JP2012062515A - Bearing steel excellent in cold workability, wear resistance and rolling fatigue characteristics - Google Patents

Bearing steel excellent in cold workability, wear resistance and rolling fatigue characteristics Download PDF

Info

Publication number
JP2012062515A
JP2012062515A JP2010207163A JP2010207163A JP2012062515A JP 2012062515 A JP2012062515 A JP 2012062515A JP 2010207163 A JP2010207163 A JP 2010207163A JP 2010207163 A JP2010207163 A JP 2010207163A JP 2012062515 A JP2012062515 A JP 2012062515A
Authority
JP
Japan
Prior art keywords
less
cementite
rolling fatigue
fatigue characteristics
cold workability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010207163A
Other languages
Japanese (ja)
Other versions
JP5425736B2 (en
Inventor
Masaki Kaizuka
正樹 貝塚
Mutsuhisa Nagahama
睦久 永濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2010207163A priority Critical patent/JP5425736B2/en
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to KR1020137006289A priority patent/KR101408548B1/en
Priority to CN201180044233.6A priority patent/CN103097565B/en
Priority to US13/820,865 priority patent/US9598752B2/en
Priority to PCT/JP2011/066847 priority patent/WO2012035884A1/en
Priority to BR112013005533A priority patent/BR112013005533A2/en
Priority to EP11824893.9A priority patent/EP2617848A4/en
Priority to TW100128527A priority patent/TWI448567B/en
Publication of JP2012062515A publication Critical patent/JP2012062515A/en
Application granted granted Critical
Publication of JP5425736B2 publication Critical patent/JP5425736B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/32Soft annealing, e.g. spheroidising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/62Selection of substances
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/003Cementite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide bearing steel enabling to exert favorable cold workability during cold working that is performed after globulariizing annealing, and also enabling to secure favorable wear resistance and rolling fatigue characteristics as a bearing member or the like.SOLUTION: The bearing steel contains 0.9-1.10% C, 0.05-0.49% Si, 0.1-1.0% Mn, 0.05% or less P (excluding 0%), 0.05% or less S (excluding 0%), 0.03-0.40% Cr, 0.05% or less Al (excluding 0%), 0.002-0.025% N, 0.0030% or less Ti (excluding 0%), and 0.0025% or less O (excluding 0%), the remainder comprising iron and unavoidable impurities. In the bearing steel, the average aspect ratio of cementite is 2.00 or less, the average circle equivalent diameter of cementite is 0.35-0.6 μm, and the number density of cementite having a circle equivalent diameter of 0.13 μm or more is 0.45/μmor more.

Description

本発明は、自動車や各種産業機械等に使用される軸受部品や機械構造用部品に適用される軸受用鋼に関するものであり、特に冷間加工によって軸受部品や機械構造用部品を製造する際に良好な冷間加工性を発揮するとともに、加工後の部品において優れた耐摩耗性と転動疲労特性を発揮する軸受用鋼に関するものである。   The present invention relates to a bearing steel applied to bearing parts and machine structural parts used in automobiles, various industrial machines, and the like, and particularly when manufacturing bearing parts and machine structural parts by cold working. The present invention relates to a steel for bearings that exhibits good cold workability and exhibits excellent wear resistance and rolling fatigue characteristics in the processed parts.

軸受部品や機械構造用部品は、線材や棒鋼を切断、鍛造、切削等の加工を行なうことによって最終形状に加工されることになる。特に冷間加工(冷間圧延または冷間鍛造)に関しては、圧延材のままでは硬過ぎて冷間加工が困難であるので、冷間加工性の向上を目的として冷間加工に先立って球状化焼鈍が施されるのが一般的である。   Bearing parts and machine structural parts are processed into final shapes by performing processing such as cutting, forging, and cutting of wire rods and steel bars. Especially for cold working (cold rolling or cold forging), the rolled material is too hard and cold working is difficult, so spheroidization prior to cold working for the purpose of improving cold workability. In general, annealing is performed.

良好な冷間加工性を確保することは、生産性の向上や省エネルギー化を図り、コスト低減やCO2排出量削減という観点からも重要である。良好な冷間加工性を確保するためには、変形抵抗が低いことや加工による割れが生じないこと等が必要な特性である。 Ensuring good cold workability is important from the viewpoint of improving productivity and energy saving, and reducing costs and reducing CO 2 emissions. In order to ensure good cold workability, it is necessary to have low deformation resistance, no cracking due to processing, and the like.

また軸受やクランクシャフト等の部品は、機械類の回転部や摺動部を支持する重要な部品であり、接触面圧が相当高く、また外力が変動することもあり、使用される環境が過酷である場合が多く、その素材である鋼材には、優れた耐久性が要求される。   Parts such as bearings and crankshafts are important parts that support the rotating parts and sliding parts of machinery, and the contact surface pressure is considerably high, and the external force may fluctuate. In many cases, the steel material is required to have excellent durability.

近年、こうした要求は機械類の高性能化や軽量化が進められるに伴い、年々厳しいものとなっている。軸部品の耐久性向上には、潤滑性に関する技術の改善も重要であるが、鋼材が耐摩耗性や転動疲労特性に優れていることが特に重要な要件となる。   In recent years, these requirements have become stricter year by year as the performance and weight of machinery have been improved. In order to improve the durability of shaft parts, it is important to improve the technology related to lubrication, but it is particularly important that the steel material has excellent wear resistance and rolling fatigue characteristics.

軸受に用いられる鋼材としては、従来からJIS G 4805(1999)に規定されるSUJ2等の高炭素クロム軸受鋼が、自動車や各種産業機械等の種々の分野で使用されている。しかしこの鋼材は炭素(0.95〜1.1質量%)とCr(1.3〜1.6質量%)の含有量が高く、転動疲労特性等に悪影響を及ぼす粗大な共晶炭化物(例えば10μm以上の析出物)が生成し易い。この粗大な共晶炭化物の生成を防ぐには、分塊圧延後に高温(1250℃程度)でしかも長時間(17時間程度)の拡散焼鈍を施してから圧延しなければならず、製造コストが高かった。またこの鋼材で製造した軸受部品は、転動疲労特性が不十分である問題が知られていた。   As steel materials used for bearings, conventionally, high carbon chromium bearing steel such as SUJ2 defined in JIS G 4805 (1999) has been used in various fields such as automobiles and various industrial machines. However, this steel has a high content of carbon (0.95 to 1.1% by mass) and Cr (1.3 to 1.6% by mass), which is a coarse eutectic carbide that adversely affects rolling fatigue characteristics ( For example, a precipitate of 10 μm or more is easily generated. In order to prevent the formation of this coarse eutectic carbide, it is necessary to perform rolling after high-temperature (about 1250 ° C.) and long-time (about 17 hours) diffusion rolling, resulting in high production costs. It was. Moreover, the bearing component manufactured with this steel material was known to have a problem of insufficient rolling fatigue characteristics.

こうした状況の下、軸受用鋼としてこれまでにも様々な技術が提案されている。   Under such circumstances, various technologies have been proposed as bearing steels.

例えば特許文献1には、C(0.6〜0.95質量%未満)とCr(1.3質量%未満)の含有量を低減させ、B(0.0002〜0.01質量%)を所定量含有させることによって、均質化熱処理の省略と球状化焼鈍時間の短縮によって製造コストを抑えると共に、優れた転動疲労特性と耐摩耗性を確保する技術が提案されている。しかしながら、この技術では、冷間鍛造性への配慮がなされておらず、冷間鍛造時に割れが発生するなどの問題が生じることがある。   For example, in Patent Document 1, the content of C (0.6 to less than 0.95 mass%) and Cr (less than 1.3 mass%) is reduced, and B (0.0002 to 0.01 mass%) is reduced. By including a predetermined amount, a technique has been proposed in which the homogenization heat treatment is omitted and the spheroidizing annealing time is reduced, thereby reducing the manufacturing cost and ensuring excellent rolling fatigue characteristics and wear resistance. However, with this technique, consideration is not given to cold forgeability, and problems such as cracking may occur during cold forging.

一方、特許文献2には、C(0.70〜0.95質量%)の含有量を低減させて、拡散焼鈍時間の短縮を図りつつ、Sb(0.0010質量%未満)を所定量含有させることによって、転動疲労特性の向上を図る技術が提案されている。しかしながら、この技術でも、冷間鍛造性への配慮がなされておらず、冷間鍛造時に割れが発生するなどの問題が生じることがある。   On the other hand, Patent Document 2 contains a predetermined amount of Sb (less than 0.0010 mass%) while reducing the content of C (0.70 to 0.95 mass%) to shorten the diffusion annealing time. Thus, a technique for improving rolling fatigue characteristics has been proposed. However, even with this technique, consideration is not given to cold forgeability, and problems such as cracking may occur during cold forging.

また特許文献3には、球状化焼鈍処理後、冷間伸線した後のフェライト平均粒径、セメンタイト平均粒径を規定し、冷間加工性を向上させた特許が開示されている。しかしながら、CとCrの含有量が多く、共晶炭化物が生成する場合があるため、拡散焼鈍しが必須となり、またさらに球状化焼鈍した後、20〜40%で冷間伸線を実施するため、鋼材の歩留まりが悪化し、製造コストが高くなる。   Patent Document 3 discloses a patent in which the average grain size of ferrite and the average grain size of cementite after cold drawing are defined after spheroidizing annealing treatment to improve cold workability. However, since the content of C and Cr is large and eutectic carbide may be generated, diffusion annealing is essential, and after further spheroidizing annealing, cold drawing is performed at 20 to 40%. , The yield of steel materials deteriorates and the manufacturing cost increases.

特開2000−96185号公報JP 2000-96185 A 特開平10−158790号公報JP-A-10-158790 特開2001−294972号公報JP 2001-294972 A

本発明は上記の様な事情に着目してなされたものであって、その目的は、球状化焼鈍後において実施される冷間加工において良好な冷間加工性を発揮することができ、また軸受部材等として良好な耐摩耗性や転動疲労特性をも確保できる軸受用鋼を確立することにある。更に本発明の他の目的はこのような優れた特性を兼備する軸受用鋼を拡散焼鈍を省略しても生産することが可能となる鋼材を提供することにある。   The present invention has been made paying attention to the circumstances as described above, and the purpose thereof is to exhibit good cold workability in cold working performed after spheroidizing annealing, and to provide a bearing. The purpose is to establish a bearing steel that can ensure good wear resistance and rolling fatigue characteristics as a member. Still another object of the present invention is to provide a steel material that can produce a steel for bearings having such excellent characteristics even if the diffusion annealing is omitted.

上記目的を達成し得た本発明の軸受用鋼は、C:0.9〜1.10%(質量%の意味、以下同じ)、Si:0.05〜0.49%、Mn:0.1〜1.0%、P:0.05%以下(0%を含まない)、S:0.05%以下(0%を含まない)、Cr:0.03〜0.40%、Al:0.05%以下(0%を含まない)、N:0.002〜0.025%、Ti:0.0030%以下(0%を含まない)、およびO:0.0025%以下(0%を含まない)を含有し、残部が鉄および不可避不純物からなり、セメンタイトの平均アスペクト比が2.00以下、セメンタイトの平均円相当直径が0.35〜0.6μmであると共に、円相当直径0.13μm以上のセメンタイトの個数密度が0.45個/μm以上である点に要旨を有するものである。 The steel for bearings of the present invention that can achieve the above-mentioned object is: C: 0.9 to 1.10% (meaning of mass%, the same applies hereinafter), Si: 0.05 to 0.49%, Mn: 0.00. 1 to 1.0%, P: 0.05% or less (not including 0%), S: 0.05% or less (not including 0%), Cr: 0.03 to 0.40%, Al: 0.05% or less (not including 0%), N: 0.002 to 0.025%, Ti: 0.0030% or less (not including 0%), and O: 0.0025% or less (0% The balance is composed of iron and inevitable impurities, the average aspect ratio of cementite is 2.00 or less, the average equivalent circle diameter of cementite is 0.35 to 0.6 μm, and the equivalent circle diameter is 0 It has a gist in that the number density of cementite of 13 μm or more is 0.45 pieces / μm 2 or more. .

本発明では更に他の元素として、Cu:0.25%以下(0%を含まない)、Ni:0.25%以下(0%を含まない)、およびMo:0.25%以下(0%を含まない)よりなる群から選択される1種以上を含むことも好ましく、また更に他の元素として、Nb:0.5%以下(0%を含まない)、および/またはV:0.5%以下(0%を含まない)を含むことも好ましい実施態様である。   In the present invention, as other elements, Cu: 0.25% or less (not including 0%), Ni: 0.25% or less (not including 0%), and Mo: 0.25% or less (0%) It is also preferable to include one or more selected from the group consisting of Nb: 0.5% or less (not including 0%), and / or V: 0.5. % Or less (not including 0%) is also a preferred embodiment.

本発明によれば、化学成分組成を適切に調整すると共に、適度な大きさ(アスペクト比、円相当径)のセメンタイトを鋼材内に適切に分散(個数密度)させることによって、良好な冷間加工性と共に、優れた耐摩耗性や転動疲労特性(以下、転動疲労特性と耐摩耗性を併せて「耐久性」ということがある)をも確保できる軸受用鋼が実現できる。したがって、本発明の軸受用鋼を軸受部品に適用したときには、過酷な環境で用いられても優れた耐久性を発揮できるものとなる。またCrを低減した本発明の軸受用鋼は、従来のSUJ2で必須とされていた長時間の拡散焼鈍を必要とせず、更に球状化焼鈍処理も短時間で行うことができるため、生産性の向上や省エネルギー化を図り、コスト低減やCO2排出量を削減するという観点からも有用である。 According to the present invention, by appropriately adjusting the chemical composition and appropriately dispersing (number density) cementite having an appropriate size (aspect ratio, equivalent circle diameter) in the steel material, good cold working is achieved. It is possible to realize a bearing steel that can secure excellent wear resistance and rolling fatigue characteristics (hereinafter, sometimes referred to as “durability” together with rolling fatigue characteristics and wear resistance). Therefore, when the bearing steel of the present invention is applied to a bearing component, excellent durability can be exhibited even when used in a harsh environment. Further, the bearing steel of the present invention with reduced Cr does not require long-time diffusion annealing, which has been essential in conventional SUJ2, and can also perform spheroidizing annealing in a short time, so that productivity can be improved. It is also useful from the viewpoint of improvement and energy saving, cost reduction, and CO 2 emission reduction.

図1は、実施例No.2の鋼片において確認された粗大な炭化物の写真である。FIG. It is the photograph of the coarse carbide | carbonized_material confirmed in the steel piece of 2. FIG. 図2は、セメンタイトの平均円相当直径と、変形抵抗低減率とL10寿命比の関係をプロットしたグラフである。FIG. 2 is a graph plotting the relationship between the average equivalent circle diameter of cementite, the deformation resistance reduction rate, and the L10 life ratio. 図3は、セメンタイトの個数密度と摩耗比の関係をプロットしたグラフである。FIG. 3 is a graph plotting the relationship between the number density of cementite and the wear ratio.

本発明者らは、優れた冷間加工性と耐久性を発揮する軸受用鋼の実現を目指して、様々な角度から検討した。そして、鋼材の冷間加工性を良好にし、且つ耐久性を向上させるためには、鋼材の化学成分組成を適切に制御すると共に、セメンタイトを制御すること、特に下記(A)、(B)の要件を満足させることが有効であるとの知見が得られた。
(A)冷間加工性と転動疲労特性の向上には、セメンタイトの大きさ(平均円相当直径と平均アスペクト比)を所定の範囲に制御すること
(B)耐摩耗性の向上には、セメンタイトの個数密度を所定の範囲に制御すること
The present inventors have studied from various angles with the aim of realizing a bearing steel that exhibits excellent cold workability and durability. And, in order to improve the cold workability of the steel material and improve the durability, it is necessary to appropriately control the chemical composition of the steel material and to control the cementite, particularly the following (A) and (B). The knowledge that satisfying the requirements was effective was obtained.
(A) In order to improve cold workability and rolling fatigue characteristics, the size of cementite (average equivalent circle diameter and average aspect ratio) should be controlled within a predetermined range. (B) To improve wear resistance, Control the number density of cementite within a specified range.

本発明者らは、上記知見に基づき、鋼材の冷間加工性、耐摩耗性及び転動疲労特性を向上させるべく、鋭意研究を重ねた。その結果、鋼材中の化学成分組成を制御すると共に、その製造条件を制御し、球状化焼鈍後にセメンタイトの平均アスペクト比が2.00以下、セメンタイトの平均円相当直径が0.35〜0.6μmであり、円相当直径0.13μm以上のセメンタイトの個数密度が0.45個/μm以上であるようにすれば、鋼材の上記特性を良好にできることを見出し、本発明を完成した。 Based on the above findings, the present inventors have made extensive studies to improve the cold workability, wear resistance, and rolling fatigue characteristics of steel materials. As a result, the chemical component composition in the steel material is controlled and the production conditions are controlled. After spheroidizing annealing, the average aspect ratio of cementite is 2.00 or less, and the average equivalent circle diameter of cementite is 0.35 to 0.6 μm. Thus, the present inventors have found that the above properties of steel can be improved when the number density of cementite having an equivalent circle diameter of 0.13 μm or more is 0.45 / μm 2 or more, and the present invention has been completed.

また本発明ではCr含有量を低減させることによって、粗大な共析炭化物の生成を抑制しているが、Cr含有量を低減させると上記規定のセメンタイトを満足する鋼を得ることが難しくなる。そこで製造条件について研究を重ねた結果、Cr含有量を低減させても、製造条件を厳密に制御することによって、上記規定のセメンタイトを満足できると共に、従来鋼(SUJ2)で必須とされていた長時間の拡散焼鈍を省略し、更に球状化焼鈍処理時間を短縮しても、上記優れた特性を有する本発明の軸受用鋼を製造可能であることを見出した。   In the present invention, the formation of coarse eutectoid carbide is suppressed by reducing the Cr content. However, when the Cr content is reduced, it becomes difficult to obtain a steel that satisfies the above-mentioned prescribed cementite. Therefore, as a result of repeated research on manufacturing conditions, even if the Cr content is reduced, the above-defined cementite can be satisfied by strictly controlling the manufacturing conditions, and it has been essential for conventional steel (SUJ2). It has been found that the steel for bearings of the present invention having the above excellent characteristics can be produced even if the time-diffusion annealing is omitted and the spheroidizing annealing time is further shortened.

まず、本発明で特定するセメンタイトについて説明する。   First, the cementite specified by the present invention will be described.

本発明では、セメンタイトの平均アスペクト比が2.00以下である必要がある。この平均アスペクト比が2.00よりも大きくなると、冷間加工時にセメンタイトに応力が集中し易くなり、界面で亀裂が発生して割れが発生し易くなると共に、転動疲労特性も悪くなる。平均アスペクト比は好ましくは1.90以下、より好ましくは1.70以下である。上記アスペクト比はセメンタイトの長径と短径の比であって、後記実施例に記載の測定方法に基づくものである。また本発明の平均アスペクト比は、12視野の平均値である。   In the present invention, the average aspect ratio of cementite needs to be 2.00 or less. When this average aspect ratio is greater than 2.00, stress tends to concentrate on the cementite during cold working, cracks are easily generated at the interface, and the rolling fatigue characteristics are also deteriorated. The average aspect ratio is preferably 1.90 or less, more preferably 1.70 or less. The aspect ratio is a ratio of the major axis and the minor axis of cementite, and is based on the measurement method described in the examples below. The average aspect ratio of the present invention is an average value of 12 visual fields.

