JP2014181841A - 冷却器 - Google Patents
冷却器 Download PDFInfo
- Publication number
- JP2014181841A JP2014181841A JP2013055970A JP2013055970A JP2014181841A JP 2014181841 A JP2014181841 A JP 2014181841A JP 2013055970 A JP2013055970 A JP 2013055970A JP 2013055970 A JP2013055970 A JP 2013055970A JP 2014181841 A JP2014181841 A JP 2014181841A
- Authority
- JP
- Japan
- Prior art keywords
- cooler
- compressed air
- heat exchange
- pipe
- refrigerant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Drying Of Gases (AREA)
Abstract
【課題】製造に要する時間の短縮とコストの低減をすることができる、圧縮空気除湿装置の熱交換器に収納される冷却器を提供する。
【解決手段】圧縮空気の導入口21と排出口22を備えた圧力容器20内に収納され、冷凍サイクル30の蒸発器として圧縮空気と熱交換して冷却し除湿する冷却器2を備え、圧縮空気の冷却時に冷却器2で発生したドレンを圧力容器20外部に排出可能に構成されている熱交換器1において、冷却器2は複数枚の熱交換フィン10と、これら熱交換フィン10を貫通する蛇行状の冷媒配管11と、熱交換フィン10の両端に設けられた側板13とから構成される複数の冷却器ブロック2からなり、複数の冷却器ブロック2の両端はそれぞれ共通の管板14、15で保持されている。
【選択図】図1
【解決手段】圧縮空気の導入口21と排出口22を備えた圧力容器20内に収納され、冷凍サイクル30の蒸発器として圧縮空気と熱交換して冷却し除湿する冷却器2を備え、圧縮空気の冷却時に冷却器2で発生したドレンを圧力容器20外部に排出可能に構成されている熱交換器1において、冷却器2は複数枚の熱交換フィン10と、これら熱交換フィン10を貫通する蛇行状の冷媒配管11と、熱交換フィン10の両端に設けられた側板13とから構成される複数の冷却器ブロック2からなり、複数の冷却器ブロック2の両端はそれぞれ共通の管板14、15で保持されている。
【選択図】図1
Description
本発明は、冷凍サイクルによって圧縮空気を冷却することで除湿する圧縮空気除湿装置の熱交換器に収納される冷却器に関するものである。
圧縮空気を冷凍サイクルによって冷却して除湿する圧縮空気除湿装置(以下、「除湿装置」という)がある。この除湿装置では、圧縮空気が熱交換器内で冷媒と熱交換することで冷却され圧縮空気に含まれる水分が凝縮し、結露した水分を分離して排出することによって除湿する(以下、圧縮空気と分離された水分を「ドレン」という)。
この熱交換器内の冷媒によって冷却される部分(以下、「冷却器」という)には、複数枚の熱交換フィンと、熱交換フィンを貫通する冷媒配管とから構成されるフィンアンドチューブ型の冷却器が用いられている。従来この種の冷却器は、所定間隔で複数枚配設された熱交換フィンと、これら熱交換フィンの両端に設けられ、当該熱交換フィンより肉厚で強度の高い冷媒配管固定用の管板と、これら熱交換フィンおよび管板とを貫通する蛇行状の冷媒配管とから構成されている。そして、この冷却器を製造する場合、熱交換フィンと熱交換フィンの両端の管板に冷媒配管の外径より大きい貫通孔を穿設しておき、この貫通孔に直管状の複数の主配管を挿通する。この状態で当該主配管に拡張治具を挿入して、主配管を内側から押し広げて拡管する。これにより、主配管の外面が貫通孔に密着して当接し、主配管と熱交換フィンおよび管板とが固着される。
次に、U字状に湾曲されたベンド配管の端部を上記直管状の主配管の端部に挿入し、ろう材(溶接材)で両者を溶接によって固定することによって、蛇行状の冷媒配管が構成され、フィンアンドチューブ型の冷却器が組み立てられていた。
次に、U字状に湾曲されたベンド配管の端部を上記直管状の主配管の端部に挿入し、ろう材(溶接材)で両者を溶接によって固定することによって、蛇行状の冷媒配管が構成され、フィンアンドチューブ型の冷却器が組み立てられていた。
