JP2006077271A - Plating method and plating apparatus - Google Patents

Plating method and plating apparatus Download PDF

Info

Publication number
JP2006077271A
JP2006077271A JP2004259581A JP2004259581A JP2006077271A JP 2006077271 A JP2006077271 A JP 2006077271A JP 2004259581 A JP2004259581 A JP 2004259581A JP 2004259581 A JP2004259581 A JP 2004259581A JP 2006077271 A JP2006077271 A JP 2006077271A
Authority
JP
Japan
Prior art keywords
plating
tank
plating solution
oxidizing gas
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004259581A
Other languages
Japanese (ja)
Inventor
Yasuyuki Nakayama
靖之 中山
Takeshi Sakamoto
健 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2004259581A priority Critical patent/JP2006077271A/en
Publication of JP2006077271A publication Critical patent/JP2006077271A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plating method that prevents the reprecipitation of a component having eluted into a plating liquid from a rare-earth sintered magnet of an article to be plated, and inhibits the degradation of the adhesiveness and reliability of a plated film, and to provide a plating apparatus. <P>SOLUTION: When plating a R-T-B base sintered magnet, this plating method includes supplying an oxidative gas to the plating liquid L to be used, to oxidize and precipitate the component, for instance Nd and Fe, in the R-T-B base sintered magnet, which has eluted into the plating liquid L during plating. In the above step, it is preferable to supply the oxidative gas in a bubble form into the plating liquid L, so as to enhance the contact efficiency of the gas with the eluted component in the plating liquid L. The plating apparatus preferably has a filter 16 so as to collect a precipitated oxide of the eluted component. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えばNd−Fe−B系に代表される希土類焼結磁石等の表面にめっきを施す際に用いるのに適しためっき方法、めっき装置に関する。   The present invention relates to a plating method and a plating apparatus suitable for use in plating on the surface of, for example, a rare earth sintered magnet typified by an Nd—Fe—B system.

例えばNd−Fe−B系に代表される希土類焼結磁石等は、表面が酸化されやすいため、金属めっきや、樹脂によるコーティングによって、磁石本体の表面を保護する必要がある(例えば、特許文献1、2参照)。
例えば、金属めっきには、電解めっきと無電解めっきとがあり、希土類焼結磁石においては、電解めっきが多く用いられている。また、このようなめっきの種類には、Niめっき、Cuめっき、Snめっき等が挙げられる。
このようなめっきは、磁石本体を保護するためのものであるため、めっき膜には、磁石の磁気特性等を大幅に低下させることなく、高い耐食性、均一性を有することが要求される。
For example, rare earth sintered magnets represented by the Nd-Fe-B series are easily oxidized, and thus the surface of the magnet body needs to be protected by metal plating or resin coating (for example, Patent Document 1). 2).
For example, metal plating includes electrolytic plating and electroless plating, and electrolytic plating is often used for rare earth sintered magnets. Such plating types include Ni plating, Cu plating, Sn plating, and the like.
Since such plating is for protecting the magnet body, the plating film is required to have high corrosion resistance and uniformity without greatly degrading the magnetic properties of the magnet.

特開昭49−86896号公報JP 49-86896 A 特開昭60−63901号公報JP-A-60-63901

ところで、上記したようなNd−Fe−B系の希土類焼結磁石等をめっきしても、めっき膜の密着性を確認する試験や、防錆性を確認するための塩水噴霧試験において予想外に低い結果となることがあった。これはすなわち、めっき膜の信頼性の低下に繋がるため、本発明者らは原因の追究を行った。
その結果、上記したようなNd−Fe−B系の希土類焼結磁石等をめっきする際に、磁石本体に含まれる成分であるNdやFeがめっき液に溶出していることを発見した。そして、めっき液に溶出した成分(以下、溶出成分)が、めっきの進行に伴い、磁石本体に再析出し、これが、めっき膜の密着性の低下や信頼性の低下、特に塩水噴霧試験における劣化を引き起こしていたのである。
本発明は、このような技術的課題に基づいてなされたもので、めっき対象物である希土類焼結磁石等からめっき液に溶出した成分の再析出を防止し、めっき膜の密着性や信頼性の低下を抑制することのできるめっき方法、めっき装置を提供することを目的とする。
By the way, even if the above-described Nd—Fe—B rare earth sintered magnet is plated, unexpectedly in the test for confirming the adhesion of the plating film and the salt spray test for confirming the rust prevention property. In some cases, the results were low. In other words, since this leads to a decrease in the reliability of the plating film, the present inventors have investigated the cause.
As a result, it was discovered that Nd and Fe, which are components contained in the magnet body, are eluted in the plating solution when plating the Nd—Fe—B rare earth sintered magnet and the like as described above. The components eluted in the plating solution (hereinafter referred to as elution components) reprecipitates on the magnet body as the plating progresses, which reduces the adhesion and reliability of the plating film, particularly in the salt spray test. It was causing.
The present invention has been made on the basis of such a technical problem, and prevents reprecipitation of components eluted from a rare earth sintered magnet or the like, which is an object to be plated, into the plating solution, and provides adhesion and reliability of the plating film. An object of the present invention is to provide a plating method and a plating apparatus that can suppress a decrease in the thickness.

かかる目的のもと、本発明は、めっき液中に酸化性ガスを導入し、磁石本体からめっき液中に溶出した成分を酸化させ、磁石本体表面への再析出を防止するというものである。
すなわち、本発明のめっき方法は、めっき槽中のめっき液にめっき対象物を浸漬させて、めっき対象物にめっきを施すめっき工程と、めっき液中に酸化性ガスを供給し、めっき液中に溶出しためっき対象物の成分を酸化させる溶出成分酸化工程と、を備えることを特徴とする。溶出成分酸化工程にて、めっき液中に溶出しためっき対象物の成分を酸化させることで、めっき工程にてめっき対象物に成分が再析出することを防止することができる。
溶出成分酸化工程では、酸化性ガスを、めっき槽の下部に気泡の状態で供給するのが好ましい。これにより、気泡はめっき液中を浮上していき、その過程において、めっき液中に溶出しためっき対象物の成分と高い接触効率で接触する。
溶出成分酸化工程でめっき対象物の成分が酸化することで生成される酸化物は、めっき液中から回収するのが好ましい。これには、濾過器等を適宜用いることができる。
なお、めっき工程と、溶出成分酸化工程は、並行して行っても良いし、別々に行っても良い。また、溶出成分酸化工程は、めっき工程が行われるめっき槽とは別の槽にめっき液を導入して行うようにしても良い。
このようなめっき方法は、めっき液中に溶出しためっき成分がめっき対象物に対して悪影響を及ぼすものであれば、いかなるめっき対象物に対しても有効であるが、R−T−B(Rは希土類元素の1種又は2種以上、TはFe又はFe及びCoを必須とする少なくとも1種以上の遷移金属元素)系焼結磁石をめっき対象物とする場合に有効である。特に、Nd−Fe−B系焼結磁石をめっきする場合、酸化しやすいNdやFeがめっき液に溶出する。このNdやFeをめっき液中で酸化させることで、これらの元素の磁石表面への再析出を有効に抑止できる。
For this purpose, the present invention introduces an oxidizing gas into the plating solution, oxidizes the components eluted from the magnet body into the plating solution, and prevents reprecipitation on the surface of the magnet body.
That is, the plating method of the present invention includes a plating step of immersing a plating object in a plating solution in a plating tank and plating the plating object, supplying an oxidizing gas into the plating solution, And an elution component oxidation step of oxidizing the eluted component of the plating object. By oxidizing the components of the plating target eluted in the plating solution in the elution component oxidation step, it is possible to prevent the components from re-depositing on the plating target in the plating step.
In the elution component oxidation step, it is preferable to supply the oxidizing gas in the form of bubbles to the lower part of the plating tank. As a result, the bubbles float up in the plating solution, and in the process, come into contact with the components of the plating object eluted in the plating solution with high contact efficiency.
It is preferable to collect the oxide produced by oxidizing the components of the plating object in the elution component oxidation step from the plating solution. For this, a filter or the like can be used as appropriate.
In addition, a plating process and an elution component oxidation process may be performed in parallel, and may be performed separately. Further, the elution component oxidation step may be performed by introducing the plating solution into a bath different from the plating bath in which the plating step is performed.
Such a plating method is effective for any plating object as long as the plating components eluted in the plating solution adversely affect the plating object, but R-T-B (R Is effective when one or more of rare earth elements are used, and T is at least one or more transition metal elements essential to Fe or Fe and Co). In particular, when plating an Nd—Fe—B based sintered magnet, oxidizable Nd and Fe are eluted in the plating solution. By oxidizing this Nd or Fe in the plating solution, reprecipitation of these elements on the magnet surface can be effectively suppressed.

ところで、溶出成分酸化工程では、酸素濃度3vol%以上の酸化性ガスを用いるのが好ましく、さらに酸素濃度15vol%以上の酸化性ガスを用いるのが好ましい。コストや管理の容易性の面から言えば、空気(大気)を酸化性ガスとして用いるのが特に好ましい。   By the way, in the elution component oxidation step, it is preferable to use an oxidizing gas having an oxygen concentration of 3 vol% or higher, and it is preferable to use an oxidizing gas having an oxygen concentration of 15 vol% or higher. In terms of cost and ease of management, it is particularly preferable to use air (atmosphere) as the oxidizing gas.

以上のめっき方法を実施する装置として、本発明は、めっき対象物をめっきするためのめっき液を収容しためっき槽と、めっき液中に溶出しためっき対象物の成分を酸化させるため、めっき液中に酸化性ガスを供給する酸化性ガス供給部と、めっき対象物の成分が酸化性ガスによって酸化することで生成された酸化物を回収する酸化物回収部と、を備えることを特徴とするめっき装置を提供する。
このようなめっき装置において、酸化性ガス供給部は、めっき槽内のめっき液中に酸化性ガスを供給することもできるし、めっき槽から外部の別の槽等に引き込んだめっき液中に、酸化性ガスを供給するようにしても良い。
As an apparatus for carrying out the above plating method, the present invention includes a plating tank that contains a plating solution for plating an object to be plated, and a component in the plating object that has eluted in the plating solution. A plating comprising: an oxidizing gas supply unit that supplies an oxidizing gas to the substrate; and an oxide recovery unit that recovers an oxide generated by oxidizing a component of the plating object with the oxidizing gas. Providing equipment.
In such a plating apparatus, the oxidizing gas supply unit can supply an oxidizing gas into the plating solution in the plating tank, or in the plating solution drawn from the plating tank to another external tank, etc. An oxidizing gas may be supplied.

以上のめっき方法を実施する他の装置として、本発明は、めっき対象物をめっきするためのめっき液を収容した第一の槽と、第一の槽に連通し、第一の槽との間でめっき液が循環可能とされた第二の槽と、第一の槽から第二の槽内に導入されためっき液中に酸化性ガスを供給するガス供給部と、第二の槽から第一の槽に送給される、酸化性ガスが供給されためっき液を濾過する濾過部と、を備えることを特徴とするめっき装置を提供する。ガス供給部では、第一の槽にてめっき液中に溶出しためっき対象物の成分を酸化させるため、第二の槽に導入しためっき液中に酸化性ガスを供給することができる。
このようなメッキ装置は、R−T−B系焼結磁石をめっき対象物とする場合に特に有効である。
As another apparatus for carrying out the above plating method, the present invention provides a first tank containing a plating solution for plating an object to be plated, and a first tank that communicates with the first tank. A second tank in which the plating solution can be circulated, a gas supply unit for supplying an oxidizing gas into the plating solution introduced from the first tank into the second tank, and a second tank from the second tank. There is provided a plating apparatus comprising: a filtration unit that filters a plating solution supplied with an oxidizing gas and fed to one tank. In the gas supply unit, the components of the plating object eluted in the plating solution in the first tank are oxidized, so that the oxidizing gas can be supplied into the plating solution introduced into the second tank.
Such a plating apparatus is particularly effective when an R-T-B sintered magnet is used as an object to be plated.

本発明によれば、めっき対象物からめっき液に溶出した成分の再析出を防止し、めっき膜の密着性や信頼性の低下を抑制することができる。   ADVANTAGE OF THE INVENTION According to this invention, the reprecipitation of the component eluted to the plating solution from the plating target object can be prevented, and the fall of the adhesiveness and reliability of a plating film can be suppressed.

以下、添付図面に示す実施の形態に基づいてこの発明を詳細に説明する。
ここでまず、本発明が適用される希土類焼結磁石について説明する。
本発明は、特にR−T−B系焼結磁石に適用することが望ましいが、他の希土類焼結磁石に本発明を適用することも可能である。以下、本発明をR−T−B系焼結磁石に適用する場合を例に挙げる。
R−T−B系焼結磁石は、希土類元素(R)を25〜37wt%含有する。ここで、本発明におけるRはYを含む概念を有しており、したがってY、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuの1種又は2種以上から選択される。Rの量が25wt%未満であると、R−T−B系焼結磁石の主相となるR214B相の生成が十分ではなく軟磁性を持つα−Feなどが析出し、保磁力が著しく低下する。一方、Rが37wt%を超えると主相であるR214B相の体積比率が低下し、残留磁束密度が低下する。またRが酸素と反応し、含有する酸素量が増え、これに伴い保磁力発生に有効なRリッチ相が減少し、保磁力の低下を招く。したがって、Rの量は25〜37wt%とする。望ましいRの量は28〜35wt%、さらに望ましいRの量は29〜33wt%である。
Hereinafter, the present invention will be described in detail based on embodiments shown in the accompanying drawings.
First, a rare earth sintered magnet to which the present invention is applied will be described.
The present invention is particularly preferably applied to an RTB-based sintered magnet, but the present invention can also be applied to other rare earth sintered magnets. Hereinafter, a case where the present invention is applied to an RTB-based sintered magnet will be described as an example.
The RTB-based sintered magnet contains 25 to 37 wt% of rare earth element (R). Here, R in the present invention has a concept including Y, and therefore 1 of Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. It is selected from species or two or more species. If the amount of R is less than 25 wt%, the R 2 T 14 B phase, which is the main phase of the R-T-B system sintered magnet, is not sufficiently generated, and α-Fe having soft magnetism is precipitated and retained. The magnetic force is significantly reduced. On the other hand, when R exceeds 37 wt%, the volume ratio of the R 2 T 14 B phase, which is the main phase, decreases, and the residual magnetic flux density decreases. Further, R reacts with oxygen, the amount of oxygen contained increases, and accordingly, the R-rich phase effective for the generation of coercive force decreases, leading to a decrease in coercive force. Therefore, the amount of R is set to 25 to 37 wt%. A desirable amount of R is 28 to 35 wt%, and a more desirable amount of R is 29 to 33 wt%.

また、本発明が適用されるR−T−B系焼結磁石は、ホウ素(B)を0.5〜4.5wt%含有する。Bが0.5wt%未満の場合には高い保磁力を得ることができない。一方で、Bが4.5wt%を超えると残留磁束密度が低下する傾向がある。したがって、Bの上限を4.5wt%とする。望ましいBの量は0.5〜1.5wt%、さらに望ましいBの量は0.8〜1.2wt%である。
本発明が適用されるR−T−B系焼結磁石は、Coを2.0wt%以下(0を含まず)、望ましくは0.1〜1.0wt%、さらに望ましくは0.3〜0.7wt%含有することができる。CoはFeと同様の相を形成するが、キュリー温度の向上、粒界相の耐食性向上に効果がある。
Further, the RTB-based sintered magnet to which the present invention is applied contains 0.5 to 4.5 wt% of boron (B). When B is less than 0.5 wt%, a high coercive force cannot be obtained. On the other hand, when B exceeds 4.5 wt%, the residual magnetic flux density tends to decrease. Therefore, the upper limit of B is set to 4.5 wt%. A desirable amount of B is 0.5 to 1.5 wt%, and a more desirable amount of B is 0.8 to 1.2 wt%.
The RTB-based sintered magnet to which the present invention is applied has a Co content of 2.0 wt% or less (not including 0), preferably 0.1 to 1.0 wt%, more preferably 0.3 to 0. .7 wt% can be contained. Co forms the same phase as Fe, but is effective in improving the Curie temperature and improving the corrosion resistance of the grain boundary phase.

また、本発明が適用されるR−T−B系焼結磁石は、例えば、Al、Cu、Zr、Ti、Bi、Sn、Ga、Nb、Ta、Si、V、Ag、Ge等の元素を適宜含有させることができる。一方で、酸素、窒素、炭素等の不純物元素を極力低減することが望ましい。特に磁気特性を害する酸素は、その量を5000ppm以下、さらには3000ppm以下とすることが望ましい。酸素量が多いと非磁性成分である希土類酸化物相が増大して、磁気特性を低下させるからである。   In addition, the RTB-based sintered magnet to which the present invention is applied includes elements such as Al, Cu, Zr, Ti, Bi, Sn, Ga, Nb, Ta, Si, V, Ag, and Ge. It can be contained as appropriate. On the other hand, it is desirable to reduce impurity elements such as oxygen, nitrogen, and carbon as much as possible. In particular, the amount of oxygen that impairs magnetic properties is preferably 5000 ppm or less, more preferably 3000 ppm or less. This is because when the amount of oxygen is large, the rare-earth oxide phase, which is a nonmagnetic component, increases and the magnetic properties are deteriorated.

次に、本発明を適用するR−T−B系焼結磁石の製造方法について説明する。
本発明を適用するR−T−B系焼結磁石は、以下のようにして製造することができる。
原料合金は、真空又は不活性ガス、望ましくはAr雰囲気中でストリップキャスト法、その他公知の溶解法により作製することができる。ストリップキャスト法は、原料金属をArガス雰囲気などの非酸化性雰囲気中で溶解して得た溶湯を回転するロールの表面に噴出させる。ロールで急冷された溶湯は、薄板または薄片(鱗片)状に急冷凝固される。この急冷凝固された合金は、結晶粒径が1〜50μmの均質な組織を有している。原料合金は、ストリップキャスト法に限らず、高周波誘導溶解等の溶解法によって得ることができる。なお、溶解後の偏析を防止するため、例えば水冷銅板に傾注して凝固させることができる。また、還元拡散法によって得られた合金を原料合金として用いることもできる。
R−T−B系焼結磁石を得る場合、R214B結晶粒を主体とする合金(低R合金)と、低R合金よりRを多く含む合金(高R合金)とを用いる所謂混合法を本発明に適用することもできる。
Next, the manufacturing method of the RTB system sintered magnet to which this invention is applied is demonstrated.
The RTB-based sintered magnet to which the present invention is applied can be manufactured as follows.
The raw material alloy can be produced by a strip casting method or other known melting methods in a vacuum or an inert gas, preferably in an Ar atmosphere. In the strip casting method, a molten metal obtained by melting a raw metal in a non-oxidizing atmosphere such as an Ar gas atmosphere is ejected onto the surface of a rotating roll. The melt rapidly cooled by the roll is rapidly solidified in the form of a thin plate or flakes (scales). This rapidly solidified alloy has a homogeneous structure with a crystal grain size of 1 to 50 μm. The raw material alloy can be obtained not only by the strip casting method but also by a melting method such as high frequency induction melting. In order to prevent segregation after dissolution, for example, it can be solidified by pouring into a water-cooled copper plate. An alloy obtained by the reduction diffusion method can also be used as a raw material alloy.
When obtaining an RTB-based sintered magnet, a so-called alloy using a R 2 T 14 B crystal grain (low R alloy) and an alloy containing more R than a low R alloy (high R alloy) is used. A mixing method can also be applied to the present invention.

原料合金は粉砕工程に供される。混合法による場合には、低R合金及び高R合金は別々に又は一緒に粉砕される。粉砕工程には、粗粉砕工程と微粉砕工程とがある。まず、原料合金を、粒径数百μm程度になるまで粗粉砕する。粗粉砕は、スタンプミル、ジョークラッシャー、ブラウンミル等を用い、不活性ガス雰囲気中にて行うことが望ましい。粗粉砕に先立って、原料合金に水素を吸蔵させた後に放出させることにより粉砕を行うことが効果的である。この水素放出処理は、希土類焼結磁石として不純物となる水素を減少させることを目的として行われる。水素吸蔵のための加熱保持の温度は、200℃以上、望ましくは350℃以上とする。保持時間は、保持温度との関係、原料合金の厚さ等によって変わるが、少なくとも30分以上、望ましくは1時間以上とする。水素放出処理は、真空中又はArガスフローにて行う。なお、水素吸蔵処理、水素放出処理は必須の処理ではない。この水素粉砕を粗粉砕と位置付けて、機械的な粗粉砕を省略することもできる。   The raw material alloy is subjected to a grinding process. In the case of the mixing method, the low R alloy and the high R alloy are pulverized separately or together. The pulverization process includes a coarse pulverization process and a fine pulverization process. First, the raw material alloy is coarsely pulverized until the particle size becomes about several hundred μm. The coarse pulverization is desirably performed in an inert gas atmosphere using a stamp mill, a jaw crusher, a brown mill or the like. Prior to coarse pulverization, it is effective to perform pulverization by allowing hydrogen to be absorbed in the raw material alloy and then released. This hydrogen release treatment is performed for the purpose of reducing hydrogen as an impurity as a rare earth sintered magnet. The heating and holding temperature for storing hydrogen is 200 ° C. or higher, preferably 350 ° C. or higher. The holding time varies depending on the relationship with the holding temperature, the thickness of the raw material alloy, etc., but is at least 30 minutes or longer, preferably 1 hour or longer. The hydrogen release treatment is performed in a vacuum or Ar gas flow. The hydrogen storage process and the hydrogen release process are not essential processes. This hydrogen pulverization can be regarded as coarse pulverization, and mechanical coarse pulverization can be omitted.

粗粉砕工程後、微粉砕工程に移る。微粉砕には主にジェットミルが用いられ、粒径数百μm程度の粗粉砕粉末を、平均粒径2.5〜6μm、望ましくは3〜5μmとする。ジェットミルは、高圧の不活性ガスを狭いノズルより開放して高速のガス流を発生させ、この高速のガス流により粗粉砕粉末を加速し、粗粉砕粉末同士の衝突やターゲットあるいは容器壁との衝突を発生させて粉砕する方法である。   After the coarse pulverization process, the process proceeds to the fine pulverization process. A jet mill is mainly used for fine pulverization, and a coarsely pulverized powder having a particle size of about several hundreds of μm has an average particle size of 2.5 to 6 μm, preferably 3 to 5 μm. The jet mill releases a high-pressure inert gas from a narrow nozzle to generate a high-speed gas flow, accelerates the coarsely pulverized powder with this high-speed gas flow, collides with the coarsely pulverized powder, and collides with the target or container wall. It is a method of generating a collision and crushing.

混合法による場合、2種の合金の混合のタイミングは限定されるものではないが、微粉砕工程において低R合金及び高R合金を別々に粉砕した場合には、微粉砕された低R合金粉末及び高R合金粉末を窒素雰囲気中で混合する。低R合金粉末及び高R合金粉末の混合比率は、重量比で80:20〜97:3程度とすればよい。低R合金及び高R合金を一緒に粉砕する場合の混合比率も同様である。なお、成形時の潤滑及び配向性の向上を目的とした脂肪酸又は脂肪酸の誘導体や炭化水素、例えばステアリン酸系やオレイン酸系であるステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸アミド、オレイン酸アミド、エチレンビスイソステアリン酸アミド、炭化水素であるパラフィン、ナフタレン等を微粉砕時に0.01〜0.3wt%程度添加することができる。   In the case of the mixing method, the timing of mixing the two kinds of alloys is not limited. However, when the low R alloy and the high R alloy are separately pulverized in the pulverization step, the pulverized low R alloy powder is used. And high R alloy powder in a nitrogen atmosphere. The mixing ratio of the low R alloy powder and the high R alloy powder may be about 80:20 to 97: 3 by weight. The mixing ratio when the low R alloy and the high R alloy are pulverized together is the same. Fatty acids or fatty acid derivatives and hydrocarbons for the purpose of improving lubrication and orientation during molding, such as zinc stearate, calcium stearate, aluminum stearate, stearamide, olein, which are stearic acid and oleic acid Acid amide, ethylenebisisostearic acid amide, hydrocarbon paraffin, naphthalene and the like can be added in an amount of about 0.01 to 0.3 wt% during pulverization.

以上で得られた微粉砕粉末は例えば磁場中成形に供される。
磁場中成形における成形圧力は0.3〜3ton/cm2(30〜300MPa)の範囲とすればよい。成形圧力は成形開始から終了まで一定であってもよく、漸増または漸減してもよく、あるいは不規則変化してもよい。成形圧力が低いほど配向性は良好となるが、成形圧力が低すぎると成形体の強度が不足してハンドリングに問題が生じるので、この点を考慮して上記範囲から成形圧力を選択する。磁場中成形で得られる成形体の最終的な相対密度は、通常、50〜60%である。
印加する磁場は、12〜20kOe(960〜1600kA/m)程度とすればよい。印加する磁場は静磁場に限定されず、パルス状の磁場とすることもできる。また、静磁場とパルス状磁場を併用することもできる。
The finely pulverized powder obtained above is subjected to, for example, molding in a magnetic field.
The molding pressure in the magnetic field molding may be in the range of 0.3 to 3 ton / cm 2 (30 to 300 MPa). The molding pressure may be constant from the beginning to the end of molding, may be gradually increased or gradually decreased, or may vary irregularly. The lower the molding pressure is, the better the orientation is. However, if the molding pressure is too low, the strength of the molded body is insufficient and handling problems occur. Therefore, the molding pressure is selected from the above range in consideration of this point. The final relative density of the molded body obtained by molding in a magnetic field is usually 50 to 60%.
The applied magnetic field may be about 12 to 20 kOe (960 to 1600 kA / m). The applied magnetic field is not limited to a static magnetic field, and may be a pulsed magnetic field. A static magnetic field and a pulsed magnetic field can also be used in combination.

次いで、成形体を真空又は不活性ガス雰囲気中で焼結する。焼結温度は、組成、粉砕方法、平均粒径と粒度分布の違い等、諸条件により調整する必要があるが、1000〜1200℃で1〜10時間程度焼結すればよい。
焼結後、得られた焼結体に時効処理を施すことができる。この工程は、保磁力を制御する重要な工程である。時効処理を2段に分けて行う場合には、800℃近傍、600℃近傍での所定時間の保持が有効である。800℃近傍での熱処理を焼結後に行うと、保磁力が増大するため、混合法においては特に有効である。また、600℃近傍の熱処理で保磁力が大きく増加するため、時効処理を1段で行う場合には、600℃近傍の時効処理を施すとよい。
Next, the compact is sintered in a vacuum or an inert gas atmosphere. Although it is necessary to adjust sintering temperature by various conditions, such as a composition, a grinding | pulverization method, the difference of an average particle diameter, and a particle size distribution, what is necessary is just to sinter at 1000-1200 degreeC for about 1 to 10 hours.
After sintering, the obtained sintered body can be subjected to an aging treatment. This step is an important step for controlling the coercive force. In the case where the aging treatment is performed in two stages, it is effective to hold for a predetermined time in the vicinity of 800 ° C. and 600 ° C. When the heat treatment in the vicinity of 800 ° C. is performed after sintering, the coercive force increases, which is particularly effective in the mixing method. In addition, since the coercive force is greatly increased by heat treatment at around 600 ° C., when the aging treatment is performed in one stage, the aging treatment at around 600 ° C. is preferably performed.

このようにして得られたR−T−B系焼結磁石は、NC(Numerical Control)制御の加工機械等により、所定形状に加工される。
この後、このR−T−B系焼結磁石をめっき対象物とし、本発明を適用してめっき処理する。
なおここで、本発明を適用してめっき処理するR−T−B系焼結磁石は、上記した製造方法に限らず、他の製造方法によって製造したものであっても良い。
The RTB-based sintered magnet thus obtained is processed into a predetermined shape by a NC (Numerical Control) controlled processing machine or the like.
Thereafter, the RTB-based sintered magnet is used as an object to be plated, and the present invention is applied for plating.
Here, the RTB-based sintered magnet that is plated by applying the present invention is not limited to the above-described manufacturing method, and may be manufactured by another manufacturing method.

R−T−B系焼結磁石は、めっきの前処理として、バレル研磨、脱脂処理、酸処理、アルカリ超音波洗浄等が施される。ここで、前処理の種類や順序等は前記したものに限るものではない。
前処理を施したR−T−B系焼結磁石は、めっき槽に浸漬され、めっき処理が施される。
ここで、めっきには、Niめっき、Cuめっき、Snめっき等を用いることができ、めっき槽には、用いるめっきの種類に応じためっき液が満たされる。また、めっき法としては、電解めっきあるいは無電解めっきを用いることができる。
The RTB-based sintered magnet is subjected to barrel polishing, degreasing treatment, acid treatment, alkaline ultrasonic cleaning, and the like as pretreatment for plating. Here, the types and order of preprocessing are not limited to those described above.
The pretreated R-T-B system sintered magnet is immersed in a plating tank and plated.
Here, Ni plating, Cu plating, Sn plating, or the like can be used for plating, and the plating tank is filled with a plating solution corresponding to the type of plating used. As the plating method, electrolytic plating or electroless plating can be used.

さて、このようにR−T−B系焼結磁石をめっきするに際し、用いるめっき液中に酸化性ガスを供給するのが好ましい。これは、めっきの際にめっき液中に溶出してしまうR−T−B系焼結磁石の成分を酸化させ、沈殿させるためである。
例えば、Nd−Fe−B系焼結磁石にワット浴にて電気Niめっきを施す場合、NdやFeがめっき液中に溶出する。
これには、めっき液中に酸化性ガスを気泡に供給し、めっき液中の溶出成分との接触効率を高めるのが良い。このためめっき槽の底部に、多数の孔が形成された配管を設け、この配管に酸化性ガスを送り込み、孔から酸化性ガスをめっき液中に放出するのが好ましい。孔からめっき液中に放出された酸化性ガスは気泡となり、めっき液中を上昇していき、その過程でめっき液中の溶出成分と接触する。酸化性ガスと接触した溶出成分は酸化して、ネオジウムや鉄の酸化物となり、めっき液中で沈殿する。
沈殿した溶出成分の酸化物を回収するため、めっき槽には、フィルタ等の酸化物回収手段を備えるのが好ましい。
Now, when plating the RTB-based sintered magnet in this way, it is preferable to supply an oxidizing gas into the plating solution to be used. This is for oxidizing and precipitating the components of the RTB-based sintered magnet that are eluted in the plating solution during plating.
For example, when electro Ni plating is applied to a Nd—Fe—B based sintered magnet in a watt bath, Nd and Fe are eluted in the plating solution.
For this purpose, it is preferable to supply an oxidizing gas to the bubbles in the plating solution to increase the contact efficiency with the eluted components in the plating solution. For this reason, it is preferable that a pipe having a large number of holes is provided at the bottom of the plating tank, an oxidizing gas is fed into the pipe, and the oxidizing gas is discharged from the holes into the plating solution. The oxidizing gas released from the hole into the plating solution becomes bubbles and rises in the plating solution, and in the process, comes into contact with the eluted components in the plating solution. The elution component that has come into contact with the oxidizing gas is oxidized to become an oxide of neodymium or iron and is precipitated in the plating solution.
In order to collect the precipitated oxide of the eluted component, the plating tank is preferably provided with oxide collecting means such as a filter.

このようにして、めっき槽でR−T−B系焼結磁石のめっきを行う過程でめっき液中に溶出した溶出成分は、酸化性ガスとの接触により酸化して沈殿するので、溶出成分がR−T−B系焼結磁石の表面に再析出するのを防止できる。その結果、めっき膜の密着性や信頼性の低下を回避することができる。
しかも、このような手法によれば、既存のめっき装置においても、酸化性ガスを放出するための配管、ポンプ等を追設するのみで実現できるため、非常に有効である。
Thus, the elution component eluted in the plating solution in the process of plating the R-T-B system sintered magnet in the plating tank is oxidized and precipitated by contact with the oxidizing gas. Reprecipitation on the surface of the RTB-based sintered magnet can be prevented. As a result, it is possible to avoid a decrease in the adhesion and reliability of the plating film.
In addition, according to such a method, even in an existing plating apparatus, it can be realized only by additionally installing a pipe, a pump, and the like for releasing an oxidizing gas, which is very effective.

さてここで、酸化性ガスとしては、酸素を含んだガスであれば、いかなるものを用いても良い。もちろん、酸素のみを供給しても良いが、コスト等を考えると、空気(大気)を用いるのが好適である。
また、酸化性ガスにおける酸素濃度は、めっき液中への溶出成分を速やかに酸化できるものとするのが好ましいが、めっき処理中のR−T−B系焼結磁石自体の酸化を回避できるようにするのが好ましい。
例えば、組成26.5wt%Nd−5.9wt%Dy−0.25wt%Al−0.5wt%Co−0.07wt%Cu−1.0wt%B−Fe.balのR−T−B系焼結磁石に対し、ワット浴にて電気Niめっきを施す場合、酸素濃度3vol%以上、より好ましくは15vol%以上、さらに好ましくは20〜30vol%の酸化性ガスである。めっきを行うめっき槽中に酸化性ガスを供給する場合、酸化性ガスの濃度が高すぎるとR−T−B系焼結磁石が酸化性ガスによって酸化されてしまうことがあるからである。また、供給する酸化性ガスの流量は、めっき浴の種類やめっき槽のサイズによって異なるため、一概には規定できないが、5〜50L(リットル)/minでめっき液中に放出するのが好ましい。
Now, as the oxidizing gas, any gas may be used as long as it contains oxygen. Of course, only oxygen may be supplied, but considering the cost and the like, it is preferable to use air (atmosphere).
Moreover, it is preferable that the oxygen concentration in the oxidizing gas is capable of quickly oxidizing the components eluted into the plating solution, but it is possible to avoid oxidation of the RTB-based sintered magnet itself during the plating process. Is preferable.
For example, the composition 26.5 wt% Nd-5.9 wt% Dy-0.25 wt% Al-0.5 wt% Co-0.07 wt% Cu-1.0 wt% B-Fe. When electric Ni plating is applied to a bal RTB-based sintered magnet in a watt bath, an oxidizing gas having an oxygen concentration of 3 vol% or more, more preferably 15 vol% or more, and even more preferably 20 to 30 vol% is used. is there. This is because when the oxidizing gas is supplied into the plating tank for plating, the RTB-based sintered magnet may be oxidized by the oxidizing gas if the concentration of the oxidizing gas is too high. Further, the flow rate of the oxidizing gas to be supplied varies depending on the type of the plating bath and the size of the plating tank, and thus cannot be defined unconditionally, but it is preferably discharged into the plating solution at 5 to 50 L (liter) / min.

ところで、上記では、R−T−B系焼結磁石のめっきを行うめっき槽中に酸化性ガスを放出するようにしたが、めっき液中に沈殿した溶出成分の酸化物が、放出される酸化性ガスの気泡によってめっき槽内を浮遊し、良好なめっき処理の阻害要因となることも考えられる。
この場合、図1に示すめっき装置10のように、R−T−B系焼結磁石のめっきを行うめっき槽(第一の槽)11と、溶出成分の除去処理を行う処理槽(別の槽、第二の槽)12とを、分けて設けるのが好ましい。これには、めっき槽11と、処理槽12とを、送出側配管13、戻し側配管14を介して接続し、めっき槽11と処理槽12との間で、めっき液Lを循環可能とする。そして、処理槽12には、底部に、多数の孔15aが形成された配管(酸化性ガス供給部、ガス供給部)15を設け、この配管15に、図示しないポンプ等を介し、酸化性ガスを送り込むようになっている。これにより、配管15の孔15aから、酸化性ガスが処理槽12のめっき液L中に気泡状となって放出されるようになっている。孔15aからめっき液L中に放出された酸化性ガスがめっき液L中の溶出成分と接触することで、溶出成分は酸化物となりめっき液L中で沈殿するわけであるが、沈殿した酸化物は、めっき槽11と処理槽12との間でのめっき液Lの循環過程の適宜箇所、例えば戻し側配管14に設けられた濾過器(酸化物回収部、濾過部)16にて、回収されるようになっている。
By the way, in the above, the oxidizing gas is released into the plating tank for plating the R-T-B system sintered magnet, but the oxide of the eluted component precipitated in the plating solution is released. It is also conceivable that the inside of the plating tank is floated by the bubbles of the property gas, which may be an impediment to good plating treatment.
In this case, like the plating apparatus 10 shown in FIG. 1, a plating tank (first tank) 11 that performs plating of the RTB-based sintered magnet and a processing tank that performs the removal process of the eluted components (separately) The tank and the second tank) 12 are preferably provided separately. For this, the plating tank 11 and the processing tank 12 are connected via the delivery side pipe 13 and the return side pipe 14 so that the plating solution L can be circulated between the plating tank 11 and the processing tank 12. . The processing tank 12 is provided with a pipe (oxidizing gas supply unit, gas supply unit) 15 having a plurality of holes 15a formed at the bottom, and the oxidizing gas is supplied to the pipe 15 via a pump (not shown). Is supposed to be sent. As a result, the oxidizing gas is released in the form of bubbles into the plating solution L of the treatment tank 12 from the hole 15 a of the pipe 15. When the oxidizing gas released from the hole 15a into the plating solution L comes into contact with the elution component in the plating solution L, the elution component becomes an oxide and precipitates in the plating solution L. Is recovered at an appropriate place in the circulation process of the plating solution L between the plating tank 11 and the processing tank 12, for example, a filter (oxide recovery section, filtration section) 16 provided in the return side pipe 14. It has become so.

めっき装置10においては、このように、めっき槽11でR−T−B系焼結磁石のめっきを行う過程でめっき液L中に溶出した溶出成分は、処理槽12にめっき液Lとともに送られ、酸化性ガスとの接触により酸化し、濾過器16で回収される。これにより、めっき槽11におけるめっき液L中の溶出成分を低減することができ、溶出成分のR−T−B系焼結磁石表面への再析出防止効果を、一層確実なものとすることができる。   In the plating apparatus 10, the elution component eluted in the plating solution L in the process of plating the RTB-based sintered magnet in the plating tank 11 is sent to the processing tank 12 together with the plating solution L in this way. Oxidized by contact with an oxidizing gas and recovered by the filter 16. Thereby, the elution component in the plating solution L in the plating tank 11 can be reduced, and the effect of preventing reprecipitation of the elution component on the surface of the RTB-based sintered magnet can be further ensured. it can.

なお、本発明は、R−T−B系焼結磁石は、同じ種類のめっきを複数回行う場合や、複数種のめっきを順次行う場合にも適用できる。複数種のめっきを行う場合には、それぞれの種類のめっきを行うめっき槽に対し、上記したような構成を適用しても良いし、特に悪影響を及ぼす成分が溶出するめっき槽に対してのみ、上記したような構成を適用しても良い。
これ以外にも、本発明の主旨を逸脱しない限り、上記実施の形態で挙げた構成を取捨選択したり、他の構成に適宜変更することが可能である。
The present invention can be applied to the case where the RTB-based sintered magnet is subjected to the same type of plating a plurality of times or when a plurality of types of plating are sequentially performed. When performing multiple types of plating, the above-described configuration may be applied to the plating tank for performing each type of plating, and only for the plating tank from which particularly harmful components are eluted, The configuration as described above may be applied.
In addition to this, as long as it does not depart from the gist of the present invention, the configuration described in the above embodiment can be selected or changed to another configuration as appropriate.

ここで、酸化性ガスを用いてめっき液への溶出成分を酸化させることによる効果を確認したのでその結果を示す。
まず、めっき対象となるR−T−B系焼結磁石は、以下のようにして製造した。
ストリップキャスト法により、26.5wt%Nd−5.9wt%Dy−0.25wt%Al−0.5wt%Co−0.07wt%Cu−1.0wt%B−Fe.balの組成を有する原料合金を作製した。
次いで、室温にて原料合金に水素を吸蔵させた後、Ar雰囲気中で600℃×1時間の脱水素を行う水素粉砕処理を行った。
水素粉砕処理が施された合金に、粉砕性の向上並びに成形時の配向性の向上に寄与する潤滑剤を0.05〜0.1%混合した。潤滑剤の混合は、例えばナウターミキサー等により5〜30分間ほど行う程度でよい。その後、ジェットミルを用いて平均粒径が5.0μmの微粉砕粉末を得た。
Here, since the effect by oxidizing the elution component to a plating solution using oxidizing gas was confirmed, the result is shown.
First, the RTB system sintered magnet used as plating object was manufactured as follows.
26.5 wt% Nd-5.9 wt% Dy-0.25 wt% Al-0.5 wt% Co-0.07 wt% Cu-1.0 wt% B-Fe. A raw material alloy having a composition of bal was prepared.
Next, after hydrogen was occluded in the raw material alloy at room temperature, hydrogen pulverization treatment was performed in which dehydrogenation was performed at 600 ° C. for 1 hour in an Ar atmosphere.
The alloy that has been subjected to the hydrogen pulverization treatment was mixed with 0.05 to 0.1% of a lubricant that contributes to improvement of pulverization and orientation during molding. The lubricant may be mixed for about 5 to 30 minutes using, for example, a Nauter mixer. Thereafter, a finely pulverized powder having an average particle size of 5.0 μm was obtained using a jet mill.

微粉砕粉末を磁場中成形し、これによって得られた成形体を真空中およびAr雰囲気中で1080℃まで昇温し4時間保持して焼結を行った。次いで得られた焼結体に800℃×1時間と560℃×1時間(ともにAr雰囲気中)の2段時効処理を施した。   The finely pulverized powder was molded in a magnetic field, and the molded body thus obtained was heated to 1080 ° C. in vacuum and in an Ar atmosphere, and held for 4 hours for sintering. Next, the obtained sintered body was subjected to a two-stage aging treatment of 800 ° C. × 1 hour and 560 ° C. × 1 hour (both in an Ar atmosphere).

このようにして得られたR−T−B系焼結磁石を、縦40mm、横30mm、厚さ5mmの平板状に加工した後、めっきの前処理として、バレル研磨、脱脂処理、酸処理、アルカリ超音波洗浄を施した。   After processing the RTB-based sintered magnet thus obtained into a flat plate shape having a length of 40 mm, a width of 30 mm, and a thickness of 5 mm, as a pretreatment for plating, barrel polishing, degreasing treatment, acid treatment, Alkaline ultrasonic cleaning was performed.

この後、60L(リットル)のワット浴に、R−T−B系焼結磁石を浸漬し、電気Niメッキを行った。このとき、成膜速度は3(μm/hr)とし、浸漬後5時間経過した時点で、R−T−B系焼結磁石をめっき液から引き上げ、比較試料1を作製した。
めっき後のめっき液の一部を採取し、ICP分析を行ったところ、Nd、Feの溶出が認められた。
Thereafter, the RTB-based sintered magnet was immersed in a 60 L (liter) watt bath, and electro Ni plating was performed. At this time, the film formation rate was 3 (μm / hr), and when 5 hours passed after immersion, the RTB-based sintered magnet was pulled up from the plating solution, and Comparative Sample 1 was produced.
When a part of the plating solution after plating was collected and analyzed by ICP, elution of Nd and Fe was observed.

また、酸化性ガスとしての空気を流量20(L/min)でめっき液に導入し、気泡として放出させながら、比較試料1と同一のめっき条件にてR−T−B系焼結磁石のめっきを行い、試料1を作製した。
このとき、空気の気泡を放出させためっき液中には微細な析出物が認められた。これを濾過器により回収したところ、黄土色を呈した粒子状およびゲル状の物質であることが判明した。この物質をEPMAにて分析したところ、Nd、Fe、およびO(酸素)を含むことが確認された。
Moreover, air as an oxidizing gas is introduced into the plating solution at a flow rate of 20 (L / min) and released as bubbles, while the RTB-based sintered magnet is plated under the same plating conditions as in Comparative Sample 1. The sample 1 was produced.
At this time, fine precipitates were observed in the plating solution from which air bubbles were released. When this was recovered with a filter, it was found to be a particulate and gel-like substance having an ocher color. When this substance was analyzed by EPMA, it was confirmed that Nd, Fe, and O (oxygen) were contained.

めっき処理後、試料1、比較試料1の双方について、R−T−B系焼結磁石の表面に形成されためっき膜を評価した。評価項目としては、めっき膜厚、密着性、信頼性とした。めっき膜厚は、蛍光X線分析で計測した。
密着性は、以下に示す方法で評価した。まずめっき後の磁石表面に10mmの幅で深さ30〜40μm、長さ20〜30mmの切れ目を2本平行に入れる。さらに、これら2本の切れ目の片端に、これら2本の切れ目とほぼ垂直になるように同様の深さの切れ目を形成し、ほぼコ字状の切れ目を形成した。この切れ目の先端部分(2本の切れ目にほぼ垂直に形成した切れ目の部分)から、磁石平面に対し垂直にめっき膜のみを引き剥がし、そのときの引き剥がし力を測定した。
信頼性は、35℃、濃度5%のNaCl水溶液を24時間噴霧して塩水噴霧試験を行い、試験後の試料について、めっき膜のハガレ、点錆、フクレを目視にて観察し、評価した。
その結果を表1に示す。
After the plating treatment, the plating film formed on the surface of the RTB-based sintered magnet was evaluated for both Sample 1 and Comparative Sample 1. Evaluation items were plating film thickness, adhesion, and reliability. The plating film thickness was measured by fluorescent X-ray analysis.
The adhesion was evaluated by the following method. First, two cuts having a width of 10 mm, a depth of 30 to 40 μm, and a length of 20 to 30 mm are made in parallel on the surface of the magnet after plating. Further, a cut having the same depth was formed at one end of the two cuts so as to be substantially perpendicular to the two cuts, thereby forming a substantially U-shaped cut. Only the plating film was peeled off perpendicularly to the magnet plane from the tip portion of the cut (the cut portion formed almost perpendicular to the two cuts), and the peeling force at that time was measured.
The reliability was evaluated by spraying a salt water spray test by spraying a NaCl aqueous solution with a concentration of 5% at 35 ° C. for 24 hours, and visually observing peeling, spot rust, and swelling of the plated film.
The results are shown in Table 1.

Figure 2006077271
Figure 2006077271

表1に示すように、試料1、比較試料1とも、平均めっき膜厚は15μmで同等であった。密着性、信頼性に関しては、酸化性ガスの放出を行わなかった比較試料1に対し、酸化性ガスの放出を行った試料1は、ハガレ、点錆ともに認められず、良好な結果が得られた。これにより、酸化性ガスの放出を行うことで、密着性、信頼性が向上しているのがわかる。   As shown in Table 1, the average plating film thickness was equal to 15 μm for both Sample 1 and Comparative Sample 1. Regarding the adhesion and reliability, the sample 1 from which the oxidizing gas was released was not found to be peeled off or spotted rust, whereas the comparative sample 1 from which the oxidizing gas was not released was satisfactory. It was. Thus, it can be seen that the adhesion and reliability are improved by releasing the oxidizing gas.

次に、2種類のめっきを施した場合について、酸化性ガスを用いてめっき液への溶出成分を酸化させることによる効果を確認したのでその結果を示す。
めっき対象となるR−T−B系焼結磁石は、実施例1と同様にして、製造し、前処理を行った。
ここで、R−T−B系焼結磁石の形状は縦40mm、横30mm、厚さ5mmの平板状とした。
Next, in the case of performing two types of plating, the effect of oxidizing the eluted component into the plating solution using an oxidizing gas was confirmed, and the result is shown.
The RTB-based sintered magnet to be plated was manufactured and pretreated in the same manner as in Example 1.
Here, the shape of the RTB-based sintered magnet was a flat plate having a length of 40 mm, a width of 30 mm, and a thickness of 5 mm.

この後、60L(リットル)の青化銅めっき液に、R−T−B系焼結磁石を浸漬し、電気Cuめっきを行った。このとき、成膜速度は4(μm/hr)とし、浸漬後2.5時間経過した時点で、R−T−B系焼結磁石をめっき液から引き上げた。
このとき、R−T−B系焼結磁石のめっきを行うめっき槽とは別の処理槽にめっき液を導入し、この処理槽に、酸化性ガスとしての空気を流量20(L/min)で導入し、めっき液中に気泡を放出させた。
Thereafter, an RTB-based sintered magnet was immersed in 60 L (liter) of a bronze copper plating solution, and electro Cu plating was performed. At this time, the film formation rate was 4 (μm / hr), and the R-T-B system sintered magnet was pulled up from the plating solution when 2.5 hours had elapsed after immersion.
At this time, the plating solution is introduced into a treatment tank different from the plating tank for plating the R-T-B system sintered magnet, and air as an oxidizing gas is supplied to the treatment tank at a flow rate of 20 (L / min). The air bubbles were released into the plating solution.

続いて、60L(リットル)のワット浴に、R−T−B系焼結磁石を浸漬し、電気Niめっきを行った。このとき、成膜速度は3(μm/hr)とし、浸漬後1.7時間経過した時点で、R−T−B系焼結磁石をめっき液から引き上げた。
このとき、R−T−B系焼結磁石のめっきを行うめっき槽とは別の処理槽にめっき液を導入し、この処理槽に、酸化性ガスとしての空気を流量20(L/min)で導入し、めっき液中に気泡を放出させた。
Subsequently, an RTB-based sintered magnet was immersed in a 60 L (liter) watt bath, and electro Ni plating was performed. At this time, the film formation rate was 3 (μm / hr), and the RTB-based sintered magnet was pulled up from the plating solution when 1.7 hours passed after immersion.
At this time, the plating solution is introduced into a treatment tank different from the plating tank for plating the R-T-B system sintered magnet, and air as an oxidizing gas is supplied to the treatment tank at a flow rate of 20 (L / min). The air bubbles were released into the plating solution.

めっき処理後、R−T−B系焼結磁石の表面に形成されためっき膜を、実施例1と同様にして評価した。
その結果を表1に示す。
表1に示すように、試料2において、Cuのめっき膜厚は10μm、Niのめっき膜厚は5μmであった。密着性、信頼性に関しては、試料1と同様、ハガレ、点錆ともに認められず、良好な結果が得られた。これにより、2層めっきの場合であっても、酸化性ガスの放出を行うことで、密着性、信頼性が向上しているのがわかる。
After the plating treatment, the plating film formed on the surface of the RTB-based sintered magnet was evaluated in the same manner as in Example 1.
The results are shown in Table 1.
As shown in Table 1, in Sample 2, the Cu plating film thickness was 10 μm, and the Ni plating film thickness was 5 μm. Regarding adhesion and reliability, neither peeling nor spot rust was observed as in Sample 1, and good results were obtained. Thereby, even in the case of two-layer plating, it can be seen that the adhesion and reliability are improved by releasing the oxidizing gas.

次に、酸化性ガスの酸化濃度を変化させたときの効果を確認したのでその結果を示す。
めっき対象となるR−T−B系焼結磁石は、実施例1と同様にして、製造し、前処理を行った。
Next, since the effect when changing the oxidation concentration of oxidizing gas was confirmed, the result is shown.
The RTB-based sintered magnet to be plated was manufactured and pretreated in the same manner as in Example 1.

この後、60L(リットル)のワット浴に、R−T−B系焼結磁石を浸漬し、Niめっきを行った。このとき、成膜速度は3(μm/hr)とし、浸漬後5時間経過した時点で、R−T−B系焼結磁石をめっき液から引き上げた。
このとき、R−T−B系焼結磁石のめっきを行うめっき槽とは別の処理槽にめっき液を導入し、この処理槽に、酸化性ガスを、流量20(L/min)で導入し、めっき液中に気泡を放出させた。ここで、試料3においては、酸化性ガスとして、酸素濃度99vol%以上の酸素ガスを用いた。また、試料4としては、酸素濃度3vol%(残部は窒素)の酸化性ガスを用いた。
Thereafter, the RTB-based sintered magnet was immersed in a 60 L (liter) watt bath, and Ni plating was performed. At this time, the film formation rate was 3 (μm / hr), and the RTB-based sintered magnet was pulled up from the plating solution when 5 hours passed after immersion.
At this time, the plating solution is introduced into a treatment tank different from the plating tank for plating the RTB-based sintered magnet, and the oxidizing gas is introduced into the treatment tank at a flow rate of 20 (L / min). Then, bubbles were released into the plating solution. Here, in Sample 3, oxygen gas having an oxygen concentration of 99 vol% or more was used as the oxidizing gas. Further, as the sample 4, an oxidizing gas having an oxygen concentration of 3 vol% (the balance is nitrogen) was used.

めっき処理後、R−T−B系焼結磁石の表面に形成されためっき膜を、実施例1と同様にして評価した。
その結果を表1に示す。
表1に示すように、試料3、4とも、めっき膜厚は15μmであった。密着性、信頼性に関しては、純酸素を用いた試料3では、ハガレ、点錆ともに認められず、良好な結果が得られたのに対し、酸素濃度の低い(空気(大気)よりも低い)酸化性ガスを用いた試料4では、実施例1で示した比較試料1ほどではないものの、軽いハガレと点錆が認められた。
これにより、酸化性ガスの酸素濃度が高ければ密着性、信頼性は向上するものの、酸化性ガスの酸素濃度が3vol%以下となると、密着性、信頼性の低下を抑制する度合いが、若干弱まることが確認された。
After the plating treatment, the plating film formed on the surface of the RTB-based sintered magnet was evaluated in the same manner as in Example 1.
The results are shown in Table 1.
As shown in Table 1, the thickness of the plating film for both Samples 3 and 4 was 15 μm. With regard to adhesion and reliability, sample 3 using pure oxygen showed neither peeling nor spot rust, and good results were obtained, but the oxygen concentration was low (lower than air (atmosphere)). In the sample 4 using the oxidizing gas, light peeling and spot rust were observed, although not as much as the comparative sample 1 shown in Example 1.
As a result, if the oxygen concentration of the oxidizing gas is high, the adhesion and reliability are improved. However, when the oxygen concentration of the oxidizing gas is 3 vol% or less, the degree of suppressing the deterioration of the adhesion and reliability is slightly weakened. It was confirmed.

本実施の形態におけるめっき装置の一例を示す図であり、(a)は立断面図、(b)は平面図である。It is a figure which shows an example of the plating apparatus in this Embodiment, (a) is a sectional elevation, (b) is a top view.

符号の説明Explanation of symbols

10…めっき装置、11…めっき槽(第一の槽)、12…処理槽(別の槽、第二の槽)、15…配管(酸化性ガス供給部、ガス供給部)、15a…孔、16…濾過器(酸化物回収部、濾過部)、L…めっき液   DESCRIPTION OF SYMBOLS 10 ... Plating apparatus, 11 ... Plating tank (1st tank), 12 ... Processing tank (Another tank, 2nd tank), 15 ... Piping (oxidizing gas supply part, gas supply part), 15a ... Hole, 16 ... filter (oxide recovery part, filtration part), L ... plating solution

Claims (11)

めっき槽中のめっき液にめっき対象物を浸漬させて、前記めっき対象物にめっきを施すめっき工程と、
前記めっき液中に酸化性ガスを供給し、前記めっき液中に溶出した前記めっき対象物の成分を酸化させる溶出成分酸化工程と、
を備えることを特徴とするめっき方法。
A plating step of immersing a plating object in a plating solution in a plating tank and plating the plating object; and
An elution component oxidation step of supplying an oxidizing gas into the plating solution and oxidizing the components of the plating object eluted in the plating solution;
A plating method comprising:
前記溶出成分酸化工程にて、前記酸化性ガスは、前記めっき槽の下部に気泡の状態で供給されることを特徴とする請求項1に記載のめっき方法。   The plating method according to claim 1, wherein in the elution component oxidation step, the oxidizing gas is supplied in a bubble state to a lower portion of the plating tank. 前記溶出成分酸化工程で前記めっき対象物の成分が酸化することで生成される酸化物を、前記めっき液中から回収することを特徴とする請求項1または2に記載のめっき方法。   The plating method according to claim 1 or 2, wherein an oxide generated by oxidizing the component of the plating object in the elution component oxidation step is recovered from the plating solution. 前記溶出成分酸化工程は、前記めっき工程が行われる前記めっき槽とは別の槽に前記めっき液を導入して行われることを特徴とする請求項1から3のいずれかに記載のめっき方法。   The plating method according to any one of claims 1 to 3, wherein the elution component oxidation step is performed by introducing the plating solution into a bath different from the plating bath in which the plating step is performed. 前記めっき対象物は、R−T−B(Rは希土類元素の1種又は2種以上、TはFe又はFe及びCoを必須とする少なくとも1種以上の遷移金属元素)系焼結磁石であることを特徴とする請求項1から4のいずれかに記載のめっき方法。   The object to be plated is an R-T-B (R is one or more rare earth elements, T is at least one transition metal element in which Fe or Fe and Co are essential) based sintered magnets. The plating method according to any one of claims 1 to 4, wherein: 前記溶出成分酸化工程は、前記めっき液中に溶出した前記めっき対象物の成分を酸化させることで、前記めっき工程にて前記めっき対象物に前記成分が再析出することを防止するためであることを特徴とする請求項1から5のいずれかに記載のめっき方法。   The elution component oxidation step is to prevent re-precipitation of the component on the plating object in the plating step by oxidizing the component of the plating object eluted in the plating solution. The plating method according to claim 1, wherein: 前記溶出成分酸化工程では、酸素濃度3vol%以上の前記酸化性ガスを用いることを特徴とする請求項1から6のいずれかに記載のめっき方法。   The plating method according to claim 1, wherein the oxidizing gas having an oxygen concentration of 3 vol% or more is used in the elution component oxidation step. めっき対象物をめっきするためのめっき液を収容しためっき槽と、
前記めっき液中に溶出した前記めっき対象物の成分を酸化させるため、前記めっき液中に酸化性ガスを供給する酸化性ガス供給部と、
前記めっき対象物の成分が前記酸化性ガスによって酸化することで生成された酸化物を回収する酸化物回収部と、
を備えることを特徴とするめっき装置。
A plating tank containing a plating solution for plating an object to be plated;
In order to oxidize the components of the plating object eluted in the plating solution, an oxidizing gas supply unit that supplies an oxidizing gas into the plating solution;
An oxide recovery part for recovering an oxide generated by oxidizing the component of the plating object with the oxidizing gas;
A plating apparatus comprising:
めっき対象物をめっきするためのめっき液を収容した第一の槽と、
前記第一の槽に連通し、前記第一の槽との間で前記めっき液が循環可能とされた第二の槽と、
前記第一の槽から前記第二の槽内に導入された前記めっき液中に酸化性ガスを供給するガス供給部と、
前記第二の槽から前記第一の槽に送給される、前記酸化性ガスが供給された前記めっき液を濾過する濾過部と、
を備えることを特徴とするめっき装置。
A first tank containing a plating solution for plating a plating object;
A second tank that communicates with the first tank and allows the plating solution to circulate with the first tank;
A gas supply unit for supplying an oxidizing gas into the plating solution introduced from the first tank into the second tank;
A filtration section for filtering the plating solution supplied with the oxidizing gas, fed from the second tank to the first tank;
A plating apparatus comprising:
前記ガス供給部は、前記第一の槽にて前記めっき液中に溶出した前記めっき対象物の成分を酸化させるため、前記第二の槽に導入した前記めっき液中に前記酸化性ガスを供給することを特徴とする請求項9に記載のめっき装置。   The gas supply unit supplies the oxidizing gas into the plating solution introduced into the second tank in order to oxidize the components of the plating object eluted in the plating solution in the first tank. The plating apparatus according to claim 9, wherein: 前記めっき対象物は、R−T−B(Rは希土類元素の1種又は2種以上、TはFe又はFe及びCoを必須とする少なくとも1種以上の遷移金属元素)系焼結磁石であることを特徴とする請求項8から10のいずれかに記載のめっき装置。   The object to be plated is an R-T-B (R is one or more rare earth elements, T is at least one transition metal element in which Fe or Fe and Co are essential) based sintered magnets. The plating apparatus according to any one of claims 8 to 10, wherein:
JP2004259581A 2004-09-07 2004-09-07 Plating method and plating apparatus Pending JP2006077271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004259581A JP2006077271A (en) 2004-09-07 2004-09-07 Plating method and plating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004259581A JP2006077271A (en) 2004-09-07 2004-09-07 Plating method and plating apparatus

Publications (1)

Publication Number Publication Date
JP2006077271A true JP2006077271A (en) 2006-03-23

Family

ID=36156969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004259581A Pending JP2006077271A (en) 2004-09-07 2004-09-07 Plating method and plating apparatus

Country Status (1)

Country Link
JP (1) JP2006077271A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013047340A1 (en) * 2011-09-28 2013-04-04 日立金属株式会社 Method for removing rare earth impurities in electrolytic nickel plating solution
JP2013173993A (en) * 2012-02-27 2013-09-05 Hitachi Metals Ltd Method for removing rare earth impurity in nickel electroplating solution
JP2014185373A (en) * 2013-03-25 2014-10-02 Hitachi Metals Ltd Removal device for rare earth impurities in nickel electroplating solution
WO2014156761A1 (en) * 2013-03-25 2014-10-02 日立金属株式会社 Method for removing rare earth impurities in nickel electroplating solution
WO2014156767A1 (en) * 2013-03-25 2014-10-02 日立金属株式会社 Method for removing rare earth impurities in nickel electroplating solution

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013047340A1 (en) * 2011-09-28 2013-04-04 日立金属株式会社 Method for removing rare earth impurities in electrolytic nickel plating solution
CN103842561A (en) * 2011-09-28 2014-06-04 日立金属株式会社 Method for removing rare earth impurities in electrolytic nickel plating solution
US20140224664A1 (en) * 2011-09-28 2014-08-14 Hitachi Metals, Ltd. Method for removing rare earth impurities from nickel-electroplating solution
JPWO2013047340A1 (en) * 2011-09-28 2015-03-26 日立金属株式会社 Method for removing rare earth impurities in electro nickel plating solution
EP2749674A4 (en) * 2011-09-28 2015-08-19 Hitachi Metals Ltd Method for removing rare earth impurities in electrolytic nickel plating solution
US9695524B2 (en) 2011-09-28 2017-07-04 Hitachi Metals, Ltd. Method for removing rare earth impurities from nickel-electroplating solution
JP2013173993A (en) * 2012-02-27 2013-09-05 Hitachi Metals Ltd Method for removing rare earth impurity in nickel electroplating solution
JP2014185373A (en) * 2013-03-25 2014-10-02 Hitachi Metals Ltd Removal device for rare earth impurities in nickel electroplating solution
WO2014156761A1 (en) * 2013-03-25 2014-10-02 日立金属株式会社 Method for removing rare earth impurities in nickel electroplating solution
WO2014156767A1 (en) * 2013-03-25 2014-10-02 日立金属株式会社 Method for removing rare earth impurities in nickel electroplating solution
US9771664B2 (en) 2013-03-25 2017-09-26 Hitachi Metals, Ltd. Method for removing rare earth impurities from nickel-electroplating solution
US9873953B2 (en) 2013-03-25 2018-01-23 Hitachi Metals, Ltd. Method for removing rare earth impurities from nickel-electroplating solution

Similar Documents

Publication Publication Date Title
KR101534717B1 (en) Process for preparing rare earth magnets
JP6361089B2 (en) R-T-B sintered magnet
EP1467385B1 (en) Rare earth element sintered magnet and method for producing rare earth element sintered magnet
JP6536816B2 (en) RTB based sintered magnet and motor
JP2006228937A (en) Manufacturing method of rare earth sintered magnet and device for molding in magnetic field
JP4179973B2 (en) Manufacturing method of sintered magnet
US7740716B2 (en) Rare earth sintered magnet
JP2006077271A (en) Plating method and plating apparatus
JP2010238712A (en) Method for manufacturing rare earth sintered magnet
JP5024531B2 (en) How to use rare earth sintered magnets
JP2003257721A (en) Sintered rare-earth magnet
JP3914557B2 (en) Rare earth sintered magnet
JP2006070280A (en) Plating method
JP2005197299A (en) Rare earth sintered magnet and manufacturing method thereof
JP4424030B2 (en) Rare earth magnet, method for producing the same, and method for producing a multilayer body
JP4305922B2 (en) Rare earth sintered magnet and method for improving mechanical strength and corrosion resistance of rare earth sintered magnet
JP4539288B2 (en) Rare earth sintered magnet
JP3935092B2 (en) R-TM-B permanent magnet
JP2009088206A (en) Method for manufacturing rare earth magnet
JP4296442B2 (en) Method for preventing hydrogen embrittlement of rare earth sintered magnets
JP4543713B2 (en) Method for producing R-TM-B permanent magnet using sludge
JP2008056976A (en) Powder molding method, method for producing rare earth sintered magnet, and powder molding device
JP4716022B2 (en) Rare earth permanent magnet manufacturing method
CN113571279A (en) Magnet and method for manufacturing same
JP2007288205A (en) Method for improving anti-hydrogen property of rare earth sintered magnet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060919

A131 Notification of reasons for refusal

Effective date: 20061017

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20061215

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20070206

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20070405

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20081008

Free format text: JAPANESE INTERMEDIATE CODE: A02