また本発明では、セメンタイトの平均的な大きさも冷間加工性や転動疲労特性に影響を与えることから、平均円相当直径を0.35〜0.6μmとする必要がある。セメンタイトの平均円相当直径が0.35μm未満の場合、分散強化によって変形抵抗が増大し、冷間加工性が悪化する。また0.35μm未満の場合、焼入れ・焼戻し処理によってセメンタイトが消失してしまい、所望の耐久性が得られなくなる。好ましい平均円相当直径は0.40μm以上、より好ましく0.45μm以上である。一方、セメンタイトの平均円相当直径が0.6μmを超えると、焼入れ・焼戻し後のセメンタイト周囲の脆弱部が大きくなるため、亀裂が発生・進展し易くなって、転動疲労特性が悪くなる。好ましい平均円相当直径は0.55μm以下、より好ましく0.5μm以下である。   In the present invention, since the average size of cementite also affects cold workability and rolling fatigue characteristics, the average equivalent circle diameter needs to be 0.35 to 0.6 μm. When the average equivalent-circle diameter of cementite is less than 0.35 μm, deformation resistance increases due to dispersion strengthening, and cold workability deteriorates. On the other hand, when the thickness is less than 0.35 μm, the cementite disappears due to the quenching / tempering treatment, and the desired durability cannot be obtained. A preferable average equivalent circle diameter is 0.40 μm or more, more preferably 0.45 μm or more. On the other hand, when the average equivalent circle diameter of cementite exceeds 0.6 μm, the fragile portion around the cementite after quenching and tempering becomes large, so that cracks are easily generated and propagated, resulting in poor rolling fatigue characteristics. The average equivalent circle diameter is preferably 0.55 μm or less, more preferably 0.5 μm or less.

上記円相当直径とは、セメンタイトの大きさに着目して、その面積が等しくなるように想定した円の直径を求めたもので、後記実施例で説明するが、走査型電子顕微鏡(SEM)の観察面上で認められるセメンタイトのものであって、本発明の平均円相当直径とは、12視野の平均値である。   The above-mentioned equivalent circle diameter refers to the diameter of a circle that is assumed to have the same area by paying attention to the size of cementite, and will be described later in Examples, but it is described in the scanning electron microscope (SEM). It is a cementite observed on the observation surface, and the average equivalent circle diameter of the present invention is an average value of 12 visual fields.

更に本発明では、上記セメンタイトを観察した際に確認される円相当直径0.13μm以上のセメンタイトの個数密度が0.45個/μm2未満では、硬質であるセメンタイトの分散による耐摩耗性向上効果が有効に発揮されなくなる。したがって円相当直径0.13μm以上のセメンタイトの個数密度は、好ましくは0.48個/μm2以上、より好ましくは0.51個/μm2以上である。個数密度の上限については、特に限定しないがあまり多くなり過ぎると、分散強化によって変形抵抗が増大し、冷間加工性が悪化することがある。セメンタイトの個数密度は、好ましくは1.0個/μm以下、より好ましくは0.75個/μm以下である。本発明の個数密度は、後記実施例で説明するが、12視野を観察して得られた値である。 Further, in the present invention, when the number density of cementite having an equivalent circle diameter of 0.13 μm or more confirmed when observing the above cementite is less than 0.45 / μm 2 , the effect of improving the wear resistance by dispersion of hard cementite. Will not be effective. Accordingly, the number density of cementite having an equivalent circle diameter of 0.13 μm or more is preferably 0.48 pieces / μm 2 or more, more preferably 0.51 pieces / μm 2 or more. The upper limit of the number density is not particularly limited, but if it is too large, deformation resistance may increase due to dispersion strengthening, and cold workability may deteriorate. The number density of cementite is preferably 1.0 piece / μm 2 or less, more preferably 0.75 piece / μm 2 or less. The number density of the present invention is a value obtained by observing 12 fields of view, which will be described later in Examples.

なお、上記セメンタイトの観察においては観察からは粗大な析出物は除外している。粗大な析出物とは例えば長径が10μm以上のものをいう。   In the observation of the cementite, coarse precipitates are excluded from the observation. The coarse precipitate means, for example, one having a major axis of 10 μm or more.

上記セメンタイトの各値は、実施例に記載した方法に基づいて測定したものである。実施例において記載しているが、本発明では鋼材のD/4位置(Dは直径)を観察した値を採用している。これはD/4位置の測定結果が上記本発明の規定を満たせば、冷間加工性だけでなく、加工後の部品の耐摩耗性と転動疲労特性に優れた特性を発揮するからである。   Each value of the above cementite is measured based on the method described in the examples. Although described in the examples, the present invention adopts a value obtained by observing the D / 4 position (D is a diameter) of the steel material. This is because, if the measurement result at the D / 4 position satisfies the above-mentioned provisions of the present invention, it exhibits not only cold workability but also excellent wear resistance and rolling fatigue characteristics of the parts after processing. .

本発明の鋼材は、Crの含有量の低減を含め、その化学成分組成(C、Si、Mn、P、S、Cr、Al、N、Ti、O等)も適切に調整する必要があるが、これらの成分の範囲限定理由は下記の通りである。   The steel material of the present invention needs to appropriately adjust its chemical composition (C, Si, Mn, P, S, Cr, Al, N, Ti, O, etc.) including the reduction of Cr content. The reasons for limiting the ranges of these components are as follows.

[C:0.9〜1.10%]
Cは、焼入硬さを増大させ、室温、高温における強度を維持し、セメンタイトを分散させて耐摩耗性、転動疲労特性を付与すると共に、冷間加工性を向上させるために必須の元素である。こうした効果を発揮させるためには、Cは0.9%以上含有させなければならず、好ましくは0.95%以上、より好ましくは0.97%以上含有させることが望ましい。しかしながら、C含有量が多くなり過ぎると芯部に巨大炭化物が生成し易くなり、転動疲労特性に却って悪影響を及ぼす様になるので、C含有量は1.10%以下、好ましくは1.07%以下、より好ましくは1.03%以下に抑えるべきである。
[C: 0.9 to 1.10%]
C is an element essential for increasing quenching hardness, maintaining strength at room temperature and high temperature, dispersing cementite to impart wear resistance and rolling fatigue characteristics, and improving cold workability It is. In order to exert such an effect, C must be contained in an amount of 0.9% or more, preferably 0.95% or more, more preferably 0.97% or more. However, if the C content is excessively large, giant carbides are likely to be formed in the core, and adversely affect the rolling fatigue characteristics. Therefore, the C content is 1.10% or less, preferably 1.07. % Or less, more preferably 1.03% or less.

[Si:0.05〜0.49%]
Siは、マトリックスの固溶強化および焼入れ性を向上させるために有用な元素である。こうした効果を発揮させるためには、Siは0.05%以上含有させる必要があり、好ましくは0.1%以上、より好ましくは0.2%以上含有させることが望ましい。しかしながら、Si含有量が多くなり過ぎると冷間加工性が著しく低下するので、Si含有量は0.49%以下、好ましくは0.35%以下、より好ましくは0.30%以下に抑えるべきである。
[Si: 0.05 to 0.49%]
Si is an element useful for improving the solid solution strengthening and hardenability of the matrix. In order to exert such effects, it is necessary to contain Si by 0.05% or more, preferably 0.1% or more, and more preferably 0.2% or more. However, if the Si content is excessively increased, the cold workability is remarkably reduced, so the Si content should be suppressed to 0.49% or less, preferably 0.35% or less, more preferably 0.30% or less. is there.

[Mn:0.1〜1.0%]
Mnは、マトリックスの固溶強化および焼入れ性向上に有用な元素である。こうした効果を発揮させるためには、Mnは0.1%以上含有させる必要があり、好ましくは0.15%以上、より好ましくは0.2%以上含有させることが望ましい。しかしながら、Mn含有量が多くなり過ぎると冷間加工性が著しく低下するので、Mn含有量は1.0%以下、好ましくは0.85%以下、より好ましくは0.8%以下に抑えるべきである。
[Mn: 0.1 to 1.0%]
Mn is an element useful for strengthening the solid solution of the matrix and improving the hardenability. In order to exert such an effect, it is necessary to contain Mn in an amount of 0.1% or more, preferably 0.15% or more, more preferably 0.2% or more. However, if the Mn content is excessively increased, the cold workability is remarkably reduced, so the Mn content should be suppressed to 1.0% or less, preferably 0.85% or less, more preferably 0.8% or less. is there.

[P:0.05%以下(0%を含まない)]
Pは、不可避的に不純物として含有する元素であるが、粒界に偏析し、冷間加工性を低下させるため極力低減することが望ましいが、極端に低減することは製鋼コストの増大を招くことになる。こうしたことから、P含有量は、0.05%以下とした。好ましくは0.04%以下、より好ましくは0.03%以下に低減するのが良い。
[P: 0.05% or less (excluding 0%)]
P is an element inevitably contained as an impurity, but it is desirable to reduce it as much as possible because it segregates at the grain boundary and lowers the cold workability. However, extreme reduction leads to an increase in steelmaking cost. become. For these reasons, the P content is set to 0.05% or less. It is preferable to reduce it to 0.04% or less, more preferably 0.03% or less.

[S:0.05%以下(0%を含まない)]
Sは、不可避的に不純物として含有する元素であるが、FeSとして粒界に析出し、冷間加工性を低下させる元素である。また、MnSとして析出し、転動疲労特性を低下させるため極力低減することが望ましいが、極端に低減することは製鋼コストの増大を招くことになる。こうしたことから、S含有量は、0.05%以下とした。好ましくは0.04%以下、より好ましくは0.03%以下に低減するのが良い。
[S: 0.05% or less (excluding 0%)]
S is an element that is inevitably contained as an impurity, but is precipitated at the grain boundary as FeS and decreases the cold workability. Moreover, although it is desirable to reduce as much as possible in order to precipitate as MnS and to reduce a rolling fatigue characteristic, extreme reduction will cause the steelmaking cost to increase. For these reasons, the S content is set to 0.05% or less. It is preferable to reduce it to 0.04% or less, more preferably 0.03% or less.

[Cr:0.03〜0.40%]
Crは、Cと結びついて炭化物を形成し、耐摩耗性および冷間加工性を向上させる元素である。このような効果を得るためにはCr含有量は0.03%以上とする必要がある。好ましくは0.1%以上、より好ましくは0.2%以上である。しかし、Crは偏析し易い元素であるため、Cr含有量が過剰になると、粗大な炭化物が生成し、転動疲労特性がかえって低下する。従ってCr量は0.40%以下とする。好ましくは0.35%以下、より好ましくは0.3%以下である。
[Cr: 0.03-0.40%]
Cr is an element that combines with C to form carbides and improves wear resistance and cold workability. In order to obtain such an effect, the Cr content needs to be 0.03% or more. Preferably it is 0.1% or more, More preferably, it is 0.2% or more. However, since Cr is an element that is easily segregated, if the Cr content is excessive, coarse carbides are generated, and the rolling fatigue characteristics are lowered. Therefore, the Cr content is 0.40% or less. Preferably it is 0.35% or less, More preferably, it is 0.3% or less.

[Al:0.05%以下(0%を含まない)]
Alは、脱酸元素として有効であり、鋼中の酸素量を低減して、転動疲労特性を高める作用を有すると共に、Nと結合してAlNを形成して転動疲労特性を向上させる元素である。こうした効果を得るためにはAlを0.015%以上含有させることが望ましいが、このAl量が過剰になると、アルミナ系の介在物が粗大化して転動疲労特性を低下させる。したがってAl量は0.05%以下、好ましくは0.04%以下、より好ましくは0.03%以下である。
[Al: 0.05% or less (excluding 0%)]
Al is effective as a deoxidizing element, has an effect of reducing the amount of oxygen in steel and improving rolling fatigue characteristics, and is an element that combines with N to form AlN and improve rolling fatigue characteristics. It is. In order to obtain such an effect, it is desirable to contain 0.015% or more of Al. However, when the amount of Al is excessive, alumina inclusions are coarsened and rolling fatigue characteristics are deteriorated. Therefore, the Al content is 0.05% or less, preferably 0.04% or less, more preferably 0.03% or less.

[N:0.002〜0.025%]
Nは上記Alと結合し、Al系窒素化合物の微細分散による転動疲労特性向上効果を発揮させる元素である。このような効果を発揮させるには、N含有量は0.002%以上、好ましくは0.004%以上、より好ましくは0.005%以上である。しかし、N含有量が過剰になると、粗大なTiNを形成し、転動疲労特性が低下する。従ってN量は、0.025%以下、好ましくは0.020%以下、より好ましくは0.010%以下である。
[N: 0.002 to 0.025%]
N is an element that combines with the Al and exhibits an effect of improving rolling fatigue characteristics by fine dispersion of an Al-based nitrogen compound. In order to exert such an effect, the N content is 0.002% or more, preferably 0.004% or more, more preferably 0.005% or more. However, when the N content is excessive, coarse TiN is formed, and rolling fatigue characteristics are deteriorated. Therefore, the N content is 0.025% or less, preferably 0.020% or less, more preferably 0.010% or less.

[Ti:0.0030%以下(0%を含まない)]
Tiは、鋼中のNと結合してTiNを生成し、転動疲労特性に悪影響を及ぼすばかりでなく、冷間加工性や熱間加工性も害する有害元素であり、極力低減することが望ましいが、極端に低減することは製鋼コストの増大を招くことになる。こうしたことから、Ti含有量は0.0030%以下とする必要がある。尚、Ti含有量の好ましい上限は0.0015%以下、より好ましくは0.0010%以下である。
[Ti: 0.0030% or less (excluding 0%)]
Ti combines with N in steel to produce TiN, which not only adversely affects rolling fatigue properties but also harms cold workability and hot workability, and it is desirable to reduce it as much as possible. However, an extreme reduction leads to an increase in steelmaking costs. For these reasons, the Ti content needs to be 0.0030% or less. In addition, the upper limit with preferable Ti content is 0.0015% or less, More preferably, it is 0.0010% or less.

[O:0.0025%以下(0%を含まない)]
Oは、鋼中の不純物の形態に大きな影響を及ぼし、転動疲労特性に悪影響を及ぼすAl23やSiO2等の介在物を形成するため、極力低減することが好ましいが、極端に低減することは製鋼コストの増大を招くことになる。こうしたことから、O含有量は0.0025%以下とする必要がある。尚、O含有量の好ましい上限は0.002%以下、より好ましくは0.0015%以下である。
[O: 0.0025% or less (excluding 0%)]
O has a large effect on the form of impurities in steel and forms inclusions such as Al 2 O 3 and SiO 2 that adversely affect rolling fatigue characteristics. Doing so will increase the steelmaking cost. For these reasons, the O content needs to be 0.0025% or less. In addition, the upper limit with preferable O content is 0.002% or less, More preferably, it is 0.0015% or less.

本発明で規定する含有元素は上記の通りであって、残部は鉄および不可避不純物であり、該不可避不純物として、原料、資材、製造設備等の状況によって持ち込まれる元素の混入が許容され得る。尚、転動疲労特性を高めるため、下記元素を規定範囲内で積極的に含有させることも可能である。   The contained elements specified in the present invention are as described above, and the balance is iron and unavoidable impurities, and as the unavoidable impurities, mixing of elements brought in depending on the situation of raw materials, materials, manufacturing facilities, etc. can be allowed. In addition, in order to improve rolling fatigue characteristics, it is also possible to positively contain the following elements within a specified range.

[Cu:0.25%以下(0%を含まない)、Ni:0.25%以下(0%を含まない)、およびMo:0.25%以下(0%を含まない)よりなる群から選択される1種以上を含む]
Cu、NiおよびMoは、いずれも母相の焼入性向上元素として作用し、硬さを高めて転動疲労特性の向上に寄与する元素であって任意の1種以上を含有させることができる。これらの効果は、いずれも好ましくは0.03%以上、より好ましく0.05%以上含有させることによって有効に発揮される。しかしながらいずれも0.25%を超えると加工性が劣化することになる。好ましくは0.23%以下、より好ましく0.20%以下である。
[From the group consisting of Cu: 0.25% or less (not including 0%), Ni: 0.25% or less (not including 0%), and Mo: 0.25% or less (not including 0%) Including one or more selected]
Cu, Ni, and Mo all act as elements for improving the hardenability of the parent phase, increase the hardness and contribute to the improvement of rolling fatigue characteristics, and can contain any one or more kinds. . Any of these effects is preferably exhibited by containing 0.03% or more, more preferably 0.05% or more. However, if both exceed 0.25%, workability deteriorates. Preferably it is 0.23% or less, More preferably, it is 0.20% or less.

[Nb:0.5%以下(0%を含まない)、および/またはV:0.5%以下(0%を含まない)]
Nb、およびVは、いずれもNと結合することで、窒素化合物を形成して、結晶粒を整粒化し、転動疲労特性を向上させる上で有効な元素であって、単独、或いは併用できる。これらの効果は、いずれも好ましくは0.001%以上、より好ましくは0.003%以上含有させることによって有効に発揮される。しかしながら、いずれの含有量も0.5%を超えると、結晶粒が微細化し、不完全焼入れ相が生成しやすくなる。好ましい含有量は夫々0.3%以下、より好ましくは0.1%以下である。
[Nb: 0.5% or less (not including 0%) and / or V: 0.5% or less (not including 0%)]
Nb and V are elements that are effective in binding nitrogen to form a nitrogen compound to regulate crystal grains and improve rolling fatigue characteristics, and can be used alone or in combination. . All of these effects are preferably exhibited by containing 0.001% or more, more preferably 0.003% or more. However, if any content exceeds 0.5%, the crystal grains become finer and an incompletely quenched phase tends to be generated. The preferred contents are each 0.3% or less, more preferably 0.1% or less.

本発明ではCr含有量を上記範囲で規定しているが、Cr含有量を0.40%以下に低減させると上記所定の大きさのセメンタイトを安定的に分散させることが難しくなる。そのため本発明の鋼材において、球状化焼鈍し後に所定の大きさのセメンタイトを確保するためには、その製造条件(特に圧延後に行う球状化焼鈍条件)も適切に制御する必要がある。本発明では、熱間圧延して得られた鋼材を平均昇温速度40〜100℃/hrで均熱温度(A1点+10℃〜A1点+40℃)まで加熱し、該均熱温度で4〜8時間保持した後、該均熱温度から(A1点−60℃)までを、一次冷却速度(平均冷却速度)で、5〜15℃/hrの範囲とし、更に室温(25℃)までの二次冷却を放冷とすることで、上記所定の大きさのセメンタイトを安定的に分散させることができる。   In this invention, although Cr content is prescribed | regulated in the said range, when Cr content is reduced to 0.40% or less, it will become difficult to disperse | distribute the said predetermined magnitude | size cementite stably. Therefore, in the steel material of the present invention, in order to secure cementite having a predetermined size after spheroidizing annealing, it is necessary to appropriately control the manufacturing conditions (especially spheroidizing annealing conditions performed after rolling). In the present invention, the steel material obtained by hot rolling is heated to a soaking temperature (A1 point + 10 ° C. to A1 point + 40 ° C.) at an average heating rate of 40 to 100 ° C./hr, and the soaking temperature is 4 to 4 ° C. After holding for 8 hours, from the soaking temperature to (A1 point-60 ° C), the primary cooling rate (average cooling rate) is in the range of 5-15 ° C / hr, and further up to room temperature (25 ° C). By letting the next cooling stand to cool, the cementite having the predetermined size can be stably dispersed.

