JP2014177690A - Manufacturing method of steel for cold forging - Google Patents

Manufacturing method of steel for cold forging Download PDF

Info

Publication number
JP2014177690A
JP2014177690A JP2013054092A JP2013054092A JP2014177690A JP 2014177690 A JP2014177690 A JP 2014177690A JP 2013054092 A JP2013054092 A JP 2013054092A JP 2013054092 A JP2013054092 A JP 2013054092A JP 2014177690 A JP2014177690 A JP 2014177690A
Authority
JP
Japan
Prior art keywords
spheroidizing annealing
less
temperature
point
steel material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013054092A
Other languages
Japanese (ja)
Other versions
JP6059568B2 (en
Inventor
Koji Yamashita
浩司 山下
Takehiro Tsuchida
武広 土田
Akihiro Matsugaseko
亮廣 松ヶ迫
Toru Imamura
徹 今村
Shinji Fukuoka
慎治 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2013054092A priority Critical patent/JP6059568B2/en
Publication of JP2014177690A publication Critical patent/JP2014177690A/en
Application granted granted Critical
Publication of JP6059568B2 publication Critical patent/JP6059568B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of steels for cold forging excellent in cold forgeability, by heating a steel material with a Cr content lower than that of high carbon chromium bearing steels in general use as material for various parts as specified in JIS G4805 (specifically, steel material with a Cr content less than 0.9%) for spheroidizing annealing, capable of forming excellent spheroidized structure in any of a high-temperature portion and a low-temperature portion generated due to temperature distribution caused during heating for spheroidizing annealing.SOLUTION: The manufacturing method of steels for cold forging includes heating a steel material containing 0.7 to 1.5% of C and less than 0.9% (excluding 0%) of Cr, with an average lamellar spacing of pearlite structure of 130 nm or less, for spheroidizing annealing. A first spheroidizing annealing is performed such that a portion heated at the lowest temperature in the steel material due to temperature distribution caused during heating for spheroidizing annealing is subject to predetermined conditions for spheroidizing annealing, and a portion heated at the highest temperature is heated at a heating temperature of higher than point A+25°C. Subsequently a second spheroidizing annealing is performed such that the portion heated at the highest temperature in the first spheroidizing annealing is subject to predetermined conditions for spheroidizing anneal.

Description

本発明は、自動車用部品や軸受け、建設機械用部品等の各種部品の製造に用いられる冷間鍛造用鋼を製造する方法に関するものである。   The present invention relates to a method of manufacturing cold forging steel used for manufacturing various parts such as automobile parts, bearings, and construction machine parts.

自動車用部品や軸受け、建設機械用部品等の各種部品は、通常、熱間圧延材を冷間鍛造し、その後、切削加工などを施して所定の形状に成形した後、焼入れ焼戻し処理を行って最終的な強度調整が行われて製造される。熱間圧延材の冷間鍛造性は、鋼材中に存在している炭化物の形状に影響を受け、棒状の炭化物が存在していると、それらが割れの起点となり、冷間鍛造性が悪くなる。そこで熱間圧延材を冷間鍛造するにあたっては、熱間圧延材の冷間鍛造性を良好にするために炭化物を球状化するための熱処理(球状化焼鈍)が施される。   Various parts such as automobile parts, bearings, construction machine parts, etc. are usually cold forged from hot-rolled material, then cut into shapes, and then subjected to quenching and tempering. The final strength adjustment is performed. The cold forgeability of hot-rolled material is affected by the shape of carbides present in the steel material, and if bar-like carbides are present, they become starting points of cracking and the cold forgeability deteriorates. . Therefore, when cold forging the hot-rolled material, heat treatment (spheroidizing annealing) for spheroidizing the carbide is performed in order to improve the cold forgeability of the hot-rolled material.

球状化焼鈍方法としては、例えば、特許文献1、2の技術が知られている。これらのうち特許文献1には、鋼材に下記の各素過程(1)および(2)を単独でまたは組み合わせて1回もしくは2回以上行うことによって、20時間以上要していた鋼の球状化焼鈍処理を1時間程度に短縮する技術が開示されている。   As a spheroidizing annealing method, for example, techniques of Patent Documents 1 and 2 are known. Among these, in Patent Document 1, the following elementary processes (1) and (2) are carried out on a steel material either alone or in combination once or twice or more, thereby spheroidizing steel that has required 20 hours or more. A technique for shortening the annealing treatment to about 1 hour is disclosed.

素過程(1):Ae1点以上、Ae1点+150K以下の温度域に、1K/秒以上の昇温速度で昇温加熱し、当該温度域内で0秒以上600秒未満の時間保持した後、Ae1点+50K〜Ae1点−150Kの温度域内を5K/秒以下の冷却速度で冷却するかまたは当該温度域内の温度に保持すること;および
素過程(2):Ae1点+80K以上、Ae1点+300K以下の温度域内に1K/秒以上の昇温速度で昇温加熱し、当該温度域内で0秒以上120秒未満の時間保持した後、Ae1点〜Ae1点−150Kの温度域内を5K/秒以下の冷却速度で冷却するかまたは当該温度域内の温度に保持すること。
Elementary process (1): After heating and heating at a temperature rising rate of 1 K / second or more in a temperature range of Ae 1 point or more and Ae 1 point +150 K or less and holding for 0 second or more and less than 600 seconds in the temperature range it holds the temperature range of Ae 1 point + 50K~Ae 1 point -150K to or the temperature range of the temperature is cooled below the cooling rate of 5K / sec; and fundamental process (2): Ae 1 point + 80K or higher, ae 1 point + 300K following was heated heated at a temperature region in 1K / sec or more heating rate, after maintaining the temperature for less than 120 seconds 0 seconds in the region, the temperature of ae 1 point ~Ae 1 point -150K Cool the area at a cooling rate of 5 K / sec or less, or keep the temperature within the temperature range.

上記特許文献1には、球状化焼鈍は、コイル状とした鋼材を焼鈍炉に装入してバッチ式で熱処理を施すか、コイル状のまま焼鈍炉の炉内を連続移動させてその間に熱処理を施して行われることが記載されている。   In the above Patent Document 1, spheroidizing annealing is performed by charging a steel material in a coil shape into an annealing furnace and performing a heat treatment in a batch manner, or by continuously moving the inside of the furnace of the annealing furnace while being in a coil shape. It is described that it is performed.

また、特許文献2にはC:0.40〜0.80重量%、Cr:0.80重量%以下を含有する軸受用鋼材について、下記(1)〜(3)の処理の後、(4)〜(5)の処理を1回以上繰り返し、その後冷却する球状化焼鈍方法が開示されている。
(1)A3点以上に加熱保持後急速冷却を行う。
(2)A3点+(5〜30)℃の温度範囲に再加熱保持する。
(3)A1点−(5〜30)℃の温度範囲で保持する。
(4)(A1点+5)〜(A3点+30)℃の温度範囲で保持する。
(5)A1点−(5〜30)℃の温度範囲で保持する。
Patent Document 2 discloses a bearing steel material containing C: 0.40 to 0.80 wt% and Cr: 0.80 wt% or less, after the following treatments (1) to (3), (4 ) To (5) are disclosed one or more times, and then a spheroidizing annealing method in which cooling is performed is disclosed.
(1) A Rapid cooling is performed after heating and holding at 3 points or more.
(2) A 3 point + (5-30) reheating kept at a temperature in the range of ° C..
(3) A 1 point-held at a temperature range of (5 to 30) ° C.
(4) Hold in a temperature range of (A 1 point + 5) to (A 3 point + 30) ° C.
(5) A 1 point-held in a temperature range of (5 to 30) ° C.

この特許文献2には、Cr含有量の少ない軸受用鋼では、Crによる球状炭化物の安定化効果が小さいため、炭化物は球状化しにくく、球状化焼鈍条件が不適切であれば、棒状あるいは粗大炭化物が形成され、冷間鍛造性が低下することが記載されている。   In Patent Document 2, in steel for bearings with a low Cr content, since the effect of stabilizing spherical carbides by Cr is small, the carbides are difficult to spheroidize, and if spheroidizing annealing conditions are inappropriate, rod-like or coarse carbides It is described that cold forgeability is reduced.

特開平8−246040号公報JP-A-8-246040 特開平4−362123号公報JP-A-4-362123

ところで、上記各種部品の素材としては、JIS G4805で規定されている高炭素クロム軸受鋼鋼材が通常用いられている。この高炭素クロム軸受鋼鋼材は、SUJ1、SUJ3、SUJ5ではCrを0.90〜1.20%、SUJ2、SUJ4ではCrを1.30〜1.60%含有している。しかし近年、Crの価格が上昇しているため、低コスト化の観点から、Crの使用量を低減することが望まれている。ところが上記特許文献2で指摘されているように、Cr量を低減すると、炭化物を充分に球状化できないことがあり、冷間鍛造性が低下する。   By the way, as a material of the above-mentioned various parts, a high carbon chrome bearing steel material defined by JIS G4805 is usually used. This high carbon chromium bearing steel material contains 0.90 to 1.20% Cr in SUJ1, SUJ3, and SUJ5, and 1.30 to 1.60% Cr in SUJ2 and SUJ4. However, since the price of Cr is rising in recent years, it is desired to reduce the amount of Cr used from the viewpoint of cost reduction. However, as pointed out in Patent Document 2, if the amount of Cr is reduced, the carbide may not be sufficiently spheroidized and cold forgeability is lowered.

特に球状化焼鈍をバッチ式で行う際には、生産性を高めるため、コイル状の鋼材を焼鈍炉に複数装入することがある。しかしSTC炉などのバッチ式の炉で鋼材を同時に大量に熱処理すると、球状化焼鈍加熱時に炉内に温度分布が生じる。Crを低減した鋼材は球状化焼鈍が難しく、特に炉内に温度分布がある場合には、焼鈍炉内に装入した全ての鋼材を良好な球状化組織とすることは極めて困難である。   In particular, when spheroidizing annealing is performed in a batch manner, a plurality of coiled steel materials may be charged into an annealing furnace in order to increase productivity. However, when a steel material is heat-treated in large quantities simultaneously in a batch type furnace such as an STC furnace, a temperature distribution is generated in the furnace during spheroidizing annealing. A steel material with reduced Cr is difficult to spheroidize, and particularly when there is a temperature distribution in the furnace, it is extremely difficult to make all steel materials charged in the annealing furnace into a good spheroidized structure.

本発明は上記の様な事情に着目してなされたものであって、その目的は、各種部品の素材として一般的に用いられているJIS G4805で規定されている高炭素クロム軸受鋼鋼材よりもCr量を低減した鋼材(具体的には、Crを0.9%未満に低減した鋼材)を加熱して球状化焼鈍して冷間鍛造用鋼を製造する場合であって、球状化焼鈍加熱時に温度分布が生じて高温部と低温部が生じても、いずれの部においても良好な球状化組織を形成でき、冷間鍛造性に優れた冷間鍛造用鋼を製造できる方法を提供することにある。   The present invention has been made paying attention to the above-mentioned circumstances, and its purpose is higher than that of the high carbon chromium bearing steel material defined in JIS G4805, which is generally used as a material for various parts. This is a case where steel for cold forging is manufactured by heating a steel material with reduced Cr content (specifically, a steel material with Cr reduced to less than 0.9%) and spheroidizing annealing. To provide a method capable of producing a steel for cold forging excellent in cold forgeability, capable of forming a good spheroidized structure in any part even if a temperature distribution sometimes occurs and a high temperature part and a low temperature part occur. It is in.

前記課題を解決するため鋭意検討を重ねてきた結果、Crを0.9%未満に低減した鋼材を適切に球状化焼鈍するには、該鋼材のパーライト組織の平均ラメラ間隔を130nm以下にした上で、A1点+5℃〜A1点+25℃の温度域で60〜360分間保持した後、冷却し、A1点−10℃からA1点−30℃までの温度域は平均冷却速度10℃/時間以下で徐冷するという条件で球状化焼鈍を行えばよいことを見出した。また、この球状化焼鈍を行う際には、球状化焼鈍加熱時に生じる温度分布によって鋼材中最も低温の加熱となる部分(最低温部)と、最も高温の加熱となる部分(最高温部)とが生じるため、まず最高温部が前記条件となる様に最低温部と最高温部の焼鈍を行った後、最低温部が前記条件となる様に最低温部と最高温部の焼鈍を行えばよいことを見出し、本発明を完成した。 As a result of intensive studies to solve the above problems, in order to appropriately spheroidize a steel material in which Cr is reduced to less than 0.9%, the average lamella spacing of the pearlite structure of the steel material is set to 130 nm or less. in, was kept a 1 point + 5 ° C. to a at a temperature range of 1 point + 25 ° C. 60 to 360 minutes, cooled, average cooling rate of 10 temperature range from a 1 point -10 ° C. until a 1 point -30 ° C. It has been found that spheroidizing annealing may be performed under the condition of slow cooling at a temperature of not more than ° C / hour. Moreover, when performing this spheroidizing annealing, the part that becomes the lowest temperature heating (lowest temperature part) and the part that becomes the highest temperature heating (highest temperature part) due to the temperature distribution generated during the spheroidizing annealing heating Therefore, after annealing the lowest temperature part and the highest temperature part so that the highest temperature part satisfies the above conditions, the lowest temperature part and the highest temperature part are annealed so that the lowest temperature part satisfies the above conditions. As a result, the present invention has been completed.

即ち、上記課題を解決することのできた本発明に係る冷間鍛造用鋼の製造方法とは、C:0.7〜1.5%(質量%の意味。以下同じ。)、Cr:0.9%未満(0%を含まない)を含有し、パーライト組織の平均ラメラ間隔が130nm以下である鋼材を加熱して球状化焼鈍し、冷間鍛造用鋼を製造する方法であって、球状化焼鈍加熱時に生じる温度分布によって鋼材中最も低温の加熱となる部分が下記の球状化焼鈍条件に適合する様に、かつ最も高温の加熱となる部分の加熱温度がA1点+25℃超となる様に第1の球状化焼鈍を行った後、前記第1の球状化焼鈍で最も高温の加熱になっていた部分が下記の球状化焼鈍条件に適合する様に第2の球状化焼鈍を行う点に要旨を有している。 That is, the manufacturing method of the steel for cold forging according to the present invention that has solved the above problems is C: 0.7 to 1.5% (meaning mass%, the same shall apply hereinafter), Cr: 0.00. A method for producing a steel for cold forging by heating a steel material containing less than 9% (not including 0%) and having an average lamella spacing of a pearlite structure of 130 nm or less to spheroidizing annealing. The temperature distribution at the time of annealing heating is such that the portion of the steel that is the lowest temperature heating meets the following spheroidizing annealing conditions, and the heating temperature of the portion that is the highest temperature heating is higher than A 1 point + 25 ° C. After performing the first spheroidizing annealing, the second spheroidizing annealing is performed so that the portion that has been heated at the highest temperature in the first spheroidizing annealing meets the following spheroidizing annealing conditions Has a summary.

上記課題は、具体的には、C:0.7〜1.5%、Cr:0.9%未満(0%を含まない)を含有し、パーライト組織の平均ラメラ間隔が130nm以下である複数の鋼材を同一の炉で加熱して球状化焼鈍し、冷間鍛造用鋼を製造するにあたり、球状化焼鈍加熱時に生じる炉内の温度分布によって最も低温の加熱温度となる部分の鋼材が下記の球状化焼鈍条件に適合する様に、かつ最も高温の加熱温度となる部分の鋼材の加熱温度がA1点+25℃超となる様に第1の球状化焼鈍を行った後、前記第1の球状化焼鈍で最も高温の加熱になっていた部分の鋼材が下記の球状化焼鈍条件に適合する様に第2の球状化焼鈍を行うことによって達成できる。
球状化焼鈍条件:A1点+5℃〜A1点+25℃の温度域で60〜360分間保持した後、冷却し、A1点−10℃からA1点−30℃までの温度域は平均冷却速度10℃/時間以下で徐冷する。
Specifically, the above-described problems include C: 0.7 to 1.5%, Cr: less than 0.9% (not including 0%), and a plurality of pearlite structures having an average lamella spacing of 130 nm or less. When producing steel for cold forging by heating the steel material in the same furnace, the steel material at the lowest heating temperature due to the temperature distribution in the furnace generated during spheroidizing annealing is as follows: After performing the first spheroidizing annealing so as to conform to the spheroidizing annealing condition and the heating temperature of the steel material at the highest heating temperature exceeds A 1 point + 25 ° C., the first spheroidizing annealing is performed. This can be achieved by performing the second spheroidizing annealing so that the steel material at the highest temperature in the spheroidizing annealing meets the following spheroidizing annealing conditions.
Spheroidizing annealing conditions: After holding A 1 point + 5 ° C. to A at a temperature range of 1 point + 25 ° C. 60 to 360 minutes, cooled, a temperature range from A 1 point -10 ° C. until A 1 point -30 ° C. The average Slowly cool at a cooling rate of 10 ° C / hour or less.

前記第1の球状化焼鈍で最も低温の加熱となっていた部分が前記第2の球状化焼鈍のために加熱される時の加熱温度は、A1点+5℃未満であればよい。 The heating temperature when the portion that has been the lowest temperature heating in the first spheroidizing annealing is heated for the second spheroidizing annealing may be less than A 1 point + 5 ° C.

前記鋼材としては、Si:0.001〜0.7%、Mn:0.1〜2.0%、Al:0.001〜0.1%を更に含有し、残部が鉄および不可避不純物であるものを用いることができる。前記不可避不純物としては、P:0.05%以下(0%を含まない)、S:0.001〜0.05%、N:0.015%以下(0%を含まない)を含むものを用いることができる。   The steel material further contains Si: 0.001 to 0.7%, Mn: 0.1 to 2.0%, Al: 0.001 to 0.1%, the balance being iron and inevitable impurities Things can be used. Examples of the inevitable impurities include P: 0.05% or less (excluding 0%), S: 0.001 to 0.05%, N: 0.015% or less (not including 0%). Can be used.

前記鋼材は更に、
(1)Cu:0.25%以下(0%を含まない)、Ni:0.25%以下(0%を含まない)、Mo:0.25%以下(0%を含まない)およびB:0.01%以下(0%を含まない)よりなる群から選択される少なくとも1種の元素や、
(2)Ti:0.2%以下(0%を含まない)、Nb:0.2%以下(0%を含まない)およびV:0.5%以下(0%を含まない)よりなる群から選択される少なくとも1種の元素、
を含んでもよい。
The steel material is further
(1) Cu: 0.25% or less (not including 0%), Ni: 0.25% or less (not including 0%), Mo: 0.25% or less (not including 0%), and B: At least one element selected from the group consisting of 0.01% or less (not including 0%),
(2) A group consisting of Ti: 0.2% or less (not including 0%), Nb: 0.2% or less (not including 0%), and V: 0.5% or less (not including 0%) At least one element selected from
May be included.

本発明によれば、球状化焼鈍加熱時に生じる温度分布に着目し、この温度分布によって鋼材中最も低温の加熱となる部分を第1の球状化焼鈍した後、この第1の球状化焼鈍で最も高温の加熱になっていた部分を第2の球状化焼鈍しているため、Crを0.9%未満に低減した鋼材を球状化焼鈍する場合であって、焼鈍時に温度分布が生じる場合であっても、鋼材全体を良好な球状化組織とすることができる。その結果、冷間鍛造性に優れた鋼材を提供できる。   According to the present invention, after paying attention to the temperature distribution generated during the spheroidizing annealing, the first spheroidizing annealing is performed most in the first spheroidizing annealing after the temperature distribution in the steel material is subjected to the first spheroidizing annealing. This is the case where the steel material with Cr reduced to less than 0.9% is subjected to spheroidizing annealing because the portion that has been heated at a high temperature is subjected to the second spheroidizing annealing, and a temperature distribution occurs during annealing. However, the whole steel material can be made into a favorable spheroidized structure. As a result, a steel material excellent in cold forgeability can be provided.

本発明はCを0.7〜1.5%、Crを0.9%未満(0%を含まない)含有する鋼材の球状化焼鈍方法に関する。CとCrに着目して冷間鍛造用鋼の球状化焼鈍方法を設計したのは、以下の理由による。   The present invention relates to a spheroidizing annealing method for a steel material containing 0.7 to 1.5% C and less than 0.9% Cr (not including 0%). The reason for designing the spheroidizing method for cold forging steel by paying attention to C and Cr is as follows.

Cは、鋼材の強度(即ち、最終製品の強度)を確保するために必要な元素であり、冷間鍛造性に重要な影響を及ぼす。また炭化物を生じるため、球状化焼鈍方法の設計に当たっては必ず考慮しなければならない。本発明はCを0.7%以上含有する鋼材を対象とした。C量は、好ましくは0.8%以上である。しかしCを過剰に含有すると、強度が高くなり過ぎて冷間鍛造性が悪くなる。従ってC量は、1.5%以下とする。C量は、好ましくは1.2%以下である。   C is an element necessary for ensuring the strength of the steel material (that is, the strength of the final product), and has an important influence on the cold forgeability. In addition, since carbide is generated, it must be taken into consideration when designing the spheroidizing annealing method. The present invention is directed to a steel material containing 0.7% or more of C. The amount of C is preferably 0.8% or more. However, when C is contained excessively, the strength becomes too high and the cold forgeability deteriorates. Therefore, the C amount is 1.5% or less. The amount of C is preferably 1.2% or less.

Crは球状化の難しさに影響を与える元素である。本発明ではこのCrを0.9%未満に低減した場合でも、確実に球状化できることを目的として球状化焼鈍方法を設計するものであり、Cr量の特定は必須である。本発明によればCrが0.8%以下、又は0.6%以下、更には0.3%以下であっても確実に球状化が可能である。なおCrは、鋼材の焼入れ性を向上させ、最終製品の強度を高めるのに作用する元素である為、0.9%未満を満足する範囲で多く含有していてもよい。Cr量は、例えば、0.01%以上、好ましくは0.05%以上、さらに好ましくは0.1%以上であってもよい。   Cr is an element that affects the difficulty of spheroidization. In the present invention, even when this Cr is reduced to less than 0.9%, a spheroidizing annealing method is designed for the purpose of surely spheroidizing, and it is essential to specify the amount of Cr. According to the present invention, even when Cr is 0.8% or less, 0.6% or less, and even 0.3% or less, spheroidization can be reliably performed. Note that Cr is an element that acts to improve the hardenability of the steel material and increase the strength of the final product, and therefore may be contained in a large amount within a range satisfying less than 0.9%. For example, the Cr amount may be 0.01% or more, preferably 0.05% or more, and more preferably 0.1% or more.

本発明の焼鈍方法の設計にあたって考慮すべきは上述したC量及びCr量であるが、実際に本発明の焼鈍方法に使用する鋼材は、通常、Si、Mn、Alを下記の範囲で更に含有する。また残部は特に限定されないが、鉄および不可避不純物であってもよい。Si、Mn、Alの添加量及びその添加理由は以下の通りである。   The amount of C and Cr mentioned above should be considered in designing the annealing method of the present invention, but the steel material actually used in the annealing method of the present invention usually further contains Si, Mn, and Al in the following ranges. To do. The balance is not particularly limited, but may be iron and inevitable impurities. The addition amount of Si, Mn, and Al and the reason for the addition are as follows.

[Si:0.001〜0.7%]
Siは、脱酸元素として、および固溶体硬化による最終製品の強度を増加させるために含有させることが好ましい元素である。Si量は、0.001%以上含有させることが好ましく、より好ましくは0.05%以上、更に好ましくは0.1%以上、特に好ましくは0.2%以上である。しかしSi量が0.7%を超えると、過度に強度が上昇して冷間鍛造性を劣化させることがある。従ってSi量は、0.7%以下とすることが好ましく、より好ましくは0.60%以下、更に好ましくは0.50%以下である。
[Si: 0.001 to 0.7%]
Si is an element that is preferably contained as a deoxidizing element and to increase the strength of the final product by solid solution hardening. The Si content is preferably 0.001% or more, more preferably 0.05% or more, still more preferably 0.1% or more, and particularly preferably 0.2% or more. However, when the amount of Si exceeds 0.7%, the strength is excessively increased and the cold forgeability may be deteriorated. Accordingly, the Si content is preferably 0.7% or less, more preferably 0.60% or less, and still more preferably 0.50% or less.

[Mn:0.1〜2.0%]
Mnは、焼入れ性を向上し、最終製品の強度を増加させるのに有効に作用する元素である。こうした作用を有効に発揮させるには、0.1%以上含有させることが好ましく、より好ましくは0.3%以上、更に好ましくは0.50%以上である。しかし過剰に含有すると強度が過度に上昇して冷間鍛造性が劣化することがある。従ってMn量は、2.0%以下とすることが好ましく、より好ましくは1.5%以下、更に好ましくは1.2%以下、特に好ましくは1.0%以下である。
[Mn: 0.1 to 2.0%]
Mn is an element that effectively acts to improve hardenability and increase the strength of the final product. In order to effectively exhibit such an action, the content is preferably 0.1% or more, more preferably 0.3% or more, and still more preferably 0.50% or more. However, when it contains excessively, intensity | strength rises excessively and cold forgeability may deteriorate. Accordingly, the Mn content is preferably 2.0% or less, more preferably 1.5% or less, still more preferably 1.2% or less, and particularly preferably 1.0% or less.

[Al:0.001〜0.1%]
Alは、脱酸元素として作用すると共に、鋼材中に存在する固溶NをAlNとして固定し、冷間鍛造性を向上させる元素である。こうした作用を有効に発揮させるには、Al量は0.001%以上とすることが好ましく、より好ましくは0.005%以上、更に好ましくは0.01%以上である。しかしAl量が過剰になると、鋼材中にAl23が過剰に生成し、冷間鍛造性が劣化することがある。従ってAl量は、0.1%以下であることが好ましく、より好ましくは0.08%以下、更に好ましくは0.05%以下である。
[Al: 0.001 to 0.1%]
Al is an element that acts as a deoxidizing element, fixes solid solution N present in the steel as AlN, and improves cold forgeability. In order to effectively exert such effects, the Al content is preferably 0.001% or more, more preferably 0.005% or more, and still more preferably 0.01% or more. However, when the amount of Al is excessive, Al 2 O 3 is excessively generated in the steel material, and cold forgeability may be deteriorated. Accordingly, the Al content is preferably 0.1% or less, more preferably 0.08% or less, and still more preferably 0.05% or less.

上記不可避不純物としては、P、SおよびNを次の範囲で含有していてもよい。   As said inevitable impurity, P, S, and N may be contained in the following range.

[P:0.05%以下(0%を含まない)]
Pは、鋼材中に不可避的に含まれる元素であり、粒界偏析を起こすと延性劣化の原因となる。従ってP量は、0.05%以下であることが好ましく、より好ましくは0.04%以下、更に好ましくは0.03%以下である。
[P: 0.05% or less (excluding 0%)]
P is an element inevitably contained in the steel material, and when grain boundary segregation occurs, it causes ductile deterioration. Accordingly, the P content is preferably 0.05% or less, more preferably 0.04% or less, and still more preferably 0.03% or less.

[S:0.001〜0.05%]
Sは、鋼材中に不可避的に含まれる元素であるが、鋼材の被削性を向上させるのに作用する。従ってS量は、0.001%以上であることが好ましく、より好ましくは0.002%以上、更に好ましくは0.003%以上である。しかし過剰に含有すると、Sは、鋼材中にMnSとして存在し、延性を劣化させて冷間鍛造性を悪化させることがある。従ってS量は、0.05%以下であることが好ましく、より好ましくは0.04%以下、更に好ましくは0.03%以下である。
[S: 0.001 to 0.05%]
S is an element inevitably contained in the steel material, but acts to improve the machinability of the steel material. Therefore, the S amount is preferably 0.001% or more, more preferably 0.002% or more, and further preferably 0.003% or more. However, when it contains excessively, S exists as MnS in steel materials, and may deteriorate ductility and cold forgeability. Accordingly, the S amount is preferably 0.05% or less, more preferably 0.04% or less, and still more preferably 0.03% or less.

[N:0.015%以下(0%を含まない)]
Nは、鋼材中に不可避的に含まれる元素であり、鋼材中に固溶Nとして存在すると、歪み時効による硬度上昇および延性低下を招き、冷間鍛造性を劣化させることがある。従ってN量は、0.015%以下であることが好ましく、より好ましくは0.013%以下、更に好ましくは0.01%以下である。
[N: 0.015% or less (excluding 0%)]
N is an element inevitably contained in the steel material. When N is present as a solid solution N in the steel material, the hardness increases due to strain aging and the ductility decreases, and the cold forgeability may be deteriorated. Accordingly, the N content is preferably 0.015% or less, more preferably 0.013% or less, and still more preferably 0.01% or less.

上記鋼材は更に、(1)Cu、Ni、MoおよびBよりなる群から選択される少なくとも1種の元素、(2)Ti、NbおよびVよりなる群から選択される少なくとも1種の元素を含んでもよい。   The steel material further includes (1) at least one element selected from the group consisting of Cu, Ni, Mo and B, and (2) at least one element selected from the group consisting of Ti, Nb and V. But you can.

[(1)Cu:0.25%以下(0%を含まない)、Ni:0.25%以下(0%を含まない)、Mo:0.25%以下(0%を含まない)、およびB:0.01%以下(0%を含まない)よりなる群から選択される少なくとも1種]
Cu、Ni、Mo、およびBは、いずれも鋼材の焼入れ性を向上させて最終製品の強度を高めるのに有効に作用する元素であり、これらの元素は単独で、または2種以上含有させることが好ましい。こうした作用を有効に発揮させるには、Cuは0.01%以上、Niは0.01%以上、Moは0.01%以上、Bは0.001%以上含有させることが好ましく、より好ましくは、Cuは0.03%以上、Niは0.03%以上、Moは0.03%以上、Bは0.0015%以上である。しかし過剰に含有すると、強度が高くなり過ぎて、冷間鍛造性が劣化することがある。従ってCuは0.25%以下、Niは0.25%以下、Moは0.25%以下、Bは0.01%以下であることが好ましく、より好ましくは、Cuは0.15%以下、Niは0.15%以下、Moは0.2%以下、Bは0.008%以下である。
[(1) Cu: 0.25% or less (not including 0%), Ni: 0.25% or less (not including 0%), Mo: 0.25% or less (not including 0%), and B: at least one selected from the group consisting of 0.01% or less (excluding 0%)]
Cu, Ni, Mo, and B are all elements that effectively work to improve the hardenability of the steel material and increase the strength of the final product. These elements should be contained alone or in combination of two or more. Is preferred. In order to effectively exert such an action, it is preferable to contain Cu 0.01% or more, Ni 0.01% or more, Mo 0.01% or more, and B 0.001% or more, more preferably Cu is 0.03% or more, Ni is 0.03% or more, Mo is 0.03% or more, and B is 0.0015% or more. However, when it contains excessively, intensity | strength will become high too much and cold forgeability may deteriorate. Accordingly, Cu is preferably 0.25% or less, Ni is 0.25% or less, Mo is 0.25% or less, and B is 0.01% or less, more preferably, Cu is 0.15% or less, Ni is 0.15% or less, Mo is 0.2% or less, and B is 0.008% or less.

[(2)Ti:0.2%以下(0%を含まない)、Nb:0.2%以下(0%を含まない)、およびV:0.5%以下(0%を含まない)よりなる群から選択される少なくとも1種]
Ti、Nb、およびVは、鋼材中に存在するNと結合して窒化物を形成し、固溶Nを低減することにより、変形抵抗を低下させて冷間鍛造性を向上させる元素であり、これらの元素は単独で、または2種以上を含有させることが好ましい。こうした作用を有効に発揮させるには、Tiは0.02%以上、Nbは0.02%以上、Vは0.05%以上含有させることが好ましく、より好ましくは、Tiは0.04%以上、Nbは0.05%以上、Vは0.08%以上である。しかし過剰に含有すると、形成される窒化物が変形抵抗を高め、冷間鍛造性を劣化させることがある。従ってTiは0.2%以下、Nbは0.2%以下、Vは0.5%以下であることが好ましく、より好ましくは、Tiは0.1%以下、Nbは0.1%以下、Vは0.25%以下である。
[From (2) Ti: 0.2% or less (not including 0%), Nb: 0.2% or less (not including 0%), and V: 0.5% or less (not including 0%) At least one selected from the group consisting of]
Ti, Nb, and V are elements that combine with N present in the steel material to form a nitride, reduce the solid solution N, thereby reducing deformation resistance and improving cold forgeability, These elements are preferably used alone or in combination of two or more. In order to effectively exert such an effect, it is preferable that Ti is 0.02% or more, Nb is 0.02% or more, and V is 0.05% or more, more preferably, Ti is 0.04% or more. , Nb is 0.05% or more, and V is 0.08% or more. However, when it contains excessively, the nitride formed may raise deformation resistance and may deteriorate cold forgeability. Therefore, Ti is preferably 0.2% or less, Nb is 0.2% or less, and V is preferably 0.5% or less, more preferably, Ti is 0.1% or less, Nb is 0.1% or less, V is 0.25% or less.

本発明は、球状化焼鈍が困難な上記低Cr鋼材を対象にして適切な球状化焼鈍方法を設計し、もって高温部と低温部のいずれにおいても良好な球状化組織を形成し、冷間鍛造性を確保するものである。本発明の球状化焼鈍方法を適用するに当たっては、球状化焼鈍前に上記鋼材のパーライト組織の平均ラメラ間隔を130nm以下にしておくことが重要である。パーライト組織の平均ラメラ間隔が130nmを超えると、棒状の炭化物が多く生成し、本発明で規定する後述の球状化焼鈍条件で熱処理を行っても、この棒状の炭化物は充分に分解固溶せず、球状化焼鈍後も、棒状のまま残存する。棒状の炭化物は割れの起点となり、冷間鍛造性が悪くなる。従って本発明ではパーライト組織の平均ラメラ間隔を130nm以下としている。パーライト組織の平均ラメラ間隔は120nm以下であることが好ましい。なお平均ラメラ間隔の下限は特に限定されず、例えば、70nm程度であってもよい。   The present invention designs an appropriate spheroidizing method for the above-mentioned low Cr steel material, which is difficult to spheroidize, and forms a good spheroidized structure in both the high temperature part and the low temperature part. It is to secure the sex. In applying the spheroidizing annealing method of the present invention, it is important to set the average lamella spacing of the pearlite structure of the steel material to 130 nm or less before spheroidizing annealing. When the average lamella spacing of the pearlite structure exceeds 130 nm, a lot of rod-like carbides are formed, and even if heat treatment is performed under the spheroidizing annealing conditions described later in the present invention, the rod-like carbides do not sufficiently decompose and dissolve. Even after spheroidizing annealing, it remains as a rod. The rod-shaped carbide becomes a starting point of cracking, and cold forgeability deteriorates. Therefore, in the present invention, the average lamella spacing of the pearlite structure is 130 nm or less. The average lamella spacing of the pearlite structure is preferably 120 nm or less. The lower limit of the average lamella interval is not particularly limited, and may be about 70 nm, for example.

本発明においてパーライト組織のラメラ間隔とは、隣接する炭化物間の中心間距離を意味する。パーライト組織のラメラ間隔は、鏡面研磨後のサンプルをピクラール(ピクリン酸5%+エタノール)でエッチングし、横断面におけるD/8位置(Dはサンプルの直径)を倍率5000倍で10枚写真撮影し、各写真において最も微細なラメラを決定し、このラメラに直角となるように線分を引き、その線分の長さと線分を横切るラメラの数からラメラ間隔を求め、合計10本の線分について測定したラメラ間隔を平均することによって求めた。   In the present invention, the lamella spacing of the pearlite structure means the center-to-center distance between adjacent carbides. For the lamella spacing of the pearlite structure, the sample after mirror polishing was etched with picral (5% picric acid + ethanol), and 10 photographs were taken at a magnification of 5000 times at the D / 8 position (D is the diameter of the sample) in the cross section. , Determine the finest lamella in each photo, draw a line segment perpendicular to this lamella, determine the lamella spacing from the length of the line segment and the number of lamellas crossing the line segment, totaling 10 line segments Was determined by averaging the measured lamella spacing.

上記パーライト組織の平均ラメラ間隔を130nm以下とする方法としては、例えば、熱間圧延後、オーステナイト温度領域から平均冷却速度30℃/分以上で急冷してパーライト変態させればよい。平均冷却速度は、より好ましくは40〜300℃/分である。   As a method of setting the average lamella spacing of the pearlite structure to 130 nm or less, for example, after hot rolling, the pearlite may be transformed by quenching from the austenite temperature region at an average cooling rate of 30 ° C./min or more. The average cooling rate is more preferably 40 to 300 ° C./min.

本発明の球状化焼鈍方法では、上述した成分組成及びパーライト組織の鋼材を複数回に亘って焼鈍する。上述したCr量を0.9%未満に低減した鋼材では、炭化物の球状化が難しくなっており、炉内の温度分布の影響を強く受け、球状化に成功する部分と失敗する部分とが生じる。複数回に亘って焼鈍するのは、温度分布によって鋼材中最も低温の加熱となる部分(最低温部)と、最も高温の加熱となる部分(最高温部)のそれぞれが、該複数回の焼鈍の間に、少なくも1回は下記の球状化焼鈍条件によって処理される様にし、確実に球状化に成功する様にする為である。なお複数回の焼鈍パターンによっては、下記球状化焼鈍条件によって処理した部位が、その後、さらに熱処理(焼鈍)されることもある。その後の熱処理(焼鈍)では、該球状化焼鈍条件で規定する温度と同等又はそれよりも低温にする事が重要である。
球状化焼鈍条件:A1点+5℃〜A1点+25℃の温度域で60〜360分間保持した後、冷却し、A1点−10℃からA1点−30℃までの温度域は平均冷却速度10℃/時間以下で徐冷する。
In the spheroidizing annealing method of the present invention, the steel material having the above-described component composition and pearlite structure is annealed a plurality of times. In the steel material in which the Cr content is reduced to less than 0.9%, it is difficult to spheroidize the carbide, and it is strongly influenced by the temperature distribution in the furnace, and there are parts that succeed in spheroidization and parts that fail. . The annealing is performed a plurality of times for each of the part that is the lowest temperature heating (lowest temperature part) and the part that is the highest temperature heating (highest temperature part) depending on the temperature distribution. In order to ensure that the spheroidization succeeds at least once, the spheroidization is performed under the following spheroidizing annealing conditions. Depending on the multiple annealing pattern, the part treated under the following spheroidizing annealing condition may be further heat-treated (annealed). In the subsequent heat treatment (annealing), it is important to make the temperature equal to or lower than the temperature specified by the spheroidizing annealing conditions.
Spheroidizing annealing conditions: After holding A 1 point + 5 ° C. to A at a temperature range of 1 point + 25 ° C. 60 to 360 minutes, cooled, a temperature range from A 1 point -10 ° C. until A 1 point -30 ° C. The average Slowly cool at a cooling rate of 10 ° C / hour or less.

なお、上記A1点の温度は、レスリー鉄鋼材料学(丸善)の第273頁に記載の下記式(1)で算出されるAc1点である。下記式(1)において、[ ]は、各元素の含有量(質量%)を示しており、含有しない元素は、0%として計算すればよい。
Ac1点=723+29.1×[Si]−10.7×[Mn]+16.9×[Cr]−16.9×[Ni]+290×[As]+6.38×[W] ・・・(1)
The temperature of the A 1 point is Ac 1 point is calculated by the following equation according to the 273 pages of Leslie steel Metallurgical (Maruzen) (1). In the following formula (1), [] indicates the content (% by mass) of each element, and elements not contained may be calculated as 0%.
Ac 1 point = 723 + 29.1 × [Si] −10.7 × [Mn] + 16.9 × [Cr] −16.9 × [Ni] + 290 × [As] + 6.38 × [W] (...) 1)

(1)A1点+5℃〜A1点+25℃の温度域で60〜360分間保持
上記球状化焼鈍条件において加熱保持温度をA1点+5℃以上にし、保持時間を60分間以上にすることで、棒状の炭化物を十分に分断固溶でき、冷間鍛造性を改善できる。保持温度は、好ましくはA1点+8℃以上である。保持時間は、好ましくは90分間以上である。
(1) Hold for 60 to 360 minutes in the temperature range of A 1 point + 5 ° C. to A 1 point + 25 ° C. Under the above spheroidizing annealing conditions, set the heating holding temperature to A 1 point + 5 ° C. or higher, and set the holding time to 60 minutes or longer. Thus, the rod-like carbide can be sufficiently separated and dissolved, and the cold forgeability can be improved. The holding temperature is preferably A 1 point + 8 ° C. or higher. The holding time is preferably 90 minutes or longer.

一方、加熱保持温度をA1点+25℃以下にし、保持時間を360分間以下にしたのは、熱条件が強すぎることによって、炭化物が固溶し過ぎて炭化物の球状化が不十分になる事を避けるためである。保持温度は、好ましくはA1点+20℃以下である。保持時間は好ましくは330分間以下である。 On the other hand, the heating and holding temperature was set to A 1 point + 25 ° C. or less and the holding time was set to 360 minutes or less because the carbide was too solid and the spheroidization of the carbide became insufficient because the thermal conditions were too strong. Is to avoid. The holding temperature is preferably A 1 point + 20 ° C. or lower. The holding time is preferably 330 minutes or less.

(2)冷却条件:A1点−10℃からA1点−30℃までの温度域を、平均冷却速度10℃/時間以下で徐冷
上記球状化焼鈍条件において平均冷却速度を10℃/時間以下にしたのは、棒状の炭化物の析出を防止して、確実に炭化物を球状化するためである。上記温度域の平均冷却速度は、好ましくは8℃/時間以下、より好ましくは6℃/時間以下である。なお冷却速度の下限は、例えば、0.5℃/時間、好ましくは1℃/時間程度であってもよい。
(2) Cooling conditions: A temperature range from A 1 point −10 ° C. to A 1 point −30 ° C. is gradually cooled at an average cooling rate of 10 ° C./hour or less. The average cooling rate is 10 ° C./hour in the spheroidizing annealing condition. The reason for the following is to prevent the precipitation of rod-like carbides and to make the carbides spherical. The average cooling rate in the temperature range is preferably 8 ° C./hour or less, more preferably 6 ° C./hour or less. The lower limit of the cooling rate may be, for example, about 0.5 ° C./hour, preferably about 1 ° C./hour.

鋼材を複数回に亘って焼鈍し、かつ最高温部、最低温部を少なくとも1回は上記球状化焼鈍条件で処理するには、例えば、まず最低温部が上記球状化焼鈍条件を満足する様に第1の球状化焼鈍をし、この第1の球状化焼鈍の後、該第1の球状化焼鈍で最高温部となっていた部分が上記球状化焼鈍条件を満足する様に第2の球状化焼鈍をすればよい。   In order to anneal a steel material a plurality of times and treat the highest temperature part and the lowest temperature part at least once under the spheroidizing annealing condition, for example, the lowest temperature part first satisfies the spheroidizing annealing condition. The first spheroidizing annealing is performed, and after the first spheroidizing annealing, the second spheroidizing annealing is performed so that the portion that has become the highest temperature portion satisfies the spheroidizing annealing condition. Spheroidizing annealing may be performed.

なお、第1の球状化焼鈍では、最低温部のヒートパターンに連動して最高温部も熱処理(焼鈍処理)される事になる。最高温部の加熱温度は、温度分布によって生じる違いによって成り行きにまかせてもよく、A1点+25℃超である。 In the first spheroidizing annealing, the highest temperature part is also heat-treated (annealing process) in conjunction with the heat pattern of the lowest temperature part. The heating temperature of the highest temperature part may be allowed to depend on the difference caused by the temperature distribution, and is higher than A 1 point + 25 ° C.

第2の球状化焼鈍でも、最高温部のヒートパターンに連動して最低温部も熱処理される事になる。最低温部における加熱温度もまた、温度分布によって生じる違いによって成り行きにまかせてもよく、例えば、前記球状化焼鈍条件で規定する温度と同等の加熱温度(例えば、A1点+5℃〜A1点+25℃)であってもよいが、A1点+5℃未満にすることが好ましい。いずれにしても第2の球状化焼鈍時に最低温部がA1点+25℃を超える事はなく、炭化物がオーステナイト中に再度固溶して溶解するのを防ぎ、良好な球状化組織を維持できる。 Even in the second spheroidizing annealing, the lowest temperature part is also heat-treated in conjunction with the heat pattern of the highest temperature part. The heating temperature in the lowest temperature part may also depend on the difference caused by the temperature distribution. For example, the heating temperature equivalent to the temperature specified in the spheroidizing annealing condition (for example, A 1 point + 5 ° C. to A 1 point) + 25 ° C.), but it is preferable to make it less than A 1 point + 5 ° C. In any case, the lowest temperature portion does not exceed A 1 point + 25 ° C. during the second spheroidizing annealing, and it is possible to prevent the carbide from re-dissolving in the austenite and dissolving, and maintain a good spheroidized structure. .

なお、第1の球状化焼鈍及び第2の球状化焼鈍が適切に行われ、かつ先に行った上記球状化焼鈍条件を満足する球状化焼鈍による効果を損なう様な強い焼鈍を行わない限り、第1及び第2の球状化焼鈍はどのタイミングで行ってもよく、これら球状化焼鈍の前後に他の熱処理(球状化焼鈍の失敗を含む)を行ってもよい。例えば、第1の球状化焼鈍によって低温部を適切に球状化焼鈍した後、第2の球状化焼鈍を行う目的で高温部を加熱したにも拘わらず、当該高温部の加熱温度が不足したり、冷却速度が不適切になった場合には、再度、第2の球状化焼鈍を行えばよい。   In addition, unless the first spheroidizing annealing and the second spheroidizing annealing are appropriately performed and strong annealing is performed so as to impair the effect of the spheroidizing annealing that satisfies the spheroidizing annealing conditions performed previously, The first and second spheroidizing annealing may be performed at any timing, and other heat treatment (including failure of the spheroidizing annealing) may be performed before and after these spheroidizing annealing. For example, after appropriately heating the low temperature part by the first spheroidizing annealing and then heating the high temperature part for the purpose of performing the second spheroidizing annealing, the heating temperature of the high temperature part is insufficient. When the cooling rate becomes inappropriate, the second spheroidizing annealing may be performed again.

上記球状化焼鈍は、複数回に亘って焼鈍し、かつ最低温部と最高温部に分けて熱処理条件をコントロールする限り、種々の製造設備で利用でき、例えば、1つの熱処理炉内に複数の鋼材(線材コイルなど)を装入し、これらを同時に処理する時に特に有効である。すなわち熱処理炉に複数の鋼材(線材コイルなど)を装入し、球状化焼鈍加熱時に生じる炉内の温度分布によって最も低温となる箇所に配置される鋼材に対して第1の球状化焼鈍を施した後、最も高温となる箇所に配置される鋼材に対して第2の球状化焼鈍を行えばよい。   The spheroidizing annealing can be used in various production facilities as long as annealing is performed a plurality of times and the heat treatment conditions are controlled by dividing into the lowest temperature part and the highest temperature part. This is particularly effective when steel materials (such as wire coils) are charged and processed simultaneously. That is, a plurality of steel materials (wire coils, etc.) are charged into the heat treatment furnace, and the first spheroidizing annealing is performed on the steel material arranged at the lowest temperature due to the temperature distribution in the furnace generated during the spheroidizing annealing heating. Then, the second spheroidizing annealing may be performed on the steel material arranged at the highest temperature.

このように複数の鋼材を同一の炉で加熱する場合は、第1の球状化焼鈍における鋼材の熱履歴を測定しておき、第1の球状化焼鈍において最も低温の加熱温度となる部分の鋼材の熱履歴が、上記球状化焼鈍条件を満足していた場合には、第2の球状化焼鈍を行い、第1の球状化焼鈍で最も高温の加熱温度となっていた部分の鋼材を、上記球状化焼鈍条件で熱処理すればよい。第1の球状化焼鈍において最も低温の加熱温度となる部分の鋼材の熱履歴が、上記球状化焼鈍条件を満足していなかった場合には、最低温部の鋼材が上記球状化焼鈍条件を満足するように熱処理した後、第2の球状化焼鈍を行い、第1の球状化焼鈍で最も高温の加熱温度となっていた部分の鋼材を、上記球状化焼鈍条件で熱処理すればよい。   Thus, when heating several steel materials in the same furnace, the heat history of the steel materials in the 1st spheroidizing annealing is measured, and the steel materials of the part which becomes the lowest temperature in the 1st spheroidizing annealing When the heat history of the above satisfies the spheroidizing annealing condition, the second spheroidizing annealing is performed, and the steel material of the portion that has become the highest heating temperature in the first spheroidizing annealing is described above. What is necessary is just to heat-process on spheroidizing annealing conditions. In the case where the thermal history of the steel material at the lowest heating temperature in the first spheroidizing annealing does not satisfy the spheroidizing annealing condition, the lowest temperature steel material satisfies the spheroidizing annealing condition. After the heat treatment as described above, the second spheroidizing annealing is performed, and the steel material at the highest heating temperature in the first spheroidizing annealing may be heat-treated under the spheroidizing annealing conditions.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

下記表1に示す成分組成(残部は、鉄およびP、S、N以外の不可避不純物)の鋼材(鋼種A〜K)を熱間圧延した後、オーステナイト温度域から急冷し、φ15mmの線材コイルを21個ずつ製造した。下記表1に、上記式(1)に基づいて算出したA1点の温度を示す。また、下記表2に、用いた鋼種および各鋼種におけるA1点、A1点+5℃、A1点+25℃の温度も示した。 After hot rolling a steel material (steel types A to K) having a component composition shown in Table 1 (the balance is iron and inevitable impurities other than P, S, and N), the steel material is rapidly cooled from the austenite temperature range, and a wire coil having a diameter of 15 mm is obtained. 21 pieces were produced. Table 1 below shows the temperature at point A 1 calculated based on the above formula (1). Table 2 below also shows the steel types used and the temperatures of A 1 point, A 1 point + 5 ° C., and A 1 point + 25 ° C. in each steel type.

まず、得られた各線材コイルの端部から組織観察用試験片を切り出した。   First, the test piece for structure | tissue observation was cut out from the edge part of each obtained wire coil.

次に、得られた線材コイルを、バッチ式炉に入れて球状化焼鈍を行った。線材コイルは、1個あたり1トンで、この線材コイルを3段重ねに積んだものを、炉内の7箇所(即ち、線材コイルは合計で21個)に配置して加熱し、第1の球状化焼鈍を行なった。第1の球状化焼鈍は、下記表2に示す加熱保持1、冷却1の条件で行った。このとき各線材コイルには、熱電対を取り付けておき、線材コイルの温度を測定した。加熱保持1および冷却1が終了した時点で、最も高温の加熱となった線材コイルを最高温部、最も低温となった線材コイルを最低温部と定めた。最高温部における保持温度、最低温部における保持温度を下記表2に示す。   Next, the obtained wire coil was put in a batch furnace and subjected to spheroidizing annealing. The wire coil is 1 ton per piece, the wire coils stacked in three layers are arranged and heated in seven places in the furnace (that is, 21 wire coils in total), and the first coil Spheroidizing annealing was performed. The first spheroidizing annealing was performed under the conditions of heating and holding 1 and cooling 1 shown in Table 2 below. At this time, a thermocouple was attached to each wire coil, and the temperature of the wire coil was measured. When heating holding 1 and cooling 1 were completed, the wire coil that became the highest temperature heating was determined as the highest temperature portion, and the wire coil that became the lowest temperature was determined as the lowest temperature portion. The holding temperature in the highest temperature part and the holding temperature in the lowest temperature part are shown in Table 2 below.

次に、下記表2に示す加熱保持2、冷却2の条件で、第2の球状化焼鈍を行なった。また、下記表2に示すNo.19〜21については、第2の球状化焼鈍後、下記表2に示す加熱保持3、冷却3の条件で第3の球状化焼鈍を行なった。   Next, second spheroidizing annealing was performed under the conditions of heating and holding 2 and cooling 2 shown in Table 2 below. In addition, No. shown in Table 2 below. About 19-21, after 2nd spheroidizing annealing, 3rd spheroidizing annealing was performed on the conditions of the heating holding 3 and the cooling 3 which are shown in following Table 2.

第2の球状化焼鈍後または第3の球状化焼鈍後、次の手順で金属組織を観察し、炭化物の形状を調べ、球状化焼鈍が適切に行なわれているか否かを評価した。   After the second spheroidizing annealing or the third spheroidizing annealing, the metal structure was observed by the following procedure, the shape of the carbide was examined, and whether or not the spheroidizing annealing was appropriately performed was evaluated.

即ち、球状化焼鈍して得られた線材コイルの端部から試験片を切り出し、D/8位置(Dは試験片の直径)の横断面を走査型電子顕微鏡(SEM)で、倍率4000倍で観察し、写真を10枚撮影した。撮影した写真を夫々画像解析し、写真内に観察された炭化物のアスペクト比(長径/短径の比)を算出した。写真内に観察された炭化物の個数(総数)に対し、アスペクト比が3.0以下の炭化物の個数割合を算出した。撮影した10枚の写真について、全ての写真においてアスペクト比が3.0以下の炭化物の個数割合が90%以上である場合を球状化焼鈍合格(下記表3では○印)、1枚でもアスペクト比が3.0以下の炭化物の個数割合が90%未満である場合を球状化焼鈍不合格(下記表3では×印)と評価した。評価結果を下記表3に示す。   That is, a test piece was cut out from the end of the wire coil obtained by spheroidizing annealing, and the cross section at the D / 8 position (D is the diameter of the test piece) was scanned with a scanning electron microscope (SEM) at a magnification of 4000 times. Observed and taken 10 photos. Each photograph taken was subjected to image analysis, and the aspect ratio (ratio of major axis / minor axis) of the carbide observed in the photograph was calculated. The number ratio of carbides having an aspect ratio of 3.0 or less was calculated with respect to the number (total number) of carbides observed in the photograph. Of the 10 photographs taken, the spheroidizing pass was accepted when the ratio of the number of carbides having an aspect ratio of 3.0 or less in all the photographs was 90% or more (circle mark in Table 3 below). A case where the number ratio of carbides having a particle size of 3.0 or less was less than 90% was evaluated as a spheroidizing annealing failure (indicated by x in Table 3 below). The evaluation results are shown in Table 3 below.

また、第1の球状化焼鈍において最高温部または最低温部として選択された線材コイルから、球状化焼鈍前に予め採取しておいた試験片について、次の手順でパーライト組織のラメラ間隔を測定した。即ち、上記試験片を、横断面で切り出して樹脂に埋め込み、研摩およびエッチングを施し、走査型電子顕微鏡(SEM)で金属組織を観察した。パーライト組織のラメラ間隔は、横断面におけるD/8位置(Dは試験片の直径)を倍率5000倍で10枚写真撮影し、各写真において最も微細なラメラを決定し、このラメラに直角となるように線分を引き、その線分の長さと線分を横切るラメラの数からラメラ間隔を求めた。合計10本の線分について測定したラメラ間隔を平均して平均値を求めた。算出結果を下記表3に示す。   In addition, the lamella spacing of the pearlite structure is measured by the following procedure for the test piece collected in advance before spheroidizing annealing from the wire coil selected as the highest temperature part or the lowest temperature part in the first spheroidizing annealing. did. That is, the test piece was cut out in a cross section, embedded in resin, polished and etched, and the metal structure was observed with a scanning electron microscope (SEM). The lamella spacing of the pearlite structure was taken at a D / 8 position in the cross section (D is the diameter of the test piece) at a magnification of 5000, and the finest lamella was determined in each photograph, which was perpendicular to this lamella. A line segment was drawn as described above, and the lamella interval was obtained from the length of the line segment and the number of lamellae crossing the line segment. The average value was calculated by averaging the lamella spacing measured for a total of 10 line segments. The calculation results are shown in Table 3 below.

また、下記表3には、最高温部または最低温部として選択された線材コイルを製造したときにおけるオーステナイト温度域からの平均冷却速度も併せて示す。   Table 3 below also shows the average cooling rate from the austenite temperature range when the wire coil selected as the highest temperature part or the lowest temperature part is manufactured.

下記表1〜表3から次のように考察できる。No.1〜10、12、15、19、20は、本発明で規定している要件を満足している例である。   The following Table 1 to Table 3 can be considered as follows. No. 1 to 10, 12, 15, 19, and 20 are examples that satisfy the requirements defined in the present invention.

これらのうち、No.1〜10、12、15は、加熱保持1、冷却1において、最低温部を球状化焼鈍した後、加熱保持2、冷却2において、最高温部を球状化焼鈍した例である。No.19は、加熱保持1、冷却1において、最低温部を球状化焼鈍した後、加熱保持2、冷却2において、最高温部を球状化焼鈍しようとしたが、加熱保持後の平均冷却速度が大き過ぎたため、加熱保持3、冷却3において、最高温部を再度球状化焼鈍した例である。No.20は、加熱保持1、冷却1において、最低温部を球状化焼鈍した後、加熱保持2、冷却2において、最高温部を球状化焼鈍しようとしたが、加熱保持温度が低過ぎたため、加熱保持3、冷却3において、最高温部を球状化焼鈍した例である。   Of these, No. Reference numerals 1 to 10, 12 and 15 are examples in which the lowest temperature portion was subjected to spheroidizing annealing in heating and holding 1 and cooling 1, and then the highest temperature portion was subjected to spheroidizing annealing in heating and holding 2 and cooling 2. No. No. 19 tried to spheroidize and anneal the highest temperature part in heating and holding 2 and cooling 2 after spheroidizing annealing in the heating and holding 1 and cooling 1, but the average cooling rate after heating and holding was large. This is an example in which the highest temperature portion is subjected to spheroidizing annealing again in the heating hold 3 and the cooling 3 because it has passed. No. No. 20 spheroidizing annealing of the lowest temperature part in heating holding 1 and cooling 1, and then trying to spheroidize the highest temperature part in heating holding 2 and cooling 2, but the heating holding temperature was too low. In the holding 3 and the cooling 3, the highest temperature portion is an example of spheroidizing annealing.

No.1〜10、12、15、19、20は、いずれも線材コイルに含まれるCr量が0.9%未満であるにもかかわらず、最高温部および最低温部に配置された線材コイルの両方において、球状化組織が得られている。従って両方の線材コイル共、冷間鍛造性に優れていると考えられる。   No. 1 to 10, 12, 15, 19 and 20 are both wire coils arranged in the highest temperature part and the lowest temperature part, although the Cr amount contained in the wire coil is less than 0.9%. , A spheroidized structure is obtained. Accordingly, both wire coils are considered to be excellent in cold forgeability.

一方、No.11、13、14、16〜18、21は、いずれも本発明で規定している要件を満足していない例であり、最高温部または最低温部の少なくとも一方で、球状化組織が得られていない。詳細には、次の通りである。   On the other hand, no. Nos. 11, 13, 14, 16-18, and 21 are examples that do not satisfy the requirements defined in the present invention, and a spheroidized structure is obtained in at least one of the highest temperature part and the lowest temperature part. Not. The details are as follows.

No.11は、Cr量が本発明で規定している範囲を超えている例であり、表2に示した条件では、最高温部、最低温部共、球状化組織が得られていない。即ち、A1点の温度以上(γ+θ域)に加熱した際、加熱温度を上げるか、または加熱時間を長くするにつれて、前組織がパーライトを含む場合には棒状炭化物が分断され、未固溶炭化物が減少する。しかしCr量を増加させると、棒状炭化物の分断が抑制されるため、未固溶炭化物の減少が抑えられ、炭化物が安定化する。そのためCr量を増加させた場合には、ある程度長い時間保持してから冷却しても炭化物は安定しているため、完全球状化が達成されやすい(炭化物は安定化しているため、棒状の炭化物は再析出しにくい)。しかしCr量を増加させても、表2に示した条件では、棒状炭化物の分断が不充分となり、球状化組織が得られなかったと考えられる。よって冷間鍛造性を改善できていないと考えられる。 No. No. 11 is an example in which the Cr amount exceeds the range defined in the present invention. Under the conditions shown in Table 2, the spheroidized structure is not obtained in the highest temperature part and the lowest temperature part. That is, when heated above the temperature of point A 1 (γ + θ region), as the heating temperature is increased or the heating time is lengthened, rod-like carbides are divided when the previous structure contains pearlite, and insoluble carbides Decrease. However, when the amount of Cr is increased, the fragmentation of the rod-like carbide is suppressed, so that the decrease in undissolved carbide is suppressed and the carbide is stabilized. Therefore, when the amount of Cr is increased, the carbide is stable even after being cooled for a long time and then cooled, so that perfect spheroidization is easily achieved (since the carbide is stabilized, the rod-shaped carbide is Difficult to re-deposit). However, even if the amount of Cr is increased, it is considered that under the conditions shown in Table 2, the splitting of the rod-like carbides is insufficient and a spheroidized structure cannot be obtained. Therefore, it is thought that cold forgeability has not been improved.

No.13は、熱間圧延後のオーステナイト温度領域からの平均冷却速度が30℃/分を下回り、急冷になっていないため、球状化焼鈍前における鋼材のパーライト組織の平均ラメラ間隔が、本発明で規定している要件を満足していない例であり、球状化焼鈍しても棒状の炭化物が残存したため、球状化組織が得られていない。よって冷間鍛造性を改善できていないと考えられる。   No. No. 13, since the average cooling rate from the austenite temperature region after hot rolling is less than 30 ° C./min and is not rapidly cooled, the average lamella spacing of the pearlite structure of the steel before spheroidizing annealing is defined in the present invention. This is an example that does not satisfy the requirements, and since a rod-like carbide remains even after spheroidizing annealing, a spheroidized structure is not obtained. Therefore, it is thought that cold forgeability has not been improved.

No.14は、最低温部に配置された線材コイルの温度を適切に制御できていなかったため、球状化組織を得られなかった。よって冷間鍛造性を改善できていないと考えられる。   No. No. 14 could not obtain a spheroidized structure because the temperature of the wire coil arranged in the lowest temperature part could not be appropriately controlled. Therefore, it is thought that cold forgeability has not been improved.

No.16は、最低温部を加熱保持した後の冷却1の条件、最高温部を加熱保持するときの温度、および最高温部を加熱保持するときの時間が、本発明で規定している要件を満足していないため、最高温部、最低温部共、球状化組織が得られていない。よって冷間鍛造性を改善できていないと考えられる。   No. 16 is a condition of the cooling 1 condition after heating and holding the lowest temperature part, a temperature when heating and holding the highest temperature part, and a time when heating and holding the highest temperature part are defined in the present invention. Since it is not satisfied, a spheroidized structure is not obtained in the highest temperature part and the lowest temperature part. Therefore, it is thought that cold forgeability has not been improved.

No.17は、最低温部の球状化処理条件、最高温部の球状化処理条件共に、本発明で規定している要件を外れている例である。従って最低温部および最高温部に配置された線材コイルの両方において、球状化組織が得られていない。よって冷間鍛造性を改善できていないと考えられる。   No. No. 17 is an example in which both the spheroidizing treatment condition of the lowest temperature part and the spheroidizing treatment condition of the highest temperature part are outside the requirements defined in the present invention. Therefore, a spheroidized structure is not obtained in both the lowest temperature part and the wire coil arranged in the highest temperature part. Therefore, it is thought that cold forgeability has not been improved.

No.18は、最高温部に配置された線材コイルを球状化焼鈍するために加熱保持した後の平均冷却速度が、本発明で規定している要件を外れているため、最高温部に配置した線材コイルは球状化組織が得られていない。よって冷間鍛造性を改善できていないと考えられる。   No. No. 18 is a wire rod arranged in the highest temperature part because the average cooling rate after heating and holding in order to spheroidize and anneal the wire coil arranged in the highest temperature part is out of the requirement defined in the present invention. The coil has no spherical structure. Therefore, it is thought that cold forgeability has not been improved.

No.21は、最高温部に配置された線材コイルを球状化焼鈍するための加熱および冷却条件が、本発明で規定している要件を外れているため、最高温部に配置された線材コイルは球状化組織が得られていない。よって冷間鍛造性を改善できていないと考えられる。   No. No. 21 is because the heating and cooling conditions for spheroidizing annealing of the wire coil disposed in the highest temperature part are outside the requirements defined in the present invention, the wire coil disposed in the highest temperature part is spherical. No chemical organization has been obtained. Therefore, it is thought that cold forgeability has not been improved.

以上通り、本発明によれば、複数の線材コイルを同一の炉で加熱して球状化焼鈍しても、球状化焼鈍加熱時に生じる炉内の温度分布によって生じる最高温部および最低温部の両方において球状化組織の鋼材を製造できる。   As described above, according to the present invention, even when a plurality of wire coils are heated in the same furnace and subjected to spheroidizing annealing, both the highest temperature part and the lowest temperature part generated by the temperature distribution in the furnace generated during spheroidizing annealing heating. Can produce a steel material with a spheroidized structure.

Figure 2014177690
Figure 2014177690

Figure 2014177690
Figure 2014177690

Figure 2014177690
Figure 2014177690

Claims (7)

C :0.7〜1.5%(質量%の意味。以下同じ。)、
Cr:0.9%未満(0%を含まない)を含有し、
パーライト組織の平均ラメラ間隔が130nm以下である鋼材を加熱して球状化焼鈍し、冷間鍛造用鋼を製造する方法であって、
球状化焼鈍加熱時に生じる温度分布によって鋼材中最も低温の加熱となる部分が下記の球状化焼鈍条件に適合する様に、かつ最も高温の加熱となる部分の加熱温度がA1点+25℃超となる様に第1の球状化焼鈍を行った後、
前記第1の球状化焼鈍で最も高温の加熱になっていた部分が下記の球状化焼鈍条件に適合する様に第2の球状化焼鈍を行うことを特徴とする冷間鍛造用鋼の製造方法。
球状化焼鈍条件:A1点+5℃〜A1点+25℃の温度域で60〜360分間保持した後、冷却し、A1点−10℃からA1点−30℃までの温度域は平均冷却速度10℃/時間以下で徐冷する。
C: 0.7 to 1.5% (meaning mass%, the same shall apply hereinafter),
Cr: less than 0.9% (not including 0%),
A steel material having an average lamella spacing of a pearlite structure of 130 nm or less is heated and spheroidized and annealed to produce a steel for cold forging,
Due to the temperature distribution that occurs during spheroidizing annealing heating, the part that becomes the lowest temperature heating in the steel material meets the following spheroidizing annealing conditions, and the heating temperature of the part that becomes the highest temperature heating is A 1 point + 25 ° C or more After performing the first spheroidizing annealing,
A method for producing a steel for cold forging, characterized in that the second spheroidizing annealing is performed so that a portion that has been heated at the highest temperature in the first spheroidizing annealing meets the following spheroidizing annealing conditions: .
Spheroidizing annealing conditions: After holding A 1 point + 5 ° C. to A at a temperature range of 1 point + 25 ° C. 60 to 360 minutes, cooled, a temperature range from A 1 point -10 ° C. until A 1 point -30 ° C. The average Slowly cool at a cooling rate of 10 ° C / hour or less.
C :0.7〜1.5%、
Cr:0.9%未満(0%を含まない)を含有し、
パーライト組織の平均ラメラ間隔が130nm以下である複数の鋼材を同一の炉で加熱して球状化焼鈍し、冷間鍛造用鋼を製造する方法であって、
球状化焼鈍加熱時に生じる炉内の温度分布によって最も低温の加熱温度となる部分の鋼材が下記の球状化焼鈍条件に適合する様に、かつ最も高温の加熱温度となる部分の鋼材の加熱温度がA1点+25℃超となる様に第1の球状化焼鈍を行った後、
前記第1の球状化焼鈍で最も高温の加熱になっていた部分の鋼材が下記の球状化焼鈍条件に適合する様に第2の球状化焼鈍を行うことを特徴とする冷間鍛造用鋼の製造方法。
球状化焼鈍条件:A1点+5℃〜A1点+25℃の温度域で60〜360分間保持した後、冷却し、A1点−10℃からA1点−30℃までの温度域は平均冷却速度10℃/時間以下で徐冷する。
C: 0.7 to 1.5%,
Cr: less than 0.9% (not including 0%),
A method of producing a steel for cold forging by heating a plurality of steel materials having an average lamella spacing of a pearlite structure of 130 nm or less in the same furnace and spheroidizing annealing,
Due to the temperature distribution in the furnace that occurs during spheroidizing annealing, the steel material at the lowest heating temperature conforms to the following spheroidizing annealing conditions, and the heating temperature of the steel material at the highest heating temperature is After performing the first spheroidizing annealing so that A 1 point + 25 ° C. is exceeded,
In the steel for cold forging, the second spheroidizing annealing is performed so that the portion of the steel material that has been heated at the highest temperature in the first spheroidizing annealing conforms to the following spheroidizing annealing conditions. Production method.
Spheroidizing annealing conditions: After holding A 1 point + 5 ° C. to A at a temperature range of 1 point + 25 ° C. 60 to 360 minutes, cooled, a temperature range from A 1 point -10 ° C. until A 1 point -30 ° C. The average Slowly cool at a cooling rate of 10 ° C / hour or less.
前記第1の球状化焼鈍で最も低温の加熱となっていた部分が前記第2の球状化焼鈍のために加熱される時の加熱温度は、A1点+5℃未満である請求項1または2に記載の製造方法。 The heating temperature when the portion that has been heated at the lowest temperature in the first spheroidizing annealing is heated for the second spheroidizing annealing is less than A 1 point + 5 ° C. The manufacturing method as described in. 前記鋼材として、Si:0.001〜0.7%、Mn:0.1〜2.0%、Al:0.001〜0.1%を更に含有し、残部が鉄および不可避不純物であるものを用いる請求項1〜3のいずれかに記載の製造方法。   The steel material further contains Si: 0.001 to 0.7%, Mn: 0.1 to 2.0%, Al: 0.001 to 0.1%, the balance being iron and inevitable impurities The manufacturing method in any one of Claims 1-3 using this. 前記不可避不純物として、P:0.05%以下(0%を含まない)、S:0.001〜0.05%、N:0.015%以下(0%を含まない)を含む請求項1〜4のいずれかに記載の製造方法。   The inevitable impurities include P: 0.05% or less (not including 0%), S: 0.001 to 0.05%, N: 0.015% or less (not including 0%). The manufacturing method in any one of -4. 前記鋼材が更に、
Cu:0.25%以下(0%を含まない)、
Ni:0.25%以下(0%を含まない)、
Mo:0.25%以下(0%を含まない)および
B :0.01%以下(0%を含まない)よりなる群から選択される少なくとも1種を含む請求項1〜5のいずれかに記載の製造方法。
The steel material is further
Cu: 0.25% or less (excluding 0%),
Ni: 0.25% or less (excluding 0%),
The element according to any one of claims 1 to 5, comprising at least one selected from the group consisting of Mo: 0.25% or less (excluding 0%) and B: 0.01% or less (not including 0%). The manufacturing method as described.
前記鋼材が更に、
Ti:0.2%以下(0%を含まない)、
Nb:0.2%以下(0%を含まない)および
V :0.5%以下(0%を含まない)よりなる群から選択される少なくとも1種を含む請求項1〜6のいずれかに記載の製造方法。
The steel material is further
Ti: 0.2% or less (excluding 0%),
Nb: 0.2% or less (not including 0%) and V: at least one selected from the group consisting of 0.5% or less (not including 0%) The manufacturing method as described.
JP2013054092A 2013-03-15 2013-03-15 Manufacturing method of steel for cold forging Expired - Fee Related JP6059568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013054092A JP6059568B2 (en) 2013-03-15 2013-03-15 Manufacturing method of steel for cold forging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013054092A JP6059568B2 (en) 2013-03-15 2013-03-15 Manufacturing method of steel for cold forging

Publications (2)

Publication Number Publication Date
JP2014177690A true JP2014177690A (en) 2014-09-25
JP6059568B2 JP6059568B2 (en) 2017-01-11

Family

ID=51697933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013054092A Expired - Fee Related JP6059568B2 (en) 2013-03-15 2013-03-15 Manufacturing method of steel for cold forging

Country Status (1)

Country Link
JP (1) JP6059568B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017106097A (en) * 2015-12-11 2017-06-15 ポスコPosco High carbon steel wire material excellent in strength and corrosion resistance, high carbon steel wire and manufacturing method therefor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63213281A (en) * 1987-03-02 1988-09-06 石川島播磨重工業株式会社 Control of heat-treatment furnace
JPH042731A (en) * 1990-04-19 1992-01-07 Nippon Steel Corp Method for controlling temperature of batch annealing furnace
JPH10204540A (en) * 1997-01-14 1998-08-04 Sumitomo Metal Ind Ltd Production of cold rolled high-carbon steel strip
JP2000273537A (en) * 1999-03-19 2000-10-03 Nisshin Steel Co Ltd Production of high carbon steel sheet excellent in local ductility
JP2010144242A (en) * 2008-12-22 2010-07-01 Nippon Steel Corp Medium and high carbon steel plate and manufacturing method of the same
JP2011256456A (en) * 2010-06-11 2011-12-22 Sanyo Special Steel Co Ltd Method for manufacturing steel for cold forging
JP2012062515A (en) * 2010-09-15 2012-03-29 Kobe Steel Ltd Bearing steel excellent in cold workability, wear resistance and rolling fatigue characteristics

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63213281A (en) * 1987-03-02 1988-09-06 石川島播磨重工業株式会社 Control of heat-treatment furnace
JPH042731A (en) * 1990-04-19 1992-01-07 Nippon Steel Corp Method for controlling temperature of batch annealing furnace
JPH10204540A (en) * 1997-01-14 1998-08-04 Sumitomo Metal Ind Ltd Production of cold rolled high-carbon steel strip
JP2000273537A (en) * 1999-03-19 2000-10-03 Nisshin Steel Co Ltd Production of high carbon steel sheet excellent in local ductility
JP2010144242A (en) * 2008-12-22 2010-07-01 Nippon Steel Corp Medium and high carbon steel plate and manufacturing method of the same
JP2011256456A (en) * 2010-06-11 2011-12-22 Sanyo Special Steel Co Ltd Method for manufacturing steel for cold forging
JP2012062515A (en) * 2010-09-15 2012-03-29 Kobe Steel Ltd Bearing steel excellent in cold workability, wear resistance and rolling fatigue characteristics

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017106097A (en) * 2015-12-11 2017-06-15 ポスコPosco High carbon steel wire material excellent in strength and corrosion resistance, high carbon steel wire and manufacturing method therefor

Also Published As

Publication number Publication date
JP6059568B2 (en) 2017-01-11

Similar Documents

Publication Publication Date Title
JP5486634B2 (en) Steel for machine structure for cold working and method for producing the same
JP4435954B2 (en) Bar wire for cold forging and its manufacturing method
EP3222742B1 (en) Rolled steel bar or rolled wire material for cold-forged component
JP3742232B2 (en) Steel wire rod capable of rapid spheroidization and excellent cold forgeability and method for producing the same
CN108350537A (en) Spring steel line and spring
JP2011530659A (en) High carbon hot rolled steel sheet and manufacturing method thereof
CN108350549A (en) The wire rod and its manufacturing method of non-quenching and tempering with excellent cold-workability
JP2015168882A (en) Spheroidizing heat treatment method for alloy steel
JP2001240940A (en) Bar wire rod for cold forging and its production method
TW201715055A (en) Mechanical structure steel for cold-working and manufacturing method therefor
JP6460883B2 (en) Manufacturing method of heat-treated steel wire with excellent workability
JP2015183265A (en) Method for producing steel material excellent in cold workability or machinability
JP6193842B2 (en) Steel wire rod for bearing
JP3737323B2 (en) Steel wire rod and bar steel excellent in cold forgeability after spheronization and manufacturing method thereof
JP5867285B2 (en) Bolt steel
JP6059568B2 (en) Manufacturing method of steel for cold forging
JP6108924B2 (en) Manufacturing method of steel for cold forging
JP2018168473A (en) Spheroidizing heat treatment method for alloy steel
JP5972823B2 (en) Manufacturing method of steel for cold forging
JP5679440B2 (en) Induction hardening steel with excellent cold forgeability and excellent torsional strength after induction hardening, and method for producing the same
CN108138294A (en) The excellent wire rod of hydrogen-induced cracking resistance, steel wire and their manufacturing method
JP6059569B2 (en) Manufacturing method of steel material excellent in cold workability and machinability
JP6632281B2 (en) Case hardening steel for cold forging with excellent resistance to grain coarsening
JP6059570B2 (en) Manufacturing method of steel with excellent cold workability
JP6093212B2 (en) Manufacturing method of steel material excellent in cold workability or machinability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161209

R150 Certificate of patent or registration of utility model

Ref document number: 6059568

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees