JP2014178202A - 超音波流量計及び超音波流量測定方法 - Google Patents

超音波流量計及び超音波流量測定方法 Download PDF

Info

Publication number
JP2014178202A
JP2014178202A JP2013052322A JP2013052322A JP2014178202A JP 2014178202 A JP2014178202 A JP 2014178202A JP 2013052322 A JP2013052322 A JP 2013052322A JP 2013052322 A JP2013052322 A JP 2013052322A JP 2014178202 A JP2014178202 A JP 2014178202A
Authority
JP
Japan
Prior art keywords
ultrasonic
wave
tube
fluid
ultrasonic transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013052322A
Other languages
English (en)
Inventor
Satoshi Fujita
智 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2013052322A priority Critical patent/JP2014178202A/ja
Publication of JP2014178202A publication Critical patent/JP2014178202A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】超音波の伝播方向や伝播経路を改善し、効果的に気体の流速または流量を測定することができる超音波流量計を提供する。
【解決手段】管1の内面12から流体への屈折角が6°から7°の縦波となるように斜角入射する送信用トランスデューサ2と、流体を横断伝播するとともに管の内面でのモード変換で横波超音波として管壁を伝播して管の表面に達する超音波を受信する受信用トランスデューサ3とが備えられている。受信用トランスデューサ3を送信用トランスデューサ2より下流側に配置した第1測定モードにおける超音波受信信号と、受信用トランスデューサ3を送信用トランスデューサ2より上流側に配置した第2測定モードにおける超音波受信信号との伝播時間差から流体の流速または流量が算定される。
【選択図】図1

