JP2015143377A - SPHEROIDIZING HEAT TREATMENT METHOD OF HIGH CARBON LOW Cr STEEL MATERIAL FOR COLD FORGING - Google Patents

SPHEROIDIZING HEAT TREATMENT METHOD OF HIGH CARBON LOW Cr STEEL MATERIAL FOR COLD FORGING Download PDF

Info

Publication number
JP2015143377A
JP2015143377A JP2014016848A JP2014016848A JP2015143377A JP 2015143377 A JP2015143377 A JP 2015143377A JP 2014016848 A JP2014016848 A JP 2014016848A JP 2014016848 A JP2014016848 A JP 2014016848A JP 2015143377 A JP2015143377 A JP 2015143377A
Authority
JP
Japan
Prior art keywords
less
steel material
heat treatment
spheroidizing
high carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014016848A
Other languages
Japanese (ja)
Other versions
JP6328435B2 (en
Inventor
山下 浩司
Koji Yamashita
浩司 山下
亮廣 松ヶ迫
Akihiro Matsugaseko
亮廣 松ヶ迫
慎治 福岡
Shinji Fukuoka
慎治 福岡
雄基 佐々木
Yuki Sasaki
雄基 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2014016848A priority Critical patent/JP6328435B2/en
Publication of JP2015143377A publication Critical patent/JP2015143377A/en
Application granted granted Critical
Publication of JP6328435B2 publication Critical patent/JP6328435B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a spheroidizing heat treatment method applicable for a high carbon low Cr steel material with a reduced amount of Cr for cold forging, the method enabling good cold forgeability to be secured despite being a short time process with reduced heat treatment costs.SOLUTION: A spheroidizing heat treatment method of a high carbon low Cr steel material for cold forging comprises the steps of: keeping the steel material in a temperature range of (A1+10°C) to (A1+50°C) for 5 min. or more and less than 60 min.; then cooling the steel material so that a cooling rate between A1 to (A1-35°C) or less may become 15°C/h or less; thereafter performing, once or twice or more repeatedly, a heat treatment of "keeping the steel material in a temperature range of (A1-20°C) to (A1+10°C) for 60 min. or more, and further keeping the steel material in a temperature range of (A1-100°C) to A1 for 60 min. or more"; and thereafter cooling the steel material.

Description

本発明は、低Cr鋼材の球状化熱処理方法に係り、特に自動車用部品、軸受け、建設機械用部品等の各種部品の製造に用いられる冷間鍛造用機械構造用鋼を主な用途とする高炭素低Cr鋼材の球状化熱処理方法に関する。   The present invention relates to a spheroidizing heat treatment method for low Cr steel materials, and in particular, high structural steel for cold forging used mainly for manufacturing various parts such as automobile parts, bearings, and construction machine parts. The present invention relates to a spheroidizing heat treatment method for carbon low Cr steel.

自動車用部品や軸受け、建設機械用部品等の各種部品は、通常、熱間圧延材を冷間鍛造し、その後、切削加工などを施して所定の形状に成形した後、焼入れ焼戻し処理を行って最終的な強度調整が行われて製造される。   Various parts such as automobile parts, bearings, construction machine parts, etc. are usually cold forged from hot-rolled material, then cut into shapes, and then subjected to quenching and tempering. The final strength adjustment is performed.

熱間圧延材の冷間鍛造性は、鋼材中に存在している炭化物の形状に影響を受け、棒状の炭化物が存在していると、それらが割れの起点となり、冷間鍛造性が悪くなる。また、炭化物の粒状化が不十分であると鋼材の硬さが高く、鍛造時の金型寿命が低下することが一般的に知られている。   The cold forgeability of hot-rolled material is affected by the shape of carbides present in the steel material, and if bar-like carbides are present, they become starting points of cracking and the cold forgeability deteriorates. . In addition, it is generally known that when the granulation of carbide is insufficient, the hardness of the steel material is high and the die life during forging is reduced.

そこで熱間圧延材を冷間鍛造するにあたっては、処理に先立って炭化物を球状化するための球状化熱処理(球状化焼鈍)が施される。   Therefore, when cold forging the hot-rolled material, spheroidizing heat treatment (spheroidizing annealing) for spheroidizing the carbide is performed prior to the processing.

球状化焼鈍方法としては、例えば、特許文献1、2の技術が知られている。これらのうち特許文献1には、鋼材に下記の各素過程(1)および(2)を単独でまたは組み合わせて1回もしくは2回以上行うことによって、20時間以上要していた鋼の球状化焼鈍処理を1時間程度に短縮する技術が開示されている。   As a spheroidizing annealing method, for example, techniques of Patent Documents 1 and 2 are known. Among these, in Patent Document 1, the following elementary processes (1) and (2) are carried out on a steel material either alone or in combination once or twice or more, thereby spheroidizing steel that has required 20 hours or more. A technique for shortening the annealing treatment to about 1 hour is disclosed.

素過程(1):Ae1点以上、Ae1点+150K以下の温度域に、1K/秒以上の昇温速度で昇温加熱し、当該温度域内で0秒以上600秒未満の時間保持した後、Ae1点+50K〜Ae1点−150Kの温度域内を5K/秒以下の冷却速度で冷却するかまたは当該温度域内の温度に保持すること;および
素過程(2):Ae1点+80K以上、Ae1点+300K以下の温度域内に1K/秒以上の昇温速度で昇温加熱し、当該温度域内で0秒以上120秒未満の時間保持した後、Ae1点〜Ae1点−150Kの温度域内を5K/秒以下の冷却速度で冷却するかまたは当該温度域内の温度に保持すること。
Elementary process (1): After heating and heating at a temperature rising rate of 1 K / second or more in a temperature range of Ae 1 point or more and Ae 1 point +150 K or less and holding for 0 second or more and less than 600 seconds in the temperature range it holds the temperature range of Ae 1 point + 50K~Ae 1 point -150K to or the temperature range of the temperature is cooled below the cooling rate of 5K / sec; and fundamental process (2): Ae 1 point + 80K or higher, ae 1 point + 300K following was heated heated at a temperature region in 1K / sec or more heating rate, after maintaining the temperature for less than 120 seconds 0 seconds in the region, the temperature of ae 1 point ~Ae 1 point -150K Cool the area at a cooling rate of 5 K / sec or less, or keep the temperature within the temperature range.

上記特許文献1では、球状化焼鈍時間を短縮するために、ロールスタンド間に接続した電源から被圧延材に通電加熱する手段を利用した温度制御により1K/秒以上の昇温速度で昇温加熱する点などに特徴があり、従って実施に当たっては特別な設備が必要となり、通常のバッチ式炉などでは実施することが到底困難な条件である。   In Patent Document 1, in order to shorten the spheroidizing annealing time, the heating is performed at a heating rate of 1 K / second or more by temperature control using means for energizing and heating the material to be rolled from a power source connected between roll stands. Therefore, special equipment is required for implementation, and it is extremely difficult to carry out with a normal batch furnace.

また、特許文献2には、炭素:0.15〜1.50重量%、クロム:0.10〜2.50重量%を含有する低合金鋼を加熱、冷却して球状化焼なましを行うにあたり、上記低合金鋼を(A1点−30)〜(A1点−5)℃の範囲の温度に昇温してその温度に一定時間保持し、さらに(A1点+30)〜(A1点+50)℃の範囲の最高温度に昇温、保持してから、A1点以下の温度まで15℃/時間以下の速度で冷却する低合金鋼の球状化焼なまし方法が開示されている。この特許文献2には、Cr含有量の少ない軸受用鋼などでは、Crによる球状炭化物の安定化効果が小さいため、炭化物は球状化しにくく、球状化焼鈍条件が不適切であれば、棒状あるいは粗大炭化物が形成され、冷間鍛造性が低下することが記載されている。 In Patent Document 2, spheroidizing annealing is performed by heating and cooling a low alloy steel containing carbon: 0.15 to 1.50% by weight and chromium: 0.10 to 2.50% by weight. In this case, the low alloy steel is heated to a temperature in the range of (A 1 point−30) to (A 1 point−5) ° C. and held at that temperature for a certain period of time, and (A 1 point + 30) to (A Disclosed is a method of spheroidizing annealing of a low alloy steel in which the temperature is raised to and maintained at a maximum temperature in the range of 1 point + 50) ° C. and then cooled to a temperature of A 1 point or less at a rate of 15 ° C./hour or less. Yes. In Patent Document 2, in steel for bearings having a low Cr content, the effect of stabilizing the spherical carbide by Cr is small, so the carbide is difficult to be spheroidized. It is described that carbide is formed and cold forgeability is lowered.

特開平8−246040号公報JP-A-8-246040 特開平9−87736号公報JP-A-9-87736

ところで、上記各種部品の素材としては、JIS G4805で規定されている高炭素Cr軸受鋼鋼材が通常用いられている。この高炭素Cr軸受鋼鋼材は、SUJ1、SUJ3、SUJ5ではCrを0.90〜1.20%、SUJ2、SUJ4ではCrを1.30〜1.60%含有している。しかし近年、Crの価格が上昇しているため、低コスト化の観点から、Crの使用量を低減することが望まれている。ところが上記特許文献2で指摘されているように、Cr量を低減すると、炭化物を充分に球状化できないことがあり、冷間鍛造性が低下する。   By the way, as a material of the above-mentioned various parts, a high carbon Cr bearing steel material defined in JIS G4805 is usually used. This high carbon Cr bearing steel contains 0.90 to 1.20% Cr in SUJ1, SUJ3, and SUJ5, and 1.30 to 1.60% Cr in SUJ2 and SUJ4. However, since the price of Cr is rising in recent years, it is desired to reduce the amount of Cr used from the viewpoint of cost reduction. However, as pointed out in Patent Document 2, if the amount of Cr is reduced, the carbide may not be sufficiently spheroidized and cold forgeability is lowered.

本発明は上記の様な事情に着目してなされたものであって、その目的(課題)は、各種部品の素材として一般的に用いられているJIS G4805で規定されている高炭素Cr軸受鋼鋼材よりもCr量を低減した冷間鍛造用高炭素低Cr鋼材を対象とする球状化熱処理方法において、短時間で熱処理コストを抑えた方法であるものの良好な冷間鍛造性を確保することが可能な方法を提供することにある。   The present invention has been made paying attention to the circumstances as described above, and its object (problem) is a high carbon Cr bearing steel defined in JIS G4805, which is generally used as a material for various parts. In the spheroidizing heat treatment method for high-carbon low-Cr steel materials for cold forging with a reduced amount of Cr than steel materials, it is a method that suppresses heat treatment costs in a short time, but it can ensure good cold forgeability It is to provide a possible method.

請求項1に記載の発明は、
C:0.7〜1.5%(質量%の意味。成分について以下同じ)、
Cr:0.9%未満(0%を含む)、
Si:0.001〜0.7%、
Mn:0.1〜2.0%、
Al:0.01〜0.1%、
P:0.05%以下(0%を含まない)、
S:0.001〜0.05%、
N:0.015%以下(0%を含まない)、
O:0.015%以下(0%を含まない)
を含み、残部が鉄および不可避不純物からなる冷間鍛造用高炭素低Cr鋼材の球状化熱処理方法において、
前記鋼材を、(A1+10℃)〜(A1+50℃)の温度域に5min以上60min未満保持し、
次いで、同鋼材を、A1から(A1−35℃)以下までの冷却速度が15℃/h以下となるように冷却し、
その後、「同鋼材を(A1−20℃)〜(A1+10℃)の温度域に60min以上保持し、更に同鋼材を(A1−100℃)〜A1の温度域に60min以上保持する」熱処理を1回若しくは2回以上繰り返して行った後、冷却する、
ことを特徴とする冷間鍛造用高炭素低Cr鋼材の球状化熱処理方法である。
The invention described in claim 1
C: 0.7 to 1.5% (meaning mass%. The same applies to the components below),
Cr: Less than 0.9% (including 0%),
Si: 0.001 to 0.7%,
Mn: 0.1 to 2.0%,
Al: 0.01 to 0.1%,
P: 0.05% or less (excluding 0%),
S: 0.001 to 0.05%,
N: 0.015% or less (excluding 0%),
O: 0.015% or less (excluding 0%)
In the spheroidizing heat treatment method for high carbon low Cr steel material for cold forging, the balance of which includes iron and inevitable impurities,
The steel material is held in a temperature range of (A1 + 10 ° C.) to (A1 + 50 ° C.) for 5 min or more and less than 60 min,
Next, the steel material is cooled so that the cooling rate from A1 to (A1-35 ° C) or less is 15 ° C / h or less,
Thereafter, a heat treatment of “holding the steel material in a temperature range of (A1-20 ° C.) to (A1 + 10 ° C.) for 60 min or more and further holding the steel material in a temperature range of (A1-100 ° C.) to A1 for 1 min” is performed. Repeatedly after 2 or more times, then cool down,
This is a spheroidizing heat treatment method for a high carbon low Cr steel material for cold forging.

また、請求項2に記載の発明は、
前記鋼材が更に、
Cu:0.25%以下(0%を含まない)、
Ni:0.25%以下(0%を含まない)、
Mo:0.25%以下(0%を含まない)、及び
B :0.01%以下(0%を含まない)、
よりなる群から選択される1種以上を含む請求項1に記載の冷間鍛造用高炭素低Cr鋼材の球状化熱処理方法である。
The invention according to claim 2
The steel material is further
Cu: 0.25% or less (excluding 0%),
Ni: 0.25% or less (excluding 0%),
Mo: 0.25% or less (excluding 0%), and B: 0.01% or less (not including 0%),
It is the spheroidization heat processing method of the high carbon low Cr steel materials for cold forging of Claim 1 containing 1 or more types selected from the group which consists of.

また、請求項3に記載の発明は、
前記鋼材が更に、
Ti:0.2%以下(0%を含まない)、
Nb:0.2%以下(0%を含まない)、及び
V:0.5%以下(0%を含まない)、
よりなる群から選択される1種以上を含む請求項1又は2に記載の冷間鍛造用高炭素低Cr鋼材の球状化熱処理方法である。
The invention according to claim 3
The steel material is further
Ti: 0.2% or less (excluding 0%),
Nb: 0.2% or less (not including 0%), and V: 0.5% or less (not including 0%),
It is the spheroidizing heat processing method of the high carbon low Cr steel materials for cold forging of Claim 1 or 2 containing 1 or more types selected from the group which consists of.

更に、請求項4に記載の発明は、
前記球状化熱処理をバッチ炉により行う請求項1〜3の何れかに記載の高炭素低Cr鋼材の球状化熱処理方法である。
Furthermore, the invention described in claim 4
The spheroidizing heat treatment method for a high carbon low Cr steel material according to any one of claims 1 to 3, wherein the spheroidizing heat treatment is performed in a batch furnace.

本発明によれば、高炭素Cr軸受鋼鋼材よりもCr量が少ない、すなわちCr量が0.9質量%未満の低Cr冷間鍛造用鋼においても、比較的短時間の処理で、優れた球状化特性を有して良好な冷間鍛造性を確保することが可能な高炭素低Cr鋼材の球状化熱処理方法を提供できる。従って、Cr量の低減及び熱処理時間の短縮により材料コスト及び熱処理コストの削減、生産性の向上を図ることができる。また、急速な加熱、昇温の必要もないため、特別な温度制御やそのための設備、機器も不要で、通常のバッチ炉により容易に熱処理を実施することができる。   According to the present invention, the amount of Cr is smaller than that of the high carbon Cr bearing steel, that is, even in the low Cr cold forging steel having a Cr amount of less than 0.9% by mass, it is excellent in processing in a relatively short time. It is possible to provide a spheroidizing heat treatment method for a high carbon low Cr steel material that has spheroidizing characteristics and can ensure good cold forgeability. Therefore, reduction of the Cr amount and shortening of the heat treatment time can reduce the material cost and the heat treatment cost and improve the productivity. In addition, since there is no need for rapid heating and temperature rise, no special temperature control, facilities and equipment for that purpose are required, and the heat treatment can be easily carried out in a normal batch furnace.

鋼材の球状化処理方法(球状化焼鈍方法)として、例えば(a)A1点以下の温度に長時間保持する方法や、(b)A1点に加熱後に徐冷する方法、(c)A1点近傍の上下を繰り返し加熱する方法などが一般的に知られている。(「鋼の球状化焼なまし」熱処理15巻4号P.237参照)。   Examples of the spheroidizing treatment method (spheroidizing annealing method) of the steel material include, for example, (a) a method of maintaining a temperature below the A1 point for a long time, (b) a method of gradually cooling after heating to the A1 point, and (c) near the A1 point. A method of repeatedly heating the upper and lower sides is generally known. (Refer to “Spherical annealing of steel” heat treatment Vol. 15, No. 4, p. 237).

しかし、本発明で対象とする低Cr鋼(Cr<0.9%)を適用する場合には、(a)の方法では棒状の炭化物が残存しやすく、(b)や(c)の方法では棒状の炭化物が徐冷時に再析出しやすく、さらに硬さの低減も不十分になりやすい。従って、球状化熱処理材の良好な冷間鍛造性を十分に確保できないことになる。   However, when applying the low Cr steel (Cr <0.9%) targeted in the present invention, rod-like carbides are likely to remain in the method (a), and in the methods (b) and (c). The rod-like carbide tends to reprecipitate during slow cooling, and the hardness is likely to be insufficiently reduced. Therefore, sufficient cold forgeability of the spheroidized heat treatment material cannot be ensured sufficiently.

本発明者等は、上記の低Cr鋼材を対象とした場合においても、この棒状炭化物が残存、再析出せず、さらに球状化熱処理材の硬さを低減し、これを十分に軟質化して、良好な冷間鍛造性を確保できる球状化熱処理方法について、鋭意、研究の結果、低Cr鋼材を(A1+10℃)〜(A1+50℃)の温度域に5min以上60min未満保持し、次いで、同鋼材を、Ac1から(Ac1−35℃)以下までの冷却速度が15℃/h以下となるように冷却し、その後、「同鋼材を(A1−20℃)〜(A1+10℃)の温度域に60min以上保持し、更に同鋼材を(A1−100℃)〜A1の温度域に60min以上保持する」熱処理を1回若しくは2回以上繰り返して行った後、冷却することによって本発明の前記目的を有利に達成できることを見出した。以下、本発明の球状化熱処理方法についてその内容と熱処理条件の規定理由などを具体的に説明する。   Even when the present inventors are directed to the above-mentioned low Cr steel material, this rod-like carbide remains, does not reprecipitate, further reduces the hardness of the spheroidizing heat treatment material, sufficiently softens this, As for the spheroidizing heat treatment method that can ensure good cold forgeability, as a result of earnest and research, the low Cr steel material is held in the temperature range of (A1 + 10 ° C.) to (A1 + 50 ° C.) for 5 min or more and less than 60 min, and then the steel material is Then, cooling is performed so that the cooling rate from Ac1 to (Ac1-35 ° C.) or less is 15 ° C./h or less, and then “the steel material is in the temperature range of (A1-20 ° C.) to (A1 + 10 ° C.) for 60 min or more. The above-mentioned object of the present invention is advantageously achieved by cooling after the heat treatment is repeated once or twice or more, and the steel material is further held in the temperature range of (A1-100 ° C.) to A1 for 60 min or more. Achievement It found Rukoto. The contents of the spheroidizing heat treatment method of the present invention and the reasons for defining the heat treatment conditions will be specifically described below.

なお、以下の本発明の球状化熱処理において温度条件として規定されるA1とは、A1変態点を意味し、具体的には下記の式で計算によって求めた温度とする。これらの式は、書籍(講座・現代の金属学 材料編 第4巻 鉄鋼材料 編集及び発行所:社団法人日本金属学会 発売所:丸善)などにより既にその定義が明らかにされているものである。
A1(℃)
=723−10.7×(%Mn)−16.9×(%Ni)+29.1×(%Si)+16.9×(%Cr)+290×(%As)+6.38×(%W)
In addition, A1 prescribed | regulated as temperature conditions in the following spheroidization heat processing of this invention means an A1 transformation point, and is specifically set as the temperature calculated | required by the following formula. The definitions of these formulas have already been clarified by books (Lecture, Modern Metallurgy Materials Volume 4 Steel Materials Editing and Publication Office: The Japan Institute of Metals Release: Maruzen).
A1 (℃)
= 723-10.7 × (% Mn) −16.9 × (% Ni) + 29.1 × (% Si) + 16.9 × (% Cr) + 290 × (% As) + 6.38 × (% W)

(本発明の球状化熱処理)
[(A1+10℃)〜(A1+50℃)の温度域に5min以上60min未満保持]・・・加熱処理1
まず、本発明では、熱間圧延後の高炭素低Cr鋼材(成分については後述)を加熱、昇温し、(A1+10℃)〜(A1+50℃)の温度域に5min以上60min未満保持する加熱処理を行う。このような熱履歴を素材に与えておく事で、その後「同鋼材を(A1−20℃)〜(A1+10℃)の温度域に60min以上保持」した際に棒状炭化物の粒状化が十分に促進される。
(Spheroidizing heat treatment of the present invention)
[Holding in the temperature range of (A1 + 10 ° C.) to (A1 + 50 ° C.) for 5 min or more and less than 60 min] ... Heat treatment 1
First, in the present invention, a high carbon low Cr steel material (components will be described later) after hot rolling is heated and heated, and is maintained in a temperature range of (A1 + 10 ° C.) to (A1 + 50 ° C.) for 5 min or more and less than 60 min. I do. By giving such a heat history to the raw material, the granulation of the rod-like carbide is sufficiently promoted when “the steel material is kept in the temperature range of (A1-20 ° C.) to (A1 + 10 ° C.) for 60 min or longer”. Is done.

保持温度が(A1+10℃)未満や保持時間が5min未満では、この効果が不十分であり、また保持温度が(A1+50℃)超や保持時間が60min以上では炭化物が溶解しその後の冷却で顕著な棒状炭化物が再析出しやすい。好ましい保持温度は(A1+15℃)〜(A1+45℃)、保持時間は10min以上50min未満である。   If the holding temperature is less than (A1 + 10 ° C.) or the holding time is less than 5 minutes, this effect is insufficient, and if the holding temperature exceeds (A1 + 50 ° C.) or the holding time is 60 minutes or more, the carbide dissolves and becomes prominent by subsequent cooling. The rod-like carbide tends to reprecipitate. The preferred holding temperature is (A1 + 15 ° C.) to (A1 + 45 ° C.), and the holding time is 10 min or more and less than 50 min.

前記保持温度域への昇温速度については特に規定するものではないものの、生産性の観点や、温度管理を適切に行う観点などから、20℃/h以上が望ましい。昇温速度は速くても問題ないが、バッチ式炉で実施する場合、コイル全体をできるだけ均一に昇温させる必要性から1000℃/h以下で実施することが好ましい。より好ましくは、40℃/h以上200℃/h以下である。   Although the rate of temperature increase to the holding temperature range is not particularly specified, it is preferably 20 ° C./h or more from the viewpoint of productivity and appropriate temperature management. There is no problem even if the rate of temperature increase is high, but when it is performed in a batch furnace, it is preferably performed at 1000 ° C./h or less because it is necessary to raise the temperature of the entire coil as uniformly as possible. More preferably, it is 40 ° C./h or more and 200 ° C./h or less.

[A1から(A1−35℃)以下までの冷却速度が15℃/h以下となるように冷却]・・・冷却処理1
次いで、本発明では、前記温度域に加熱、保持された同鋼材を、冷却するが、A1から(A1−35℃)以下までの冷却速度が15℃/h以下となるように冷却処理を行う。すなわち、前記保持温度からA1までは任意の冷却速度でよいが、A1から(A1−35℃)以下までの冷却速度は15℃/h以下で冷却(徐冷)する必要がある。つまり、この冷却速度での冷却停止温度を(A1−35℃)以下としなければならない。同冷却速度が15℃/h超の場合、棒状炭化物が再析出しやすくなる。好ましい冷却速度は12℃/hである。
[Cooling so that the cooling rate from A1 to (A1-35 ° C) or less is 15 ° C / h or less] ... Cooling treatment 1
Next, in the present invention, the steel material heated and held in the temperature range is cooled, but the cooling treatment is performed so that the cooling rate from A1 to (A1-35 ° C) or less is 15 ° C / h or less. . That is, an arbitrary cooling rate may be used from the holding temperature to A1, but the cooling rate from A1 to (A1-35 ° C.) or less needs to be cooled (slow cooling) at 15 ° C./h or less. That is, the cooling stop temperature at this cooling rate must be (A1-35 ° C.) or less. When the cooling rate is higher than 15 ° C./h, the rod-like carbide is liable to reprecipitate. A preferred cooling rate is 12 ° C./h.

また、A1からの15℃/h以下の冷却を(A1−35℃)以下まで実施しないと、炭化物の析出が不十分で、その後の熱処理で球状炭化物の析出に長時間を要するとともに棒状炭化物が析出しやすい。好ましくは(A1−40℃)以下までこの冷却速度で冷却すると良い。   Further, if cooling at 15 ° C./h or less from A1 is not carried out to (A1-35 ° C.) or less, the precipitation of carbides is insufficient, and it takes a long time for the precipitation of spherical carbides in the subsequent heat treatment, and the rod-like carbides are formed. Easy to precipitate. It is preferable to cool at this cooling rate to (A1-40 ° C.) or less.

[(A1−20℃)〜(A1+10℃)の温度域に60min以上保持]
・・・加熱処理2
そして、本発明では、前記冷却後の同鋼材を、その後再び加熱、昇温し、(A1−20℃)〜(A1+10℃)の温度域に60min以上保持する加熱処理を行う。本処理は主に前冷却処理により析出させた炭化物の粒状化を促進させるために実施されるものである。
[Hold for 60 min or more in the temperature range of (A1-20 ° C) to (A1 + 10 ° C)]
... Heat treatment 2
And in this invention, the said steel material after the said cooling is heated again after that, and it heat-processes, and heat processing which hold | maintain for 60 minutes or more in the temperature range of (A1-20 degreeC)-(A1 + 10 degreeC) is performed. This treatment is carried out mainly to promote the granulation of carbides precipitated by the precooling treatment.

本加熱処理における保持温度が、Ac1−20℃を下回る場合や保持時間が60min未満の場合は、棒状炭化物の溶解が不十分となる。保持温度が(A1+10℃)超の場合は、炭化物を溶解しすぎてしまい、最後の冷却過程で再度棒状の炭化物が析出しやすくなるという問題を生じる。また、好ましくは(Ac1−10℃)〜(Ac1+5℃)に180〜700min加熱保持することが推奨される。   When the holding temperature in this heat treatment is less than Ac1-20 ° C. or when the holding time is less than 60 min, the rod-shaped carbide is not sufficiently dissolved. When the holding temperature is higher than (A1 + 10 ° C.), the carbide is dissolved too much, and there arises a problem that the rod-like carbide tends to precipitate again in the final cooling process. In addition, it is recommended to heat and hold at (Ac1-10 ° C) to (Ac1 + 5 ° C) for 180-700 min.

[(A1−100℃)〜A1の温度域に60min以上保持]
・・・加熱処理3
本発明では上記加熱処理(加熱処理2)を行った同鋼材を更に(A1−100℃)〜A1の温度域に60min以上保持する加熱処理を行う。本処理は主に棒状炭化物が再析出することを抑制するために実施されるものである。
[Hold for 60 min or more in the temperature range of (A1-100 ° C.) to A1]
... Heat treatment 3
In this invention, the heat processing which hold | maintains 60 minutes or more in the temperature range of (A1-100 degreeC)-A1 further performs the heat processing (heat processing 2). This treatment is mainly performed in order to suppress the reprecipitation of rod-like carbides.

本加熱処理における保持温度が、(A1−100℃)を下回る場合や保持時間が60min未満の場合は、棒状炭化物の溶解が不十分となる。保持温度がA1超の場合は、炭化物を溶解しすぎてしまい、最後の冷却過程で再度棒状の炭化物が析出しやすくなるという問題を生じる。好ましくは(A1−80℃)〜(A1−20℃)の温度域に70min以上保持するのが良い。   When the holding temperature in this heat treatment is lower than (A1-100 ° C.) or when the holding time is less than 60 min, the rod-shaped carbide is not sufficiently dissolved. When the holding temperature is higher than A1, the carbide is excessively dissolved, which causes a problem that rod-like carbide is liable to precipitate again in the final cooling process. Preferably, it is good to hold | maintain for 70 minutes or more in the temperature range of (A1-80 degreeC)-(A1-20 degreeC).

また、前記加熱処理2における保持温度が(A1−20)〜A1の温度の場合、当然ながら、引続き同じ温度で本加熱処理を実施しても良い。本発明に言う「保持(温度)」とは、当該温度域すなわち、(A1−100℃)〜A1の温度域に60min以上滞在させればよく、これを満足する限りにおいて、前記加熱処理2の温度のまま等温保持しても、加熱昇温や冷却降温させた後の温度に等温保持しても、更に加熱昇温や冷却降温の温度変化の状態の中で保持しても構わないものである。   Moreover, when the holding temperature in the said heat processing 2 is the temperature of (A1-20) -A1, of course, you may implement this heat processing at the same temperature continuously. The “holding (temperature)” referred to in the present invention means that the temperature range of (A1-100 ° C.) to A1 may be maintained for 60 min or longer. The temperature may be kept isothermal, kept at the same temperature after heating / cooling / cooling, or kept in the temperature change state of heating / cooling / cooling. is there.

そして、本発明においては高炭素低Cr鋼材にこれまで述べた加熱処理1〜加熱処理3までの各処理を順次行い、加熱処理3を施した同鋼材を最終的に冷却することによりその球状化熱処理を完了する。   In the present invention, the high-carbon low-Cr steel material is sequentially subjected to the heat treatment 1 to heat treatment 3 described above, and the steel material subjected to the heat treatment 3 is finally cooled to be spheroidized. Complete the heat treatment.

また、本発明における上述の加熱処理2、3はそれぞれ1回でも十分に良好な特性を得ることが可能であるが、更にその特性の向上を図るため必要に応じてそれぞれ2回以上繰り返して、最終冷却する方法を採用することも有用である。   In addition, the above-described heat treatments 2 and 3 in the present invention can obtain sufficiently good characteristics even once, but in order to further improve the characteristics, each is repeated twice or more as necessary, It is also useful to employ a method of final cooling.

ただし、多数回にわたり、加熱処理2、3を繰り返して実施することは、熱処理時間が増え、熱処理コストが嵩み、生産性も低下することになるため、4回以下の繰り返しに止めることが望ましい。   However, it is desirable to repeat the heat treatments 2 and 3 repeatedly many times, because the heat treatment time increases, the heat treatment cost increases, and the productivity also decreases. .

次に、本発明の球状化熱処理の対象となる高炭素低Cr鋼材の鋼成分についてその成分範囲及び規定理由についてその主要規定元素であるC、Cr、Si、Mn、Al、P、S、N及びOから説明する。なお、本発明における各元素の含有量の単位はすべて質量%であり、以下、単に%と略記する。   Next, C, Cr, Si, Mn, Al, P, S, N which are the main defining elements for the component range and the reason for the definition of the steel components of the high carbon low Cr steel material to be subjected to the spheroidizing heat treatment of the present invention And O will be described. The unit of the content of each element in the present invention is all mass%, and is simply abbreviated as% hereinafter.

(本発明の鋼成分)
[C:0.7〜1.5%]
Cは、鋼材の強度(即ち、最終製品の強度)を確保するために必要な元素であり、冷間鍛造性に重要な影響を及ぼす。また炭化物を生じるため、球状化焼鈍方法の設計に当たっては必ず考慮しなければならない。本発明はCを0.7%以上含有する鋼材を対象とした。C量は、好ましくは0.8%以上である。しかしCを過剰に含有すると、強度が高くなり過ぎて冷間鍛造性が悪くなる。従って、C量は、1.5%以下とする。C量は、好ましくは1.2%以下である。
(Steel component of the present invention)
[C: 0.7 to 1.5%]
C is an element necessary for ensuring the strength of the steel material (that is, the strength of the final product), and has an important influence on the cold forgeability. In addition, since carbide is generated, it must be taken into consideration when designing the spheroidizing annealing method. The present invention is directed to a steel material containing 0.7% or more of C. The amount of C is preferably 0.8% or more. However, when C is contained excessively, the strength becomes too high and the cold forgeability deteriorates. Therefore, the C amount is 1.5% or less. The amount of C is preferably 1.2% or less.

[Cr:0.9未満(0%を含む)]
Crは球状化の難しさに影響を与える元素である。本発明ではこのCrを0.9%未満に低減した場合でも、確実に球状化できる球状化熱処理方法を設計、提案するものであり、Cr量の特定は必須である。本発明によればCrが0.8%以下、又は0.6%以下、更には0.3%以下であっても確実に球状化が可能であり、さらにはCr量は0%であってもよい。なおCrは、鋼材の焼入れ性を向上させ、最終製品の強度を高めるのに作用する元素であるため、0.9%未満を満足する範囲で多く含有していてもよい。Cr量は、例えば、0.01%以上、好ましくは0.05%以上、さらに好ましくは0.1%以上であってもよい。
[Cr: less than 0.9 (including 0%)]
Cr is an element that affects the difficulty of spheroidization. The present invention designs and proposes a spheroidizing heat treatment method that can reliably spheroidize even when this Cr is reduced to less than 0.9%, and it is essential to specify the amount of Cr. According to the present invention, even if Cr is 0.8% or less, or 0.6% or less, and even 0.3% or less, spheroidization can be reliably performed, and the Cr amount is 0%. Also good. In addition, since Cr is an element which acts to improve the hardenability of the steel material and increase the strength of the final product, it may be contained in a large amount within a range satisfying less than 0.9%. For example, the Cr amount may be 0.01% or more, preferably 0.05% or more, and more preferably 0.1% or more.

[Si:0.001〜0.7%]
Siは、脱酸元素として、および固溶体硬化による最終製品の強度を増加させるために含有させることが好ましい元素である。Si量は、0.001%以上含有させることが好ましく、より好ましくは0.05%以上、更に好ましくは0.1%以上、特に好ましくは0.2%以上である。しかしSi量が0.7%を超えると、過度に強度が上昇して冷間鍛造性を劣化させることがある。従って、Si量は、0.7%以下とすることが好ましく、より好ましくは0.60%以下、更に好ましくは0.50%以下である。
[Si: 0.001 to 0.7%]
Si is an element that is preferably contained as a deoxidizing element and to increase the strength of the final product by solid solution hardening. The Si content is preferably 0.001% or more, more preferably 0.05% or more, still more preferably 0.1% or more, and particularly preferably 0.2% or more. However, when the amount of Si exceeds 0.7%, the strength is excessively increased and the cold forgeability may be deteriorated. Therefore, the Si content is preferably 0.7% or less, more preferably 0.60% or less, and still more preferably 0.50% or less.

[Mn:0.1〜2.0%]
Mnは、焼入れ性を向上し、最終製品の強度を増加させるのに有効に作用する元素である。こうした作用を有効に発揮させるには、0.1%以上含有させることが好ましく、より好ましくは0.3%以上、更に好ましくは0.50%以上である。しかし過剰に含有すると強度が過度に上昇して冷間鍛造性が劣化することがある。従ってMn量は、2.0%以下とすることが好ましく、より好ましくは1.5%以下、更に好ましくは1.2%以下、特に好ましくは1.0%以下である。
[Mn: 0.1 to 2.0%]
Mn is an element that effectively acts to improve hardenability and increase the strength of the final product. In order to effectively exhibit such an action, the content is preferably 0.1% or more, more preferably 0.3% or more, and still more preferably 0.50% or more. However, when it contains excessively, intensity | strength rises excessively and cold forgeability may deteriorate. Accordingly, the Mn content is preferably 2.0% or less, more preferably 1.5% or less, still more preferably 1.2% or less, and particularly preferably 1.0% or less.

[Al:0.001〜0.1%]
Alは、脱酸元素として作用すると共に、鋼材中に存在する固溶NをAlNとして固定し、冷間鍛造性を向上させる元素である。こうした作用を有効に発揮させるには、Al量は0.001%以上とすることが好ましく、より好ましくは0.005%以上、更に好ましくは0.01%以上である。しかしAl量が過剰になると、鋼材中にAl23が過剰に生成し、冷間鍛造性が劣化することがある。従って、Al量は、0.1%以下であることが好ましく、より好ましくは0.08%以下、更に好ましくは0.05%以下である。
[Al: 0.001 to 0.1%]
Al is an element that acts as a deoxidizing element, fixes solid solution N present in the steel as AlN, and improves cold forgeability. In order to effectively exert such effects, the Al content is preferably 0.001% or more, more preferably 0.005% or more, and still more preferably 0.01% or more. However, when the amount of Al is excessive, Al 2 O 3 is excessively generated in the steel material, and cold forgeability may be deteriorated. Accordingly, the Al content is preferably 0.1% or less, more preferably 0.08% or less, and still more preferably 0.05% or less.

[P: 0.05%以下(0%を含まない)]
Pは、鋼材中に不可避的に含まれる元素であり、粒界偏析を起こすと延性劣化の原因となる。従ってP量は、0.05%以下であることが好ましく、より好ましくは0.04%以下、更に好ましくは0.03%以下である。
[P: 0.05% or less (excluding 0%)]
P is an element inevitably contained in the steel material, and when grain boundary segregation occurs, it causes ductile deterioration. Accordingly, the P content is preferably 0.05% or less, more preferably 0.04% or less, and still more preferably 0.03% or less.

[S:0.001〜0.05%]
Sは、鋼材中に不可避的に含まれる元素であるが、鋼材の被削性を向上させるのに作用する。従ってS量は、0.001%以上であることが好ましく、より好ましくは0.002%以上、更に好ましくは0.003%以上である。しかし過剰に含有すると、Sは、鋼材中にMnSとして存在し、延性を劣化させて冷間鍛造性を悪化させることがある。従ってS量は、0.05%以下であることが好ましく、より好ましくは0.04%以下、更に好ましくは0.03%以下である。
[S: 0.001 to 0.05%]
S is an element inevitably contained in the steel material, but acts to improve the machinability of the steel material. Therefore, the S amount is preferably 0.001% or more, more preferably 0.002% or more, and further preferably 0.003% or more. However, when it contains excessively, S exists as MnS in steel materials, and may deteriorate ductility and cold forgeability. Accordingly, the S amount is preferably 0.05% or less, more preferably 0.04% or less, and still more preferably 0.03% or less.

[N:0.015%以下(0%を含まない)]
Nは、鋼材中に不可避的に含まれる元素であり、鋼材中に固溶Nとして存在すると、歪み時効による硬度上昇および延性低下を招き、冷間鍛造性を劣化させることがある。従って、N量は、0.015%以下であることが好ましく、より好ましくは0.013%以下、更に好ましくは0.01%以下である。
[N: 0.015% or less (excluding 0%)]
N is an element inevitably contained in the steel material. When N is present as a solid solution N in the steel material, the hardness increases due to strain aging and the ductility decreases, and the cold forgeability may be deteriorated. Therefore, the N content is preferably 0.015% or less, more preferably 0.013% or less, and still more preferably 0.01% or less.

[O:0.015%以下(0%を含まない)]
Oは、鋼材中に不可避的に含まれる元素であり、鋼材中に酸化物として存在すると冷間鍛造性を劣化させることがある。従って、O量は、0.015%以下であることが好ましく、より好ましくは0.013%以下、更に好ましくは0.01%以下である。
[O: 0.015% or less (excluding 0%)]
O is an element inevitably contained in the steel material, and if it exists as an oxide in the steel material, cold forgeability may be deteriorated. Therefore, the O content is preferably 0.015% or less, more preferably 0.013% or less, and still more preferably 0.01% or less.

本発明の対象鋼の成分は、上記主要規定元素からなり、残部は鉄および不可避不純物からなるものである。また、これら必須元素に加えて、Cu、Ni、Mo及びBよりなる群から選択される1種類以上の元素や、Ti、Nb及びVよりなる群から選択される1種以上の元素を含有させることも鋼材の特性を更に向上させる上で有用である。以下、この選択元素について説明する。   The components of the target steel of the present invention are composed of the above main prescribed elements, and the balance is composed of iron and inevitable impurities. In addition to these essential elements, one or more elements selected from the group consisting of Cu, Ni, Mo and B and one or more elements selected from the group consisting of Ti, Nb and V are contained. This is also useful for further improving the properties of the steel material. Hereinafter, this selective element will be described.

[Cu:0.25%以下(0%を含まない)、Ni:0.25%以下(0%を含まない)、Mo:0.25%以下(0%を含まない)及びB:0.01%以下(0%を含まない)よりなる群から選択される1種以上]
Cu、Ni、Mo、およびBは、いずれも鋼材の焼入れ性を向上させて最終製品の強度を高めるのに有効に作用する元素であり、これらの元素は単独で、または2種以上含有させることが好ましい。こうした作用を有効に発揮させるには、Cuは0.01%以上、Niは0.01%以上、Moは0.01%以上、Bは0.001%以上含有させることが好ましく、より好ましくは、Cuは0.03%以上、Niは0.03%以上、Moは0.03%以上、Bは0.0015%以上である。しかし過剰に含有すると、強度が高くなり過ぎて、冷間鍛造性が劣化することがある。従ってCuは0.25%以下、Niは0.25%以下、Moは0.25%以下、Bは0.01%以下であることが好ましく、より好ましくは、Cuは0.15%以下、Niは0.15%以下、Moは0.2%以下、Bは0.008%以下である。
[Cu: 0.25% or less (not including 0%), Ni: 0.25% or less (not including 0%), Mo: 0.25% or less (not including 0%), and B: 0.0. One or more selected from the group consisting of 01% or less (excluding 0%)]
Cu, Ni, Mo, and B are all elements that effectively work to improve the hardenability of the steel material and increase the strength of the final product. These elements should be contained alone or in combination of two or more. Is preferred. In order to effectively exert such an action, it is preferable to contain Cu 0.01% or more, Ni 0.01% or more, Mo 0.01% or more, and B 0.001% or more, more preferably Cu is 0.03% or more, Ni is 0.03% or more, Mo is 0.03% or more, and B is 0.0015% or more. However, when it contains excessively, intensity | strength will become high too much and cold forgeability may deteriorate. Accordingly, Cu is preferably 0.25% or less, Ni is 0.25% or less, Mo is 0.25% or less, and B is 0.01% or less, more preferably, Cu is 0.15% or less, Ni is 0.15% or less, Mo is 0.2% or less, and B is 0.008% or less.

[Ti:0.2%以下(0%を含まない)、Nb:0.2%以下(0%を含まない)、及びV:0.5%以下(0%を含まない)よりなる群から選択される1種以上]
Ti、Nb、およびVは、鋼材中に存在するNと結合して窒化物を形成し、固溶Nを低減することにより、変形抵抗を低下させて冷間鍛造性を向上させる元素であり、これらの元素は単独で、または2種以上を含有させることが好ましい。こうした作用を有効に発揮させるには、Tiは0.02%以上、Nbは0.02%以上、Vは0.05%以上含有させることが好ましく、より好ましくは、Tiは0.04%以上、Nbは0.05%以上、Vは0.08%以上である。しかし過剰に含有すると、形成される窒化物が変形抵抗を高め、冷間鍛造性を劣化させることがある。従ってTiは0.2%以下、Nbは0.2%以下、Vは0.5%以下であることが好ましく、より好ましくは、Tiは0.1%以下、Nbは0.1%以下、Vは0.25%以下である。
[From the group consisting of Ti: 0.2% or less (not including 0%), Nb: 0.2% or less (not including 0%), and V: 0.5% or less (not including 0%) One or more selected]
Ti, Nb, and V are elements that combine with N present in the steel material to form a nitride, reduce the solid solution N, thereby reducing deformation resistance and improving cold forgeability, These elements are preferably used alone or in combination of two or more. In order to effectively exert such an effect, it is preferable that Ti is 0.02% or more, Nb is 0.02% or more, and V is 0.05% or more, more preferably, Ti is 0.04% or more. , Nb is 0.05% or more, and V is 0.08% or more. However, when it contains excessively, the nitride formed may raise deformation resistance and may deteriorate cold forgeability. Therefore, Ti is preferably 0.2% or less, Nb is 0.2% or less, and V is preferably 0.5% or less, more preferably, Ti is 0.1% or less, Nb is 0.1% or less, V is 0.25% or less.

(実施例)
(1)予備実験
本発明の優れた効果を本実施例に基づき実証することにする。
先ず、本発明の実施例(本実験)に先立って、先に記した参考文献(「鋼の球状化焼なまし」熱処理15巻4号P.237)に記載されている代表的な球状化熱処理(焼鈍)方法として、(a)A1点以下の温度に長時間保持する方法、(b)A1点に加熱後に徐冷する方法、の両者を用いて実験を行った。
この予備実験では、熱間圧延された表1の鋼種Aの鋼材を対象とし、上記(a)、(b)の熱処理方法として下記の熱処理条件を採用、実施した。
(a)鋼材のテストピースを実験用の熱処理炉にて、室温から150℃/hで加熱、昇温し、710℃で40h保持した後、680℃まで5℃/hの冷却速度で冷却(合計処理時間:51h)
(b)鋼材のテストピースを実験用の熱処理炉にて、室温から150℃/hで加熱、昇温し、760℃で5h保持した後、600℃まで4℃/hで冷却(合計処理時間:51h)
熱処理炉から取り出したテストピースの横断面D/4位置における球状化特性(硬さ及び組織)を下記の要領で測定、評価を行った。
(Example)
(1) Preliminary experiment The superior effect of the present invention will be demonstrated based on this example.
First, prior to the examples of the present invention (this experiment), representative spheroidization described in the above-mentioned reference ("Spheroidizing annealing of steel" heat treatment Vol. 15, No. 4, P.237). As a heat treatment (annealing) method, an experiment was performed using both (a) a method of holding at a temperature of A1 point or lower for a long time and (b) a method of gradually cooling after heating to A1 point.
In this preliminary experiment, the following heat treatment conditions were adopted and implemented as the heat treatment methods (a) and (b) above for the hot rolled steel material of steel type A in Table 1.
(A) A steel test piece was heated and heated from room temperature to 150 ° C./h in an experimental heat treatment furnace, held at 710 ° C. for 40 h, and then cooled to 680 ° C. at a cooling rate of 5 ° C./h ( Total processing time: 51h)
(B) A steel test piece was heated and heated from room temperature to 150 ° C./h in an experimental heat treatment furnace, held at 760 ° C. for 5 h, and then cooled to 600 ° C. at 4 ° C./h (total treatment time) : 51h)
The spheroidizing characteristics (hardness and structure) at the position of the transverse section D / 4 of the test piece taken out from the heat treatment furnace were measured and evaluated in the following manner.

[球状化特性の評価]
・硬さ評価
ビッカース硬度計を用いて、荷重1kgf(≒9.8N)で5点測定し、その平均値(HV)を求めた。球状化が十分に促進されていても、鋼材の炭素量によって硬さは変化するため、その絶対値だけで評価できないことから、本発明ではその評価の基準としてHVが次のY値を下回った場合にその鋼材が軟質化したものとして判断し、合格(〇)とし、HVがY値以上であったものは不合格(×)とした。
Y=(鋼材炭素量)[質量%]×27.3+143.5
[Evaluation of spheroidizing characteristics]
-Hardness evaluation Using a Vickers hardness meter, five points were measured with a load of 1 kgf (≈9.8 N), and the average value (HV) was obtained. Even if the spheroidization is sufficiently promoted, the hardness changes depending on the carbon content of the steel material, and therefore it cannot be evaluated only by its absolute value. Therefore, in the present invention, HV is below the following Y value as a criterion for the evaluation. In this case, it was judged that the steel material was softened, and it was determined to be acceptable (◯), and those having an HV greater than or equal to the Y value were determined to be unacceptable (x).
Y = (carbon amount of steel) [mass%] × 27.3 + 143.5

・組織評価
SEM観察によって倍率4000倍で10枚撮影した。通常、棒状の炭化物が多く存在するとそれらが割れの起点となって冷間鍛造性低下の原因となる。本評価では、得られたSEM写真を画像解析し、写真内の炭化物のアスペクト比(長径/短径の比)をそれぞれ算出した。写真内の炭化物のアスペクト比が3.0以下であるものの割合が90%以上を合格とし、10枚全てが合格した場合、球状化組織に優れたものとして最終的に合格(〇)とし、それ以外は不合格(×)とした。
-Tissue evaluation 10 images were taken at a magnification of 4000 times by SEM observation. Usually, when a large amount of rod-like carbides are present, they become starting points of cracks and cause a decrease in cold forgeability. In this evaluation, the obtained SEM photograph was subjected to image analysis, and the aspect ratio (ratio of major axis / minor axis) of carbides in the photograph was calculated. If the ratio of carbides in the photo with an aspect ratio of 3.0 or less passes 90% or more, and all 10 sheets pass, it is finally passed (◯) as an excellent spheroidized structure. Except for the above, it was judged as rejected (x).

この予備実験による(a)、(b)の熱処理後の鋼材のテストピースの評価の結果、硬さがそれぞれHV179、HV171で前記Y値を上回り不合格であるとともに、組織評価においても前記合格基準に満たさなかった。このように、比較的長時間(50h、51h)の熱処理を実施しても球状化が難しい事実を確認した。こうした事実を踏まえて、以下の本実験を行った。   As a result of the evaluation of the test pieces of the steel materials after the heat treatment of (a) and (b) by this preliminary experiment, the hardness exceeded the Y value at HV179 and HV171, respectively, and also failed in the structure evaluation. Did not meet. Thus, it was confirmed that spheroidization is difficult even when heat treatment is performed for a relatively long time (50 h, 51 h). Based on these facts, the following experiments were conducted.

(2)本実験
表1の成分の各鋼材を常法により熱間圧延し、それぞれΦ15mmの線材コイルとして製造し、この線材から高さ5mmのテストピースを切り出し、真空封入した上で実験用の熱処理炉にて各種の熱処理条件により球状化熱処理を実施した。表2にそれらの熱処理条件及び球状化熱処理後の鋼材(テストピース)の球状化特性の評価結果を示す(表2の追番1、3〜18に該当)。なお、球状化特性の評価については予備実験で述べた前記評価要領と同じ基準で行った。
(2) This experiment Each steel material of the component of Table 1 is hot-rolled by a conventional method, each is manufactured as a Φ15 mm wire coil, a test piece having a height of 5 mm is cut out from this wire, and sealed for vacuum. Spheroidizing heat treatment was performed in a heat treatment furnace under various heat treatment conditions. Table 2 shows the evaluation results of the heat treatment conditions and the spheroidizing characteristics of the steel material (test piece) after the spheroidizing heat treatment (corresponding to numbers 1 and 3 to 18 in Table 2). The evaluation of the spheroidization characteristics was performed according to the same criteria as the evaluation procedure described in the preliminary experiment.

また、表2の追番2では、実機のバッチ式炉にて上記熱間圧延後の線材コイルを球状化熱処理し、熱処理後の線材から同様なテストピースを切り出して評価を行った。なお、ここでの線材コイルの温度は評価対象とするコイルに熱電対を括りつけ、コイルの温度を測定した結果に基づくものであり、表2の保持温度は保持時においてこの測定によって得られた平均温度を記載した。   Further, in the additional number 2 in Table 2, the wire coil after hot rolling was subjected to spheroidizing heat treatment in a batch furnace of an actual machine, and the same test piece was cut out from the heat treated wire material for evaluation. The temperature of the wire coil here is based on the result of measuring the coil temperature by attaching a thermocouple to the coil to be evaluated, and the holding temperatures in Table 2 were obtained by this measurement during holding. Average temperatures are listed.

表2において、追番及び熱処理条件などに網掛けがないものが本発明例(追番1〜10)であり、網掛けがあるものは本発明の規定する条件(鋼成分、熱処理条件)を満たさない比較例(追番11〜18)を示している。
同表2から明らかなように、本発明例による球状化熱処理を行った高炭素低Cr鋼材はその硬さ評価、組織評価の両方においてすべて合格していることが分かる。すなわち、HV硬さが低く十分に軟質化されており、鋼材組織中の棒状炭化物が非常に少なく抑制されており、低Cr量であっても優れた球状化特性を有していることが判明し、従って本発明によって得られた同鋼材は良好な冷間鍛造性を備えたものであることが容易に理解できる。
In Table 2, those having no shading in the serial number and heat treatment conditions are examples of the present invention (sequential numbers 1 to 10), and those having shading are the conditions defined by the present invention (steel components, heat treatment conditions). The comparative example (sequential numbers 11-18) which is not satisfied is shown.
As apparent from Table 2, it can be seen that the high-carbon low-Cr steel material subjected to the spheroidizing heat treatment according to the example of the present invention all passed both the hardness evaluation and the structure evaluation. That is, the HV hardness is low and sufficiently softened, the amount of rod-like carbides in the steel structure is suppressed to a very low level, and it has been found that it has excellent spheroidizing characteristics even with a low Cr content. Therefore, it can be easily understood that the steel material obtained by the present invention has a good cold forgeability.

一方、比較例による同鋼材はいずれも本発明の規定する条件を外れたものであるため、硬さ評価、組織評価の両方においてすべて不合格となっていることが知れ、本発明例に比べて球状化特性に劣り、従って、比較例では十分な冷間鍛造性が得られないことが了解できる。   On the other hand, since all the steel materials according to the comparative examples are out of the conditions specified by the present invention, it is known that both the hardness evaluation and the structure evaluation are all rejected, compared with the present invention examples. It can be understood that the spheroidizing characteristics are inferior and, therefore, sufficient cold forgeability cannot be obtained in the comparative example.

Claims (4)

C:0.7〜1.5%(質量%の意味。成分について以下同じ)、
Cr:0.9%未満(0%を含む)、
Si:0.001〜0.7%、
Mn:0.1〜2.0%、
Al:0.01〜0.1%、
P:0.05%以下(0%を含まない)、
S:0.001〜0.05%、
N:0.015%以下(0%を含まない)、
O:0.015%以下(0%を含まない)
を含み、残部が鉄および不可避不純物からなる冷間鍛造用高炭素低Cr鋼材の球状化熱処理方法において、
前記鋼材を、(A1+10℃)〜(A1+50℃)の温度域に5min以上60min未満保持し、
次いで、同鋼材を、A1から(A1−35℃)以下までの冷却速度が15℃/h以下となるように冷却し、
その後、「同鋼材を(A1−20℃)〜(A1+10℃)の温度域に60min以上保持し、更に同鋼材を(A1−100℃)〜A1の温度域に60min以上保持する」熱処理を1回若しくは2回以上繰り返して行った後、冷却することを特徴とする冷間鍛造用高炭素低Cr鋼材の球状化熱処理方法。
C: 0.7 to 1.5% (meaning mass%. The same applies to the components below),
Cr: Less than 0.9% (including 0%),
Si: 0.001 to 0.7%,
Mn: 0.1 to 2.0%,
Al: 0.01 to 0.1%,
P: 0.05% or less (excluding 0%),
S: 0.001 to 0.05%,
N: 0.015% or less (excluding 0%),
O: 0.015% or less (excluding 0%)
In the spheroidizing heat treatment method for high carbon low Cr steel material for cold forging, the balance of which includes iron and inevitable impurities,
The steel material is held in a temperature range of (A1 + 10 ° C.) to (A1 + 50 ° C.) for 5 min or more and less than 60 min,
Next, the steel material is cooled so that the cooling rate from A1 to (A1-35 ° C) or less is 15 ° C / h or less,
Thereafter, a heat treatment of “holding the steel material in a temperature range of (A1-20 ° C.) to (A1 + 10 ° C.) for 60 min or more and further holding the steel material in a temperature range of (A1-100 ° C.) to A1 for 1 min” is performed. A method of spheroidizing heat treatment of a high carbon low Cr steel material for cold forging, characterized by cooling after repeating once or twice or more.
前記鋼材が更に、
Cu:0.25%以下(0%を含まない)、
Ni:0.25%以下(0%を含まない)、
Mo:0.25%以下(0%を含まない)、及び
B :0.01%以下(0%を含まない)、
よりなる群から選択される1種以上を含む請求項1に記載の冷間鍛造用高炭素低Cr鋼材の球状化熱処理方法。
The steel material is further
Cu: 0.25% or less (excluding 0%),
Ni: 0.25% or less (excluding 0%),
Mo: 0.25% or less (excluding 0%), and B: 0.01% or less (not including 0%),
The spheroidizing heat treatment method for a high carbon low Cr steel material for cold forging according to claim 1, comprising at least one selected from the group consisting of:
前記鋼材が更に、
Ti:0.2%以下(0%を含まない)、
Nb:0.2%以下(0%を含まない)、及び
V:0.5%以下(0%を含まない)、
よりなる群から選択される1種以上を含む請求項1又は2に記載の冷間鍛造用高炭素低Cr鋼材の球状化熱処理方法。
The steel material is further
Ti: 0.2% or less (excluding 0%),
Nb: 0.2% or less (not including 0%), and V: 0.5% or less (not including 0%),
The spheroidizing heat treatment method for a high carbon low Cr steel material for cold forging according to claim 1 or 2, comprising at least one selected from the group consisting of:
前記球状化熱処理をバッチ炉により行う請求項1〜3の何れかに記載の冷間鍛造用高炭素低Cr鋼材の球状化熱処理方法。   The spheroidizing heat treatment method for a high carbon low Cr steel material for cold forging according to any one of claims 1 to 3, wherein the spheroidizing heat treatment is performed in a batch furnace.
JP2014016848A 2014-01-31 2014-01-31 Spheroidizing heat treatment method for high carbon low Cr steel for cold forging Expired - Fee Related JP6328435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014016848A JP6328435B2 (en) 2014-01-31 2014-01-31 Spheroidizing heat treatment method for high carbon low Cr steel for cold forging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014016848A JP6328435B2 (en) 2014-01-31 2014-01-31 Spheroidizing heat treatment method for high carbon low Cr steel for cold forging

Publications (2)

Publication Number Publication Date
JP2015143377A true JP2015143377A (en) 2015-08-06
JP6328435B2 JP6328435B2 (en) 2018-05-23

Family

ID=53888608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014016848A Expired - Fee Related JP6328435B2 (en) 2014-01-31 2014-01-31 Spheroidizing heat treatment method for high carbon low Cr steel for cold forging

Country Status (1)

Country Link
JP (1) JP6328435B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11256233A (en) * 1998-03-13 1999-09-21 Kawasaki Steel Corp Direct spheroidizing annealing method for steel wire rod
JP2000273537A (en) * 1999-03-19 2000-10-03 Nisshin Steel Co Ltd Production of high carbon steel sheet excellent in local ductility
JP2001123221A (en) * 1999-10-27 2001-05-08 Daido Steel Co Ltd Heat treatment method for softening high carbon bearing steel
JP2007131907A (en) * 2005-11-09 2007-05-31 Sanyo Special Steel Co Ltd Steel for induction hardening with excellent cold workability, and its manufacturing method
JP2011256456A (en) * 2010-06-11 2011-12-22 Sanyo Special Steel Co Ltd Method for manufacturing steel for cold forging
JP2012062515A (en) * 2010-09-15 2012-03-29 Kobe Steel Ltd Bearing steel excellent in cold workability, wear resistance and rolling fatigue characteristics
JP2013164160A (en) * 2013-03-05 2013-08-22 Nsk Ltd Method for manufacturing rolling bearing device for supporting wheel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11256233A (en) * 1998-03-13 1999-09-21 Kawasaki Steel Corp Direct spheroidizing annealing method for steel wire rod
JP2000273537A (en) * 1999-03-19 2000-10-03 Nisshin Steel Co Ltd Production of high carbon steel sheet excellent in local ductility
JP2001123221A (en) * 1999-10-27 2001-05-08 Daido Steel Co Ltd Heat treatment method for softening high carbon bearing steel
JP2007131907A (en) * 2005-11-09 2007-05-31 Sanyo Special Steel Co Ltd Steel for induction hardening with excellent cold workability, and its manufacturing method
JP2011256456A (en) * 2010-06-11 2011-12-22 Sanyo Special Steel Co Ltd Method for manufacturing steel for cold forging
JP2012062515A (en) * 2010-09-15 2012-03-29 Kobe Steel Ltd Bearing steel excellent in cold workability, wear resistance and rolling fatigue characteristics
JP2013164160A (en) * 2013-03-05 2013-08-22 Nsk Ltd Method for manufacturing rolling bearing device for supporting wheel

Also Published As

Publication number Publication date
JP6328435B2 (en) 2018-05-23

Similar Documents

Publication Publication Date Title
CN108431279A (en) Automotive part with high intensity and excellent durability and its manufacturing method
US10837080B2 (en) Rolled steel bar or rolled wire rod for cold-forged component
JP2020509208A (en) Tempered martensitic steel with low yield ratio and excellent uniform elongation and method for producing the same
JP2015168882A (en) Spheroidizing heat treatment method for alloy steel
EP3222743A1 (en) Rolled steel bar or rolled wire material for cold-forged component
JP2014177710A (en) Hardening method for steel
JP2015183266A (en) Steel for high strength bolt excellent in delayed fracture resistance and high strength bolt
JP2015183265A (en) Method for producing steel material excellent in cold workability or machinability
JP2009256771A (en) High strength spring steel having excellent delayed fracture resistance, and method for producing the same
JP2013227598A (en) Iron casting and method for manufacturing the same
KR20180074008A (en) Steel wire rod having excellent hydrogen embrittlement resistance for high strength spring, and method for manufacturing the same
JP2013505366A (en) High carbon flexible wire capable of omitting softening treatment and method for producing the same
JP6100676B2 (en) Spheroidizing heat treatment method for alloy steel
JP6082342B2 (en) Manufacturing method of high carbon steel wire
JP2018168473A (en) Spheroidizing heat treatment method for alloy steel
JP2018165408A (en) Production method of steel material excellent in cold workability or machinability
JP5972823B2 (en) Manufacturing method of steel for cold forging
JP6108924B2 (en) Manufacturing method of steel for cold forging
JP6328435B2 (en) Spheroidizing heat treatment method for high carbon low Cr steel for cold forging
JP5282501B2 (en) Manufacturing method of high strength non-tempered forged parts
JP6303866B2 (en) High-strength steel material and manufacturing method thereof
JP5991254B2 (en) Manufacturing method of bearing steel
JP6059570B2 (en) Manufacturing method of steel with excellent cold workability
JP6728816B2 (en) High-strength spring steel, spring, and method for manufacturing high-strength spring steel
JP6059569B2 (en) Manufacturing method of steel material excellent in cold workability and machinability

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160606

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160713

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180418

R150 Certificate of patent or registration of utility model

Ref document number: 6328435

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees