JPH07207499A - Method for regenerating water incorporated deteriorated low temperature type fused salt liquid - Google Patents

Method for regenerating water incorporated deteriorated low temperature type fused salt liquid

Info

Publication number
JPH07207499A
JPH07207499A JP6013141A JP1314194A JPH07207499A JP H07207499 A JPH07207499 A JP H07207499A JP 6013141 A JP6013141 A JP 6013141A JP 1314194 A JP1314194 A JP 1314194A JP H07207499 A JPH07207499 A JP H07207499A
Authority
JP
Japan
Prior art keywords
liquid
temp
deteriorated
fused salt
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6013141A
Other languages
Japanese (ja)
Inventor
Takeshi Shimizu
剛 清水
Masayoshi Tadano
政義 多々納
Yukio Uchida
幸夫 内田
Hitoshi Suzuki
仁 鈴木
Asao Kominato
あさを 小湊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Nippon Steel Nisshin Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Nisshin Steel Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP6013141A priority Critical patent/JPH07207499A/en
Publication of JPH07207499A publication Critical patent/JPH07207499A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To easily regenerate a water incorporated, deteriorated, low temp. type fused salt liquid by heating the water incorporated, deteriorated liquid of a specific low temp. type fused salt liquid to a specific temp., and maintaining it at the temp. before cooling it to a specific temp. and maintaining it at the temp. to remove the formed deposit. CONSTITUTION:A low temp. type fused salt liquid mainly consisting of aluminum halogenide and organic nitrogen contg. onium halogenide is strong hydroscopicity, and when water is incorporated, the liquid is deteriorated to particularly lower Al electrodepositing limit current density. When the water incorporated, deteriorated liquid is regenerated, the fused salt liquid is heated to 50-100 deg.C and maintained at that temp. In this way, the hydroxide group contg. aluminum complex ion seeds formed by the water is dehydrated. Then, the fused salt liquid is cooled to <=30 deg.C and maintained at that temp. to crystallize oxide contg. aluminum complex ion seeds formed by the heating and maintaining. The deposit formed by this is removed by filtration, etc., to regenerate the water incorporated, deteriorated liquid.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルミニウムハロゲン
化物と有機系窒素含有オニウムハロゲン化物を混合した
導電性低温溶融塩液が水分混入により劣化した場合の再
生方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for regenerating a conductive low-temperature molten salt solution obtained by mixing an aluminum halide and an organic nitrogen-containing onium halide, which is deteriorated due to mixing of water.

【0002】[0002]

【従来技術】アルミニウムハロゲン化物20〜80mol
%と有機系窒素含有オニウムハロゲン化物20〜80mo
l%とを混合した溶融塩液は、常温で高い導電率を示す
ので、電気アルミニウムのめっき液や二次電池の電解液
に使用できる。この溶融塩液でアルミニウムハロゲン化
物としては、塩化アルミニウムが、また、有機系窒素含
有オニウムハロゲン化物としては、(ジ)アルキルイミ
ダゾリウムクロライド、アルキルピリジニウムクロライ
ドが主に使用されている。
2. Description of the Related Art Aluminum halide 20-80 mol
% And organic nitrogen-containing onium halide 20 to 80 mo
The molten salt solution mixed with 1% has a high conductivity at room temperature, and thus can be used as a plating solution for electrolytic aluminum or an electrolytic solution for secondary batteries. In this molten salt solution, aluminum chloride is mainly used as an aluminum halide, and as the organic nitrogen-containing onium halide, (di) alkylimidazolium chloride and alkylpyridinium chloride are mainly used.

【0003】この溶融塩液は、強い吸湿性を有するた
め、従来、その取り扱い、使用および保管などは乾燥不
活性ガス中、例えば、乾燥窒素ガスやアルゴンガス中で
行っていた。しかし、不活性ガス中の水分除去や不活性
ガスによる水分の遮断には限界があるため、水分混入を
完全に防止することは困難であった。一般に溶融塩液中
に水分が混入すると、物理的特性や化学的特性が変化
し、特にAl電析限界電流密度が低下し、電気めっき液
の場合はめっき速度が、また、二次電池電解液の場合に
は充電速度が低下してしまう。
Since this molten salt solution has a strong hygroscopic property, its handling, use and storage have conventionally been carried out in a dry inert gas such as dry nitrogen gas or argon gas. However, it is difficult to completely prevent the mixing of water because there is a limit in removing water in the inert gas and shutting off water by the inert gas. Generally, when water is mixed in a molten salt solution, physical characteristics and chemical characteristics are changed, and particularly, Al electrodeposition limit current density is lowered. In the case of an electroplating solution, a plating rate is increased, and a secondary battery electrolyte solution is also added. In this case, the charging speed will be reduced.

【0004】例えば、図4は、塩化アルミニウム64mo
l%−エチルメチルイミダゾリウムクロライド36mol%
系溶融塩液の新液(Al電析限界電流密度:4.7kA/
2)にH2Oを添加して、H2O添加量とAl電析限界
電流密度との関係を調査したものであるが、Al電析限
界電流密度はH2O添加量とともに低下してしまう。
For example, FIG. 4 shows aluminum chloride 64mo.
l% -Ethylmethyl imidazolium chloride 36 mol%
New molten salt solution (Al electrodeposition current limit: 4.7 kA /
m 2 ), H 2 O was added to investigate the relationship between the H 2 O addition amount and the Al electrodeposition limit current density. The Al electrodeposition limit current density decreased with the H 2 O addition amount. Will end up.

【0005】このように劣化した溶融塩液の再生方法と
しては、一方の成分の有機系窒素含有オニウムハロゲン
化物だけを劣化液に添加して、その濃度を所定の範囲に
高めることにより沈殿物を生じさせ、その沈殿物の除去
後、他方の成分のアルミニウムハロゲン化物を添加し
て、両成分を使用適性濃度に調整するする方法が提案さ
れている(特開平4−254600号公報)。しかし、
この方法では、各成分を交互に添加して、濃度調整操作
をその添加の都度行わなければならないため、操作が複
雑である。また、再生後には液量が増大するため、必要
以上の溶融塩液を調製してしまうことになる。さらに、
この方法では水酸基含有アルミニウム錯イオン種の除去
は可能であるが、酸素含有アルミニウム錯イオン種を除
去することはできない。
As a method of regenerating the molten salt solution which has deteriorated in this way, only one component, the organic nitrogen-containing onium halide, is added to the deterioration solution, and the concentration thereof is increased to a predetermined range to form a precipitate. A method has been proposed in which after the precipitate is formed and the precipitate is removed, the other component, an aluminum halide, is added to adjust both components to concentrations suitable for use (JP-A-4-254600). But,
In this method, each component must be added alternately and the concentration adjustment operation must be performed each time the addition is performed, so the operation is complicated. In addition, since the liquid amount increases after the regeneration, an excessive amount of molten salt liquid will be prepared. further,
This method can remove the hydroxyl group-containing aluminum complex ion species, but cannot remove the oxygen-containing aluminum complex ion species.

【0006】[0006]

【発明が解決しようとする課題】本発明は、このような
問題を解決するために水分混入により劣化したアルミニ
ウムハロゲン化物と有機系窒素含有オニウムハロゲン化
物を主成分とする低温型溶融塩液の再生方法を提供する
ものである。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention regenerates a low temperature molten salt solution containing an aluminum halide and an organic nitrogen-containing onium halide which are deteriorated by mixing water as the main components. It provides a method.

【0007】[0007]

【課題を解決するための手段】本発明は、溶融塩液を5
0〜150℃に加熱保持した後、30℃以下に冷却保持
して、生じた沈殿物を取り除く。
According to the present invention, a molten salt solution is used.
After heating and holding at 0 to 150 ° C., cooling and holding at 30 ° C. or lower are performed to remove the generated precipitate.

【0008】Al電析限界電流密度の低下は、次のよう
にAl電析反応に寄与するアルミニウム錯イオン種が加
水分解されて、液中に溶解性不純物が蓄積されるためで
ある。すなわち、有機系窒素含有オニウムハロゲン化物
とアルミニウムハロゲン化物とを混合した溶融塩液中に
は、AlX4 -とAl27 -(Xはハロゲン元素)のアル
ミニウム錯イオンが存在し、それらは次の(1)式のよ
うに平衡を保っており、電解時に陽極側では(2)式、
陰極側では(3)式の反応が起こる。 2AlX4 - ⇔ Al27 -+X- …(1) 7AlX4 -+Al(陽極) → 4Al27 -+3e- …(2) 4Al27 -+3e- → Al(電析)+7AlX4 - …(3)
The decrease in the limit current density of Al electrodeposition is due to the fact that the aluminum complex ion species contributing to the Al electrodeposition reaction are hydrolyzed and the soluble impurities are accumulated in the liquid as follows. That is, in a molten salt solution in which an organic nitrogen-containing onium halide and an aluminum halide are mixed, aluminum complex ions of AlX 4 and Al 2 X 7 (X is a halogen element) are present. Equation (1) is maintained in equilibrium, and on the anode side during electrolysis, equation (2),
On the cathode side, the reaction of formula (3) occurs. 2AlX 4 ⇔ Al 2 X 7 + X (1) 7AlX 4 + Al (anode) → 4Al 2 X 7 + 3e (2) 4Al 2 X 7 + 3e → Al (electrodeposition) + 7AlX 4 … (3)

【0009】しかし、溶融塩液中に水分が混入すると、
AlX4 -とAl27 -は次の(4)式、(5)式のよう
に水酸基含有アルミニウム錯イオン種に加水分解され
て、それがさらに(6)式、(7)式のように酸素含有
アルミニウム錯イオン種に分解し、溶解性の不純物とし
て蓄積されてしまう。 AlX4 -+H2O → Al(OH)X3 -+H++X- …(4) Al27 -+H2O → Al2(OH)X6 -+H++X- …(5) Al(OH)X3 - → AlOX2 -+H++X- …(6) Al2(OH)X6 - → Al2OX5 -+H++X- …(7)
However, if water is mixed in the molten salt solution,
AlX 4 and Al 2 X 7 are hydrolyzed into a hydroxyl group-containing aluminum complex ion species as shown in the following formulas (4) and (5), which are further expressed by the formulas (6) and (7). It decomposes into oxygen-containing aluminum complex ion species and accumulates as soluble impurities. AlX 4 + H 2 O → Al (OH) X 3 + H + + X (4) Al 2 X 7 + H 2 O → Al 2 (OH) X 6 + H + + X (5) Al (OH ) X 3 - → AlOX 2 - + H + + X - ... (6) Al 2 (OH) X 6 - → Al 2 OX 5 - + H + + X - ... (7)

【0010】[0010]

【作用】本発明者らは、水分により劣化したアルミニウ
ムハロゲン化物と有機系窒素含有オニウムハロゲン化物
の混合溶融塩液の再生方法を開発すべく、劣化液の化学
変化を検討した結果、前記(4)式、(5)式で生成し
た水酸基含有アルミニウム錯イオン種は加熱すれば、前
記(6)式、(7)式のように酸素含有アルミニウム錯
イオン種に変化すること、および、この酸素含有アルミ
ニウム錯イオン種は溶融塩液を冷却して、低温に保持す
ると、結晶性の沈殿物として析出することを見いだし
た。
In order to develop a method for regenerating a mixed molten salt solution of an aluminum halide deteriorated by moisture and an organic nitrogen-containing onium halide, the present inventors have studied the chemical change of the deteriorated solution, and as a result, (4) ), The hydroxyl group-containing aluminum complex ion species generated by the formula (5) is converted to the oxygen-containing aluminum complex ion species as shown in the formulas (6) and (7) when heated, and the oxygen-containing aluminum complex ion species It has been found that the aluminum complex ion species precipitate as a crystalline precipitate when the molten salt solution is cooled and kept at a low temperature.

【0011】図1は、塩化アルミニウム(以下AlCl
3という)64mol%−エチルメチルイミダゾリウムクロ
ライド(以下EMICという)36mol%系溶融塩液の
新液にH2Oを3vol%まで添加したときに生じる水酸基
含有アルミニウム錯イオン種の(−OH)結合に起因す
る3400cm-1のIR吸収ピ−ク強度の変化を示したも
ので、縦軸のIR吸収ピ−ク強度はH2Oを3vol%添加
した時のピ−ク強度を1.0とする相対ピ−ク強度で表
示してある。これによると、H2Oの添加量とともにピ
−ク強度が大きくなり、溶融塩液中の水酸基含有アルミ
ニウム錯イオン種が増加していることが確認できる。
FIG. 1 shows aluminum chloride (hereinafter referred to as AlCl
3 ) 64 mol% -ethylmethylimidazolium chloride (hereinafter referred to as EMIC) 36 mol% molten salt solution (-OH) bond of a hydroxyl group-containing aluminum complex ion species generated when H 2 O is added up to 3 vol% The change in the IR absorption peak intensity at 3400 cm -1 due to the above is shown. The IR absorption peak intensity on the vertical axis is the peak intensity when H 2 O is added at 3 vol% and is 1.0. The relative peak intensity is displayed. According to this, it can be confirmed that the peak strength increases with the amount of H 2 O added, and the hydroxyl group-containing aluminum complex ion species in the molten salt solution increase.

【0012】図2は、前記組成の溶融塩液新液にH2
を3vol%添加したものを室温から100℃に加熱し
て、その温度に保持した時間と3400cm-1のIR吸収
ピ−ク強度の関係を示したもので、ピ−ク強度は加熱保
持時間とともに次第に小さくなり、最終的には新液と同
レベルになっている。このことは、加熱保持時間をある
程度長くすれば、水酸基含有アルミニウム錯イオン種の
濃度を新液と同濃度に減少させることができることを意
味している。なお、縦軸のIR吸収ピ−ク強度表示は図
1の場合と同様である。
FIG. 2 shows that H 2 O is added to a new molten salt solution having the above composition.
3% by volume was heated from room temperature to 100 ° C, and the relationship between the time of holding at that temperature and the IR absorption peak intensity at 3400 cm -1 was shown. It gradually became smaller and finally reached the same level as the new solution. This means that the concentration of the hydroxyl group-containing aluminum complex ion species can be reduced to the same concentration as that of the new solution by lengthening the heating and holding time to some extent. The IR absorption peak intensity display on the vertical axis is the same as in the case of FIG.

【0013】加熱により溶融塩液中の水酸基含有アルミ
ニウム錯イオン種が減少するのは、前記(6)式、
(7)式により水酸基含有アルミニウム錯イオン種が酸
素含有アルミニウム錯イオン種に変化することによる
が、加熱温度は溶融塩液が分解しない50〜150℃に
する。50℃未満であると、水酸基含有アルミニウム錯
イオン種の減少速度が遅く、150℃を越えると、溶融
塩液からのAlCl3蒸発が著しくなる。加熱保持時間
はIR吸収ピ−ク強度が加熱前の吸収ピ−ク強度の10
%以下、好ましくは吸収ピ−ク強度が0になるまでの時
間である。
The fact that the hydroxyl group-containing aluminum complex ion species in the molten salt solution is reduced by heating is due to the above formula (6),
Although the hydroxyl group-containing aluminum complex ion species are changed to the oxygen-containing aluminum complex ion species by the formula (7), the heating temperature is set to 50 to 150 ° C. at which the molten salt solution is not decomposed. If it is lower than 50 ° C, the rate of decrease of hydroxyl group-containing aluminum complex ion species is slow, and if it exceeds 150 ° C, the evaporation of AlCl 3 from the molten salt solution becomes remarkable. The heating and holding time is such that the IR absorption peak strength is 10 times the absorption peak strength before heating.
% Or less, preferably the time until the absorption peak strength becomes zero.

【0014】図3は、前記組成の溶融塩液新液にH2
を3vol%添加した後100℃に加熱保持して、340
0cm-1のIR吸収ピ−ク強度を0にした液を冷却した場
合の沈殿物を生じさせる冷却温度と沈殿物除去後Al電
析限界電流密度を新液と同レベルに回復させるのに必要
な冷却保持時間との関係を示したものであるが、液は3
0℃以下に冷却したときに沈殿物を生じ、−80℃以下
では凝固することを示している。また、沈殿物除去後に
Al電析限界電流密度を新液と同レベルに回復させるに
は、冷却温度を低くすれば、冷却保持時間を短くできる
ことを示している。従って、酸素含有アルミニウム錯イ
オン種を沈殿物として除去するには、溶融塩液を30℃
以下、好ましくは0℃以下から溶融塩液の凝固点より2
〜3℃高い範囲に冷却するのが適している。冷却時間は
2時間以上、好ましくは10時間以上である。沈殿物の
除去は遠心分離法、ろ過法など公知方法によればよい。
FIG. 3 shows that H 2 O is added to a new molten salt solution having the above composition.
Was added at 3 vol% and heated to 100 ° C and held at 340
Cooling temperature that causes precipitation when cooling the solution with IR absorption peak intensity of 0 cm -1 set to 0, and necessary for recovering Al electrodeposition limiting current density to the same level as the new solution after removing the precipitate It shows the relationship between the cooling retention time and
It shows that a precipitate is formed when cooled to 0 ° C or lower, and solidifies at -80 ° C or lower. Further, it is shown that the cooling holding time can be shortened by lowering the cooling temperature in order to recover the Al electrodeposition limit current density to the same level as the new solution after removing the precipitate. Therefore, in order to remove the oxygen-containing aluminum complex ion species as a precipitate, the molten salt solution should be kept at 30 ° C.
Below, preferably from 0 ℃ or less 2 from the freezing point of the molten salt solution
It is suitable to cool to ~ 3 ° C higher range. The cooling time is 2 hours or longer, preferably 10 hours or longer. The precipitate may be removed by a known method such as a centrifugation method or a filtration method.

【0015】[0015]

【実施例】【Example】

実施例1 AlCl3とEMICとを混合して、AlCl3濃度が5
5mol%、64mol%の溶融塩液(それぞれ凝固点約−1
5℃、約−85℃)を調製して、それぞれの液のAl電
析限界電流密度を求めた。次に、各液に3vol%のH2
を添加して、液を劣化させた後、Al電析限界電流密度
および水酸基含有アルミニウム錯イオン種の(−OH)
結合に起因する3400cm-1のIR吸収ピ−ク強度を測
定した。その後、劣化液に熱処理を加えないもの、劣化
液を80℃に加熱して、前記IR吸収ピ−ク強度が加熱
前の50%(比較例)、および新液レベルになるまでそ
の温度に保持したもの、それぞれ調製した液を−100
〜40℃の範囲に30時間冷却保持して、生じた沈殿物
を遠心分離法で沈殿物を除去し、除去後Al電析限界電
流密度を測定した。比較例に示したサンプルNo.1
1、12は加熱処理の温度による影響をみたものであ
る。No.11は加熱処理温度:45℃で実施したも
の、No.12はそれを200℃で行ったものである。
Example 1 AlCl 3 and EMIC were mixed to give an AlCl 3 concentration of 5
5mol%, 64mol% molten salt liquid (freezing point about -1 respectively
5 ° C., about −85 ° C.) was prepared and the Al electrodeposition limit current density of each liquid was determined. Next, add 3 vol% H 2 O to each solution.
Was added to deteriorate the liquid, and then the limiting current density of Al electrodeposition and the hydroxyl group-containing aluminum complex ion species (-OH)
The IR absorption peak intensity at 3400 cm -1 due to binding was measured. After that, heat treatment is not applied to the deteriorated liquid, the deteriorated liquid is heated to 80 ° C., and the temperature is maintained until the IR absorption peak strength reaches 50% (comparative example) before heating and the new liquid level. And the prepared liquids were -100
By cooling and holding in the range of -40 ° C for 30 hours, the generated precipitate was removed by centrifugation, and after the removal, the Al electrodeposition limit current density was measured. Sample No. 1 shown in the comparative example
The numbers 1 and 12 show the effects of the temperature of the heat treatment. No. 11 was performed at a heat treatment temperature of 45 ° C., and No. 12 was performed at 200 ° C.

【0016】なお、各液のAl電析限界電流密度は、常
法により電解脱脂、酸洗を施した冷延鋼板(AK鋼、板
厚0.5mm)にNiストライクめっき(膜厚0.3μ
m)を施した後、液温90℃、めっき液流速1.0m/se
c、通電量15kC/m2で電気Alめっきを施し、白色
Alめっきが得られる最大電流密度とした。これらの操
作はいずれもN2雰囲気中で行った。表1に各段階にお
けるAl電析限界電流密度を示す。
The Al electrodeposition limit current densities of the respective solutions were determined by Ni strike plating (film thickness: 0.3 μm) on cold rolled steel plate (AK steel, plate thickness: 0.5 mm) electrolytically degreased and pickled by a conventional method.
m), the solution temperature is 90 ° C, and the plating solution flow rate is 1.0 m / se.
c, electric Al plating was performed at an energization amount of 15 kC / m 2 to obtain the maximum current density at which white Al plating was obtained. All of these operations were performed in an N 2 atmosphere. Table 1 shows the Al electrodeposition limit current density at each stage.

【0017】[0017]

【表1】 [Table 1]

【0018】実施例2 実施例1において、AlCl3−EMIC系溶融塩液の
代わりにAlCl3−ブチルピリジニウムクロライド
(BPC)系溶融塩液で、AlCl3濃度が64mol%の
液(凝固点約−70℃)を用い、同様の操作で水分混入
劣化液の再生を行った。この結果を表2に示す。
[0018] In Example 2 Example 1, AlCl 3 AlCl instead of -EMIC molten salts solution 3 - butyl pyridinium di chloride (BPC) molten salts solution, AlCl 3 concentration 64 mol% of the liquid (freezing point around -70 C.) was used to regenerate the deteriorated liquid mixed with water by the same operation. The results are shown in Table 2.

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【発明の効果】以上のように、本発明によれば、水分が
混入して劣化した溶融塩液を新液の状態に再生して、繰
り返し使用できる。また、本発明は温度操作により溶融
塩液を再生するのであるから、操作が簡単で、再生後に
液量が増大することがない。
As described above, according to the present invention, the molten salt liquid deteriorated due to the inclusion of water can be regenerated into a new liquid state and repeatedly used. Further, in the present invention, since the molten salt solution is regenerated by the temperature operation, the operation is simple and the liquid amount does not increase after the regenerating.

【図面の簡単な説明】[Brief description of drawings]

【図1】は、塩化アルミニウム64mol%−エチルメチ
ルイミダゾリウムクロライド36mol%系溶融塩液の新
液にH2Oを3vol%まで添加したときに生じる水酸基含
有アルミニウム錯イオン種の(−OH)結合に起因する
3400cm-1のIR吸収ピ−ク強度の変化を示すグラフ
である。
FIG. 1 is a (—OH) bond of a hydroxyl group-containing aluminum complex ion species generated when H 2 O is added up to 3 vol% to a new solution of a molten salt solution of aluminum chloride 64 mol% -ethylmethylimidazolium chloride 36 mol%. 3 is a graph showing changes in IR absorption peak intensity at 3400 cm −1 due to the above.

【図2】は、塩化アルミニウム64mol%−エチルメチ
ルイミダゾリウムクロライド36mol%系溶融塩液新液
にH2Oを3vol%添加したものを室温から100℃に加
熱して、その温度での保持時間と3400cm-1のIR吸
収ピ−ク強度の関係を示すグラフである。
[Fig. 2] shows a new molten salt liquid containing 64 mol% of aluminum chloride and 36 mol% of ethylmethylimidazolium chloride added with 3 vol% of H 2 O, heated from room temperature to 100 ° C, and kept at that temperature. 3 is a graph showing the relationship between IR absorption peak intensity at 3400 cm -1 and.

【図3】は、塩化アルミニウム64mol%−エチルメチ
ルイミダゾリウムクロライド36mol%系溶融塩液新液
にH2Oを3vol%添加した後100℃に加熱保持するこ
とにより3400cm-1のIR吸収ピ−ク強度を0にした
液を冷却した場合の沈殿物を生じさせる冷却温度と沈殿
物除去後Al電析限界電流密度を新液と同レベルに回復
させるのに必要な冷却保持時間との関係を示すグラフで
ある。
FIG. 3 shows an IR absorption peak at 3400 cm −1 by adding 3 vol% of H 2 O to a new molten solution of aluminum chloride 64 mol% -ethylmethylimidazolium chloride 36 mol% system and heating at 100 ° C. The relationship between the cooling temperature at which precipitates are formed when the solution with zero strength is cooled and the cooling holding time required to recover the Al electrodeposition limit current density after removing the precipitates to the same level as the new solution It is a graph shown.

【図4】は、塩化アルミニウム64mol%−エチルメチ
ルイミダゾリウムクロライド36mol%系溶融塩液の新
液にH2Oを添加した場合のH2O添加量とAl電析限界
電流密度との関係を示すグラフである。
FIG. 4 shows the relationship between the amount of added H 2 O and the limiting current density of Al when H 2 O was added to a new liquid of a molten salt solution of aluminum chloride 64 mol% -ethylmethylimidazolium chloride 36 mol%. It is a graph shown.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内田 幸夫 大阪府堺市石津西町5番地 日新製鋼株式 会社鉄鋼研究所表面処理研究部内 (72)発明者 鈴木 仁 茨城県稲敷郡阿見町中央8丁目3番1号 三菱油化株式会社筑波総合研究所内 (72)発明者 小湊 あさを 茨城県稲敷郡阿見町中央8丁目3番1号 三菱油化株式会社筑波総合研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yukio Uchida 5 Ishizu Nishimachi, Sakai City, Osaka Prefecture Nisshin Steel Co., Ltd. Surface Treatment Research Department, Steel Research Laboratories, Inc. 3-1, Mitsubishi Petrochemical Co., Ltd. Tsukuba Research Institute (72) Inventor Asahi Kominato 8-3-1 Chuo, Ami-cho, Inashiki-gun, Ibaraki Mitsubishi Petrochemical Co., Ltd. Tsukuba Research Institute

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 アルミニウムハロゲン化物と有機系窒
素含有オニウムハロゲン化物を主成分とする低温型溶融
塩液の水分混入劣化液を再生する際、溶融塩液を50〜
150℃に加熱保持した後、30℃以下に冷却保持し
て、生じた沈殿物を取り除くことを特徴とする水分混入
劣化低温型溶融塩液の再生方法。
1. When regenerating a water-mixed deterioration liquid of a low temperature molten salt liquid containing aluminum halide and an organic nitrogen-containing onium halide as main components, the molten salt liquid is used in an amount of 50 to 50%.
A method for regenerating a water-mixed deteriorated low-temperature molten salt solution, which comprises heating and holding at 150 ° C., and then cooling and holding at 30 ° C. or lower to remove a generated precipitate.
JP6013141A 1994-01-11 1994-01-11 Method for regenerating water incorporated deteriorated low temperature type fused salt liquid Withdrawn JPH07207499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6013141A JPH07207499A (en) 1994-01-11 1994-01-11 Method for regenerating water incorporated deteriorated low temperature type fused salt liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6013141A JPH07207499A (en) 1994-01-11 1994-01-11 Method for regenerating water incorporated deteriorated low temperature type fused salt liquid

Publications (1)

Publication Number Publication Date
JPH07207499A true JPH07207499A (en) 1995-08-08

Family

ID=11824890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6013141A Withdrawn JPH07207499A (en) 1994-01-11 1994-01-11 Method for regenerating water incorporated deteriorated low temperature type fused salt liquid

Country Status (1)

Country Link
JP (1) JPH07207499A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2784675A1 (en) * 1998-10-14 2000-04-21 Inst Francais Du Petrole Recovery of ammonium or quaternary phosphonium halides
JP2014185373A (en) * 2013-03-25 2014-10-02 Hitachi Metals Ltd Removal device for rare earth impurities in nickel electroplating solution
JP2016044339A (en) * 2014-08-25 2016-04-04 住友電気工業株式会社 Manufacturing method of organic halide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2784675A1 (en) * 1998-10-14 2000-04-21 Inst Francais Du Petrole Recovery of ammonium or quaternary phosphonium halides
JP2014185373A (en) * 2013-03-25 2014-10-02 Hitachi Metals Ltd Removal device for rare earth impurities in nickel electroplating solution
JP2016044339A (en) * 2014-08-25 2016-04-04 住友電気工業株式会社 Manufacturing method of organic halide

Similar Documents

Publication Publication Date Title
KR20030023640A (en) Method and apparatus for processing metals, and the metals so produced
JPH07207499A (en) Method for regenerating water incorporated deteriorated low temperature type fused salt liquid
JPS6327434B2 (en)
TWI790277B (en) Manufacturing method of electrode and manufacturing method of regenerative electrode
KR101570795B1 (en) Manufacturing method of pure nickel from fluorine containing nickel slime
JPH05315199A (en) Aluminum foil for anode of extra-high voltage al electrolytic capacitor
JPS63190187A (en) Point of sodium permanent anode
US3458407A (en) Method of producing nickel powder
US5891343A (en) Method for removing ferrous ions from acidic tinning electrolytes and tinning electrolyte recovery plant for iron using the same
US2598777A (en) Recovering gallium from metallic aluminum
HU177164B (en) Method for cleaning aluminium alloys
JPH06192879A (en) Refining method for cobalt
JPH0213034B2 (en)
US1299414A (en) Electrolytic refining of metallic zinc-bearing materials.
JP2540110B2 (en) Electro aluminum plating method
RU2775862C1 (en) Electrolytic method for obtaining silicon from molten salts
US3470073A (en) Method of electroplating aluminum
JP3068862B2 (en) Zinc electrolytic smelting method
JP3112807B2 (en) Method of treating iron chloride solution containing nickel
JP3112806B2 (en) Method of treating iron chloride solution containing nickel
RU2278183C2 (en) Method for refining of noble metals
Baxter et al. A REVISION OF THE ATOMIC WEIGHT OF ZINC. THE ELECTROLYTIC DETERMINATION OF ZINC IN ZINC BROMIDE.
JP3428478B2 (en) Electrolytic bath for aluminum refining
JPS61243190A (en) Electroplating method with molten slat bath
JP3971284B2 (en) Purification method of gallium solution

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010403