しかし上記のような拡管による製造では、拡管治具で拡管可能な冷却器の大きさに限界があり、大型の除湿装置に用いられる冷却器は拡管治具による拡管ができない。そのため、大型の冷却器を製造する場合には、水圧による拡管方法が採用される。拡管を行う前に、主配管とベンド配管をろう材による溶接によって固定し、閉回路とした蛇行状の冷媒配管の中に水を封入して圧力を掛け、内側からの水圧によって主配管を拡管する。これにより、拡管治具による拡管方法と同様に主配管の外面が貫通孔に密着して当接し、主配管と熱交換フィンおよび管板とが固着される。
また、冷却器では周囲環境の腐食性ガスが混合された圧縮気体および腐食物質が含有されたドレンによって、冷却器の冷媒配管を構成する銅材質である主配管とベンド配管が腐食され、冷媒が漏れることがある。除湿装置を構成する他の部分より冷却器での腐食による漏れが多い原因としては、腐食物質が大気よりも圧縮され濃縮された状態であることに加え、ドレン(凝縮水)によって腐食物質が濃縮された状態となっていることで、腐食が促進されていると考えられる。
化学工場など予め周囲環境に腐食性ガスが存在することがわかっている場所に除湿装置を設置する場合、冷却器の冷媒配管が腐食するのを防ぐため、主配管とベンド配管の材質を銅からステンレスに変更して耐食性を向上させ、腐食を防止するようにしている。
ところが、従来の除湿装置の熱交換器には、以下の改善すべき課題がある。
大型の冷却器を製造する場合は上述のように拡管治具による拡管ができないため、水圧による拡管が行われる。冷却器の冷媒配管をステンレス鋼にした場合、ステンレス鋼は銅と比較して硬い材質のため、拡管に要する水圧を高くしなければならず、また材料の粘りがないため破裂も起きやすく、扱いづらく歩留まりが悪かった。また、水圧による拡管は均一に拡管できず、主配管と熱交換フィンとの密着性にばらつきが生じ、冷却器の熱交換性能に影響が出ることがあった。さらに、水圧による拡管によって主配管の一部が膨らんで熱交換フィンを押し広げ、冷却器の形状が歪んでしまうことがある。そのため、拡管後の冷却器が意図した形状になるように拘束する枠型の治具にセットした後、水圧による拡管を行っているが、枠型治具のセットに要する時間が必要であった。さらに、水圧による拡管を行なった後は、冷却器の冷媒配管の内部に水が残るため、配管内の乾燥に要する時間とコストが必要であった。
本発明は、かかる改善すべき課題に鑑みてなされたものであり、ステンレスの冷媒配管を用いた大型の冷却器を製造する場合において、歩留まりが良く、製造に要する時間を短縮してコストを低減することができる除湿装置の熱交換器を提供することを主目的とする。
上記目的を達成すべく、請求項1記載の冷却器は、複数枚の熱交換フィンと、これら前記熱交換フィンを貫通する蛇行状の冷媒配管と、前記熱交換フィンの両端に設けられた側板とから構成される複数の冷却器ブロックからなり、前記複数の冷却器ブロックの両端はそれぞれ共通の管板で保持されていることを特徴とする。
また、請求項2記載の冷却器は、前記冷媒配管の材質は、ステンレス鋼管であることを特徴とする。
さらに、請求項3記載の冷却器は、前記複数の冷却器ブロックは、熱交換フィンと冷媒配管との組み合わせがそれぞれ同一であることを特徴とする。
請求項1記載の冷却器によれば、冷却器を複数の冷却器ブロックに分けているため、拡管治具による拡管を行うことができる。それによって、水圧による拡管に比べ、製造に掛かる時間を短縮することができ、冷媒配管の破裂がなくなり歩留まりを良くすることができる。また、主配管全体が均一に拡管されることにより、主配管と熱交換フィンとが均一に密着するため冷却器の熱交換性能のばらつきをなくすことができる。さらに、水圧による拡管において必要であった枠型治具を使用しなくても良いため、枠型治具のセットに要する時間を削減することができる。また、水を使用しないため、配管内の乾燥を行う必要がなく、乾燥に要する時間とコストを削減することができる。
また、請求項2記載の圧縮空気除湿装置の熱交換器によれば、熱交換フィンを貫通する蛇行状の冷媒配管がステンレス鋼管であり腐食に対する耐久性が高いため、周囲環境に腐食性ガスが存在する場所においても除湿装置を設置することができ、除湿装置の耐久性を向上させることができる。
さらに、請求項3記載の圧縮空気除湿装置の熱交換器によれば、複数の冷却器ブロックを構成する熱交換フィンと冷媒配管との組み合わせがそれぞれ同じであるため、同一の部品を使用して同一の工程で製造することができるため、工程が簡略化され、作業時間を削減することができる。
以下、図面を参照して、本発明に係る圧縮空気除湿装置の熱交換装置の実施の形態について説明する。
最初に、圧縮空気の除湿装置および熱交換装置の構成について、図面を参照して説明する。
図1に示す圧縮空気除湿装置3(以下、「除湿装置3」ともいう)は、本発明の圧縮空気除湿装置の熱交換装置の一例であって、冷凍サイクル30、圧縮空気の導入口21と排出口22、排水口27を備えた圧力容器20内に、冷凍サイクル30の蒸発器である冷却器2を収納された熱交換器1、ドレン排出器28を備えて構成されている。
冷凍サイクル30は、蒸発器として機能する冷却器2、圧縮機31、凝縮器32および膨張弁33を備えている。冷却器2は、熱交換器1の二次冷却部24内に配設されて膨張弁33から吐出された冷媒が気化することによって周囲の圧縮空気(二次冷却部24内の圧縮空気)を冷却する。圧縮機31は、冷却器2において圧縮空気と熱交換して温度上昇させられた冷媒を凝縮器32に向けて圧送する。凝縮器32にはファン34が取り付けられており、圧縮機31によって圧送された高温高圧の冷媒を冷却することで凝縮させる。
なお、実際の冷凍サイクル30には、圧縮機31によって圧送される冷媒の一部を冷却器2と圧縮機31との間、または膨張弁33と冷却器2の間に戻すためのバイパス管や容量制御弁を備えているが、本願発明についての理解を容易とするために、これらについての説明および図示を省略する。
次に、熱交換器1の構成について説明する。
熱交換器1は、全体として円筒状で円筒軸方向に延びた圧力容器20で構成されると共に、圧力容器20内に取り付けられた隔壁によって、一次冷却部23と連通する円筒状の二次冷却部24を挟んで前室25および後室26が設けられている。また、上記の前室25および後室26は、連結管29によって相互に連結されている。この場合、一次冷却部23には、処理対象の圧縮空気を導入する導入口21が設けられると共に、後述するようにして連結管29内を前室25から後室26に向かって通過させられる圧縮空気によって導入口21から導入された圧縮空気を冷却する一次冷却部23と、冷凍サイクル30の蒸発器として機能する冷却器2を収納して一次冷却部23から排出された圧縮空気を冷却して前室25に排出する二次冷却部24とが設けられている。
前室25には圧縮空気中から取り除いた水分(ドレン)を排水する排水口27が設けられている。排水口27は、熱交換器1の底部に設けられると共に、ドレンを排出するためのドレン排出器28が取り付けられている。また、後室26には除湿処理後の圧縮空気を排出するための排出口22が設けられている。
図1の二次冷却部24には、図2に示す冷却器2が収納されている。次に、図2および図3を参照して冷却器2の詳細な構成と、製造方法について説明する。図2は冷却器2の全体構成、図3は二つの冷却器ブロック3を一体的に取り付ける冷却器2の構成を示したものであり、同一の構成については同一の符号を付して重複した説明を省略する。
図2および図3に示すように、冷却器2は、二つの冷却器ブロック3、当該二つの冷却器ブロックを両側より保持する管板14、15、複数の仕切板16、二つの冷却器ブロック3の冷媒配管11のそれぞれの冷媒入口開口部11bおよびそれぞれの冷媒出口開口部11cを接続させる図1に示すヘッダー配管17とからなる。
冷却器ブロック3は、所定の間隔に設けられた複数枚のアルミニウム薄板製の熱交換フィン10と、この熱交換フィン10の両端に配置され、当該熱交換フィン10より肉厚で強度の高い一対の側板13a、13bと、これら熱交換フィン10および側板13a、13bを貫通する蛇行状のステンレス鋼管製の冷媒配管11からなる、いわゆるフィンアンドチューブ型の熱交換器として構成されている。
上記冷却器ブロック3を構成する蛇行状の冷媒配管11は、複数本の直線状の配管の長手方向の中心部を湾曲してU字状に形成された主配管11aと、側板13aより熱交換フィン10の離間側に位置する主配管11aの端部を相互に接続するU字状を呈したベンド配管12とから構成されている。具体的に、本実施の形態の主配管11aは、U字状に形成された湾曲部が側板13bより熱交換フィン10の離間側に位置し、側板13a、13bとの間となる熱交換フィン10は直線状を呈した直線部となる。
以上の構成からなる冷却器ブロック3の製造方法について説明すると、まず図3に示すように所定間隔で設けられた複数枚の熱交換フィン10、及び、熱交換フィン10の両側に設けた側板13a、13bに冷媒配管11の主配管11aの外径より若干大きい貫通孔を穿設する。次に、側板13bに形成された貫通孔から主配管11aの両端を挿入し、側板13bから他方の側板13a間に渡って所定間隔で配置された熱交換フィン10に形成された貫通孔、側板13aの貫通孔に順次主配管11aを挿通する。このとき、主配管11aの両端は側板13aより熱交換フィン10から離間側に位置した状態となる。
この状態で、当該主配管11aの両端の開口から図示しない拡張治具を挿入する。具体的には、主配管11aの両端の開口に主配管11aの内径より若干大きい外径を有する拡張棒を位置合わせする。そして、その状態で、拡張棒を主配管11a内に挿入する。これにより、主配管11aが当該主配管11a内に挿入された上記拡張棒により内側から押し広げられて拡張し(拡管)、主配管11aの外周面が熱交換フィン10及び両側板13a、13bに形成された貫通孔に密着して当接し、主配管11aと熱交換フィン10、及び、主配管11aと両側板13a、13bとが密着される。
その後、上記拡張治具の拡張棒を主配管11aから引き抜き、主配管11aの端部の開口にU字状に湾曲されたベンド配管12の端部を挿入し、ろう材(溶接材)にて両者を溶接にて固定することによって、蛇行状の冷媒配管11が構成される。これにより、係るフィンアンドチューブ型の熱交換器(冷却器ブロック3)が組み立てられる。
次に図3を参照して冷却器2の製造方法を説明する。
図示のように二つの同一の冷却器ブロック3、3を、当該冷却器ブロック3、3のそれぞれの側板13a、13aの端部、及びそれぞれの側板13b、13bの端部を当接させるように重ね合わせる。そして、円筒状の二次冷却部24の円筒の径とほぼ同径である円形状の端部14aを持ち、該円形状の端部14aの下側部分及び円形の中心部分が冷却器ブロック3の主配管11a及びベンド配管12に接触しないように空けられた開口部14bを持つ管板14を、当該管板14と冷却器ブロック3、3のそれぞれの側板13a、13aとが一部重なり合うように配置する。そして、この状態で、管板14と側板13a、13aとが重なり合った箇所に設けた取付孔14dに図示しないビスを挿入して両者を締結する。
また、管板14の円形状の端部14aと同径である円形状の端部15aを持ち、該円形状の端部15aの下側部分に開口部15bを持ち、かつ冷却器ブロック3の主配管11aに接触しないように複数の開口部15cを持つ管板15を、当該管板15と冷却器ブロック3、3のそれぞれの側板13b、13bとが一部重なり合うように配置する。そして、この状態で、管板15と側板13b、13bとが重なり合った箇所に設けた取付孔15dに図示しないビスを挿入して両者を締結する。
二次冷却部24における圧縮空気の蛇行流路を構成するように、図2に示すように複数の仕切板16を冷却器ブロック3、3の熱交換フィン10、10間に間隔を空けて挿入して固定する。そして、各冷却器ブロック3、3の冷媒配管11、11の冷媒入口開口部11b同士を、ヘッダー配管17をろう材にて溶接することによって接続し、各冷却器ブロック3、3の冷媒配管11、11の冷媒出口開口部11b同士についてもヘッダー配管17をろう材にて溶接することによって接続する。これにより、二つの冷却器ブロック3、3のそれぞれの冷媒配管11、11をひとつの冷媒流路とすることによって、冷却器2を形成する。
冷却器2は、上記圧力容器20の二次冷却部24に収納され、冷凍サイクル30の冷媒配管が接続されることによって冷凍サイクル30の蒸発器として機能しする。
続いて、除湿装置3と熱交換器1による圧縮空気の除湿処理について、図面を参照しつつ具体的に説明する。
まず、圧縮機31を作動させて冷凍サイクル30内において冷媒を循環させる。この際には、後述するように、冷却器2内における冷媒の気化によって二次冷却部24内が冷却される。圧縮空気は、導入口21から熱交換器1内(一次冷却部23)に導入される。この場合、熱交換器1内に導入された圧縮空気は、図示しないエアコンプレッサによって圧縮された際に温度上昇させられて高温となっている。この高温の圧縮空気は、後述する除湿過程において冷却されて連結管29内を前室25から後室26に向かって通過させられる除湿処理後の圧縮空気と一次冷却部23において熱交換することによって冷却される(除湿処理後の圧縮空気によって冷却される)。この結果、導入口21から導入された圧縮空気に含まれている水分の一部が、一次冷却部23において連結管29の周囲に結露して圧縮空気から取り除かれる。
また、一次冷却部23において一次冷却された圧縮空気は、一次冷却部23から、圧力容器20の円筒軸と同方向に延びる円筒状に構成されて冷却器2が収納された二次冷却部24に排出され、二次冷却部24内において冷凍サイクル30の冷却器2によって十分に冷却される。この際には、二次冷却部24に導入された圧縮空気は、冷却器2を構成する管板14とその開口部14b、および管板15とその開口部15b、複数の仕切板16が存在することにより、図1の矢印で示すように二次冷却部24内を蛇行して移動しながら効率良く冷却される。このとき、一次冷却部23から排出された圧縮空気に含まれている水分のほぼすべてが二次冷却部24内において冷却器2の周囲に結露して圧縮空気から取り除かれる結果、圧縮空気が十分に除湿される。また、両冷却部23、24において圧縮空気中から取り除かれた水分は、熱交換器1底部の排水口27からドレン排出器28を介して熱交換器1の外部に排出される。一方、両冷却部23、24において冷却されて除湿された低温低湿の圧縮空気は、二次冷却部24から前室25に排出された後、一次冷却部23において連結管29を通過させられる際に、導入口21から熱交換器1内(一次冷却部23)に導入された高温の圧縮空気と熱交換することで温度上昇させられて後室26に排出される。そして排出口22から熱交換器1の外部に圧送される。
以上詳述したように、この圧縮空気除湿装置の熱交換器1によれば、冷却器2を複数の冷却器ブロック3、3に分けて構成されているため、拡管治具による拡管を行うことができる。それによって、水圧による拡管に比べ、製造に掛かる時間を短縮することができ、冷媒配管11の破裂がなくなり歩留まりを良くすることができる。また、主配管11a全体が均一に拡管されることにより、主配管11aと熱交換フィン10とが均一に密着するため冷却器の熱交換性能のばらつきをなくすことができる。さらに、水圧による拡管において必要であった枠型治具を使用しなくても良いため、枠型治具のセットに要する時間を削減することができる。また、水を使用しないため、冷媒配管11内の乾燥を行う必要がなく、乾燥に要する時間とコストを削減することができる。
以上、本発明につき各実施例を挙げて説明したが、本発明はこの各実施例に限定されるものではなく、発明の精神を逸脱しない範囲内で多くの改変を施し得るのはもちろんである。
1 熱交換器
2 冷却器
3 冷却器ブロック
4 圧縮空気除湿装置
10 熱交換フィン
11 冷媒配管
11a 主配管
11b 冷媒入口開口部
11c 冷媒出口開口部
12 ベンド配管
13a,13b 側板
14,15 管板
14a,15a 端部
14b,15b,15c 開口部
16 仕切板
17 ヘッダー配管
21 導入口
22 排出口
23 一次冷却部
24 二次冷却部
25 前室
26 後室
27 排水管
28 ドレン排出器
29 連結管
30 冷凍サイクル
31 圧縮機
32 凝縮器
33 膨張弁
34 ファン
2 冷却器
3 冷却器ブロック
4 圧縮空気除湿装置
10 熱交換フィン
11 冷媒配管
11a 主配管
11b 冷媒入口開口部
11c 冷媒出口開口部
12 ベンド配管
13a,13b 側板
14,15 管板
14a,15a 端部
14b,15b,15c 開口部
16 仕切板
17 ヘッダー配管
21 導入口
22 排出口
23 一次冷却部
24 二次冷却部
25 前室
26 後室
27 排水管
28 ドレン排出器
29 連結管
30 冷凍サイクル
31 圧縮機
32 凝縮器
33 膨張弁
34 ファン
Claims (3)
- 複数枚の熱交換フィンと、これら前記熱交換フィンを貫通する蛇行状の冷媒配管と、前記熱交換フィンの両端に設けられた側板とから構成される複数の冷却器ブロックからなり、前記複数の冷却器ブロックの両端はそれぞれ共通の管板で保持されていることを特徴とする冷却器。
- 前記冷媒配管の材質は、ステンレス鋼管であることを特徴とする請求項1記載の冷却器。
- 前記複数の冷却器ブロックは、熱交換フィンと冷媒配管との組み合わせがそれぞれ同一であることを特徴とする請求項1または2記載の冷却器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013055970A JP2014181841A (ja) | 2013-03-19 | 2013-03-19 | 冷却器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013055970A JP2014181841A (ja) | 2013-03-19 | 2013-03-19 | 冷却器 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014181841A true JP2014181841A (ja) | 2014-09-29 |
Family
ID=51700731
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013055970A Pending JP2014181841A (ja) | 2013-03-19 | 2013-03-19 | 冷却器 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014181841A (ja) |
-
2013
- 2013-03-19 JP JP2013055970A patent/JP2014181841A/ja active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6851492B2 (ja) | 管支持構造を有する凝縮器 | |
KR101512224B1 (ko) | 쉘 앤드 튜브형 열교환기 및 그 조립 방법 | |
AU2013394053A1 (en) | Laminated header, heat exchanger, air-conditioning apparatus, and method of joining a plate-like unit of a laminated header and pipe to each other | |
JP2007247891A (ja) | 配管継手装置、熱交換器の配管継手構造及び熱交換器の配管組み付け方法 | |
US10753688B2 (en) | Distributer, heat exchanger, and air-conditioning apparatus | |
JP2007085591A (ja) | 空気調和装置 | |
JP2020506359A (ja) | 凝縮器 | |
JP2014181842A (ja) | 圧縮空気除湿装置の熱交換器 | |
KR20150004177A (ko) | 쉘 튜브 열교환기 및 그 제조방법 | |
JP2014180608A (ja) | 冷却器の製造方法および圧縮空気除湿装置の熱交換器 | |
JP2012101167A (ja) | 圧縮空気除湿システムおよび圧縮空気除湿方法 | |
JP2011005374A (ja) | 圧縮空気除湿装置 | |
JP2017003189A (ja) | シェルアンドチューブ式熱交換器 | |
KR101110049B1 (ko) | 방해판을 공유하는 냉각식 제습장치의 열교환기의 구조 | |
JP2014181841A (ja) | 冷却器 | |
JP2014052087A (ja) | 給湯用熱交換器 | |
KR20140129630A (ko) | 배관 급속 결빙 모듈 | |
JP2016203064A (ja) | 圧縮空気除湿装置 | |
JP2014102032A (ja) | 空気調和機の室外機 | |
KR20170000892U (ko) | 열교환기 | |
JPWO2022059136A5 (ja) | ||
JP6345145B2 (ja) | 熱交換器 | |
JP2016052610A (ja) | 圧縮空気除湿装置 | |
WO2013122451A1 (en) | Outdoor unit of an air-conditioning apparatus | |
JP3209750U (ja) | 熱交換器 |