。
また、加温しためっき液を濾過後(析出物除去後)、冷却することなくめっき槽に戻すと、温度の高いめっき液が加温前の温度にあるめっき処理中のめっき液に混ざることになり、このめっき処理中のめっき液の液温が上昇する。めっき液全体の液温が加温前の温度に戻るまでめっき処理を停止することは、めっき処理の効率の観点からも望ましくない。
したがって、本発明の除去装置を構成する冷却手段は、上記のように分離除去手段への影響、析出物除去後にめっき槽に戻した際にめっき処理中のめっき液への影響を考慮して、その冷却温度を調整可能なものであり、望ましくは加温前の温度(実質的にめっき処理中の温度とほぼ同一温度)まで冷却可能な手段を選定するのが望ましい。
上記の冷却を実現する具体的な冷却手段としては、冷却パイプ、冷却用熱交換器等を採用することができる。
It is desirable that the plating solution is cooled to the above temperature and then cooled before separating (removing) the precipitates (rare earth impurities). That is, handling of the plating solution is not only complicated, but if the plating solution which has been heated is passed through a separation and removal means, for example, a filter of a filter, the life of the filter is extremely shortened, or in some cases the filter is There is a risk that the intended efficient removal of rare earth impurities cannot be achieved.
In addition, after filtering the heated plating solution (after removing the precipitate) and returning it to the plating tank without cooling, the high temperature plating solution is mixed with the plating solution in the plating process at the temperature before heating. Thus, the temperature of the plating solution during the plating process increases. It is not desirable from the viewpoint of the efficiency of the plating process to stop the plating process until the temperature of the entire plating solution returns to the temperature before heating.
Therefore, the cooling means constituting the removal apparatus of the present invention considers the influence on the separation and removal means as described above, the influence on the plating solution during the plating process when returning to the plating tank after the removal of precipitates, It is possible to adjust the cooling temperature, and it is desirable to select a means capable of cooling to a temperature before heating (substantially the same temperature as that during the plating process).
As specific cooling means for realizing the above cooling, a cooling pipe, a heat exchanger for cooling, or the like can be employed.

なお、めっき槽には通常、温度計によるめっき液温度の測温結果からヒーターのON、OFFを自動的に行う自動調節機能を有しており、加温しためっき液を冷却した後の温度が、加温前の温度に対して高い場合であっても、低い場合であっても、この自動調節機能で、設定しためっき温度の範囲に入る温度であれば、実用上問題にはならない。 Note that the plating tank usually has an automatic adjustment function that automatically turns the heater on and off based on the temperature measurement result of the plating solution by a thermometer. The temperature after cooling the heated plating solution is Even if the temperature is higher or lower than the temperature before heating, there is no practical problem as long as the temperature is within the set plating temperature range with this automatic adjustment function.

本発明の除去装置を構成する分離除去手段は、上記加温手段によって析出した析出物を分離し除去することができればよく、析出物の大きさや、析出物の量、処理するめっき液の量等に応じて選定するのが望ましく、具体的な分離除去手段としては、公知の濾過器、沈降槽等を用いることができる。   The separation / removal means constituting the removal apparatus of the present invention is only required to separate and remove the precipitate deposited by the heating means, such as the size of the precipitate, the amount of the precipitate, the amount of the plating solution to be treated, etc. It is desirable to select according to the above, and as a specific separation and removal means, a known filter, a sedimentation tank or the like can be used.

本発明の除去装置は、上記加温手段、冷却手段及び分離除去手段を有する構成からなり、それら各手段の間にて効率よくめっき液を移動するために、通常、各手段を配管によって接続して一体化する。また、めっき液の移動をより円滑に行うため、所定箇所(例えば、各手段間)にポンプ等の移動手段を設けるのが望ましい。 The removal apparatus of the present invention comprises the above-mentioned heating means, cooling means, and separation / removal means. In order to efficiently move the plating solution between these means, each means is usually connected by piping. And integrate. In order to move the plating solution more smoothly, it is desirable to provide moving means such as a pump at a predetermined location (for example, between each means).

本発明の除去装置は、上記加温手段、冷却手段及び分離除去手段に、さらに加温手段を介して希土類不純物を含む電気ニッケルめっき液を溜める貯液槽を接続する構成を採用することができる。長時間使用した希土類不純物を多く含むめっき液を、いったんめっき処理中のめっき槽から上記貯液槽に移し、この貯液槽内のめっき液を先に説明したようにして加温手段、冷却手段及び分離除去手段を順次経由して希土類不純物(析出物)を除去することができる。必要に応じて、上記の貯液槽以外に分離除去手段を経由しためっき液(希土類不純物が除去されためっき液)を溜める貯液槽を分離除去手段に接続配置し、その貯液槽に希土類不純物を除去しためっき液を必要時間貯蔵しておくことが可能となる。
この構成では、希土類不純物を除去中、除去後においても、めっき処理中のめっき液になにも影響を与えることがなく、また、希土類不純物を除去しためっき液の温度調整や組成調整なども上記貯液槽内で容易に行うことができる等の効果を実現できる。
The removal apparatus of the present invention can employ a configuration in which a storage tank for storing an electronickel plating solution containing rare earth impurities is connected to the heating means, the cooling means, and the separation and removal means via the heating means. . The plating solution containing a large amount of rare earth impurities used for a long time is once transferred from the plating tank being plated to the above storage tank, and the plating liquid in this storage tank is heated and cooled as described above. The rare earth impurities (precipitates) can be removed sequentially through the separation and removal means. If necessary, a storage tank for storing plating solution (plating solution from which rare earth impurities are removed) other than the above storage tank is connected to the separation / removal means, and the storage tank is filled with rare earth. It becomes possible to store the plating solution from which impurities have been removed for a necessary time.
In this configuration, during and after the removal of rare earth impurities, there is no effect on the plating solution during the plating process, and the temperature adjustment and composition adjustment of the plating solution from which the rare earth impurities have been removed are also described above. The effect that it can carry out easily in a liquid storage tank etc. is realizable.

さらに、本発明の除去装置は、上記加温手段を介して希土類不純物を含む電気ニッケルめっき液を溜める貯液槽をめっき槽とし、前記分離除去手段により前記析出物が除去された電気ニッケルめっき液を、前記めっき槽に戻すことが可能に接続する構成を採用することができる。この構成を採用することで、上記めっき液中の希土類不純物の除去を最も効率的に行うことができる。すなわち、めっき処理中のめっき槽からのめっき液の抜き取り(移動)→加温手段によるめっき液の加温→冷却手段によるめっき液の冷却→分離除去手段による析出物(希土類不純物)の分離除去(濾過)→析出物を分離除去(濾過)しためっき液のめっき槽への移動(送液)を連続して行うことができる。
上記構成においては、上記めっき槽、加温手段、冷却手段、分離除去手段を配管によって接続するだけでなく、さらに分離除去手段を経由しためっき液をめっき槽に戻す配管を接続することが効果的である。なお、このような装置にて、連続処理を行うためには、先に説明した通り、冷却手段によるめっき液の冷却に際して、一旦加温手段にて加温しためっき液を加温前の温度まで冷却することで、めっき条件の変化を抑制し、得られるめっき膜の性質に変化が生じないようにすることが望ましい。
上記装置を用いれば、連続して希土類不純物の除去を行うことでめっき処理中の希土類不純物の増加を抑えることができる。よって、先に説明した構成のように、希土類不純物を除去するためにめっき液をめっき槽以外の別の貯液槽に移して、希土類不純物を除去する等の工程を採る必要が無く、めっき処理を停止する必要が無い。
また、上記連続処理とともに、必要に応じてめっき処理を停止しめっき液を別の貯液槽に移して希土類不純物を除去するとしても、希土類不純物の増加を抑えているため、その頻度を低くすることができ、生産性の向上につながり望ましい。
Furthermore, the removal apparatus of the present invention uses an electrolytic nickel plating solution in which the electrolytic nickel plating solution containing rare earth impurities is stored through the heating means as a plating tank, and the precipitate is removed by the separation and removal means. The structure which connects so that it can return to the said plating tank is employable. By adopting this configuration, the rare earth impurities in the plating solution can be most efficiently removed. That is, removing (moving) the plating solution from the plating tank during the plating process → heating the plating solution by the heating means → cooling the plating solution by the cooling means → separation and removal of precipitates (rare earth impurities) by the separation / removal means ( Filtration) → Plating solution from which precipitates have been separated and removed (filtered) can be moved continuously (liquid feeding) to the plating tank.
In the above configuration, it is effective not only to connect the plating tank, heating means, cooling means, and separation / removal means by piping, but also to connect piping for returning the plating solution that has passed through the separation / removal means to the plating tank. It is. In order to perform continuous treatment with such an apparatus, as described above, when the plating solution is cooled by the cooling means, the plating solution once heated by the heating means is reduced to the temperature before heating. By cooling, it is desirable to suppress changes in plating conditions and prevent changes in the properties of the resulting plating film.
If the said apparatus is used, the increase of the rare earth impurities during a plating process can be suppressed by removing a rare earth impurity continuously. Therefore, as in the configuration described above, there is no need to transfer the plating solution to another storage tank other than the plating tank to remove the rare earth impurities, and to take steps such as removing the rare earth impurities, and the plating process. There is no need to stop.
In addition to the continuous treatment, even if the plating treatment is stopped as necessary and the plating solution is transferred to another storage tank to remove the rare earth impurities, the frequency of the rare earth impurities is suppressed, so the frequency is reduced. This is desirable because it leads to improved productivity.

なお、本発明の除去装置にて希土類不純物を除去するに際して、めっき液の濃度は、めっき処理を行う濃度と同じ濃度(1倍)で行うことが望ましい。
加温中に水分が蒸発し、めっき液の濃度が上昇する場合には適宜水を補給し、濃度を維持するのが望ましい。
In removing the rare earth impurities with the removing apparatus of the present invention, it is desirable that the concentration of the plating solution is the same (1 time) as the concentration for performing the plating treatment.
When moisture evaporates during heating and the concentration of the plating solution increases, it is desirable to replenish water appropriately to maintain the concentration.

本発明の除去装置は、酸性〜中性のニッケルめっき液における希土類不純物除去に好適に適用できる。ニッケルめっき液としては、ワット浴、高塩化物浴、塩化物浴、スルファミン酸浴等に適用できる。
本発明の除去装置は、ワット浴に最も好適に適用可能である。
ワット浴の液組成としては、ごく一般的な浴組成で良い。例えば硫酸ニッケル 200〜320g/L、塩化ニッケル 40〜50g/リットル、ほう酸 30〜45g/L 添加剤として、光沢剤やピット防止剤を含んだ組成にも適用可能である。
本発明の除去装置を効果的に使用するためには、随時、めっき液の組成調整を公知の分析方法(滴定分析等)により行うことが望ましい。
例えば、ワット浴の場合、塩化ニッケル、全ニッケルを滴定により分析し硫酸ニッケルを求め、さらにホウ酸を滴定により分析する。
本発明の除去装置によって得られる希土類不純物除去後のめっき液の組成は、めっき処理開始時の組成とほとんど変化しないため、希土類不純物除去を行ったことによるめっき槽の液組成の変化は軽微である。
よって、めっき槽にあるめっき液の組成は、一定周期を決めて組成分析してもよい。分析周期はめっき槽の構成や生産量によって適宜設定すれば良い。
分析の結果、めっき液の組成が管理範囲内にある場合は必ずしも添加する必要はないが、不足する場合には不足する量の硫酸ニッケル、塩化ニッケル、ホウ酸をめっき液に添加しめっき液の組成を調整する。
添加する際にはめっき液をめっき温度に加温するのが望ましい。温度が低いと添加する薬剤の溶解が遅くなるか、溶解しない。その後、pHを炭酸ニッケルや硫酸で調整し、公知の光沢剤やピット防止剤を添加しめっき処理を行う。
本発明の除去装置を適用した後のめっき液を用いるめっき条件については、使用する設備、めっき方法、被めっき物の大きさ、処理個数等々によって適宜設定すれば良い。
一例として、上記ワット浴組成のめっき浴を用いた場合のめっき条件は、pH3.8〜4.5、浴温45℃〜55℃、電流密度 0.1〜10A/dmが望ましい。
めっき方法としてはラック方式、バレル方式があるが、被めっき物のサイズ、処理量によって適宜選定すれば良い。
The removal apparatus of the present invention can be suitably applied to the removal of rare earth impurities in acidic to neutral nickel plating solutions. The nickel plating solution can be applied to a watt bath, a high chloride bath, a chloride bath, a sulfamic acid bath, or the like.
The removal apparatus of the present invention is most suitably applicable to a watt bath.
As the liquid composition of the Watt bath, a very common bath composition may be used. For example, nickel sulfate 200 to 320 g / L, nickel chloride 40 to 50 g / liter, boric acid 30 to 45 g / L As an additive, the present invention can also be applied to compositions containing brighteners and pit inhibitors.
In order to effectively use the removal apparatus of the present invention, it is desirable to adjust the composition of the plating solution as needed by a known analysis method (such as titration analysis).
For example, in the case of a watt bath, nickel chloride and total nickel are analyzed by titration to obtain nickel sulfate, and boric acid is further analyzed by titration.
The composition of the plating solution obtained after removing the rare earth impurities obtained by the removing apparatus of the present invention is almost the same as the composition at the start of the plating process, and therefore the change in the composition of the plating bath due to the removal of the rare earth impurities is slight. .
Therefore, the composition of the plating solution in the plating tank may be analyzed by determining a certain period. What is necessary is just to set an analysis period suitably with the structure and production amount of a plating tank.
If the composition of the plating solution is within the control range as a result of analysis, it is not always necessary to add it, but if it is insufficient, an insufficient amount of nickel sulfate, nickel chloride, boric acid is added to the plating solution. Adjust the composition.
When adding, it is desirable to warm the plating solution to the plating temperature. When the temperature is low, dissolution of the added drug is slow or does not dissolve. Thereafter, the pH is adjusted with nickel carbonate or sulfuric acid, and a known brightener or pit inhibitor is added to perform plating.
What is necessary is just to set suitably about the plating conditions using the plating solution after applying the removal apparatus of this invention according to the equipment to be used, the plating method, the size of the object to be plated, the number of treatments, and the like.
As an example, the plating conditions when the plating bath having the above Watt bath composition is used are preferably pH 3.8 to 4.5, bath temperature 45 ° C. to 55 ° C., and current density 0.1 to 10 A / dm 2 .
As a plating method, there are a rack method and a barrel method, which may be appropriately selected depending on the size of the object to be plated and the processing amount.

本発明の除去装置に接続する貯液槽及びめっき槽としては、処理するめっき液の組成や温度に適した材質のものを使用すれば良い。なお、めっき槽に耐熱性の高い材質の容器を用いることで、安全性をも向上することができる。   What is necessary is just to use the material suitable for the composition and temperature of the plating solution to process as a liquid storage tank and a plating tank connected to the removal apparatus of this invention. In addition, safety | security can also be improved by using the container of a material with high heat resistance for a plating tank.

以下に、本発明の除去装置の具体的な構成について図1に基づいて説明する。なお、図1は、本発明の除去装置が有する効果を最も有効に実現可能な構成、すなわち、先に説明しためっき槽に接続して連続処理を可能とした典型的な構成を示すものであり、本発明は図1の構成に限定されるものではない。
図中4はめっき槽であり、図示しない陽極板、陰極、ヒーター、攪拌機を有し、めっき液を建浴し、電気ニッケルめっきを行うことができる。
めっき槽の材質は使用するめっき液によるが、塩化ビニル(PVC)又は耐熱塩化ビニル(PVC)が望ましい。
図中矢印でめっき液が流れる向きを示す。
図中20はめっき処理にかかるめっき液の濾過系統を示す。この濾過系統20は、めっき液中に浮遊するゴミなどを濾過することを目的に設置されるもので、本願発明の目的とするめっき液中にイオン状態で存在する希土類不純物を析出物として析出して分離し除去することはできない。
図中3はバルブ、2はポンプ、1は濾過器であり、めっき槽4→バルブ3→ポンプ2→濾過器1→めっき槽4の順序でめっき液が流れ、前述の通り、めっき液中に浮遊するゴミなどを濾過する。
図中30は本発明の除去装置を含むめっき液中にイオン状態で存在する希土類不純物を除去する不純物除去系統を示す。
図中5はバルブ、6は移動手段としてのポンプ、7は加温手段としての加温用熱交換器、8は冷却手段としての冷却用熱交換器、9は分離除去手段としての濾過器、10はバルブであり、めっき槽4→バルブ5→ポンプ6→加温用熱交換器7→冷却用熱交換器8→濾過器9→バルブ10→めっき槽4の順序でめっき液が流れ、めっき液中に溶解している希土類不純物を析出させたのち濾過して分離除去することができる。
Below, the specific structure of the removal apparatus of this invention is demonstrated based on FIG. FIG. 1 shows a configuration that can most effectively realize the effect of the removal apparatus of the present invention, that is, a typical configuration that enables continuous processing by connecting to the plating tank described above. The present invention is not limited to the configuration shown in FIG.
In the figure, reference numeral 4 denotes a plating tank, which has an anode plate, a cathode, a heater, and a stirrer (not shown), and can build up a plating solution and perform electro nickel plating.
The material of the plating tank depends on the plating solution used, but vinyl chloride (PVC) or heat-resistant vinyl chloride (PVC) is desirable.
The arrow in the figure indicates the direction in which the plating solution flows.
In the figure, reference numeral 20 denotes a plating solution filtration system for plating. This filtration system 20 is installed for the purpose of filtering dust and the like floating in the plating solution, and deposits rare earth impurities present in an ionic state in the plating solution targeted by the present invention as precipitates. Cannot be separated and removed.
In the figure, 3 is a valve, 2 is a pump, and 1 is a filter. The plating solution flows in the order of plating tank 4 → valve 3 → pump 2 → filter 1 → plating tank 4, and as described above, Filter floating dust.
In the figure, reference numeral 30 denotes an impurity removal system for removing rare earth impurities present in an ionic state in the plating solution including the removal apparatus of the present invention.
In the figure, 5 is a valve, 6 is a pump as a moving means, 7 is a heat exchanger for heating as a heating means, 8 is a heat exchanger for cooling as a cooling means, 9 is a filter as a separation and removal means, 10 is a valve, and the plating solution flows in the order of plating tank 4 → valve 5 → pump 6 → heating heat exchanger 7 → cooling heat exchanger 8 → filter 9 → valve 10 → plating tank 4 in order. After the rare earth impurities dissolved in the liquid are deposited, they can be separated and removed by filtration.

なお析出物をめっき液から分離除去する際、分離除去手段としての濾過器の代わりに沈降槽を設け、析出物を沈降させめっき液の上澄み液のみを連続して回収し、析出物を分離除去してもよい。
この場合沈降槽に浮遊する微量の析出物は、めっき槽に送液(移動)した後、前述のめっき槽に付随した濾過系統20にて完全に分離除去することが可能となる。
不純物除去系統30において、めっき槽4、加温用熱交換器7、冷却用熱交換器8、濾過器9の各手段を接続する配管の材質はめっき液の組成や温度によって適宜設定すれば良いが、加温用熱交換器7と冷却用熱交換器8をつなぐ配管には高温のめっき液を流すため、耐熱性の高いものを使用するのが望ましい。
耐熱性の高いものとしてはPPやフッ素樹脂コートした鉄管等を用いるのが望ましい。
加温用熱交換器7は公知のものを使用でき、特に限定されず、熱源として電気ヒータや蒸気を選択できる。蒸気を用いた熱交換器はめっき液の加温が容易であり望ましい。
冷却用熱交換器8についても公知のものを使用できる。冷却用熱交換器8に用いる冷媒としては冷媒ガスを用いる形式でもよいし、冷水を用いるものでもよい。
When separating and removing the deposit from the plating solution, a sedimentation tank is provided instead of a filter as a separation and removal means, and the precipitate is settled and only the supernatant of the plating solution is continuously collected, and the deposit is separated and removed. May be.
In this case, a very small amount of precipitate floating in the sedimentation tank can be completely separated and removed by the filtration system 20 attached to the plating tank after being sent (moved) to the plating tank.
In the impurity removal system 30, the material of the pipes connecting the plating tank 4, the heating heat exchanger 7, the cooling heat exchanger 8, and the filter 9 may be appropriately set depending on the composition and temperature of the plating solution. However, since a high-temperature plating solution is allowed to flow through the piping connecting the heating heat exchanger 7 and the cooling heat exchanger 8, it is desirable to use one having high heat resistance.
It is desirable to use an iron pipe coated with PP or a fluororesin as a material having high heat resistance.
A known heat exchanger 7 can be used, and is not particularly limited, and an electric heater or steam can be selected as a heat source. A heat exchanger using steam is desirable because the plating solution can be easily heated.
A well-known thing can be used also about the heat exchanger 8 for cooling. As a refrigerant used for the heat exchanger 8 for cooling, a form using refrigerant gas may be used, or one using cold water may be used.

加温用熱交換器7及び冷却用熱交換器8も、めっき液に接する部分の材質は、めっき液の組成や、温度によって適宜選択すれば良いが、耐食性の高いステンレスやチタン等の材質を選択するのが望ましい。
加温用熱交換器7及び冷却用熱交換器8の形式や能力は、加温及び冷却を行うめっき液の量(めっき槽の容量)やめっき処理する製品の量、めっき条件等によって適宜設定すれば良い。
例えば、図1では温用熱交換器7を1台→冷却用熱交換器8を1台の経路を採用した構成を示したが、加温用熱交換器7を2台直列に配置し、その後に冷却用熱交換器8を2台直列に配置した構成、又、加温用熱交換器7を1台→冷却用熱交換器8を1台を1組として2組を並列に接続した構成を採用してもよい。
不純物除去系統30に流すめっき液の流量は、加温用熱交換器7及び冷却用熱交換器8の能力、めっき槽4の容量(めっき液の量)、めっき条件、めっき処理する製品の量等によって適宜設定すれば良く。流量は使用するポンプ6の能力やバルブ5の開閉量によって調整すれば良い。
また加温手段としては、上記の加温用熱交換器7に代えて所定の槽内に加温用の加温ヒーターを浸漬した構成のものを採用してもよいし、また冷却手段としては、上記冷却用熱交換器8に代えて所定の槽内に投げ込み式の冷却パイプを浸漬した構成のものを採用してもよい。
ここで冷却パイプとはパイプに冷媒や冷水を通したものを、加温手段を経由しためっき液に投げ込み、そのめっき液を冷やすもののみならずペルチェ効果等により冷却した端部を前記めっき液に投入してめっきを液を冷やすものを総称し、主にめっき液に冷却手段を構成している冷却部を投げ込み、めっき液を冷やすものを言う。
For the heating heat exchanger 7 and the cooling heat exchanger 8, the material in contact with the plating solution may be appropriately selected depending on the composition and temperature of the plating solution, but a material such as stainless steel or titanium having high corrosion resistance may be used. It is desirable to choose.
The type and capacity of the heat exchanger 7 for heating and the heat exchanger 8 for cooling are appropriately set according to the amount of plating solution to be heated and cooled (the capacity of the plating tank), the amount of products to be plated, the plating conditions, etc. Just do it.
For example, in FIG. 1, a configuration in which one path for the heat exchanger 7 for heating and one path for the heat exchanger 8 for cooling is employed, but two heat exchangers 7 for heating are arranged in series, Thereafter, two heat exchangers 8 for cooling are arranged in series, and one heat exchanger 7 for heating is used, and two sets are connected in parallel with one heat exchanger 8 for cooling as one set. A configuration may be adopted.
The flow rate of the plating solution flowing into the impurity removal system 30 is the capacity of the heat exchanger 7 for heating and the heat exchanger 8 for cooling, the capacity of the plating tank 4 (amount of plating solution), plating conditions, and the amount of products to be plated. What is necessary is just to set suitably by etc. The flow rate may be adjusted according to the capacity of the pump 6 to be used and the opening / closing amount of the valve 5.
Moreover, as a heating means, it may replace with said heat exchanger 7 for heating, and the thing of the structure which immersed the heating heater for heating in the predetermined | prescribed tank may be employ | adopted, and as a cooling means, Instead of the cooling heat exchanger 8, a structure in which a throwing-type cooling pipe is immersed in a predetermined tank may be adopted.
Here, the cooling pipe is a pipe that has been passed through a coolant or chilled water, and is poured into the plating solution via the heating means to cool the plating solution as well as the end that has been cooled by the Peltier effect, etc. This is a general term for cooling the plating solution by throwing in a cooling part that mainly constitutes cooling means into the plating solution, and cooling the plating solution.

図1では移動手段であるポンプ6を加温手段である加温用熱交換器7の前(めっき槽4と加温用熱交換器7との間)の一か所に設けたが、さらに、必要に応じて加温手段である加温用熱交換器7と冷却手段である冷却用熱交換器8の間、冷却用熱交換器8と分離除去手段である濾過器9の間又は濾過器9の後ろに配置してもよい。
例えば、加温手段や冷却手段として上部が開放された容器にヒーターやチラーの冷却部分を投げ入れ配置した場合や、分離除去手段として上部が開放された沈降槽を用いた場合、あるいは、これらを組み合わせた場合においては、めっき液の移動経路において開口部分が多く存在するため、移動手段によって上昇しためっき液の圧力が低下する。このため次の手段に移動することを目的として、一旦低下しためっき液の圧力を上昇するために複数の移動手段を設けるのが望ましい。
また、各手段間を移動するめっき液の流量が多い場合には、バルブ等をこれら各手段の間に設けて流量を調整するのが望ましい。
In FIG. 1, the pump 6 that is the moving means is provided in one place in front of the heating heat exchanger 7 that is the heating means (between the plating tank 4 and the heating heat exchanger 7). If necessary, between the heating heat exchanger 7 as the heating means and the cooling heat exchanger 8 as the cooling means, between the cooling heat exchanger 8 and the filter 9 as the separation / removal means, or filtration It may be placed behind the vessel 9.
For example, when a cooling part of a heater or chiller is thrown into a container with an open top as a heating means or cooling means, or when a sedimentation tank with an open top is used as a separation and removal means, or a combination of these In this case, since there are many opening portions in the moving path of the plating solution, the pressure of the plating solution raised by the moving means decreases. Therefore, for the purpose of moving to the next means, it is desirable to provide a plurality of moving means in order to increase the pressure of the plating solution once lowered.
Further, when the flow rate of the plating solution moving between each means is large, it is desirable to adjust the flow rate by providing a valve or the like between these means.

以上では、各手段を配管で接続し、かつポンプをめっき液の移動手段として採用した構成の除去装置を説明したが、本発明はこの構成に特定されることはない。例えば、めっき槽以外に、加温手段を設置した槽、冷却手段を設置した槽、分離除去手段を設置した槽を順次高低差をつけて併設(めっき槽が最も高く、分離除去手段を設置した槽を最も低く配置)することで、必ずしも配管を接続しなくとも、また、ポンプ等の移動手段を採用することなくめっき液を各手段を経由して移動することができる。ただし、このような構成の場合でも、上記に説明した連続処理を実施するためには、分離除去手段を設置した槽とめっき槽との間は、ポンプ等の移動手段を介して接続するのが望ましい。   In the above, the removal apparatus having a configuration in which the respective means are connected by piping and the pump is employed as the plating solution moving means has been described, but the present invention is not limited to this configuration. For example, in addition to the plating tank, a tank equipped with a heating means, a tank equipped with a cooling means, and a tank equipped with a separation / removal means are sequentially provided with a height difference (the plating tank is the highest, and the separation / removal means is installed. By arranging the tank at the lowest position, the plating solution can be moved via each means without necessarily connecting pipes or adopting moving means such as a pump. However, even in the case of such a configuration, in order to carry out the continuous processing described above, the tank in which the separation / removal means is installed and the plating tank must be connected via a moving means such as a pump. desirable.

本発明の除去装置の実現に際し、あらかじめ以下の実験例1〜5に示す実験を行い、その効果について確認した。   In realizing the removal apparatus of the present invention, experiments shown in Experimental Examples 1 to 5 below were performed in advance, and the effects were confirmed.

実験例1
めっき液の組成として硫酸ニッケル 250g/L、塩化ニッケル 50g/L、ほう酸 45g/L でpH 4.5のめっき液を50℃に加温し、R−Fe−B系焼結磁石の表面に電気ニッケルめっきを施した。R−Fe−B系焼結磁石は必要な磁気特性に応じて、Nd:15〜25mass%、Pr:4〜7mass%、Dy:0〜10mass%、B:0.6mass%〜1.8mass%、Al:0.07〜1.2mass%、残部Feであり3mass%以下のCu,Gaの範囲で組成を調整した数種類のものを用いた。ただし、一回のバッチで用いる磁石の組成は同じものとした。
なおメッキ液に溶解する希土類不純物のそれぞれの組成や量はめっきに供した磁石の組み合わせ、バレルめっきやラックめっきといった処理方法、メッキ液の組成によって異なる。
Example 1
The plating solution composition is nickel sulfate 250 g / L, nickel chloride 50 g / L, boric acid 45 g / L, and a pH 4.5 plating solution is heated to 50 ° C., and electricity is applied to the surface of the R—Fe—B sintered magnet. Nickel plating was applied. R-Fe-B sintered magnets have Nd: 15 to 25 mass%, Pr: 4 to 7 mass%, Dy: 0 to 10 mass%, B: 0.6 mass% to 1.8 mass%, depending on the required magnetic properties. , Al: 0.07 to 1.2 mass%, balance Fe, and several types whose compositions were adjusted in the range of Cu and Ga of 3 mass% or less were used. However, the composition of the magnets used in one batch was the same.
The composition and amount of each rare earth impurity dissolved in the plating solution vary depending on the combination of magnets used for plating, the treatment method such as barrel plating and rack plating, and the composition of the plating solution.

数日間メッキ処理を行った後、電気ニッケルめっき液のNd不純物、Pr不純物、Dy不純物をICP発光分析装置にて分析した。
分析結果はNd:500ppm、Pr:179ppm:、Dy:29ppmとなっていた。
上記希土類不純物を含むめっき液を一定量(3リットル)ビーカーに採取し、ヒーターで90℃に加温した状態で一定時間保持した。なお、加温中は磁石式の攪拌機(マグネットスターラー)にて攪拌した。加温中はめっき液の濃度が一定になるように水を補給した。
24時間経過後及び96時間経過後に加温を停止し冷却した後、それぞれICP発光分析に十分な量のめっき液を採取し、濾紙にて濾過した後のめっき液中に含まれるNd、Pr、Dyの濃度をICP発光分析装置にて測定した。
24時間経過後の分析結果はNd:100ppm、Pr:35ppm、Dy:16ppmとなっていた。
96時間経過後の分析結果はNd:50ppm、Pr:16ppm、Dy:2ppmとなっていた。
上記のように、電気ニッケルめっき液中に溶解しているイオン状態の希土類不純物は、所定時間の加温により析出物となり、濾紙による濾過にてめっき液と分離・除去される。所定時間の加温によっても析出物にならなかった希土類不純物は、上記分析結果に示すような割合で、イオン状態のままめっき液中に残存する。上記分析結果から明らかなように、加温時間が長いほど、析出物として分離・除去される希土類不純物の量が多くなり、結果として、めっき液中のイオン状態にある希土類不純物の量が低減されることとなる。
実験例1の処理方法により、希土類元素であるNdの不純物量低減と同時にPrとDyの不純物量も低減することがわかった。
After plating for several days, Nd impurities, Pr impurities, and Dy impurities in the electronickel plating solution were analyzed with an ICP emission analyzer.
The analysis results were Nd: 500 ppm, Pr: 179 ppm :, and Dy: 29 ppm.
The plating solution containing the rare earth impurities was collected in a fixed amount (3 liters) beaker and kept at a temperature of 90 ° C. with a heater for a fixed time. During heating, the mixture was stirred with a magnetic stirrer (magnet stirrer). During heating, water was replenished so that the concentration of the plating solution was constant.
After 24 hours and 96 hours, heating was stopped and cooled, and then a sufficient amount of plating solution was collected for ICP emission analysis, and Nd, Pr, The concentration of Dy was measured with an ICP emission spectrometer.
The analysis results after 24 hours were Nd: 100 ppm, Pr: 35 ppm, and Dy: 16 ppm.
The analysis results after 96 hours were Nd: 50 ppm, Pr: 16 ppm, and Dy: 2 ppm.
As described above, the ionic rare earth impurities dissolved in the electrolytic nickel plating solution become precipitates by heating for a predetermined time, and are separated and removed from the plating solution by filtration with filter paper. Rare earth impurities that have not become precipitates even after heating for a predetermined time remain in the plating solution in an ionic state at a rate as shown in the above analysis results. As is clear from the above analysis results, the longer the heating time, the greater the amount of rare earth impurities separated and removed as precipitates. As a result, the amount of rare earth impurities in the ionic state in the plating solution is reduced. The Rukoto.
It was found that the amount of impurities of Pr and Dy was reduced at the same time as the amount of impurities of Nd, which is a rare earth element, by the treatment method of Experimental Example 1.

実験例2
めっき液の組成として硫酸ニッケル 250g/L、塩化ニッケル 50g/L、ほう酸 45g/L でpH 4.5のめっき液を50℃に加温しR−Fe−B系焼結磁石(実施例1と同じ組成範囲のものを用いた)の表面に電気ニッケルめっきを施した。数日間めっき処理を行った後、電気ニッケルめっき液中のNd不純物を分析したところ576ppmとなっていた。
上記めっき液を加温温度が50℃から95℃までの6条件(ただし50℃から90℃までは10℃きざみにて5条件)に設定し、各1条件3リットルのビーカーに採取して加温した。加温中は磁石式の攪拌機(マグネットスターラ)にて攪拌した。加温中はめっき液の濃度が一定になるように水を補給しながら、一定時間毎にめっき液をICP発光分析に十分な量を採取し、採取しためっき液を冷却し濾紙で濾過したのち、そのめっき液中のNd不純物の含有量(濃度)を分析した。分析にはICP発光分析装置を用いた。
分析結果を表1に示すと共に(50℃から90℃の結果を)図2のグラフに示した。
Experimental example 2
The composition of the plating solution was 250 g / L of nickel sulfate, 50 g / L of nickel chloride, 45 g / L of boric acid, and a plating solution having a pH of 4.5 was heated to 50 ° C. to obtain an R—Fe—B sintered magnet (Example 1 and Electronickel plating was applied to the surface of the same composition range. After plating for several days, the Nd impurity in the electronickel plating solution was analyzed and found to be 576 ppm.
The above plating solution is set to 6 conditions with a heating temperature of 50 ° C. to 95 ° C. (however, 5 conditions in increments of 10 ° C. from 50 ° C. to 90 ° C.), and each sample is collected in a 3 liter beaker and added. Warm up. During heating, the mixture was stirred with a magnetic stirrer (magnet stirrer). While replenishing water so that the concentration of the plating solution remains constant during heating, collect a sufficient amount of the plating solution for ICP emission analysis at regular intervals, cool the collected plating solution and filter it with filter paper. The content (concentration) of Nd impurities in the plating solution was analyzed. An ICP emission analyzer was used for the analysis.
The analysis results are shown in Table 1 (results from 50 ° C. to 90 ° C.) and shown in the graph of FIG.

Figure 2014185373





加温温度が50℃では、168時間経過後で不純物濃度は518ppmとなった。60℃では24時間以降不純物濃度が低下し216時間経過後に177ppmとなった。不純物濃度は70℃では60℃に比較して24時間以降常に低い傾向を示した。
加温温度が80℃では、加温直後から不純物濃度は低下し、96時間経過後に125ppmとなった。
加温温度が90℃では、24時間経過後で134ppm、48時間経過後で84ppmとなり、96時間経過後では59ppmとなった。加温温度が95℃では、24時間経過後と96時間経過後について分析した。Nd不純物量は90℃で加温した場合とほぼ同じであった。
以上の結果からも明らかなように、加温温度が60℃から明確な効果が確認され、80℃、さらに90℃においてその効果が一層顕著であることが確認された。
Figure 2014185373





When the heating temperature was 50 ° C., the impurity concentration became 518 ppm after 168 hours. At 60 ° C., the impurity concentration decreased after 24 hours and became 177 ppm after 216 hours. The impurity concentration always tended to be lower after 24 hours at 70 ° C. than at 60 ° C.
When the heating temperature was 80 ° C., the impurity concentration decreased immediately after heating and became 125 ppm after 96 hours.
When the heating temperature was 90 ° C., it became 134 ppm after 24 hours, 84 ppm after 48 hours, and 59 ppm after 96 hours. When the heating temperature was 95 ° C., analysis was performed after 24 hours and after 96 hours. The amount of Nd impurities was almost the same as when heated at 90 ° C.
As is clear from the above results, a clear effect was confirmed from the heating temperature of 60 ° C., and it was confirmed that the effect was more remarkable at 80 ° C. and 90 ° C.

実験例3
実験例1及び実験例2で加温処理しためっき液を冷却した後、濾紙で濾過し、めっき液から析出した析出物を回収した。
上記析出物を恒温槽で乾燥した。性状は紛体(固体)であった。
析出物をエネルギー分散型X線分析装置(EDX)にて分析したところ、
Nd:32.532、Pr:11.967、Dy:1.581、Al:0.402、Ni:7.986、C:0.319、O:45.213、(mass%)であった。
めっき液中の希土類不純物は、加温処置によりめっき液から紛体(固体)として析出していることを確認した。
Experimental example 3
After cooling the plating solution heated in Experimental Example 1 and Experimental Example 2, the solution was filtered through filter paper, and the precipitate deposited from the plating solution was collected.
The precipitate was dried in a thermostatic bath. The property was powder (solid).
When the precipitate was analyzed with an energy dispersive X-ray analyzer (EDX),
Nd: 32.532, Pr: 11.967, Dy: 1.581, Al: 0.402, Ni: 7.986, C: 0.319, O: 45.213, (mass%).
It was confirmed that the rare earth impurities in the plating solution were precipitated as a powder (solid) from the plating solution by heating treatment.

実験例4
めっき液の組成として硫酸ニッケル 250g/L、塩化ニッケル 50g/L、ほう酸 45g/L でpH 4.5のめっき液を50℃に加温しR−Fe−B系焼結磁石(実施例1と同じ組成範囲のものを用いた)の表面に電気ニッケルめっきを施した。数日間めっき処理を行った後、電気ニッケルめっき液中のNd不純物を分析したところ581ppmとなっていた。
上記めっき液を3リットルのビーカーに採取し、90℃で加温した。
加温中は磁石式の攪拌機(マグネットスターラ)にて攪拌した。加温中はめっき液の濃度が一定になるように水を補給しながら、1,3,6,12、24時間で、実験例1と同じ様に、そのめっき液中のNd不純物の含有量(濃度)を分析した。
分析結果を表2に示すと共に図3のグラフに示した。
Experimental Example 4
The composition of the plating solution was 250 g / L of nickel sulfate, 50 g / L of nickel chloride, 45 g / L of boric acid, and a plating solution having a pH of 4.5 was heated to 50 ° C. to obtain an R—Fe—B sintered magnet (Example 1 and Electronickel plating was applied to the surface of the same composition range. After plating for several days, the Nd impurity in the electronickel plating solution was analyzed and found to be 581 ppm.
The plating solution was collected in a 3 liter beaker and heated at 90 ° C.
During heating, the mixture was stirred with a magnetic stirrer (magnet stirrer). During heating, while supplying water so that the concentration of the plating solution becomes constant, the content of Nd impurity in the plating solution is 1, 3, 6, 12 and 24 hours in the same manner as in Experimental Example 1. (Concentration) was analyzed.
The analysis results are shown in Table 2 and shown in the graph of FIG.


Figure 2014185373



90℃での加温では、加温後3時間程度から顕著にNd不純物の低下が確認できた。
Figure 2014185373



In heating at 90 ° C., a significant decrease in Nd impurities could be confirmed from about 3 hours after heating.

実験例5
一度析出した希土類不純物の再溶解について調べた。
めっき液の組成として硫酸ニッケル 250g/L、塩化ニッケル 50g/L、ほう酸 45g/L でpH 4.5のめっき液を50℃に加温しR−Fe−B系焼結磁石(実施例1と同じ組成範囲のものを用いた)の表面に電気ニッケルめっきを施した。数日間めっき処理を行った後、電気ニッケルめっき液中のNd不純物を分析したところ544ppmとなっていた。めっき液を3リットルのビーカーに採取し、90℃に加温した。
加温中は磁石式の攪拌機(マグネットスターラ)にて攪拌した。加温中はめっき液の濃度が一定になるように水を補給した。一定時間経過後にめっき液をICP発光分析に十分な量を採取し、採取しためっき液を冷却し濾紙で濾過したのち、そのめっき液中のNd不純物の含有量(濃度)を分析した。分析にはICP発光分析装置を用いた。
また、めっき液を採取したのち、めっき液を40℃まで冷却し40℃に保持した場合の分析結果を以下に示す。
40℃に保持後、1、3、6、24、48時間にて、めっき液をICP発光分析に充分な量採取し、濾過後、そのめっき液中のNd不純物の含有量(濃度)を分析した。
分析結果を表3に示した。

Experimental Example 5
The re-dissolution of rare earth impurities once deposited was investigated.
The composition of the plating solution was 250 g / L of nickel sulfate, 50 g / L of nickel chloride, 45 g / L of boric acid, and a plating solution having a pH of 4.5 was heated to 50 ° C. Electronickel plating was applied to the surface of the same composition range. After plating for several days, the Nd impurity in the electronickel plating solution was analyzed and found to be 544 ppm. The plating solution was collected in a 3 liter beaker and heated to 90 ° C.
During heating, the mixture was stirred with a magnetic stirrer (magnet stirrer). During heating, water was replenished so that the concentration of the plating solution was constant. After a certain time, a sufficient amount of the plating solution for ICP emission analysis was collected, the collected plating solution was cooled and filtered with a filter paper, and then the content (concentration) of Nd impurities in the plating solution was analyzed. An ICP emission analyzer was used for the analysis.
Moreover, after collecting a plating solution, the analysis result at the time of cooling a plating solution to 40 degreeC and hold | maintaining at 40 degreeC is shown below.
At 1, 3, 6, 24, and 48 hours after holding at 40 ° C, a sufficient amount of plating solution is collected for ICP emission analysis. After filtration, the content (concentration) of Nd impurities in the plating solution is analyzed. did.
The analysis results are shown in Table 3.

Figure 2014185373


0hrは90℃にて採取しためっき液の分析値である。上記に説明した方法により析出した希土類不純物は、めっき処理を行う温度以下になっても、再溶解せず、めっき液中の不純物濃度は上がらないことを確認した。
Figure 2014185373


0 hr is an analysis value of the plating solution collected at 90 ° C. It was confirmed that the rare earth impurities deposited by the method described above did not re-dissolve even when the temperature was lower than the temperature at which the plating treatment was performed, and the impurity concentration in the plating solution did not increase.

以上の実験例を踏まえ、望ましい加温温度について説明する。
実験例2の結果から、60℃以上で加温状態を保持した場合には、濾過した後のめっき液ではNd不純物の量が低減しており、また、加温温度が高くなるほど低減効果は高まった。
Nd不純物の量とめっき膜の2重めっきや剥離発生との関係はめっき条件によって変わるが、Nd不純物の量が200ppm程度では、それらの発生は見られない。
Nd不純物の除去に1週間(168時間)かけたとき、加温温度が60℃では約200ppmに低減している。同様に70℃では5日間(120時間)、80℃では3日間(72時間)、90℃及び95℃では24時間(1日)で、ほぼ同程度の効果を得られることが確認されている。
このように、不純物の低減に必要な時間は、めっき液の加温温度によって変化する。
1週間を生産の単位期間とした場合、60℃で168時間保持し、その後濾過しためっき液はめっき処理に十分使用可能であり、また70℃では5日間でめっき可能な不純物量に低減できる。同様に80℃、90℃、95℃ではさらに短い時間でめっき液中の不純物が低減可能である。
Based on the above experimental example, a desirable heating temperature will be described.
From the result of Experimental Example 2, when the heating state is maintained at 60 ° C. or higher, the amount of Nd impurities is reduced in the plating solution after filtration, and the reduction effect increases as the heating temperature increases. It was.
The relationship between the amount of Nd impurities and the occurrence of double plating or peeling of the plating film varies depending on the plating conditions. However, when the amount of Nd impurities is about 200 ppm, they are not observed.
When Nd impurities are removed for one week (168 hours), the heating temperature is reduced to about 200 ppm at 60 ° C. Similarly, it is confirmed that almost the same effect can be obtained in 5 days (120 hours) at 70 ° C, 3 days (72 hours) at 80 ° C, and 24 hours (1 day) at 90 ° C and 95 ° C. .
Thus, the time required for reducing the impurities varies depending on the heating temperature of the plating solution.
When one week is set as a production unit period, the plating solution which is held at 60 ° C. for 168 hours and then filtered can be sufficiently used for the plating treatment, and at 70 ° C., the amount of impurities which can be plated can be reduced to 5 days. Similarly, at 80 ° C., 90 ° C., and 95 ° C., impurities in the plating solution can be reduced in a shorter time.

加温時間24時間以下について調べた実験例4を参酌すると、90℃に加温した場合、不純物の析出は3時間程度経過した時点ですでに始まっており、約10%の不純物低下量となっている。この析出物の濾過により、不純物を除去できることがわかる。
このことから、希土類不純物の析出は加温温度が高くなるにしたがって短時間のうちに始まることが予測される。よって、希土類不純物を含んだめっき液を加温用の熱交換器等で適正温度に加温することで希土類不純物を析出し、その後冷却し濾過することで、めっき液中から希土類不純物を効率的に除去することが可能となる。実験例2の結果を参酌すると、80℃の加温では24時間で不純物量は35%程度減少しており、加温温度として80℃以上を選定すれば、短い時間での不純物の析出が可能となり、一層効率的な不純物除去が可能となることを確認した。
また実験例5の結果から、一度析出した析出物は、めっき液の温度をめっき処理温度以下に下げてもめっき液中に再溶解しないことから、加温により析出した析出物を含むめっき液を加温前の温度(めっき処理を行う温度)まで冷却し、その後濾過することで濾過後のめっき液をめっき槽に戻す際の温度調整は不要となる。したがって、めっき処理を停止することなく、めっき液中の不純物除去を連続的に実施することができ、工業規模の生産において効率的に安定した性状のめっき被膜を形成可能なめっき処理を提供することができる。
In consideration of Experimental Example 4 in which the heating time was 24 hours or less, when heating was performed at 90 ° C., the precipitation of impurities had already begun when about 3 hours passed, and the amount of impurities decreased by about 10%. ing. It can be seen that impurities can be removed by filtration of the precipitate.
From this, the precipitation of rare earth impurities is expected to start in a short time as the heating temperature increases. Therefore, the rare earth impurities are precipitated by heating the plating solution containing rare earth impurities to an appropriate temperature with a heat exchanger for heating, etc., and then cooling and filtering to efficiently remove the rare earth impurities from the plating solution. Can be removed. Considering the results of Experimental Example 2, the amount of impurities decreased by about 35% in 24 hours at 80 ° C heating, and if 80 ° C or higher is selected as the heating temperature, impurities can be precipitated in a short time. Thus, it was confirmed that more efficient impurity removal was possible.
In addition, from the results of Experimental Example 5, the precipitate once deposited does not re-dissolve in the plating solution even if the temperature of the plating solution is lowered below the plating treatment temperature. Cooling to the temperature before heating (the temperature at which the plating treatment is performed) and then filtering makes it unnecessary to adjust the temperature when returning the filtered plating solution to the plating tank. Therefore, it is possible to continuously remove impurities in a plating solution without stopping the plating process, and to provide a plating process capable of forming a plating film having a stable and efficient property in industrial scale production. Can do.

以上の実験例において、Nd,PrやDyの不純物低減効果を確認したが、Tbや更に他の希土類不純物についても低減可能である。
更には、めっき液中のFe不純物やCu不純物についても低減可能である。
In the above experimental examples, the effect of reducing Nd, Pr and Dy impurities was confirmed, but Tb and other rare earth impurities can also be reduced.
Furthermore, Fe impurities and Cu impurities in the plating solution can also be reduced.

上記の実験例に基づき、めっき槽、加温手段、冷却手段、分離除去手段、及び移動手段を選定し、本発明の装置を製作した。
なお本発明の除去装置を構成する各手段は、耐熱性及び少なくともめっき液に直接触れる部分は耐酸性(あるいは耐アルカリ性)を有することが望ましい。
本発明の除去装置の一実施態様を図1に示す構成に基づいて説明する。なお、めっき槽を含み、各手段の具体的な機能や動作は先に説明した通りであり、以下では省略する。
めっき槽:図中4は電気ニッメルめっき液を行うめっき槽であり、材質はPVC(塩化ビニル)で構成した。めっき液はワット浴を用いた。めっき温度は50℃とした。
加温手段:図中7は加温手段であり、熱交換器を用いた。熱源は図示しないボイラーで発生させた蒸気を用い、めっき液が通過する部分(接液部)の材質はチタンとした。
希土類不純物を除去するに際し、この加温手段でめっき液を90℃に加温し、一定時間保持した。
冷却手段:図中8は冷却手段であり、熱交換器を用いた。公知の冷媒を冷凍機で冷却し前記加温用の熱交換器で加温された電気ニッケルめっき液を50℃に冷却した。めっき液が通過する部分(接液部)の材質はチタンとした。
分離除去手段:図中9は分離除去手段であり、糸巻フィルタを使用する公知の濾過器を用いた。
移動手段:図中6はめっき液をめっき槽4から移動するポンプであり、耐酸性を考慮し少なくともめっき液に接触する部分は樹脂製のポンプを使用した。
接続手段:上記各手段7、8、9を接続する配管及び分離除去手段9とめっき槽4とを接続する配管は耐熱塩ビとした。
なお、図中5及び10はバルブであり、各手段7、8、9及びめっき槽4へ移動(送液)されるめっき液の流量を調節した。
Based on the above experimental example, a plating tank, heating means, cooling means, separation / removal means, and moving means were selected, and the apparatus of the present invention was manufactured.
Each means constituting the removing apparatus of the present invention desirably has heat resistance and at least a portion that directly touches the plating solution has acid resistance (or alkali resistance).
An embodiment of the removal apparatus of the present invention will be described based on the configuration shown in FIG. In addition, the specific functions and operations of each means including the plating tank are as described above, and will be omitted below.
Plating tank: 4 in the figure is a plating tank for carrying out an electric nickel plating solution, and the material is PVC (vinyl chloride). A Watt bath was used as the plating solution. The plating temperature was 50 ° C.
Heating means: 7 in the figure is a heating means, and a heat exchanger was used. As a heat source, steam generated by a boiler (not shown) was used, and the material (part in contact with the liquid) through which the plating solution passes was titanium.
When removing the rare earth impurities, the plating solution was heated to 90 ° C. by this heating means and held for a certain period of time.
Cooling means: 8 in the figure is a cooling means, and a heat exchanger was used. A known refrigerant was cooled in a refrigerator and the electric nickel plating solution heated in the heating heat exchanger was cooled to 50 ° C. The material through which the plating solution passes (wetted part) was titanium.
Separation and removal means: 9 in the figure is a separation and removal means, and a known filter using a pincushion filter was used.
Moving means: 6 in the figure is a pump for moving the plating solution from the plating tank 4, and a resin pump was used at least in contact with the plating solution in consideration of acid resistance.
Connecting means: The piping connecting the above-mentioned means 7, 8 and 9 and the piping connecting the separating / removing means 9 and the plating tank 4 were made of heat-resistant PVC.
In the figure, reference numerals 5 and 10 denote valves, and the flow rate of the plating solution moved (liquid fed) to each of the means 7, 8, 9 and the plating tank 4 was adjusted.

上記の装置によって、実験例1と同様な条件にてR−Fe−B系焼結磁石の表面に対して電気ニッケルめっきを行いながら希土類不純物の除去を行ったところ、実験例1と同程度の希土類不純物の除去が実現でき、実質的に、めっき処理中のめっき液中の希土類不純物の増加を抑えることができることを確認した。
When the rare earth impurities were removed while performing electro nickel plating on the surface of the R—Fe—B based sintered magnet under the same conditions as in Experimental Example 1 using the above apparatus, the same degree as in Experimental Example 1 was obtained. It was confirmed that the removal of rare earth impurities can be realized and the increase of rare earth impurities in the plating solution during the plating process can be substantially suppressed.

本発明は、希土類磁石をめっきする際にめっき液に溶解し、いわゆるめっき不良の原因となる電気ニッケルめっき液中の希土類不純物を効率よく除去することが出来、産業上の利用可能性を有する。   The present invention dissolves in a plating solution when plating a rare earth magnet, and can efficiently remove rare earth impurities in the electronickel plating solution that cause so-called plating defects, and has industrial applicability.

1,9 濾過器
2,6 ポンプ
3,5,10 バルブ
7 加温用熱交換器
8 冷却用熱交換器
20 めっき液濾過系統
30 めっき液不純物除去系統

DESCRIPTION OF SYMBOLS 1,9 Filter 2,6 Pump 3,5,10 Valve 7 Heating exchanger for heating 8 Heat exchanger for cooling 20 Plating solution filtration system 30 Plating solution impurity removal system

Claims (7)

電気ニッケルめっき液中の希土類不純物の除去装置であって、希土類不純物を含む電気ニッケルめっき液を加温する加温手段、前記加温手段による加温により析出した析出物を含む電気ニッケルめっき液を冷却する冷却手段、前記冷却手段により冷却された電気ニッケルめっき液から前記析出物を分離し除去する分離除去手段を有することを特徴とする除去装置。 An apparatus for removing rare earth impurities in an electronickel plating solution, comprising: a heating means for heating an electronickel plating solution containing rare earth impurities; and an electronickel plating solution containing precipitates precipitated by heating by the heating means. A removing device comprising cooling means for cooling and separation / removal means for separating and removing the precipitate from the electro nickel plating solution cooled by the cooling means. 前記加温手段は、前記希土類不純物を含む電気ニッケルめっき液を80℃以上に加温することができ、前記冷却手段は、前記加温手段により加温された前記析出物を含む電気ニッケルめっき液を加温前の温度に冷却することができることを特徴とする請求項1に記載の除去装置。   The heating means can heat the electronickel plating solution containing the rare earth impurities to 80 ° C. or more, and the cooling means contains the precipitate heated by the heating means. The removing device according to claim 1, wherein the removing device can be cooled to a temperature before heating. 前記加温手段は、加温ヒーター又は加温用熱交換器であり、前記冷却手段は、冷却パイプ又は冷却用熱交換器であることを特徴とする請求項1または2に記載の除去装置。   The removal apparatus according to claim 1 or 2, wherein the heating means is a heating heater or a heating heat exchanger, and the cooling means is a cooling pipe or a cooling heat exchanger. 前記分離除去手段は、濾過器又は沈降槽であることを特徴とする請求項1〜3のいずれかに記載の除去装置。   The removal apparatus according to any one of claims 1 to 3, wherein the separation and removal means is a filter or a sedimentation tank. 前記加温手段、冷却手段及び分離除去手段が、前記加温手段を介して希土類不純物を含む電気ニッケルめっき液を溜める貯液槽に接続されていることを特徴とする請求項1〜4のいずれかに記載の除去装置。   The heating means, the cooling means, and the separation / removal means are connected to a liquid storage tank for storing an electronickel plating solution containing a rare earth impurity through the heating means. The removal apparatus of crab. 前記貯液槽がめっき槽であり、前記分離除去手段により前記析出物が除去された電気ニッケルめっき液を前記めっき槽に戻すことが可能に接続されていることを特徴とする請求項5に記載の除去装置。   The said liquid storage tank is a plating tank, It is connected so that the electric nickel plating liquid from which the said deposit was removed by the said separation removal means can be returned to the said plating tank. Removal device. 前記めっき槽と加温手段との間に、前記めっき槽に溜められた希土類不純物を含む電気ニッケルめっき液を加温手段に移動する移動手段としてポンプを配置したことを特徴とする請求項6に記載の除去装置。





7. A pump is disposed between the plating tank and the heating means as a moving means for moving the electric nickel plating solution containing rare earth impurities stored in the plating tank to the heating means. The removal device described.





JP2013061649A 2013-03-25 2013-03-25 Electric nickel plating equipment Active JP6119353B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013061649A JP6119353B2 (en) 2013-03-25 2013-03-25 Electric nickel plating equipment
CN201410113723.2A CN104073865B (en) 2013-03-25 2014-03-25 Nickel electroplanting device
CN201420137298.6U CN204125559U (en) 2013-03-25 2014-03-25 The removing device of the rare earth impurities in nickel plating solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013061649A JP6119353B2 (en) 2013-03-25 2013-03-25 Electric nickel plating equipment

Publications (2)

Publication Number Publication Date
JP2014185373A true JP2014185373A (en) 2014-10-02
JP6119353B2 JP6119353B2 (en) 2017-04-26

Family

ID=51595458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013061649A Active JP6119353B2 (en) 2013-03-25 2013-03-25 Electric nickel plating equipment

Country Status (2)

Country Link
JP (1) JP6119353B2 (en)
CN (2) CN204125559U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105149318A (en) * 2015-08-06 2015-12-16 安徽大地熊新材料股份有限公司 Method for removing nickel-plate layer of nickel-plate neodymium iron boron magnet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6119353B2 (en) * 2013-03-25 2017-04-26 日立金属株式会社 Electric nickel plating equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60145399A (en) * 1983-12-29 1985-07-31 Nisshin Steel Co Ltd Method and device for regenerative treatment of copper cyanide plating liquid
JPH02209500A (en) * 1989-02-08 1990-08-20 Sumitomo Special Metals Co Ltd Method for regenerating used ni or ni alloy plating solution
JPH07207499A (en) * 1994-01-11 1995-08-08 Nisshin Steel Co Ltd Method for regenerating water incorporated deteriorated low temperature type fused salt liquid
JP2006077271A (en) * 2004-09-07 2006-03-23 Tdk Corp Plating method and plating apparatus
JP2008045188A (en) * 2006-08-21 2008-02-28 Jfe Steel Kk Apparatus for regenerating plating solution and method for regenerating plating solution
US20140224664A1 (en) * 2011-09-28 2014-08-14 Hitachi Metals, Ltd. Method for removing rare earth impurities from nickel-electroplating solution

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3119545B2 (en) * 1993-07-22 2000-12-25 信越化学工業株式会社 Method for removing impurity metal ions from electroplating bath for Nd-Fe-B permanent magnet surface treatment and method for regenerating electroplating bath for Nd-Fe-B permanent magnet surface treatment
JP4915174B2 (en) * 2006-08-21 2012-04-11 Jfeスチール株式会社 Plating solution recycling apparatus and plating solution recycling method
JP6119353B2 (en) * 2013-03-25 2017-04-26 日立金属株式会社 Electric nickel plating equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60145399A (en) * 1983-12-29 1985-07-31 Nisshin Steel Co Ltd Method and device for regenerative treatment of copper cyanide plating liquid
JPH02209500A (en) * 1989-02-08 1990-08-20 Sumitomo Special Metals Co Ltd Method for regenerating used ni or ni alloy plating solution
JPH07207499A (en) * 1994-01-11 1995-08-08 Nisshin Steel Co Ltd Method for regenerating water incorporated deteriorated low temperature type fused salt liquid
JP2006077271A (en) * 2004-09-07 2006-03-23 Tdk Corp Plating method and plating apparatus
JP2008045188A (en) * 2006-08-21 2008-02-28 Jfe Steel Kk Apparatus for regenerating plating solution and method for regenerating plating solution
US20140224664A1 (en) * 2011-09-28 2014-08-14 Hitachi Metals, Ltd. Method for removing rare earth impurities from nickel-electroplating solution

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6015008758; Linyan Li et al.: 'Recovery of Ni, Co and rare earths from spent Ni-metal hydride batteries and proparation of spherica' Hydrometallurgy 100, 20091007, 41-46, Elsevier *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105149318A (en) * 2015-08-06 2015-12-16 安徽大地熊新材料股份有限公司 Method for removing nickel-plate layer of nickel-plate neodymium iron boron magnet

Also Published As

Publication number Publication date
CN104073865B (en) 2017-09-29
CN104073865A (en) 2014-10-01
CN204125559U (en) 2015-01-28
JP6119353B2 (en) 2017-04-26

Similar Documents

Publication Publication Date Title
JP5692400B2 (en) Method for removing rare earth impurities in electro nickel plating solution
JP5835001B2 (en) Method for removing rare earth impurities in electro nickel plating solution
JP6119353B2 (en) Electric nickel plating equipment
CN101278077B (en) Method for continuously operating acid or alkaline zinc or zinc alloy baths
JP6319297B2 (en) Method for removing rare earth impurities in electro nickel plating solution
JP6281565B2 (en) Method for removing rare earth impurities in electro nickel plating solution
CN101439912B (en) Water treatment technology of vehicle body welding process circulating cooling water system
JP5410201B2 (en) Sulfuric acid bath for high current density Sn plating on copper alloy plate and Sn plating method
IL204627A (en) System and method of plating metal alloys and product produced thereby
KR20220118443A (en) Method and system for depositing a zinc-nickel alloy on a substrate
JP5978793B2 (en) Plating method and plating apparatus
CN106222674B (en) A kind of compound hydrochloric acid pickling corrosion inhibitor of melon ring class
JP2007231388A (en) Molten salt electrolysis method and molten salt electrolytic cell
JP2012057214A (en) SULFURIC ACID BATH FOR PLATING Sn ON COPPER ALLOY SHEET AT HIGH CURRENT DENSITY, AND METHOD FOR PLATING Sn
JP4323891B2 (en) Anode for electrolytic refining of iron and electrolytic refining system of iron
CN111018140A (en) Environment-friendly corrosion and scale inhibitor
JP2005105309A (en) Method for removing copper impurity in chrome plating solution
JP2014214320A (en) Device and method for manufacturing chromium electroplated steel strip
JP2013040368A (en) Operating method of lead electrorefining equipment
UA5963U (en) A method for the preparation of metal tin in untinning the heavy nonferrous metal scrap

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170313

R150 Certificate of patent or registration of utility model

Ref document number: 6119353

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350