上記平均昇温速度が40℃/hr未満では、セメンタイトが粗大化してしまい、上記所望の平均円相当直径のセメンタイトが得られなくなると共に、セメンタイトの分散状態(即ち、所定の個数密度)が得られなくなる。100℃/hrを超えると、パーライトを分断できず、セメンタイトのアスペクト比が上記所定値を超えてしまう。また100℃/hrを超えるとセメンタイトが小さくなり、上記所定の平均円相当直径を有するセメンタイトが得られなくなる。好ましい平均昇温速度は50℃/hr以上、より好ましくは60℃/hr以上、好ましくは90℃/hr以下、より好ましく80℃/hr以下である。   When the average heating rate is less than 40 ° C./hr, the cementite is coarsened, and the cementite having the desired average equivalent circle diameter cannot be obtained, and a dispersion state of the cementite (that is, a predetermined number density) is obtained. Disappear. When it exceeds 100 ° C./hr, the pearlite cannot be divided, and the aspect ratio of cementite exceeds the predetermined value. On the other hand, if it exceeds 100 ° C./hr, the cementite becomes small, and the cementite having the predetermined average equivalent circle diameter cannot be obtained. A preferable average heating rate is 50 ° C./hr or more, more preferably 60 ° C./hr or more, preferably 90 ° C./hr or less, more preferably 80 ° C./hr or less.

上記均熱温度がA1点+10℃未満では、パーライトを分断できず、セメンタイトのアスペクト比が上記所定値を超えてしまう。また均熱温度がA1点+40℃を超えるとパーライト中のセメンタイトが過剰に固溶して再生パーライトが析出するため、アスペクト比が上記所定値を超えてしまう。   If the soaking temperature is less than A1 point + 10 ° C., pearlite cannot be divided, and the aspect ratio of cementite exceeds the predetermined value. On the other hand, when the soaking temperature exceeds the point A1 + 40 ° C., cementite in the pearlite is excessively dissolved and the regenerated pearlite is precipitated, so that the aspect ratio exceeds the predetermined value.

上記均熱温度(A1点+10℃〜A1点+40℃)での保持時間が4時間未満では、セメンタイト径が小さくなり、上記所定の大きさが得られなくなる。また保持時間が8時間を超えるとセメンタイトの粗大化が進み、セメンタイト径が大きくなり、上記所定の大きさが得られなくなると共に、セメンタイトの分散状態が得られなくなる。   When the holding time at the soaking temperature (A1 point + 10 ° C. to A1 point + 40 ° C.) is less than 4 hours, the cementite diameter becomes small and the predetermined size cannot be obtained. On the other hand, when the holding time exceeds 8 hours, the cementite is coarsened, the cementite diameter is increased, the predetermined size cannot be obtained, and the dispersed state of cementite cannot be obtained.

上記一次冷却速度が5℃/hr未満の冷却では、セメンタイトが粗大化し、所望の大きさが得られなくなる。また15℃/hrを超えるとセメンタイト径が小さくなり、上記所定の大きさが得られなくなる。   When the primary cooling rate is less than 5 ° C./hr, cementite is coarsened and a desired size cannot be obtained. On the other hand, if it exceeds 15 ° C./hr, the cementite diameter becomes small and the predetermined size cannot be obtained.

なお、一次冷却は均熱温度から(A1点−60℃)までの範囲としたのは、上記規定のセメンタイトを確実に得るために設定した温度である。したがって、上記規定のセメンタイトが得られるのであれば、一時冷却終了温度が高くてもよい(例えばA1点−50℃など)。またA1点−60℃を超えて上記一次冷却速度で冷却をすると、生産性が悪化する。   The primary cooling is in the range from the soaking temperature to (A1 point-60 ° C.), which is a temperature set in order to surely obtain the prescribed cementite. Therefore, as long as the prescribed cementite is obtained, the temporary cooling end temperature may be high (for example, A1 point-50 ° C.). Moreover, if it exceeds A1 point-60 degreeC and it cools with the said primary cooling rate, productivity will deteriorate.

また上記二次冷却速度は特に限定されないが、生産性向上の観点から放冷(大気放冷)とすることが望ましい。   In addition, the secondary cooling rate is not particularly limited, but it is desirable to cool it (air cooling) from the viewpoint of improving productivity.

本発明の鋼材は、上記のような球状化焼鈍を行なった後、所定の部品形状に加工され、引き続き焼入れ・焼戻しされて軸受部品等に製造されるものであるが、鋼材段階の形状についてはこうした製造に適用できるような線状・棒状のいずれも含むものであり、そのサイズも、最終製品に応じて適宜決めることができる。   The steel material of the present invention is processed into a predetermined part shape after the spheroidizing annealing as described above, and is subsequently quenched and tempered to be manufactured into a bearing part or the like. It includes both linear and bar shapes that can be applied to such production, and the size can also be appropriately determined according to the final product.

なお、上記本発明の軸受用鋼は、球状化焼鈍を行った後の組織を規定しているが、球状化焼鈍後に上記規定の組織を満足する軸受用鋼は、所定の部品形状に加工され、引き続き焼入れ・焼戻しされて製造された軸受部品として使用した場合に、優れた耐摩耗性と転動疲労特性を発揮することを実験により確認している(後記実施例参照)。   The bearing steel of the present invention defines a structure after spheroidizing annealing, but a bearing steel that satisfies the above defined structure after spheroidizing annealing is processed into a predetermined part shape. It has been confirmed by experiments that it exhibits excellent wear resistance and rolling fatigue characteristics when used as a bearing part that is subsequently quenched and tempered (see Examples below).

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

下記表1に示す各種化学成分組成の鋼材を加熱炉で1100〜1300℃に加熱した後、900〜1200℃で分塊圧延を実施した。その後、800〜1100℃の温度範囲で熱間圧延(圧延を模した鍛造も含む)して、直径:65mmの丸棒材を作製した。   Steel materials having various chemical composition compositions shown in Table 1 below were heated to 1100 to 1300 ° C. in a heating furnace, and then subjected to ingot rolling at 900 to 1200 ° C. Thereafter, hot rolling (including forging simulating rolling) was performed in a temperature range of 800 to 1100 ° C. to produce a round bar with a diameter of 65 mm.

得られた丸棒材を、表2記載の球状化熱処理条件(昇温速度、均熱温度、均熱時間、Al点−60℃までの一次冷却速度)にて球状化焼鈍を施して試験材を得た。この際、A1点−60℃から室温(25℃)までは大気放冷した(二次冷却)。   The obtained round bar was subjected to spheroidizing annealing under the spheroidizing heat treatment conditions shown in Table 2 (temperature increase rate, soaking temperature, soaking time, primary cooling rate to Al point -60 ° C) and tested. Got. Under the present circumstances, from A1 point -60 degreeC to room temperature (25 degreeC), it air-cooled (secondary cooling).

なお、No.1のみ分解圧延を実施した後、ソーキング炉で1230℃、17時間のソーキング(拡散焼鈍)を実施してから熱間圧延を行った(No.1を比較対象となる基準鋼とした)。   In addition, No. After carrying out decomposition rolling only for No. 1, hot rolling was performed after performing soaking (diffusion annealing) at 1230 ° C. for 17 hours in a soaking furnace (No. 1 was used as a reference steel for comparison).

[巨大炭化物の有無]
各試験材のD/2位置(Dは直径)について、断面マクロ組織を光学顕微鏡(倍率:100倍)で観察して(観察数1視野)、巨大炭化物の有無を確認した。図1の写真に示すような10μm以上の巨大炭化物が確認できた場合、巨大炭化物「有り」と判断した。
[With or without giant carbides]
Regarding the D / 2 position (D is the diameter) of each test material, the cross-sectional macrostructure was observed with an optical microscope (magnification: 100 times) (number of observations: 1 field of view) to confirm the presence or absence of giant carbide. When giant carbides of 10 μm or more as shown in the photograph of FIG. 1 could be confirmed, it was determined that the giant carbides were “present”.

[セメンタイトの個数密度・平均円相当直径・平均アスペクト比]
試験材を長手方向(圧延方向)に対して垂直に切断し、この縦断面(圧延方向対して垂直方向)のD/4位置(Dは直径)で更に試験材を長手方向に水平に切断し、この水平切断面を鏡面研磨し、5%ピクラルで腐食して金属組織を顕出させた後、この水平切断面における前記D/4位置ライン上の任意の12箇所(1視野当たり2688μm2)を走査電子顕微境(倍率:2000倍)で観察・撮影し、画像のコントラストから白い部分をセメンタイト粒子と判別してマーキングした。粒子解析ソフト([粒子解析III for windows. Version3.00 SUMITOMO METAL TECHNOLOGY製])を用いて、前記マーキングした各セメンタイト粒子の面積から円相当直径(μm)を算出し、12視野の平均値を求めた(「平均円相当直径」)。
[Number density of cementite, average equivalent circle diameter, average aspect ratio]
The test material was cut perpendicularly to the longitudinal direction (rolling direction), and the test material was further cut horizontally in the longitudinal direction at the D / 4 position (D is the diameter) of this longitudinal section (perpendicular to the rolling direction). The horizontal cut surface was mirror-polished and corroded with 5% picral to reveal the metal structure, and then any 12 locations on the D / 4 position line on this horizontal cut surface (2688 μm 2 per field of view) Were observed and photographed under a scanning electron microscopic environment (magnification: 2000 times), and white portions were identified as cementite particles from the contrast of the image and marked. Using particle analysis software ([Particle Analysis III for windows. Version 3.00 SUMITOMO METAL TECHNOLOGY]), the equivalent circle diameter (μm) is calculated from the area of each marked cementite particle, and the average value of 12 fields of view is obtained. ("Average equivalent circle diameter").

また単位面積あたりに存在する円相当直径が0.13μm以上のセメンタイト粒子の個数(個/μm2)を求めた(「個数密度」)。 In addition, the number (number / μm 2 ) of cementite particles having an equivalent circle diameter of 0.13 μm or more per unit area was determined (“number density”).

更にセメンタイトのアスペクト比を求め、12視野の平均値を求めた(「平均アスペクト比」)。   Further, the aspect ratio of cementite was determined, and the average value of 12 fields of view was determined (“average aspect ratio”).

なお、上記セメンタイトの測定においては0.13μm未満のものは測定対象外とした。   In the measurement of cementite, those with a size of less than 0.13 μm were excluded from measurement.

[冷間加工性(割れ・変形抵抗)]
上記試験材を用いて、試験材の中心部から直径:14mm、高さ:21mmの円柱試験片を切り出し、冷間加工性を評価するための試験片とした。
[Cold workability (cracking / deformation resistance)]
Using the above test material, a cylindrical test piece having a diameter of 14 mm and a height of 21 mm was cut out from the center of the test material, and used as a test piece for evaluating cold workability.

試験片はプレス試験機を用いて、加工率(圧縮率)60%で冷間加工した後、試験片の側面を光学顕微鏡で観察し(倍率:20倍)、割れ発生の有無を確認した。また試験片を加工率(圧縮率)40%で冷間加工した際の変形抵抗(MPa)を測定し、鋼種No.1の試験片の変形抵抗との対比によって変形抵抗低減率を算出し、評価を行った。なお、上記加工率は[{(1−L/L0)}×100(%)](Lは加工前の試験片の長さ、L0は加工後の試験片の長さ)で示されるものである。 The test piece was cold worked using a press tester at a processing rate (compression rate) of 60%, and then the side surface of the test piece was observed with an optical microscope (magnification: 20 times) to confirm the presence or absence of cracks. Further, the deformation resistance (MPa) when the test piece was cold worked at a working rate (compression rate) of 40% was measured. The deformation resistance reduction rate was calculated by comparison with the deformation resistance of the test piece 1 and evaluated. The above working ratio is represented by [{(1-L / L 0)} × 100 (%)] (L is the length of the specimen before the processing, the length of L 0 is after working specimen) Is.

評価基準:試験片に割れがなく、かつ変形抵抗低減率がNo.1の試験片に対して5%以上のものを冷間加工性に優れる(○)と判断した。一方、変形抵抗はNo.1よりも高いものや、変形抵抗が低減しても変形抵抗低減率が5%未満のものは冷間加工性に劣る(×)と判断した。   Evaluation criteria: The test piece is not cracked and the deformation resistance reduction rate is No. It was judged that 5% or more of one test piece was excellent in cold workability (◯). On the other hand, the deformation resistance is No. Those having a deformation resistance reduction rate of less than 5% were judged to be inferior in cold workability (×) even when the deformation resistance was higher than 1 or the deformation resistance was reduced.

[転動疲労特性]
試験材からスラスト試験片(形状:円盤 サイズ:Φ60mm×2mm厚さ)を作製し、スラスト型転動疲労試験機(「FJ−5T」 株式会社富士試験機製作所製)にて、繰り返し速度:1800rpm、面圧:5.3GPa、中止回数:2×108回の条件にて、各試験片につき転動疲労試験を各16回ずつ実施し、疲労寿命L10(ワイプル確率紙にプロットして得られる累積破損確率10%における疲労破壊までの応力繰り返し数)を評価した。
[Rolling fatigue characteristics]
A thrust test piece (shape: disk size: Φ60 mm × 2 mm thickness) is prepared from the test material, and the repetition rate is 1800 rpm with a thrust type rolling fatigue tester (“FJ-5T” manufactured by Fuji Testing Machine Co., Ltd.). , Surface pressure: 5.3 GPa, number of discontinuations: 2 × 10 8 rolling fatigue tests were performed 16 times for each test piece, fatigue life L 10 (obtained by plotting on wipe probability paper) The number of repeated stresses until fatigue failure at a cumulative failure probability of 10% was evaluated.

No.1の試験片の疲労寿命L10(L10寿命)を1.0とし、1.0以上のL10寿命を有する試験片を転動疲労特性に優れると判断した。 No. The fatigue life L 10 (L10 life) of the test piece 1 was 1.0, and a test piece having an L10 life of 1.0 or more was judged to be excellent in rolling fatigue characteristics.

[耐摩耗性]
上記スラスト試験片に対し、スラスト型転動疲労試験機にて、繰り返し速度:1800rpm、面圧:5.3Gpa、中止回数:1×108回の条件にて、回転させた際の摩耗深さを摩耗量とした。このとき各鋼材における試験回数は、夫々3回ずつ(n=3)とした。No.1の試験片の摩耗量を1とし、1.00以下の摩耗量を有する試験片を耐摩耗性に優れると判断した。
[Abrasion resistance]
Wear depth when the thrust test piece is rotated on a thrust type rolling fatigue tester under the conditions of repetition rate: 1800 rpm, surface pressure: 5.3 Gpa, number of interruptions: 1 × 10 8 times Was the amount of wear. At this time, the number of tests for each steel material was three (n = 3). No. The amount of wear of one test piece was set to 1, and a test piece having a wear amount of 1.00 or less was judged to be excellent in wear resistance.

これらの結果から、次のように考察することができる。即ち、No.3〜6、8、9、12、13、16、17、20、21、23、24、27〜29は、本発明で規定する要件(化学成分組成、セメンタイトの円相当直径、アスペクト比、個数密度)を満足するものであり、いずれも割れが生じることなく従来鋼(No.1:SUJ2)と比べて変形抵抗も低く冷間加工性に優れており、また加工後の試験片の転動疲労特性や耐摩耗性にも優れていた。   From these results, it can be considered as follows. That is, no. 3-6, 8, 9, 12, 13, 16, 17, 20, 21, 23, 24, 27-29 are the requirements defined in the present invention (chemical composition, cementite equivalent circle diameter, aspect ratio, number Density), and without any cracks, the deformation resistance is low compared to the conventional steel (No. 1: SUJ2), and the cold workability is excellent. Excellent fatigue properties and wear resistance.

No.2は、Cr含有量が多いため、鋼片に巨大炭化物が生じており、冷間加工性、転動疲労特性、及び耐摩耗性が劣っていると共に、試験片に割れが生じていた。   No. In No. 2, since the Cr content was large, giant carbide was generated in the steel piece, and cold workability, rolling fatigue characteristics, and wear resistance were inferior, and the test piece was cracked.

No.7、10、11、14、15、18、19、及び22は、本発明で規定する球状化熱処理条件の範囲を外れる例である。   No. 7, 10, 11, 14, 15, 18, 19, and 22 are examples outside the range of the spheroidizing heat treatment condition defined in the present invention.

No.7は、昇温速度が遅いため、セメンタイトの平均円相当直径と個数密度が本発明で規定する範囲を外れており、転動疲労特性と耐摩耗性が劣っている。   No. No. 7 has a slow temperature rise rate, so that the average equivalent-circle diameter and number density of cementite are outside the range defined in the present invention, and the rolling fatigue characteristics and wear resistance are inferior.

No.10は、昇温速度が速いため、セメンタイトの平均円相当直径と平均アスペクト比が本発明で規定する範囲を外れており、冷間加工性、転動疲労特性、及び耐摩耗性が劣っていると共に、試験片に割れが生じていた。   No. No. 10, since the temperature rise rate is fast, the average equivalent circle diameter and average aspect ratio of cementite are outside the range defined in the present invention, and cold workability, rolling fatigue characteristics, and wear resistance are inferior. At the same time, the test piece was cracked.

No.11は、均熱温度が低いため、セメンタイトの平均アスペクト比が本発明で規定する範囲を上回っており、冷間加工性、転動疲労特性、及び耐摩耗性が劣っていると共に、試験片に割れが生じていた。   No. No. 11 has a low soaking temperature, the average aspect ratio of cementite exceeds the range specified in the present invention, and the cold workability, rolling fatigue characteristics, and wear resistance are inferior. Cracking occurred.

No.14は、均熱温度が高いため、セメンタイトの平均アスペクト比が本発明で規定する範囲を上回っており、転動疲労特性、及び耐摩耗性が劣っていると共に、試験片に割れが生じていた。   No. No. 14, because the soaking temperature is high, the average aspect ratio of cementite exceeds the range specified in the present invention, the rolling fatigue characteristics and the wear resistance are inferior, and the test piece was cracked. .

No.15は、均熱時間が短いため、セメンタイトの平均円相当直径が本発明で規定する範囲を下回っており、冷間加工性が劣っている。   No. No. 15, because the soaking time is short, the average equivalent circle diameter of cementite is below the range defined in the present invention, and the cold workability is inferior.

No.18は、均熱時間が長いため、セメンタイトの平均円相当直径と個数密度が本発明で規定する範囲を外れており、転動疲労特性と耐摩耗性が劣っている。   No. In No. 18, since the soaking time is long, the average equivalent circle diameter and number density of cementite are outside the range defined in the present invention, and the rolling fatigue characteristics and the wear resistance are inferior.

No.19は、一次冷却速度(A1点−60℃までの冷却速度)が遅いため、セメンタイトの平均円相当直径が本発明で規定する範囲を上回っており、転動疲労特性が劣っている。   No. No. 19 has a slow primary cooling rate (cooling rate up to A1 point −60 ° C.), so the average equivalent circle diameter of cementite exceeds the range defined in the present invention, and the rolling fatigue characteristics are inferior.

No.22は、一次冷却速度が速いため、セメンタイトの平均円相当直径が本発明で規定する範囲を下回っており、冷間加工性が劣っている。   No. Since No. 22 has a high primary cooling rate, the average equivalent-circle diameter of cementite is below the range defined in the present invention, and the cold workability is poor.

No.25、26、30〜31は、本発明で規定する化学成分の範囲を外れる例である。   No. 25, 26, 30 to 31 are examples out of the range of chemical components defined in the present invention.

No.25は、C含有量が少ないため、セメンタイトの個数密度が不十分となり、耐摩耗性が劣っている。   No. No. 25 has a low C content, so that the number density of cementite is insufficient and the wear resistance is inferior.

No.26は、Si、Mn、P、S、Al、Ti、Oが本発明で規定する範囲を外れているため、セメンタイトの個数密度が不十分となり、冷間加工性と転動疲労特性が劣っている。   No. No. 26, Si, Mn, P, S, Al, Ti, O are outside the range specified in the present invention, the number density of cementite becomes insufficient, cold workability and rolling fatigue characteristics are inferior Yes.

No.30は、Cr、O含有量が多いため、セメンタイトの平均円相当直径が本発明の規定を下回ると共に、鋼片に巨大炭化物が生じており、転動疲労特性が劣っている。   No. No. 30 has a large Cr and O content, so that the average equivalent-circle diameter of cementite is less than that of the present invention, and a giant carbide is generated in the steel slab, resulting in poor rolling fatigue characteristics.

No.31は、Si、Mn、N、P、S含有量が本発明で規定する範囲を外れているため、転動疲労特性が劣っている。   No. No. 31 is inferior in rolling fatigue characteristics because the Si, Mn, N, P, and S contents are outside the range defined in the present invention.

No.32は、CrとNが本発明で規定する範囲を外れているため、冷間加工性と転動疲労特性が劣っている。   No. No. 32 is inferior in cold workability and rolling fatigue characteristics because Cr and N are outside the range defined in the present invention.

これらのデータに基づいて、セメンタイトの平均円相当直径と、変形抵抗低減率(冷間加工性)とL10寿命比(転動疲労特性)の関係を図2(本発明で規定する化学成分組成を満たし、且つ平均アスペクト比が2.00以下の例のみをプロット)に示すが、セメンタイトの大きさを適切に制御することが、冷間加工性と転動疲労特性の向上に有効であることが分かる。   Based on these data, the relationship between the average equivalent circle diameter of cementite, the deformation resistance reduction rate (cold workability), and the L10 life ratio (rolling fatigue properties) is shown in FIG. 2 (the chemical composition defined in the present invention). It is shown in the plot) that the average aspect ratio is less than or equal to 2.00. However, appropriately controlling the cementite size is effective in improving cold workability and rolling fatigue characteristics. I understand.

同様にしてセメンタイトの個数密度と摩耗比(耐摩耗性)の関係を図3(本発明で規定する化学成分組成を満たし、且つアスペクト比が2.00以下の例のみをプロット)に示すが、セメンタイトの個数密度を適切に制御することが、耐摩耗性の向上に有効であることが分かる。   Similarly, the relationship between the number density of cementite and the wear ratio (abrasion resistance) is shown in FIG. 3 (only the example that satisfies the chemical composition defined in the present invention and has an aspect ratio of 2.00 or less is plotted). It can be seen that appropriately controlling the number density of cementite is effective in improving the wear resistance.

Claims (3)

C:0.9〜1.10%(質量%の意味、以下同じ)、
Si:0.05〜0.49%、
Mn:0.1〜1.0%、
P:0.05%以下(0%を含まない)、
S:0.05%以下(0%を含まない)、
Cr:0.03〜0.40%、
Al:0.05%以下(0%を含まない)、
N:0.002〜0.025%、
Ti:0.0030%以下(0%を含まない)、および
O:0.0025%以下(0%を含まない)を含有し、残部が鉄および不可避不純物からなり、セメンタイトの平均アスペクト比が2.00以下、セメンタイトの平均円相当直径が0.35〜0.6μmであると共に、円相当直径0.13μm以上のセメンタイトの個数密度が0.45個/μm以上であることを特徴とする冷間加工性、耐摩耗性及び転動疲労特性に優れた軸受用鋼。
C: 0.9 to 1.10% (meaning mass%, the same shall apply hereinafter)
Si: 0.05-0.49%
Mn: 0.1 to 1.0%,
P: 0.05% or less (excluding 0%),
S: 0.05% or less (excluding 0%),
Cr: 0.03 to 0.40%,
Al: 0.05% or less (excluding 0%),
N: 0.002 to 0.025%,
Ti: 0.0030% or less (not including 0%), and O: 0.0025% or less (not including 0%), the balance is made of iron and inevitable impurities, and the average aspect ratio of cementite is 2 0.003 or less, the average equivalent circle diameter of cementite is 0.35 to 0.6 μm, and the number density of cementite having an equivalent circle diameter of 0.13 μm or more is 0.45 / μm 2 or more. Bearing steel with excellent cold workability, wear resistance and rolling fatigue characteristics.
更に他の元素として、Cu:0.25%以下(0%を含まない)、Ni:0.25%以下(0%を含まない)、およびMo:0.25%以下(0%を含まない)よりなる群から選択される1種以上を含む請求項1に記載の軸受用鋼。   Further, as other elements, Cu: 0.25% or less (not including 0%), Ni: 0.25% or less (not including 0%), and Mo: 0.25% or less (not including 0%) The bearing steel according to claim 1, comprising one or more selected from the group consisting of: 更に他の元素として、Nb:0.5%以下(0%を含まない)、および/またはV:0.5%以下(0%を含まない)を含む請求項1または2に記載の軸受用鋼。   The bearing according to claim 1 or 2, further comprising Nb: 0.5% or less (not including 0%) and / or V: 0.5% or less (not including 0%) as other elements. steel.
JP2010207163A 2010-09-15 2010-09-15 Bearing steel with excellent cold workability, wear resistance, and rolling fatigue properties Expired - Fee Related JP5425736B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2010207163A JP5425736B2 (en) 2010-09-15 2010-09-15 Bearing steel with excellent cold workability, wear resistance, and rolling fatigue properties
CN201180044233.6A CN103097565B (en) 2010-09-15 2011-07-25 Bearing steel
US13/820,865 US9598752B2 (en) 2010-09-15 2011-07-25 Bearing steel
PCT/JP2011/066847 WO2012035884A1 (en) 2010-09-15 2011-07-25 Bearing steel
KR1020137006289A KR101408548B1 (en) 2010-09-15 2011-07-25 Bearing steel
BR112013005533A BR112013005533A2 (en) 2010-09-15 2011-07-25 bearing steel
EP11824893.9A EP2617848A4 (en) 2010-09-15 2011-07-25 Bearing steel
TW100128527A TWI448567B (en) 2010-09-15 2011-08-10 Steel for baring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010207163A JP5425736B2 (en) 2010-09-15 2010-09-15 Bearing steel with excellent cold workability, wear resistance, and rolling fatigue properties

Publications (2)

Publication Number Publication Date
JP2012062515A true JP2012062515A (en) 2012-03-29
JP5425736B2 JP5425736B2 (en) 2014-02-26

Family

ID=45831359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010207163A Expired - Fee Related JP5425736B2 (en) 2010-09-15 2010-09-15 Bearing steel with excellent cold workability, wear resistance, and rolling fatigue properties

Country Status (8)

Country Link
US (1) US9598752B2 (en)
EP (1) EP2617848A4 (en)
JP (1) JP5425736B2 (en)
KR (1) KR101408548B1 (en)
CN (1) CN103097565B (en)
BR (1) BR112013005533A2 (en)
TW (1) TWI448567B (en)
WO (1) WO2012035884A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103160742A (en) * 2013-03-28 2013-06-19 宝山钢铁股份有限公司 Wear-resistant steel plate and manufacturing method thereof
WO2013146124A1 (en) * 2012-03-30 2013-10-03 株式会社神戸製鋼所 Bearing steel material having superior rolling fatigue characteristics and a method for producing same
WO2013146123A1 (en) * 2012-03-30 2013-10-03 株式会社神戸製鋼所 Bearing steel material having superior cold-workability and method for producing same
JP2014040626A (en) * 2012-08-21 2014-03-06 Kobe Steel Ltd Bearing steel excellent in rolling fatigue characteristics and method for manufacturing the same
JP2014177693A (en) * 2013-03-15 2014-09-25 Kobe Steel Ltd Method of producing steel material excellent in cold workability
JP2014177690A (en) * 2013-03-15 2014-09-25 Kobe Steel Ltd Manufacturing method of steel for cold forging
JP2015143377A (en) * 2014-01-31 2015-08-06 株式会社神戸製鋼所 SPHEROIDIZING HEAT TREATMENT METHOD OF HIGH CARBON LOW Cr STEEL MATERIAL FOR COLD FORGING
JP2015183265A (en) * 2014-03-25 2015-10-22 株式会社神戸製鋼所 Method for producing steel material excellent in cold workability or machinability
WO2022065200A1 (en) * 2020-09-24 2022-03-31 Ntn株式会社 Bearing component and rolling bearing

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI494179B (en) * 2012-09-28 2015-08-01 Twdt Prec Co Ltd Mandrel manufacturing method
ES2779403T3 (en) * 2014-03-20 2020-08-17 Nippon Steel Corp Excellent malleable steel wire rod and method of producing the same
JP6177753B2 (en) * 2014-11-17 2017-08-09 株式会社神戸製鋼所 High carbon steel sheet excellent in hole expansibility and rolling fatigue life and method for producing the same
DE102015220299A1 (en) 2014-11-21 2016-05-25 Hyundai Motor Company Bearing steel with improved durability and method for producing desselbigen
CN106756629A (en) * 2015-11-24 2017-05-31 徐文萍 A kind of manufacture method of the enhanced bearing of Brinell hardness
CN106756630A (en) * 2015-11-24 2017-05-31 徐文萍 A kind of enhanced bearing of Brinell hardness
CN106756632A (en) * 2015-11-25 2017-05-31 徐文萍 A kind of enhanced bearing steel of Rockwell hardness
CN106801191A (en) * 2015-11-25 2017-06-06 徐文萍 A kind of preparation method of the enhanced bearing steel of Rockwell hardness
CN106756631A (en) * 2015-11-25 2017-05-31 徐文萍 A kind of manufacture method of the enhanced bearing of Rockwell hardness
CN106756633A (en) * 2015-11-25 2017-05-31 徐文萍 A kind of enhanced bearing of Rockwell hardness
CN106801204A (en) * 2015-11-26 2017-06-06 徐文萍 A kind of enhanced bearing of tensile strength
CN106801192A (en) * 2015-11-26 2017-06-06 徐文萍 A kind of enhanced bearing steel of Brinell hardness
CN106801203A (en) * 2015-11-26 2017-06-06 徐文萍 A kind of preparation method of the enhanced bearing steel of Brinell hardness
CN106801205A (en) * 2015-11-26 2017-06-06 徐文萍 A kind of enhanced bearing steel of tensile strength
CN106086678B (en) * 2016-08-02 2018-03-20 建龙北满特殊钢有限责任公司 High life bearing steel material and its processing method
CN106636883B (en) * 2016-09-23 2018-03-06 龙南日升昌新材料研发有限公司 High life bearing steel and its manufacture method
KR102421642B1 (en) * 2019-12-20 2022-07-18 주식회사 포스코 Wire rod for bearing and methods for manufacturing thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63135615A (en) * 1986-11-27 1988-06-08 Daido Steel Co Ltd Bearing steel improved in rolling life
JPH09125202A (en) * 1995-11-01 1997-05-13 Sanyo Special Steel Co Ltd Bearing steel
JPH09302444A (en) * 1996-05-14 1997-11-25 Kawasaki Steel Corp Bearing steel
JPH10122243A (en) * 1996-10-22 1998-05-12 Nippon Seiko Kk Rolling bearing
JP2001049388A (en) * 1999-08-03 2001-02-20 Sumitomo Metal Ind Ltd Steel wire bar steel, and steel tube for bearing element parts, excellent in machinability
JP2001294972A (en) * 2000-04-18 2001-10-26 Sumitomo Metal Ind Ltd Steel for bearing
JP2007224410A (en) * 2006-01-24 2007-09-06 Kobe Steel Ltd Bearing steel wire rod having excellent wire drawability and its production method
JP2008088478A (en) * 2006-09-29 2008-04-17 Jfe Steel Kk Steel component for bearing having excellent fatigue property

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3308836B2 (en) 1996-12-06 2002-07-29 川崎製鉄株式会社 Bearing steel
JP3713975B2 (en) 1998-09-17 2005-11-09 住友金属工業株式会社 Steel for bearing
JP4343357B2 (en) 1998-11-11 2009-10-14 Ntn株式会社 Rolling bearing parts for high temperature
JP3572993B2 (en) 1999-04-22 2004-10-06 住友金属工業株式会社 Steel wire, steel wire, and method of manufacturing the same
JP2000319748A (en) 1999-05-06 2000-11-21 Sanyo Special Steel Co Ltd High strength and long life steel for induction hardening excellent in delayed fracture resistance and its production
JP3528676B2 (en) * 1999-05-07 2004-05-17 住友金属工業株式会社 Steel wire rod, steel wire and manufacturing method thereof
JP3971569B2 (en) * 2000-12-20 2007-09-05 新日本製鐵株式会社 Hot rolled wire rod for high strength springs
JP4003450B2 (en) 2001-12-13 2007-11-07 住友金属工業株式会社 Steel wire rod, steel wire and manufacturing method thereof
JP3922026B2 (en) * 2002-01-07 2007-05-30 住友金属工業株式会社 Steel wire and steel wire
JP3997867B2 (en) 2002-09-04 2007-10-24 住友金属工業株式会社 Steel wire, method for producing the same, and method for producing steel wire using the steel wire
EP1595966B1 (en) * 2003-01-30 2012-02-22 Sumitomo Metal Industries, Ltd. Steel pipe for bearing elements, and methods for producing and cutting the same
JP4016894B2 (en) 2003-06-12 2007-12-05 住友金属工業株式会社 Steel wire rod and method for manufacturing steel wire
JP4319001B2 (en) 2003-10-10 2009-08-26 Ntn株式会社 Rolling bearing
BRPI0514009B1 (en) * 2004-11-30 2015-11-03 Nippon Steel & Sumitomo Metal Corp heat treated steel wire for spring use
CN100480411C (en) 2004-11-30 2009-04-22 新日本制铁株式会社 Steel and steel wire for high strength spring
JP4559959B2 (en) 2004-11-30 2010-10-13 新日本製鐵株式会社 High strength spring steel
JP4555768B2 (en) 2004-11-30 2010-10-06 新日本製鐵株式会社 Steel wire for high strength spring
CN101565801A (en) * 2008-04-22 2009-10-28 宝山钢铁股份有限公司 High-carbon-chromium bearing steel and manufacture method thereof
JP5400590B2 (en) * 2009-11-30 2014-01-29 株式会社神戸製鋼所 Steel material with excellent rolling fatigue life

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63135615A (en) * 1986-11-27 1988-06-08 Daido Steel Co Ltd Bearing steel improved in rolling life
JPH09125202A (en) * 1995-11-01 1997-05-13 Sanyo Special Steel Co Ltd Bearing steel
JPH09302444A (en) * 1996-05-14 1997-11-25 Kawasaki Steel Corp Bearing steel
JPH10122243A (en) * 1996-10-22 1998-05-12 Nippon Seiko Kk Rolling bearing
JP2001049388A (en) * 1999-08-03 2001-02-20 Sumitomo Metal Ind Ltd Steel wire bar steel, and steel tube for bearing element parts, excellent in machinability
JP2001294972A (en) * 2000-04-18 2001-10-26 Sumitomo Metal Ind Ltd Steel for bearing
JP2007224410A (en) * 2006-01-24 2007-09-06 Kobe Steel Ltd Bearing steel wire rod having excellent wire drawability and its production method
JP2008088478A (en) * 2006-09-29 2008-04-17 Jfe Steel Kk Steel component for bearing having excellent fatigue property

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104204265B (en) * 2012-03-30 2015-10-14 株式会社神户制钢所 The bearing steel material of cold-workability excellence and manufacture method thereof
WO2013146124A1 (en) * 2012-03-30 2013-10-03 株式会社神戸製鋼所 Bearing steel material having superior rolling fatigue characteristics and a method for producing same
WO2013146123A1 (en) * 2012-03-30 2013-10-03 株式会社神戸製鋼所 Bearing steel material having superior cold-workability and method for producing same
CN104204265A (en) * 2012-03-30 2014-12-10 株式会社神户制钢所 Bearing steel material having superior cold-workability and method for producing same
US9090959B2 (en) 2012-03-30 2015-07-28 Kobe Steel, Ltd. Bearing steel excellent in cold workability and manufacturing method thereof
US9624559B2 (en) 2012-03-30 2017-04-18 Kobe Steel, Ltd. Bearing steel excellent in rolling-contact fatigue properties and method for producing same
JP2014040626A (en) * 2012-08-21 2014-03-06 Kobe Steel Ltd Bearing steel excellent in rolling fatigue characteristics and method for manufacturing the same
JP2014177693A (en) * 2013-03-15 2014-09-25 Kobe Steel Ltd Method of producing steel material excellent in cold workability
JP2014177690A (en) * 2013-03-15 2014-09-25 Kobe Steel Ltd Manufacturing method of steel for cold forging
CN103160742A (en) * 2013-03-28 2013-06-19 宝山钢铁股份有限公司 Wear-resistant steel plate and manufacturing method thereof
JP2015143377A (en) * 2014-01-31 2015-08-06 株式会社神戸製鋼所 SPHEROIDIZING HEAT TREATMENT METHOD OF HIGH CARBON LOW Cr STEEL MATERIAL FOR COLD FORGING
JP2015183265A (en) * 2014-03-25 2015-10-22 株式会社神戸製鋼所 Method for producing steel material excellent in cold workability or machinability
WO2022065200A1 (en) * 2020-09-24 2022-03-31 Ntn株式会社 Bearing component and rolling bearing

Also Published As

Publication number Publication date
TWI448567B (en) 2014-08-11
JP5425736B2 (en) 2014-02-26
WO2012035884A1 (en) 2012-03-22
CN103097565A (en) 2013-05-08
KR20130037227A (en) 2013-04-15
CN103097565B (en) 2016-11-23
US20130183191A1 (en) 2013-07-18
TW201211279A (en) 2012-03-16
KR101408548B1 (en) 2014-06-17
EP2617848A1 (en) 2013-07-24
US9598752B2 (en) 2017-03-21
EP2617848A4 (en) 2015-07-01
BR112013005533A2 (en) 2016-05-03

Similar Documents

Publication Publication Date Title
JP5425736B2 (en) Bearing steel with excellent cold workability, wear resistance, and rolling fatigue properties
KR101520208B1 (en) Case hardening steel, method for producing same, and mechanical structural part using case hardening steel
JP5332646B2 (en) Manufacturing method of carburizing steel with excellent cold forgeability
WO2012073485A1 (en) Carburizing steel having excellent cold forgeability, and production method thereof
TWI485267B (en) Bearing steel with excellent rolling fatigue characteristics, and manufacturing method thereof
WO2012160675A1 (en) Steel with excellent rolling fatigue characteristics
JP6109729B2 (en) Case-hardened steel with excellent grain coarsening prevention characteristics during carburizing
JP5400591B2 (en) Bearing steel with excellent cold workability
JP6631640B2 (en) Case hardened steel, carburized parts and method of manufacturing case hardened steel
JP5400590B2 (en) Steel material with excellent rolling fatigue life
JP2012140674A (en) Steel excellent in cold forgeability, and method of manufacturing the same
JP2009263763A (en) Method for manufacturing steel material to be carburized
JP5406687B2 (en) Steel material with excellent rolling fatigue life
JP4959471B2 (en) High strength seamless steel pipe with excellent toughness for machine structure and manufacturing method thereof
JP5463662B2 (en) Bearing steel excellent in rolling fatigue characteristics and manufacturing method thereof
JP2017133052A (en) Case hardened steel excellent in coarse particle prevention property, fatigue property and machinability during carburization and manufacturing method therefor
JP5990428B2 (en) Steel for bearings with excellent rolling fatigue characteristics and method for producing the same
WO2018212196A1 (en) Steel and component
JP5679440B2 (en) Induction hardening steel with excellent cold forgeability and excellent torsional strength after induction hardening, and method for producing the same
JP5976581B2 (en) Steel material for bearings and bearing parts with excellent rolling fatigue characteristics
KR101527337B1 (en) Bearing steel material having superior cold-workability and method for producing same
WO2012160677A1 (en) Bearing steel with excellent cold workability
JP2018035421A (en) Case hardening steel excellent in coarse grain prevention property upon carburization and fatigue property and production method therefor
CN117062933A (en) Steel wire for machine structural parts and method for manufacturing same
WO2017154652A1 (en) Steel material for bearing having excellent rolling fatigue characteristics, method for manufacturing same, and bearing component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5425736

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees