JP2014178480A - 光変調器および光変調方法 - Google Patents

光変調器および光変調方法 Download PDF

Info

Publication number
JP2014178480A
JP2014178480A JP2013052282A JP2013052282A JP2014178480A JP 2014178480 A JP2014178480 A JP 2014178480A JP 2013052282 A JP2013052282 A JP 2013052282A JP 2013052282 A JP2013052282 A JP 2013052282A JP 2014178480 A JP2014178480 A JP 2014178480A
Authority
JP
Japan
Prior art keywords
phase
optical
modulator
signal
modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013052282A
Other languages
English (en)
Inventor
Tsunesuke Ozaki
常祐 尾崎
Nobuhiro Kikuchi
順裕 菊池
Hidekazu Yamada
英一 山田
Yasuo Shibata
泰夫 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2013052282A priority Critical patent/JP2014178480A/ja
Publication of JP2014178480A publication Critical patent/JP2014178480A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】従来のシングル駆動型MZ変調器に比べ、駆動振幅が半分で、帯域劣化のないMZ変調器を提供する。
【解決手段】差動ドライバ209を用いて、導線210a,210b、入力信号調整領域211a,211bを通り、第2の位相変調器204bと第3の位相変調器205aに逆相の電気信号を入力する。今、差動ドライバ209から電圧Vπの電気信号が入力されるとすると、第2の位相変調器204bには電圧Vπが第3の位相変調器205aには−Vπの電圧が印加される。第2の位相変調器204bに印加される電圧Vπにより、シングル駆動する前段の位相変調器204aと204bにおいて、πの位相変化が、さらに第3の位相変調器205aに印加される電圧−Vπにより、後段の位相変調器205aと205bにおいて、πの位相変化が起こる。合計で2πの位相変化となり、出力光の位相が0→πと変化し、BPSKを実現できる
【選択図】図2

Description

本発明は、電気信号を光信号に変換する光変調器および光変調方法に関する。
増大する通信トラフィック需要に対応するために波長多重(WDM)技術の開発が進み、現在では、ファイバで伝送可能な帯域は枯渇してきている状況であり、周波数利用効率向上が課題となっている。周波数利用効率向上とさらなる通信システムの大容量化の実現には、1波長あたりの伝送レートを上げることが有用である。ここで、変調方式を変えることなく光伝送路に送出するシンボルレートを上げた場合には、許容残留分散量がシンボルレートの2乗に反比例するので、光伝送路の波長分散耐力が低下するという問題点があった。また、電気信号処理を高速に実行することが必要となり、アナログ電気部品のコストが増加するという問題点もあった。
そこで、近年では信号多重度を上げる研究が盛んに行われている。具体的な信号多重度を上げる方式として、1シンボルに2値(多重度2)を割り当てることで伝送容量を2倍にする4値位相変調方式(QPSK)や、1シンボルに4値(多重度4)を割り当てることで伝送容量を4倍にする16値直交振幅変調方式(16QAM)、16値振幅位相変調方式(16APSK)等の多値変調方式が知られている。また、偏波多重により伝送容量を2倍にする方法も研究等も進められている。
通常、これらの多値変調を実行する場合には、光変調器としてI/Q変調器が用いられる。I/Q変調器は別名直交変調器とも呼ばれ、直交する光電界成分(Iチャンネル、Qチャンネル)を独立して生成可能な変調器であり、マッハツェンダー(MZ:Mach−Zehnder)変調器を並列接続した特殊な構成をとるものである(例えば、下記特許文献1参照)。
一般的なMZ変調器の構成としては、大きく分けて2つの構成が知られている。シングル駆動型の電極構成のものとデュアル駆動型の電極構成のものである。前者は信号電極が1つしかないものであり、後者は2本のアーム光導波路のそれぞれの上に信号電極が配置される。また、MZ変調器の上下のアーム光導波路が2つとも位相変調器となっている場合に、位相変調を互いに逆相としたものをプッシュプル動作といい、一般的にチャープ低減のためにこの動作方式が用いられている。
図5(a)に、シングル駆動型の電極構成でプッシュプル動作するもの(シングルエンドプッシュプル駆動)を示し、図5(b)に、デュアル駆動型の電極構成でプッシュプル駆動(差動駆動)するものを示す。
図5(a)において、501はMZ変調器を構成する光導波路、502は接地電極、503は信号電極をそれぞれ示している。信号電極は1つしかないが、図5(a)に示す電気力線より、2つの光導波路の感じる電場の向きが互いに逆向きとなる。つまり、電極が1つのシングル駆動型電極であるが、上下の位相変調部分がプッシュプル動作する。
図5(b)において、501はMZ変調器を構成する光導波路、502は接地電極、503は信号電極をそれぞれ示している。デュアル駆動型電極では、図5(b)に示すように、2つの信号電極により駆動しており、2つの信号電極に互いに逆相の電気信号を与えることで、2つの光導波路の感じる電場の向きが互いに逆向きとなり、プッシュプル駆動する。また、2つの信号電極に差動信号を与え駆動することができ、駆動電圧はシングル駆動型に比べ約半分とすることができる。
このようなMZ変調器には、LiNbOに代表されるような誘電体材料を用いたもの(例えば特許文献2参照)やInP系の化合物半導体材料(例えば特許文献3参照)を用いたもの等がある。
ここで、図6(a)に、MZ変調器の構成を示した模式図を示し、MZ変調器を用いたBPSK(Binary Phase−Shift Keying)変調動作について説明する。なお、図6(a)において、601は入力導波路、602は光分岐回路、603a,603bは前段の接続導波路、604a,604bは位相変調器、605a,605bは後段の接続導波路、606は光合流回路、607は出力導波路をそれぞれ示している。図6(b)、(c)はMZ変調器のコンスタレーションを説明する図である。
信号光はまず、入力導波路601から入射し、光分岐回路602により分岐比1:1で2分岐され接続導波路603a、603bを介して、位相変調器604a,604bに導かれ、位相変調を受け、接続導波路を介して光合流回路606で合流され、出力導波路607より出力される。位相変調器604a,604bには、それぞれ信号電極と接地電極が設けられる。信号電極と接地電極との間に電圧を与えると、発生した電界が光導波路の屈折率を変化させ、2本の光導波路に位相差が生じる。ここで位相変調器の通過前と通過後で光の位相が0→πと変化するのに要する電圧を半波長電圧Vπという。
電圧が印加されなければ、出力光は位相差が0の状態(図6(b))であり、次に2つの位相変調器に適当な電圧が印加されたとすると、一方の接続導波路で伝搬光の位相が0→π、もう一方の接続導波路で伝搬光の位相が0→−πと変化し、光合流回路606で合流され出力導波路607より出力される光の位相が0→π(図6(c))となる。これがMZ変調器を用いたBPSK動作である。この適当な電圧は、電極構造により異なるため、電極構造の設計が重要となる。
ここで、MZ変調器が図5(a)に示すシングル駆動型であった場合の駆動電圧について考えると、信号電極は1つしかなく、信号電極に印加された電圧が位相変調器604a,604bに分割されて印加されるので、この位相変調動作の場合には合計2πの位相変調を行っているため、2Vπの駆動電圧が必要であることがわかる。例えば、半波長電圧Vπが3Vppであるとすれば、BPSK動作をさせるためには6Vppの電圧が必要である。つまり6Vppのドライバが必要となる。
次に、MZ変調器が図5(b)に示すデュアル駆動型であるとすると、信号電極が2つあるため、互いに逆相の信号を入力することが可能である。つまり、2つの信号電極に差動ドライバを用いて差動信号を与えるとすれば、Vπと−Vπの2つの信号を入力することができるため、合計2πの位相変調を行うのに、シングル駆動型の半分の電圧であるVπで駆動することができる。例えば、半波長電圧Vπが3Vppであるとすれば、BPSK動作をさせるのに必要な電圧はシングル駆動型の半分の3Vppで済む。
また、光変調器では帯域幅と駆動電圧が大切なパラメータとなる。帯域幅と駆動電圧は独立ではなく、半波長電圧Vπと変調帯域はそれぞれ電極長Lに反比例する。そのため、駆動電圧を低くするためには電極長Lを長くする方が良く、変調帯域を広くするには、電極長Lを短くするのがよい。このため、電極の設計を工夫することにより、低駆動電圧化や広帯域化を図ることが重要となる。
特表2004−516743号公報 特開平10−228006号公報 特開2010−271742号公報
このように、デュアル駆動型を採用できずにシングル駆動型を採用すると、デュアル駆動型に比べ大振幅のドライバが必要となり、大振幅のドライバは一般的に高価であるという課題がある。また、大振幅のドライバを用いないためには、低駆動電圧化が必要であるが、低駆動電圧化のために電極長を長くすると、帯域が劣化するという課題がある。
以上のことから、本発明は、従来のシングル駆動型MZ変調器に比べ、駆動振幅が半分で、帯域劣化のないMZ変調器を提供することを目的とする。
上記の課題を解決するために、請求項1に記載の発明は、入力された電気信号を光信号に変換する光変調器であって、入射された信号光を分岐させる光分岐手段と、
分岐された信号光を合流させる光合流手段と、前記光分岐手段と光合流手段とを結びマッハツェンダー干渉計を構成する2本のアーム光導波路と、2つの位相変調器が前記2本のアーム光導波路上にそれぞれ設置された第1の位相変調手段と、2つの位相変調器が前記2本のアーム光導波路上にそれぞれ設置され、前記第1の位相変調手段に縦続接続された第2の位相変調手段と、前記第1および第2の位相変調手段を駆動する差動差動ドライバと、を備えたことを特徴とする。
請求項2に記載の発明は、請求項1に記載の光変調器において、前記第1および第2の位相変調手段は、それぞれ前記2つの位相変調器に対しシングル駆動型の電極を備えたことを特徴とする。
請求項3に記載の発明は、請求項1又は2に記載の光変調器において、前記第1および第2の位相変調手段は、それぞれ前記2つの位相変調器がプッシュプル動作することを特徴とする。
請求項4に記載の発明は、請求項1乃至3のいずれかに記載の光変調器において、前記信号光が前記第1位相変調手段に入射するのと同時に、前記差動ドライバからの電気信号が前記第1位相変調手段に入力され、前記信号光が前記第2位相変調手段に入射するのと同時に、前記差動ドライバからの電気信号が前記第2位相変調手段に入力されるように調整する手段を備えたことを特徴とする。
請求項5に記載の発明は、請求項1乃至4のいずれかに記載の光変調器において、少なくとも1本の前記アーム光導波路上に、前記信号光の位相を調整する位相調整手段が設置されることを特徴とする。
請求項6に記載の発明は、入力された電気信号を光信号に変換する光変調方法であって、差動ドライバで生成された第1の差動信号で、マッハツェンダー干渉計を構成する2本のアーム光導波路上にそれぞれ設置された2つの位相変調器からなる位相変調手段を駆動し、前記第1の位相変調手段入射した信号光を変調する第1の変調ステップと、前記第1の差動信号に対して逆相の前記差動ドライバで生成された第2の差動信号で、前記2本のアーム光導波路上にそれぞれ設置された2つの位相変調器からなり、前記第1の位相変調手段に縦続接続された第2の位相変調手段を駆動し、前記第2の位相変調手段に入射した信号光を変調する第2の変調ステップと、を有することを特徴とする。
請求項7に記載の発明は、請求項6に記載の光変調方法において、前記第1および第2の位相変調手段は、それぞれ前記2つの位相変調器に対しシングル駆動型の電極を備えたことを特徴とする。
請求項8に記載の発明は、請求項6又は7に記載の光変調方法において、前記第1および第2の変調ステップは、それぞれ前記2つの位相変調器をプッシュプル動作させることを特徴とする。
本発明によれば、駆動振幅が従来の半分で、帯域劣化のないシングル駆動型MZ変調器を提供することができる。また、同様の構成で、電極長を調整することで、従来の駆動電圧のままで、帯域を従来の倍となるMZ変調器を提供することができる。
本発明の実施形態1に係る光変調器の構成を示した模式図である。 本発明の実施形態1に係る光変調器の動作を説明するための模式図である。 本発明の実施形態2に係る光変調器の構成を示した模式図である。 本発明の実施形態3に係る光変調器の構成を示した模式図である。 MZ変調器の電極構成について説明するための模式図である。 MZ変調器を用いたBPSK変調動作について説明するための模式図である。
以下、本発明に係る光変調器を実施するための形態について、図面を参照しながら説明する。
(実施形態1)
以下、本発明の実施形態1に係る光変調器について説明する。本実施形態に係る光変調器は、従来のシングル駆動型MZ変調器をベースに電極構成を変えることで、駆動振幅が従来の半分で、帯域劣化することなく光変調を実現するものである。
図1に、本実施形態に係る光変調器の構成の模式図を示す。図1中においては、101は入力導波路、102は光分岐回路、103a,103bは接続導波路、104a,104bは第1及び第2の位相変調器、105a,105bは第3及び第4の位相変調器、106a,106bは接続導波路、107は光合流回路、108は出力導波路をそれぞれ示している。
信号光は、まず入力導波路101から入射し、光分岐回路102により2分岐され接続導波路103a及び接続導波路103bを介して第1の位相変調器104a及び第2の位相変調器104bに導かれる。第1の位相変調器104aと第2の位相変調器104bを1つの変調部分、第3の位相変調器105aと第4の位相変調器105bを別の1つの変調部分というように捉えると、2つの変調部分が存在していることになる。また、第1の位相変調器104aと第2の位相変調器104b、第3の位相変調器105aと第4の位相変調器105bはそれぞれシングル駆動され、性能等については、任意のものとすることができる。
ここで、本実施形態に係る光変調器のBPSK変調動作について説明する。
従来のシングル駆動型MZ変調器との比較のため、前段の位相変調器104a,104b、後段の位相変調器105a,105bはすべて、図5に示す位相変調器504a、504bと同じ設計の電極を用いるとし、その半波長電圧がVπとする。なお、本発明の光変調器に用いる電極としては、集中定数型電極、進行波型電極などでも良い。
光分岐回路102の光分岐比が1:1、光合流回路107の光合流比が1:1とする。各位相変調器に電圧が印加されていない状態では、前段の位相変調器104aと104b、後段の位相変調器105aと105bにおいて、位相変化がないため、接続導波路106a,106b、光合流回路107、出力導波路108を通り、図6(b)に示すような位相が0の光が出力される。
次に各位相変調器に電圧が印加された状態について考える。BPSK変調動作を実現するためには、電圧を印加することで出力光の位相が0→πと変化する必要があるので、図6(c)に示すような合計で2πの伝搬光の位相変化が必要である。伝搬光にシングル駆動する前段の位相変調器104aと104bでπの位相変化を、さらにシングル駆動する後段の位相変調器105aと105bでπの位相変化を与えることで、合計で2πの位相変化となりBPSKを実現できる。
この駆動には差動出力のドライバがあればよく、その動作について図を用いて説明する。
図2に、実施形態1に係る光変調器及びドライバの構成の模式図を示す。図2中においては、201は入力導波路、202は光分岐回路、203a,203bは接続導波路、204a,204bは第1の位相変調器、205a,205bは第2の位相変調器、206a,206bは接続導波路、207は光合流回路、208は出力導波路、209は差動ドライバ、210a,210bは導線、211a,211bは入力信号調整領域をそれぞれ示している。
例えば、図2に示すように差動ドライバ209を用いて、導線210a,210b、入力信号調整領域211a,211bを通り、第2の位相変調器204bと第3の位相変調器205aに逆相の電気信号を入力する。今、差動ドライバ209から電圧Vπの電気信号が入力されるとすると、第2の位相変調器204bには電圧Vπが第3の位相変調器205aには−Vπの電圧が印加される。第2の位相変調器204bに印加される電圧Vπにより、シングル駆動する前段の位相変調器204aと204bにおいて、πの位相変化が、さらに第3の位相変調器205aに印加される電圧−Vπにより、後段の位相変調器205aと205bにおいて、πの位相変化が起こる。合計で2πの位相変化となり、出力光の位相が0→πと変化し、BPSKを実現できる(図6(b)、(c)参照)。
第2の位相変調器204bに−Vπを、第3の位相変調器205aにVπを印加した場合、あるいは第1の位相変調器204aにVπを、第4の位相変調器205bに−Vπの電圧を印加した場合、あるいは第1の位相変調器204aに−Vπを、第4の位相変調器205bにVπを印加した場合でも同様の動作をする。
上述のように、図5(a)のような従来のシングル駆動型のMZ変調器において、BPSK変調動作させるためには駆動電圧として2Vπが必要である。一方、本構成のMZ変調器を用いると、差動ドライバを用いることで駆動電圧がVπで済み、従来のシングル駆動型のMZ変調器に比べ半分の駆動振幅とすることができる。つまり、それぞれに印加する電圧は従来のシングル駆動型のMZ変調器に比べ半分であるが、トータルで同じ位相変化量を実現することができる。Vπ=3Vppであるとすれば、従来のシングル駆動型のMZ変調器では6Vppの駆動電圧が必要であったが、本構成を用いることでこれを半分の3Vppとすることができる。
本構成の駆動には差動出力のドライバがあればよく、従来のシングル駆動型のMZ変調器に比べ振幅が半分と低いので、比較的安価なEAドライバを使って駆動することができる。
ここで、入力信号調整領域211a,211bの動作について説明する。変調を行うためには、各位相変調器に入力される光と、差動ドライバ209から導線210a、210bを通り位相変調器に入力される電気信号とが同時に位相変調器に入力される必要がある。入力調整信号調整領域211a、211bを設けることで、電気信号の入力タイミングの調整を行うことができる。
本実施形態に係る光変調器において用いる光分岐回路102及び光合流回路107については、特にその構成を限定するものではなく、Y字型光分岐(合流)回路、方向性結合器、ファネル型カプラ、多モード導波路の干渉効果を用いた多モード干渉型(MMI:Multi−Mode Interference)カプラ等、どのような構成のものを用いても同様な効果を得ることが可能である。
なお、本実施形態に係る光変調器の構成においても、用いるMZ変調器の構造及び材料に関しては、特に制約を設けるものではなく、LiNbOに代表されるような誘電体材料、InP系、GaAs系に代表されるような化合物半導体材料、Si等の半導体材料、ポリマー系材料等、通常変調器として使用可能なすべての材料系について本実施形態に係る光変調器の構成をとることにより、同様な効果を得ることができる。
また、導波路構造に関しても、特に制約を設けるものではなく、埋め込み構造、リッジ構造、ハイメサ構造等を信号光が伝搬可能な導波構造であれば、本実施形態に係る光変調器の構成をとることにより同様な効果を得ることができる。
(実施形態2)
以下、本発明の実施形態2に係る光変調器及び光変調方法について説明する。本実施形態に係る光変調器は、従来のシングル駆動型MZ変調器をベースに電極構成を変えることで、駆動振幅は同じで、帯域が従来の2倍の光変調を実現するものである。
図3に、本実施形態に係る光変調器の構成の模式図を示す。図3中においては、301は入力導波路、302は光分岐回路、303a,303bは接続導波路、304a,304bは第1及び第2の位相変調器、305a,305bは第3及び第4の位相変調器、306a,306bは接続導波路、307は光合流回路、308は出力導波路をそれぞれ示している。
本実施形態に係る光変調器の動作原理は、第1の実施形態と同様であり、信号光は、まず入力導波路301から入射し、光分岐回路302により2分岐され接続導波路303a及び接続導波路303bを介して第1の位相変調器304a及び第2の位相変調器304bに導かれる。差動ドライバ309を用いて、導線210a,210b、入力信号調整領域211a,211bを通り、第2の位相変調器304bと第3の位相変調器305aに電気信号を入力することで、シングル駆動する前段の位相変調器304aと304b、後段の位相変調器304aと304bに互いに逆相の電気信号を入力することで、位相が変化し、出力光の位相が0→πとなりBPSK変調動作する(図6(b)、(c)参照)。
実施形態2に係る変調器において、シングル駆動する前段の位相変調器304a、304b及び後段の位相変調器305a、305bの電極長が全てL/2であって、同じ電極構成であるとし、電極長がLの時の半波長電圧をVπであるとする。この場合、帯域は長さに反比例することから、電極長が半分となったことで、帯域は2倍とすることができ、広帯域化が可能である。
次にこの場合の駆動電圧について考えると、BPSK変調動作させるためには、前段の位相変調器304aと304bにおいてπの位相変化を、後段の位相変調器304aと304bにおいてπの位相変化の合計2πの位相変化が必要である。今、前段の位相変調器304aと304bにおいてπの位相変化を行うことを考えると、駆動電圧は電極長に反比例するので、電極長がL/2の場合、πの位相変化を実現するために必要な電圧は2Vπとなる。つまり、第2の位相変調器304bに電圧2Vπを、第3の位相変調器305aに電圧−2Vπを印加することでBPSK変調動作を実現できる。
第2の位相変調器304bに−2Vπを、第3の位相変調器305aに2Vπを印加した場合、あるいは第1の位相変調器304aに2Vπを、第4の位相変調器305bに−2Vπの電圧を印加した場合、あるいは第1の位相変調器304aに−2Vπを、第4の位相変調器305bに2Vπを印加した場合でも同様の動作をする。
上述のように、図5(a)のような従来のシングル駆動型のMZ変調器において、BPSK変調動作させるためには駆動電圧として2Vπが必要であり、本実施形態に係る変調器と同じ駆動電圧である。しかし、帯域については、電極長に反比例するため、本構成を用いることで、帯域を2倍とすることができる。
本実施形態に係る光変調器において用いる光分岐回路302及び光合流回路307については、特にその構成を限定するものではなく、Y字型光分岐(合流)回路、方向性結合器、ファネル型カプラ、多モード導波路の干渉効果を用いたMMIカプラ等、どのような構成のものを用いても同様な効果を得ることが可能である。
なお、本実施形態に係る光変調器の構成においても、用いるMZ変調器の構造及び材料に関しては、特に制約を設けるものではなく、LiNbOに代表されるような誘電体材料、InP系、GaAs系に代表されるような化合物半導体材料、Si等の半導体材料、ポリマー系材料等、通常変調器として使用可能なすべての材料系について本実施形態に係る光変調器の構成をとることにより、同様な効果を得ることができる。
また、導波路構造に関しても、特に制約を設けるものではなく、埋め込み構造、リッジ構造、ハイメサ構造等を信号光が伝搬可能な導波構造であれば、本実施形態に係る光変調器の構成をとることにより同様な効果を得ることができる。
(実施形態3)
以下、本発明の第3の実施形態に係る光変調器及び光変調方法について説明する。図4は、本実施形態に係る光変調器の構成を示した模式図である。図4中において、401は入力導波路、402は光分岐回路、403a,403bは接続導波路、404a,404bは位相変調器、405a,405bは位相変調器、406a,406bは接続導波路、407は光合流回路、408は出力導波路、409a,409bは位相調整領域をそれぞれ示している。
本実施形態に係る光変調器の動作原理は、位相調整領域409a,409bの動作に関する点を除けば、図1に示した実施形態1と同様であり、401〜408をそれぞれ101〜108と読み替えることにより、その動作を説明することができ、実施形態1、実施形態2と同様の動作をする。
ここで、位相調整領域409a、409bの働きについて説明する。素子が理想的に作成されれば、実施形態1において説明した構成で光多値変調用の変調器を実現することが可能である。しかしながら、実際に素子を作成した場合、接続導波路403a又は接続導波路403bから接続導波路406a又は接続導波路406bまででそれぞれ構成される。MZ干渉計のアーム領域を構成する導波路のわずかな作製誤差が両アームの光路長差となり、位相変調器404aと位相変調器404bを経由したそれぞれの信号光が光合流回路407において足し合わされる際に位相差が発生してしまう可能性がある。
本実施形態に係る光変調器においては、MZ干渉計のアームに位相調整領域409a、409bを設けることにより、この位相差を調整可能として素子の作製トレランス、歩留まりを向上することが可能となる。
すなわち、本実施形態3に係る光変調器の構成によれば、作製誤差等によりMZ干渉計の複数のアーム間に相対的な光路長差が生じてしまった場合であっても、安定して多値変調動作を行うことができる。
位相調整領域409a及び位相調整領域409bの構造としては、特に制約を設けるものではない。位相変調器404a、404b及び位相変調器405a、405bと同様であっても構わない。また、位相が変化する構造であれば、どのような構造であっても本実施形態に係る光変調器による効果を実現することが可能である。位相調整手段としては、電流注入、ヒーターによる局所的な温度調整、電界印加、光照射等のいずれかの手段を用いることが可能である。
また、原理上は、2つのアーム光導波路の一方に位相調整領域が設けられていれば、本実施形態に係る光変調器の動作には十分である。しかし、全ての位相変調手段にそれぞれ位相調整領域が接続された構成は、光回路の幾何学的な対称性が優れているため、MZ干渉計の両アームに光路長差が生じにくく、波長特性に優れ、また、光回路を構成する各個別要素のレイアウトが容易で回路が配置しやすいという特徴がある。
さらに、位相変調手段と位相調整手段の配置順については、順番が入れ替わっても差し支えなく、全く同様な動作が可能である。また、その順序は、MZ干渉計を構成するアーム全てについて同一の順序である必要もなく、それぞれが異なった順序で配置されていても構わない。
本実施形態3に係る光変調器において用いる光分岐回路402及び光合流回路407については、特にその構成を限定するものではなく、Y字型光分岐(合流)回路、方向性結合器、ファネル型カプラ、多モード導波路の干渉効果を用いたMMIカプラ等、どのような構成のものを用いても同様な効果を得ることが可能である。
なお、本実施形態に係る光変調器の構成においても、用いるMZ変調器の構造及び材料に関しては、特に制約を設けるものではなく、LiNbOに代表されるような誘電体材料、InP系、GaAs系に代表されるような化合物半導体材料、Si等の半導体材料、ポリマー系材料等、通常変調器として使用可能なすべての材料系について本実施形態に係る光変調器の構成をとることにより、同様な効果を得ることができる。
また、導波路構造に関しても、特に制約を設けるものではなく、埋め込み構造、リッジ構造、ハイメサ構造等を信号光が伝搬可能な導波構造であれば、本実施形態に係る光変調器の構成をとることにより同様な効果を得ることができる。
101,201,301,401,601 入力導波路
102,202,302,402,602 光分岐回路
103a,103b,106a,106b,203a,203b,206a,206b,303a,303b,306a,306b,403a,403b,406a,406b,603a,603b,605a,605b 接続導波路
104a,204a,304a,404a,604a 第1の位相変調器
104b,204b,304b,404b,604b 第2の位相変調器
105a,205a,305a,405a 第3の位相変調器
105b,205b,305b,405b 第4の位相変調器
107,207,307,407,606 光合流回路
108,208,308,408,607 出力導波路
209,309 差動ドライバ
210a,210b,310a,310b 導線
211a,211b,311a,311b 入力信号調整領域
501 MZ変調器を構成する光導波路
502 接地電極
503 信号電極

Claims (8)

  1. 入力された電気信号を光信号に変換する光変調器であって、
    入射された信号光を分岐させる光分岐手段と、
    分岐された信号光を合流させる光合流手段と、
    前記光分岐手段と光合流手段とを結びマッハツェンダー干渉計を構成する2本のアーム光導波路と、
    2つの位相変調器が前記2本のアーム光導波路上にそれぞれ設置された第1の位相変調手段と、
    2つの位相変調器が前記2本のアーム光導波路上にそれぞれ設置され、前記第1の位相変調手段に縦続接続された第2の位相変調手段と、
    前記第1および第2の位相変調手段を駆動する差動差動ドライバと、
    を備えたことを特徴とする光変調器。
  2. 前記第1および第2の位相変調手段は、それぞれ前記2つの位相変調器に対しシングル駆動型の電極を備えたことを特徴とする請求項1に記載の光変調器。
  3. 前記第1および第2の位相変調手段は、それぞれ前記2つの位相変調器がプッシュプル動作することを特徴とする請求項1又は2に記載の光変調器。
  4. 前記信号光が前記第1位相変調手段に入射するのと同時に、前記差動ドライバからの電気信号が前記第1位相変調手段に入力され、前記信号光が前記第2位相変調手段に入射するのと同時に、前記差動ドライバからの電気信号が前記第2位相変調手段に入力されるように調整する手段を備えたことを特徴とする請求項1乃至3のいずれかに記載の光変調器。
  5. 少なくとも1本の前記アーム光導波路上に、前記信号光の位相を調整する位相調整手段が設置されることを特徴とする請求項1乃至4のいずれかに記載の光変調器。
  6. 入力された電気信号を光信号に変換する光変調方法であって、
    差動ドライバで生成された第1の差動信号で、マッハツェンダー干渉計を構成する2本のアーム光導波路上にそれぞれ設置された2つの位相変調器からなる位相変調手段を駆動し、前記第1の位相変調手段入射した信号光を変調する第1の変調ステップと、
    前記第1の差動信号に対して逆相の前記差動ドライバで生成された第2の差動信号で、前記2本のアーム光導波路上にそれぞれ設置された2つの位相変調器からなり、前記第1の位相変調手段に縦続接続された第2の位相変調手段を駆動し、前記第2の位相変調手段に入射した信号光を変調する第2の変調ステップと、
    を有することを特徴とする光変調方法。
  7. 前記第1および第2の位相変調手段は、それぞれ前記2つの位相変調器に対しシングル駆動型の電極を備えたことを特徴とする請求項6に記載の光変調方法。
  8. 前記第1および第2の変調ステップは、それぞれ前記2つの位相変調器をプッシュプル動作させることを特徴とする請求項6又は7に記載の光変調方法。
JP2013052282A 2013-03-14 2013-03-14 光変調器および光変調方法 Pending JP2014178480A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013052282A JP2014178480A (ja) 2013-03-14 2013-03-14 光変調器および光変調方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013052282A JP2014178480A (ja) 2013-03-14 2013-03-14 光変調器および光変調方法

Publications (1)

Publication Number Publication Date
JP2014178480A true JP2014178480A (ja) 2014-09-25

Family

ID=51698486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013052282A Pending JP2014178480A (ja) 2013-03-14 2013-03-14 光変調器および光変調方法

Country Status (1)

Country Link
JP (1) JP2014178480A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9915849B2 (en) 2016-02-08 2018-03-13 Mitsubishi Electric Corporation Optical modulator
CN110958053A (zh) * 2019-11-29 2020-04-03 江苏南方通信科技有限公司 产生四倍频光载毫米波bpsk矢量信号的装置及方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04243217A (ja) * 1991-01-18 1992-08-31 Fujitsu Ltd 光変調器

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04243217A (ja) * 1991-01-18 1992-08-31 Fujitsu Ltd 光変調器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9915849B2 (en) 2016-02-08 2018-03-13 Mitsubishi Electric Corporation Optical modulator
CN110958053A (zh) * 2019-11-29 2020-04-03 江苏南方通信科技有限公司 产生四倍频光载毫米波bpsk矢量信号的装置及方法

Similar Documents

Publication Publication Date Title
JP5729303B2 (ja) 光変調器モジュール及び光信号の変調方法
US8280201B2 (en) Traveling wave Mach-Zehnder optical device
US8346025B2 (en) Compact electrooptic modulator
US9874800B2 (en) MZM linear driver for silicon photonics device characterized as two-channel wavelength combiner and locker
US9372381B2 (en) Robust modulator circuits using lateral doping junctions
US9244327B2 (en) Mach-Zehnder modulator with backplane voltage equalization
US20190271896A1 (en) Optical modulator, and optical transceiver module using the same
JP6259358B2 (ja) 半導体マッハツェンダ型光変調器
WO2012077337A1 (ja) 光信号制御装置及び光信号制御方法
JPWO2013042753A1 (ja) 光変調器モジュール及び光信号の変調方法
JP2018105975A (ja) 光変調素子
US8634678B2 (en) Phase shifter and electro-optic modulation device including the same
US20150063742A1 (en) Method for modulating a carrier light wave
JP2015518979A (ja) 光変調器の効率を改善する方法
CA3159066A1 (en) Optical module
JP6581541B2 (ja) 光変調器
JP6222250B2 (ja) 光変調器及びそれを用いた光送信装置
JP2014178480A (ja) 光変調器および光変調方法
US8606053B2 (en) Optical modulator
JP5935934B1 (ja) 光変調器及びそれを用いた光送信装置
JP2015212769A (ja) 半導体マッハツェンダ光変調器
JP7224368B2 (ja) マッハツェンダ型光変調器
JP5571540B2 (ja) 光変調器及び光変調方法
JP2012252117A (ja) 光変調器
JP5727296B2 (ja) 半導体基板上の位相シフタ並びにそれを用いた偏波分離器及び偏波合波器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160105