Description

本発明は、管内流体の流速に基づく流量を測定する超音波流量計及び超音波流量測定方法に関する。
超音波流量計として、管内の流体にその流れに沿う方向とその流れに逆行する方向とで超音波を斜角入射させ、それぞれの超音波の伝播時間の差から流速を求め、さらにその流速と管断面積とから流量を求める、伝播時間差方式超音波流量計が知られている(例えば、特許文献1)。その際、超音波の送受信を管の表面から行うクランプオン式が、既設管を流れる流体の流量測定に用いられている。
さらに、特許文献2には、送信用トランスデューサと受信用トランスデューサとを二組用意し、各組で異なる周波数の超音波信号を用いられる超音波流量計が開示されている。この流量計では、それぞれの受信用トランスデューサで受信された超音波信号の強度に対して相互相関関数を適用することにより、一組目の受信波形と二組目の受信波形のパターンが一致する時間と、この時間と二組のトランスデューサが配置されている間隔から流量が測定される。その際、送信用トランスデューサから横波(せん断波)を管壁に入射角70°で入射させ、管内面でのモード変換で生じた縦波で管内流体を横断し、再び管内面でモード変換して生じた横波を受信用トランスデューサに受信させている。
特開2002−250644号公報 特表2002−535639号公報
超音波の送受信を管の表面から行うクランプオン式の超音波流量計の場合、管の表面への超音波の入射時に発生する表面波や板波、さらには管の表面と内面との間で反射を繰り返す反射波がノイズ波となるため、このノイズ波を回避することが重要である。さらに、測定対象となる流体が気体の場合、横波は気体中を伝播しないので、縦波で管内を横断させる必要がある。また、管材料は金属や合成樹脂であり、気体との音響インピーダンスの差が大きいことから、その境界面の通過時に大きな音圧損失が生じる。このため、十分な受信信号レベルを確保するためには、できるだけ強い超音波を入射させる必要があるが、強い超音波の送信は、ノイズ波の強度も大きくするという問題を引き起こす。
特許文献2による超音波流量計では、入射角70°で入射させた横波を管内面でモード変換させて生じた縦波を管内流体に伝播させている。これは、この超音波流量計が採用している方法では、入射された超音波を管の表面と内面との間で繰り返し反射(スキップ)させるためである。このように入射角70°で入射させた横波は、効率よく管の表面と内面との間でスキップするが、このスキップ波(管壁反射波)が伝播時間差方式にとっては致命的となるような強いノイズ波となってしまう。
本発明の目的は、上述したような従来の超音波流量計で用いられていた超音波の伝播方向や伝播経路を改善し、効果的に気体の流速または流量を測定することができる超音波流量計を提供することである。
本発明による超音波流量計は、管の表面から横波超音波として斜角入射するとともに前記管の内面でのモード変換で縦波超音波として管内流体を横断伝播する超音波を送信する送信用超音波トランスデューサと、前記縦波超音波として前記管内流体を横断伝播するとともに前記管の内面でのモード変換で横波超音波として管壁を伝播して前記管の表面に達する超音波を受信する受信用超音波トランスデューサと、前記受信用超音波トランスデューサを前記送信用超音波トランスデューサより下流側に配置した第1測定モードにおける超音波受信信号と、前記受信用超音波トランスデューサを前記送信用超音波トランスデューサより上流側に配置した第2測定モードにおける超音波受信信号との伝播時間差から前記管内流体の流速または流量あるいはその両方を算定する評価ユニットとを備え、前記管の内面から流体へ入射する縦波超音波の屈折角が6°から7°に設定されている。
この構成のように、管内流体を横断する縦波が6°から7°という小さい屈折角で管の内面から流体へ入射させるためには、管壁を斜めに横断する横波を送信用超音波トランスデューサから送り出し、この横波が管内面において管内流体に入射する縦波を発生させるモード変換を利用することになる。つまり、送信用超音波トランスデューサから送り出され、管壁を斜めに横断した横波からモード変換により生じた縦波で管内流体を横断し、再び横波にモード変換され、受信用超音波トランスデューサによって受信される超音波受信信号を用いて、管内流体の流速または流量あるいはその両方を算定される。管内流体を横断する超音波として縦波を用いているので、管内流体が気体であっても問題なく測定することができる。その際、管壁中の横波速度と流体中の縦波速度を考慮すると、管の表面から入射する横波超音波の入射角は90°に近くなることから、スキップ波に起因するノイズ波の音圧は、例えば特許文献2に示されているような70°程度の入射角で入射された横波に基づくノイズ波に比べて低くなる。例えば、ガス管などの使用されている鋳鉄管、鋼管、樹脂管などの横波音速、及びガスの音速を考慮すると、管の表面から入射する横波超音波の入射角が80°から85°程度となるので、受信用超音波トランスデューサを受信する信号のS/Nが良好となる。例えば、管壁を伝播している横波の音圧中心軸と管壁横断角(傾斜角)でもある入射角が85°を超えると、送信用超音波トランスデューサから送信された超音波が管の外表面に入る際に、その超音波成分の大部分が表面波となり、この発明で利用する横波成分が不十分となる。また、入射角が80°を下回ると、上述したようなスキップ波(管壁反射波)が大きくなり、ノイズ波の増加を導く。このことから、管の内面から流体へ入射する縦波超音波の屈折角を、前述したように6°から7°が適切であり、少なくとも5°から10°とすることが、本発明では提案される。
しかも、この超音波流量計では、伝播時間差法を採用しているので、一組の超音波トランスデューサを用意するだけでよい。第1測定モードと第2測定モードでの測定とでは、各超音波トランスデューサの送信機能と受信機能を逆にすればよい。
ここで、管と流体の音速と縦波の屈折角の関係を例を挙げて説明する。測定対象となる流体が、200m/秒〜450m/秒の音速を有する気体であり、前記管が鋼製であるとする。例えば、その流体が都市ガス(その音速は約376m/秒)である場合、鋼管の横波音速は約3200m/秒であるので、管内入射角が80°から85°の横波が管内面でのモード変換によって生み出す縦波の屈折角は6.6°〜6.7°となる。これは、従来の伝播時間差法で用いられていた屈折角が30°を超えていることを考えるとかなり小さな角度であり、これにより、測定超音波の管内流体を横断する伝播距離も短縮化され、拡散などによる超音波減衰も抑制される。モード変換による音圧の低下を考慮すると、このような超音波減衰の抑制は好都合である。
管壁を伝播する超音波の音圧低下をできるだけ回避するために、本発明の好適な実施形態では、前記送信用超音波トランスデューサが、前記管壁における共振周波数を有する超音波を送信するように構成されている。管壁での共振周波数を有する超音波を用いることで、より大きな音圧の超音波受信信号が得られる。
超音波の管壁伝播に伴って発生した反射波や板波や表面波などのノイズ波をできるだけ減衰させることが、満足できるS/N比を有する超音波受信信号を得るために重要である。この目的のため、本発明の好適な実施形態では、前記管の周壁に沿って伝播する壁体伝播超音波を吸収するために前記送信用超音波トランスデューサと前記受信用超音波トランスデューサの間の前記管の表面に載置される超音波吸収部材と、前記超音波吸収部材を前記管の表面に所定圧力で押し付ける締付ユニットが備えられている。この構成では、ノイズ波は管壁を伝播する途中で管の表面に装着された超音波吸収部材によって部分的に吸収される。しかも、その超音波吸収部材は管の表面(外周面)に締付ユニットに押し付けられるので、ノイズ波の管の表面から超音波吸収部材へ入射効率が高まる。
管壁を伝播するノイズ波をできるだけスムーズに超音波吸収部材に入射させるには、管壁の音響インピーダンスと超音波吸収部材の音響インピーダンスとの差が少ない方がよい。しかしながら、互いの音響インピーダンスを近似させてノイズ波をスムーズに超音波吸収部材に入射させたとしても、そのノイズ波が超音波吸収部材の外周面で再び反射して管壁に戻って再び管壁に入射することは避けなければならない。従って、超音波吸収部材に入射したノイズ波は散乱や段階的な反射などによりできるだけ超音波吸収部材の内部でその音圧エネルギを低減させるとよい。この目的のため、本発明の好適な実施形態の1つでは、前記超音波吸収部材は複数層からなり、各層の音響インピーダンスは前記管の外周面に近い層ほど前記管の音響インピーダンスとの差が少なくなるように構成されている。
伝播時間差法による流速測定では、2つの超音波受信信号の伝播時間の差を算定する必要があるが、その時間差は、マイクロ秒オーダとなる。このため、より正確な時間差を算定するためには、複数の波からなる超音波受信信号の包絡線を利用するよりは、1つ1つの波のピークを利用するのが好都合である。したがって、本発明の好適な実施形態では、前記超音波はバースト波であり、前記評価ユニットは、前記バースト波を構成する各波のピークをバースト波ピーク列として検出し、前記第1測定モードと前記第2測定モードにおける前記バースト波ピーク列の時間差に基づいて前記管内流体の流速または流量あるいはその両方を算定するように構成されている。
本発明は、上述し超音波流量計だけでなく、管内を流れる流体の速度や流量を測定する超音波流量測定方法も対象としている。本発明による超音波流量測定方法は、管の内面から流体へ入射される超音波が6°から7°の入射角で縦波超音波として斜角入射するとともに前記管の内面でのモード変換で縦波超音波として管内流体を横断伝播する超音波を送信する送信用超音波トランスデューサを管の表面に配置するステップと、前記縦波超音波として前記管内流体を横断伝播したのちに前記管の内面でのモード変換で横波超音波として管壁を伝播して前記管の表面に達する超音波を受信するように、受信用超音波トランスデューサを配置するステップと、前記受信用超音波トランスデューサを前記送信用超音波トランスデューサより下流側に配置した第1測定モードにおける超音波受信信号と、前記受信用超音波トランスデューサを前記送信用超音波トランスデューサより上流側に配置した第2測定モードにおける超音波受信信号との伝播時間差から前記管内流体の流速または流量あるいはその両方を算定するステップとからなる。この超音波流量測定方法がもたらす作用効果は、上述した超音波流量計で述べた通りである。また、好適な実施形態として述べられた種々の特徴もこの超音波流量測定方法にも適用可能である。
本発明の基本的な構成を説明する模式図である。 本発明による超音波流量計の具体的な実施形態の1つを示す側面図である。 送信用超音波トランスデューサと受信用超音波トランスデューサとを結ぶ面を切断面とする断面模式図である。 締付ユニットを省いた状態での超音波流量計の構成要素を示す模式図である。 超音波受信信号の一例を示す波形図である。 利用された超音波の伝播経路とその際の受信波形を示す模式図である。 超音波の伝播経路の別実施形態を示す模式図である。
本発明による超音波流量計に採用されている、管内を流れる流体に対する流速測定の基本原理を図1の模式図を用いて説明する。なお、この流体は、気体でもよいし、液体でもよい。
図1に示された管1の内部を都市ガス、空気、LPG、水などの流体が流れている。本発明による超音波流量計はクランプオン式であり、管1の表面(外周面)11に送信され、流体を通過した超音波を再び表面(外周面)11から受信し、この受信信号を評価することで管1を流れる流体の速度を測定する。この流速測定には、伝播時間差法が用いられている。伝播時間差法では、2つの送受信可能な超音波トランスデューサ2,3が上流側と下流側に配置される。上流側の超音波トランスデューサ(送信用超音波トランスデューサ)2から超音波を送信して下流側の超音波トランスデューサ3(受信用超音波トランスデューサ)で受信するまでの伝播時間と、下流側の超音波トランスデューサ(送信用超音波トランスデューサ)3から超音波を送信して上流側の超音波トランスデューサ(受信用超音波トランスデューサ)2で受信するまでの伝播時間との時間差から、管内を流れる流体の速度が求められる。ここでは、前者の配置構成での測定を第1測定モードと称し、後者の配置構成での測定を第2測定モードと称する。流体の速度が求められると、管1の断面積を乗じれば(必要に応じて流量補正係数も用いられる)流量が得られる。
図1に示されているように、送信用超音波トランスデューサ2から傾斜角θ1で管1の外表面11から管1に入った超音波は、横波超音波として傾斜角θ2で管壁内を伝播する。管1の内面12に達した横波超音波は、入射角θ2で流体に入るが、その際に生じるモード変換によって縦波超音波として屈折角θ3で流体内を斜めに伝播する。流体を斜め横断して管1の内面12に達した縦波超音波は再びモード変換を通じて横波超音波として管壁内に入り、管1の外表面11から出て受信用超音波トランスデューサ3によって受信される。
ここで、流体を斜め横断する縦波超音波の伝播経路長をLとし、管1を流れている流体の音速をCとし、流体の速度をVとすると、よく知られているように、第1測定モードでの伝播時間T1と第2測定モードでの伝播時間T2との差ΔTは以下の式で表すことができる。
ΔT=T2−T1=(2LVcos(90−θ3))/C2
よって、流体の速度Vは、
V=C2ΔT/(2Lcos(90−θ3))
となり、ΔTから求めることできる。
管1の内面12を境界面とする縦波超音波の屈折角θ3は、その境界面への入射角θ2、管1の横波音速、流体の縦波音速によって変化する。本発明では、管表面への入射角θ2を80°〜85°に設定することで、管壁を反射しながら伝播する反射波を抑制している。例えば、管1の材料として横波音速が3240m/秒の鋼を用い、縦波音速が380m/秒の都市ガスが測定対象流体である場合、流体を通過する超音波縦波の屈折角θ3は6.5〜6.7°となる。
次に、図面を用いて、本発明による超音波流量計の具体的な実施形態の1つを説明する。図2は、超音波流量計の全体構成を示す斜視図である。図3は、送信用超音波トランスデューサ2と受信用超音波トランスデューサ3のところで断面視した図面を重ねあわせた模式図である。図4は、締付ユニットを省いた状態での流体識別装置の構成要素を示す模式図である。
この超音波流量計は、図1を用いて説明した基本原理を実施するものであり、ここでの管1は都市ガスなどの気体を供給するガス管であり、その外表面11に斜め対向設置される送信用(受信用)超音波トランスデューサ2(3)と受信用(送信用)超音波トランスデューサ3(2)、超音波処理ユニット5、超音波吸収部材4、締付ユニット6を備えている。送信用超音波トランスデューサ2と受信用超音波トランスデューサ3の位置関係は、ガス管1の外表面から斜角入射された横波超音波がガス管1の内面12でのモード変換で縦波超音波に変換され、気体を横断伝播した縦波超音波が再びガス管1の内面12でモード変換して生じた横波超音波をガス管1の外表面で受信されるように設定されている。
送信用超音波トランスデューサ2及び受信用超音波トランスデューサ3の超音波励起面にはガス管1の曲面とのマッチングおよび斜角入射を行なうためのシュー部材31が装着されている。超音波吸収部材4は、油粘土製で、厚さ数mmで約30cm幅のシート状に成形加工され、ガス管1の外表面11に隙間なく巻き付けられている。但し、超音波吸収部材4には、シュー部材31がガス管1の外表面11に直接接触できるように、超音波吸収部材4の送信用超音波トランスデューサ2と受信用超音波トランスデューサ3の設置箇所には開口部41が設けられている。
図3に示すように、送信用超音波トランスデューサ2と受信用超音波トランスデューサ3とは、ガス管1の軸心に対して対向配置されている。受信用超音波トランスデューサ3で受信される信号には、測定に必要な有効超音波とそれ以外のノイズ波が混じっている。有効超音波は、ガス管1の外表面から内面12に向かって通過する超音波(縦波超音波であり、図3では符号Wp1が付記されている)とガス管1に内在する流体を横断して伝播する超音波(横波超音波であり、図3では符号Wsが付記されている)とガス管1の内面12から外表面に向かって通過する超音波(縦波超音波であり、図3では符号Wp2が付記されている)といった形態を経て受信用超音波トランスデューサ3に達する。ノイズ波(図3では符号Wnが付記されている)は、送信用超音波トランスデューサ2から送信された超音波が板波や表面波に分解されたものであり、その分解された超音波が、管壁に沿って拡散し、受信用超音波トランスデューサ3に達して受信される。鋼や鋳鉄あるいは合成樹脂から製造されるガス管1を伝播するノイズ波の速度は、音速の遅い流体を介して伝播する有効著音波に較べてかなり速いので、早く受信用超音波トランスデューサ3に達する。しかしながら、ノイズ波の一部は種々の伝搬経路を経て有効超音波とほぼ同時に受信用超音波トランスデューサ3に達する可能性がある。しかもノイズ波の音圧は有効超音波に比べてきわめて大きいので、そのようなノイズ波は有効超音波の検出を妨害する。
送信用超音波トランスデューサ2と受信用超音波トランスデューサ3の間のガス管1の外表面に装着されている超音波吸収部材4が、ガス管1の管壁に沿って伝播しているノイズ波を吸収する。ガス管1から超音波吸収部材4にノイズ波が効率良く入射するために、超音波吸収部材4の材料はガス管1の音響インピーダンスにできるだけ近いものが選ばれる。さらにガス管1の外表面11への密着性を良くするために、外表面11の曲率に一致する屈曲性を持つ程度の粘性を有することが好ましい。さらには、超音波吸収部材4に入射したノイズ波を吸収するために吸音特性を有する材料の使用、あるいは吸音構造(多孔構造や粒状体混入構造)を形成することも利点がある。一例として、超音波吸収部材4を、各層の音響インピーダンスがガス管1の外周面に近い層ほどガス管1の音響インピーダンスとの差が小さくなるように形成した複数層から構成することも好適である。また、超音波吸収部材4のガス管1の外表面11への密着性をより向上させるためには、超音波吸収部材4をガス管1の外周面に押し付ける締付具が用いられる。好適な超音波吸収部材4として、油粘土、パテ、さらにはゴムシート、プラスチック(PP)シート、不織布など、あるいはそれらを組み合わせた複合材が挙げられる。
図3に模式的に示されているように、ガス管1から超音波吸収部材4に入射したノイズ波(図3では符号Waが付記されている)は散乱等によって超音波吸収部材4に吸収されその音圧エネルギを失っていく。これにより、受信用超音波トランスデューサ3で受信される超音波信号としてのノイズ波はかなり減衰することになる。
さらにこの実施形態では、締付ユニット6は、図2などに示されるように、巻き付けられた超音波吸収部材4を全面的にガス管1に対して押し付けるように構成されており、帯状体61と帯状体61の自由端同士を引っ張り合わせて帯状体61に張力を与える締付ボルト62からなる。締付ボルト62を締め込むことで、帯状体61の張力を増大させ、その径方向内方へ力によって超音波吸収部材4を締付ける。その締付トルクは10N・m程度である。帯状体61においても、ガス管1に設置された送信用超音波トランスデューサ2と受信用超音波トランスデューサ3とに干渉しないように、開口部31aが設けられている。締付ユニット6の装着時には、超音波吸収部材4の開口部41と帯状体61の開口部63とが一致するように、帯状体61のガス管1に対する軸方向および周方向の位置が調整される。ガス管1の外表面11と超音波吸収部材4との密着性を向上させるために、その間にグリセリンや潤滑オイルなどのカップリング剤を介在させることも好適である。なお、超音波吸収部材4は実質的に均質な材料で形成してもよいが、それぞれの音響インピーダンスが異なる複数層から形成し、その際、各層の音響インピーダンスは管1の外周面に近い層ほど管1の音響インピーダンスとの差が少なくなるように構成すると、音波吸収性が向上する。
この実施形態では、ガス管1を伝播する超音波がより高い音圧をもつように、使用する超音波周波数として、測定対象となるガス管1と共振可能な周波数が用いられている。その縦波の半波長共振周波数は、縦波音速をガス管1の肉厚で割ると得られる。ガス管1が鋼製であれば、縦波音速は約5950m/秒、肉厚が4.5mm(100Aガス管)とすれば、半波長共振周波数は約660kHzとなる。したがって、測定対象となる管1の種類によって適正な周波数の超音波を選択するとよい。
超音波処理ユニット5は、送信用超音波トランスデューサ2から送信され受信用超音波トランスデューサ3で受信された超音波受信信号を評価する。その結果、第1測定モード及び第2測定モードでの、気体を斜め伝播する超音波の伝播時間を算定し、気体の流速、結果的には気体の流量が算定される。このため、この超音波処理ユニット5には、図4に示されているように、切替スイッチ50a、モード切替部50、送信回路51、受信回路52、信号評価部53、パラメータ設定部54、表示部55を備えている。送信回路51は、高圧パルスを発生させ送信用超音波トランスデューサ2の圧電素子を励起し、超音波パルスを作り出す。受信回路52は、受信用超音波トランスデューサ3で受信された信号に対して増幅や周波数選別などを行なう前処理を行なう。切替スイッチ50aは、2つの超音波トランスデューサ2または3の一方を送信回路51に、他方を受信回路52に選択的に接続するためのスイッチである。第1測定モードにおいて、モード切替部50は、上流側に位置する超音波トランスデューサを送信回路51に接続されるとともに、下流側に位置する超音波トランスデューサを受信回路52に接続するように、切替スイッチ50aに制御信号を与える。逆に、第2測定モードにおいて、モード切替部50は、下流側に位置する超音波トランスデューサを送信回路51に接続されるとともに、上流側に位置する超音波トランスデューサを受信回路52に接続するように、切替スイッチ50aに制御信号を与える。
パラメータ設定部54は、信号評価部53で用いられる各種パラメータが記録されており、測定時に図示されていない入力操作デバイスを通じて必要なパラメータが選択設定または直接設定される。設定されるパラメータには、測定対象の流体を流している管1の寸法や音速、測定対象となる流体の音速、使用する超音波トランスデューサ2と3の周波数や管1への入射角、超音波トランスデューサ2と3との間隔などが含まれる。
表示部55は、超音波受信信号の波形や算定された流体の流速や流量などの情報を表示する、液晶等のディスプレイである。
信号評価部53には、伝播時間算定部53a、流速算定部53b、流量算定部53c、表示データ生成部53dが含まれている。伝播時間算定部53aは、第1測定モードと第2測定モードとにおける超音波の伝播時間の差を算定する。シュー部材31を含め、2つの超音波トランスデューサ2、3は同一形状であるので、第1測定モードと第2測定モードとにおいてガス管1の管壁を伝播する時間は同じである。したがって、伝播時間の差は流体(ここでは都市ガスなどの気体)を斜め横断する際の流体伝播経路(図1では長さLで示されている)における伝播時間の差に相当する。その差は非常に小さいので、精密な測定が要求されている。図5には、第1測定モードにおける超音波受信信号(実線)と、第2測定モードにおける超音波受信信号(点線)が示されている。図5から明らかなように、超音波は、短時間だけ励起されたバースト波である。その伝搬時間差は、使用超音波(500KHz周辺)の周期レベルであることから、伝播時間算定部53aは、バースト波を構成する各波のピーク(バースト波ピーク列)を検出し、第1測定モードと第2測定モードとにおけるバースト波ピーク列の時間差の平均値から、伝播時間差を求めることが好ましい。なお、この図5は説明目的であり、その波形は理解し易いようにデフォルメされている。
流速算定部53bは、伝播時間算定部53aによって算定された伝搬時間差から、前述した式を用いて、ガス管1を流れている気体の流速を算定する。流量算定部53cは、流速算定部53bで算定された流速と、パラメータ設定部54から読み出したガス管1の断面積とに基づいて流量を算定する。表示データ生成部53dは、算定された気体の流速または流量あるいはその両方を表示するための表示データを生成し、表示部55に送る。
この流量測定は、第1測定モードと第2測定モードとで、縦波超音波が気体を斜め横断する際の伝播時間の差に基づいて流量が導かれるが、その伝播距離が長い方が伝播時間差が大きくなり測定上有利である。したがって、縦波超音波が、ガス管1の内面12で繰り返す反射波を利用することで、その伝播距離を稼ぐことは好都合である。例えば、図6に示すように、2回反射を用いることで、3倍の伝播距離を得ることができる。また、図7に示すように、送信用超音波トランスデューサ2と受信用超音波トランスデューサ3を同じ側の表面に配置し、1回反射を用いてもよい。もちろん、さらに多くの反射回数を用いてよいが、反射による損失や伝播距離の増大による損失も考慮しなければならない。
本発明は、管に内在する流体、特に気体の流速または流量あるいはその両方をガス管の外側から非破壊的手法で測定する超音波流量計に適用できる。
1:ガス管(管)
2:送信用超音波トランスデューサ(超音波トランスデューサ)
3:受信用超音波トランスデューサ(超音波トランスデューサ)
4:超音波吸収部材
5:超音波処理ユニット
50:モード切替部
51:送信回路
52:受信回路
53:信号評価部
53a:伝播時間算定部
53b:流速算定部
53c:流量算定部
53d:表示データ生成部
54:パラメータ設定部
6:締付ユニット

Claims (6)

  1. 管の表面から横波超音波として斜角入射するとともに前記管の内面でのモード変換で縦波超音波として管内流体を横断伝播する超音波を送信する送信用超音波トランスデューサと、
    前記縦波超音波として前記管内流体を横断伝播するとともに前記管の内面でのモード変換で横波超音波として管壁を伝播して前記管の表面に達する超音波を受信する受信用超音波トランスデューサと、
    前記受信用超音波トランスデューサを前記送信用超音波トランスデューサより下流側に配置した第1測定モードにおける超音波受信信号と、前記受信用超音波トランスデューサを前記送信用超音波トランスデューサより上流側に配置した第2測定モードにおける超音波受信信号との伝播時間差から前記管内流体の流速または流量あるいはその両方を算定する評価ユニットとを備え、
    前記管の内面から流体へ入射する縦波超音波の屈折角が6°から7°に設定されている超音波流量計。
  2. 前記送信用超音波トランスデューサが、前記管壁における共振周波数を有する超音波を送信するように構成された請求項1に記載の超音波流量計。
  3. 前記管の周壁に沿って伝播する壁体伝播超音波を吸収するために前記送信用超音波トランスデューサと前記受信用超音波トランスデューサの間の前記管の表面に載置される超音波吸収部材と、前記超音波吸収部材を前記管の表面に所定圧力で押し付ける締付ユニットが備えられている請求項1または2に記載の超音波流量計。
  4. 前記超音波吸収部材は複数層からなり、各層の音響インピーダンスは前記管の外周面に近い層ほど前記管の音響インピーダンスとの差が少ない請求項3に記載の超音波流量計。
  5. 前記超音波はバースト波であり、前記評価ユニットは、前記バースト波を構成する各波のピークをバースト波ピーク列として検出し、前記第1測定モードと前記第2測定モードにおける前記バースト波ピーク列の時間差に基づいて前記管内流体の流速または流量あるいはその両方を算定する請求項1から4のいずれか一項に記載の超音波流量計。
  6. 管の内面から流体へ入射される超音波が6°から7°の入射角で縦波超音波として斜角入射するとともに前記管の内面でのモード変換で縦波超音波として管内流体を横断伝播する超音波を送信する送信用超音波トランスデューサを管の表面に配置するステップと、
    前記縦波超音波として前記管内流体を横断伝播したのちに前記管の内面でのモード変換で横波超音波として管壁を伝播して前記管の表面に達する超音波を受信するように、受信用超音波トランスデューサを配置するステップと、
    前記受信用超音波トランスデューサを前記送信用超音波トランスデューサより下流側に配置した第1測定モードにおける超音波受信信号と、前記受信用超音波トランスデューサを前記送信用超音波トランスデューサより上流側に配置した第2測定モードにおける超音波受信信号との伝播時間差から前記管内流体の流速または流量あるいはその両方を算定するステップと、
    を備える超音波流量測定方法。
JP2013052322A 2013-03-14 2013-03-14 超音波流量計及び超音波流量測定方法 Pending JP2014178202A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013052322A JP2014178202A (ja) 2013-03-14 2013-03-14 超音波流量計及び超音波流量測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013052322A JP2014178202A (ja) 2013-03-14 2013-03-14 超音波流量計及び超音波流量測定方法

Publications (1)

Publication Number Publication Date
JP2014178202A true JP2014178202A (ja) 2014-09-25

Family

ID=51698308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013052322A Pending JP2014178202A (ja) 2013-03-14 2013-03-14 超音波流量計及び超音波流量測定方法

Country Status (1)

Country Link
JP (1) JP2014178202A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016038264A (ja) * 2014-08-06 2016-03-22 関西電力株式会社 気体用外付式超音波流量計及び気体流量計測方法
JP2016109555A (ja) * 2014-12-05 2016-06-20 アズビル株式会社 超音波流量計、流量の計測方法、及び超音波流量計の超音波吸収材のキット
JP2018105735A (ja) * 2016-12-27 2018-07-05 アズビル株式会社 超音波流量計、超音波緩衝装置、超音波流量計測方法、超音波緩衝方法、および超音波緩衝体取付方法
JP2019039805A (ja) * 2017-08-25 2019-03-14 アズビル株式会社 超音波流量計および超音波流量計測方法
JP2019095322A (ja) * 2017-11-24 2019-06-20 富士電機株式会社 超音波流量測定構造
JP2019158677A (ja) * 2018-03-14 2019-09-19 株式会社キーエンス クランプオン式超音波流量センサ
JP2019158675A (ja) * 2018-03-14 2019-09-19 株式会社キーエンス クランプオン式超音波流量センサ
CN111051823A (zh) * 2018-08-11 2020-04-21 李言钦 声波法测量管内轴向流速分布、流量的方法及系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56133621A (en) * 1980-03-25 1981-10-19 Fuji Electric Co Ltd Ultrasonic measuring device
JPS5848817A (ja) * 1981-09-18 1983-03-22 Yokogawa Hokushin Electric Corp 超音波流量計
US4454767A (en) * 1980-03-25 1984-06-19 Fuji Electric Co., Ltd. Ultrasonic metering device
JPS61132822A (ja) * 1984-12-03 1986-06-20 Fuji Electric Co Ltd 超音波流量計
JPH06201425A (ja) * 1992-10-06 1994-07-19 Caldon Inc 管内流体の流量測定装置及び方法
US20030172743A1 (en) * 1999-04-01 2003-09-18 Xiaolei Ao Clamp-on flow meter system
US20040123666A1 (en) * 2002-12-31 2004-07-01 Ao Xiaolei S. Ultrasonic damping material
JP2005195374A (ja) * 2003-12-26 2005-07-21 Tokyo Electric Power Co Inc:The 超音波流量計およびそれに用いるくさび

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56133621A (en) * 1980-03-25 1981-10-19 Fuji Electric Co Ltd Ultrasonic measuring device
US4454767A (en) * 1980-03-25 1984-06-19 Fuji Electric Co., Ltd. Ultrasonic metering device
JPS5848817A (ja) * 1981-09-18 1983-03-22 Yokogawa Hokushin Electric Corp 超音波流量計
JPS61132822A (ja) * 1984-12-03 1986-06-20 Fuji Electric Co Ltd 超音波流量計
JPH06201425A (ja) * 1992-10-06 1994-07-19 Caldon Inc 管内流体の流量測定装置及び方法
US20030172743A1 (en) * 1999-04-01 2003-09-18 Xiaolei Ao Clamp-on flow meter system
US6626049B1 (en) * 1999-04-01 2003-09-30 Panametrics, Inc. Clamp-on steam/gas flow meter
US20040123666A1 (en) * 2002-12-31 2004-07-01 Ao Xiaolei S. Ultrasonic damping material
JP2005195374A (ja) * 2003-12-26 2005-07-21 Tokyo Electric Power Co Inc:The 超音波流量計およびそれに用いるくさび

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016038264A (ja) * 2014-08-06 2016-03-22 関西電力株式会社 気体用外付式超音波流量計及び気体流量計測方法
JP2016109555A (ja) * 2014-12-05 2016-06-20 アズビル株式会社 超音波流量計、流量の計測方法、及び超音波流量計の超音波吸収材のキット
JP2018105735A (ja) * 2016-12-27 2018-07-05 アズビル株式会社 超音波流量計、超音波緩衝装置、超音波流量計測方法、超音波緩衝方法、および超音波緩衝体取付方法
JP2019039805A (ja) * 2017-08-25 2019-03-14 アズビル株式会社 超音波流量計および超音波流量計測方法
JP2019095322A (ja) * 2017-11-24 2019-06-20 富士電機株式会社 超音波流量測定構造
JP7056096B2 (ja) 2017-11-24 2022-04-19 富士電機株式会社 超音波流量測定構造
JP2019158677A (ja) * 2018-03-14 2019-09-19 株式会社キーエンス クランプオン式超音波流量センサ
JP2019158675A (ja) * 2018-03-14 2019-09-19 株式会社キーエンス クランプオン式超音波流量センサ
JP7032189B2 (ja) 2018-03-14 2022-03-08 株式会社キーエンス クランプオン式超音波流量センサ
CN111051823A (zh) * 2018-08-11 2020-04-21 李言钦 声波法测量管内轴向流速分布、流量的方法及系统
CN111051823B (zh) * 2018-08-11 2021-07-20 李言钦 声波法测量管内轴向流速分布、流量的方法及系统
US11454642B2 (en) 2018-08-11 2022-09-27 Yanqin Li Method and system of acoustic wave measurement of axial velocity distribution and flow rate

Similar Documents

Publication Publication Date Title
JP2014178202A (ja) 超音波流量計及び超音波流量測定方法
CN110199179B (zh) 用于检测通流参量的超声波流量计和方法
KR101695541B1 (ko) 초음파 유량계 및 초음파 흡수체의 이상 판정 방법
KR20150141876A (ko) 클램프온식 초음파 유량계 및 유량 계측 방법
JPS6238355A (ja) 面発生の容積探索信号をもちいて流体流量を測定するための方法および装置
US20050166684A1 (en) Wedge and wedge unit for use in ultrasonic doppler flow meter
JP3761399B2 (ja) 超音波式流量測定器
JP3890698B2 (ja) 流量計測装置
JP2018105735A (ja) 超音波流量計、超音波緩衝装置、超音波流量計測方法、超音波緩衝方法、および超音波緩衝体取付方法
JP6207428B2 (ja) 超音波式音速測定装置及び超音波式音速測定方法
US20150355004A1 (en) Ultrasonic flowmeter and ultrasonic flowmeter attaching method
JP2006292381A (ja) 超音波流量計
JPH06117894A (ja) 超音波流量計
JP5155490B1 (ja) 超音波流量計
JP2002236042A (ja) 流量計
CN102023038A (zh) 一种管道流量的超声波测量方法
JP5968210B2 (ja) 流体識別装置及び流体識別方法
JP6393074B2 (ja) 超音波吸収体の貼付方法及び超音波流量計
JP3328505B2 (ja) 超音波流量計
JP7035264B1 (ja) 超音波流量計
JPH0221528B2 (ja)
JP5454129B2 (ja) 超音波式流量計測装置
RU2583167C1 (ru) Способ измерения расхода газа в трубопроводах и устройство для его осуществления
JP2005180988A (ja) 超音波流量計
JP2020056639A (ja) 圧力計測装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170314

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170926