JP2014175644A - Semiconductor light-emitting device - Google Patents

Semiconductor light-emitting device Download PDF

Info

Publication number
JP2014175644A
JP2014175644A JP2013050248A JP2013050248A JP2014175644A JP 2014175644 A JP2014175644 A JP 2014175644A JP 2013050248 A JP2013050248 A JP 2013050248A JP 2013050248 A JP2013050248 A JP 2013050248A JP 2014175644 A JP2014175644 A JP 2014175644A
Authority
JP
Japan
Prior art keywords
excitation light
hole
diameter portion
light
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013050248A
Other languages
Japanese (ja)
Inventor
Hironobu Sakamoto
博信 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2013050248A priority Critical patent/JP2014175644A/en
Publication of JP2014175644A publication Critical patent/JP2014175644A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor light-emitting device in which an adhesive agent which is inexpensive but is not excellent in light resistance and thermal resistance can be used for adhering a phosphor plate.SOLUTION: The semiconductor light-emitting device includes: a condenser lens 4 for condensing excitation light emitted from an excitation light source 3; a holder part 6 having a through hole 7 through which the condensed excitation light passes; a first transparent member 9 for converting the wavelength of the excitation light; and a second transparent member 8 positioned in the through hole 7. The through hole 7 has a small diameter part 7a, a middle diameter part 7c, and a large diameter part 7d. The diameter of the small diameter part 7a is smaller than that of the middle diameter part 7c, and the diameter of the middle diameter part 7c is smaller than that of the large diameter part 7d. The first transparent member 9 is adhered by an adhesive agent 13 on a holder 6a at the middle diameter part 7c on the side opposite to the excitation light source 3. The spherical second transparent member 8 is fitted between the small diameter part 7a and the middle diameter part 7c. The excitation light condensed by the condenser lens 4 and then diffused is incident on the first transparent member 9 after passing through the spherical second transparent member 8.

Description

本発明は、発光装置に係わり、特に、半導体発光素子(例えば、半導体レーザーもしくは発光ダイオード)と波長変換部材(例えば、蛍光体)とを組み合わせた構造の発光装置に関するものである。   The present invention relates to a light emitting device, and more particularly to a light emitting device having a structure in which a semiconductor light emitting element (for example, a semiconductor laser or a light emitting diode) and a wavelength conversion member (for example, a phosphor) are combined.

従来、半導体レーザー光源と蛍光体とを組み合わせた構造の発光装置が提案されている。   Conventionally, a light emitting device having a structure in which a semiconductor laser light source and a phosphor are combined has been proposed.

特許文献1に記載の発光装置は、半導体レーザー素子、半導体レーザー素子から離間した位置に配置された蛍光体プレート、半導体レーザー素子と蛍光体プレートとを保持するホルダー等を備えている。蛍光体プレートは接着剤でホルダーに固定され、ホルダー開口部は蛍光体プレートにより塞がれている。   The light-emitting device described in Patent Literature 1 includes a semiconductor laser element, a phosphor plate disposed at a position spaced from the semiconductor laser element, a holder for holding the semiconductor laser element and the phosphor plate, and the like. The phosphor plate is fixed to the holder with an adhesive, and the holder opening is closed by the phosphor plate.

半導体レーザー素子から出射したレーザー光は、素子幅より十分幅広いホルダー開口部を通過し、開口部上に配置された蛍光体プレートに照射される。レーザー光が照射された蛍光体プレートは、これを透過するレーザー光とレーザー光で波長変換され放出される波長変換光(発光)との混色光を放出する。   Laser light emitted from the semiconductor laser element passes through a holder opening that is sufficiently wider than the element width, and irradiates a phosphor plate disposed on the opening. The phosphor plate irradiated with the laser light emits mixed color light of the laser light that passes through the phosphor plate and the wavelength converted light (light emission) that is wavelength-converted and emitted by the laser light.

特許文献2に記載の発光装置は、半導体レーザー素子、半導体レーザー素子を気密封止するCANパッケージ、特許文献1よりもさらにCANパッケージから離間した位置に配置された蛍光体プレート、CANパッケージと蛍光体プレートとの間に配置された集光レンズ、CANパッケージと蛍光体プレートと集光レンズとを保持するホルダー等を備えている。蛍光体プレートをホルダーに固定するために、固定部材とスリーブで蛍光体プレートを係合して接着剤を使わずに固定している。   The light-emitting device described in Patent Document 2 includes a semiconductor laser element, a CAN package that hermetically seals the semiconductor laser element, a phosphor plate that is disposed further away from the CAN package than Patent Document 1, and a CAN package and a phosphor. A condensing lens disposed between the plates, a holder for holding the CAN package, the phosphor plate, and the condensing lens are provided. In order to fix the phosphor plate to the holder, the phosphor plate is engaged by a fixing member and a sleeve and fixed without using an adhesive.

レーザー光は、集光レンズで集光されホルダーの貫通孔を通過し、当該貫通孔の上に配置された蛍光体プレートをスポット的に照射する。レーザー光が照射された蛍光体プレートは、これを透過するレーザー光とレーザー光で波長変換され放出される波長変換光(発光)とを放出する。   The laser light is collected by a condenser lens, passes through the through hole of the holder, and irradiates the phosphor plate arranged on the through hole in a spot manner. The phosphor plate irradiated with the laser light emits laser light that passes through the phosphor plate and wavelength-converted light (light emission) that is wavelength-converted and emitted by the laser light.

特開2008−235744JP 2008-235744 A 特開2010−165834JP 2010-165834 A

しかしながら、特許文献1に記載の発光装置は、接着剤で蛍光体プレートを接着固定する際、蛍光体とホルダーが接する面全体に接着剤を行き渡らせるために、接着面積より多めの接着剤を塗布した後蛍光体プレートの上から荷重を加えているが、接着剤量が過剰のためにホルダー開口部の貫通孔側にはみ出し溜まる可能性がある。   However, in the light emitting device described in Patent Document 1, when the phosphor plate is bonded and fixed with an adhesive, an adhesive larger than the bonding area is applied in order to spread the adhesive over the entire surface where the phosphor and the holder are in contact with each other. After that, although a load is applied from above the phosphor plate, there is a possibility that the amount of adhesive is excessive and sticks out to the through hole side of the holder opening.

集光レンズを使用しない特許文献1のレーザー光は比較的広角に出射される。このレーザー光は開口端部にはみ出した接着剤に当たる可能性があるが、集光レンズを使わずに十分発散した広角なレーザー光はパワー密度が低いため、はみ出した接着剤に当たっても接着剤が変質することはない。しかし、蛍光体に当ったレーザー光は熱にも変換されるため、蛍光体プレート自体の温度は上昇する。その蛍光体プレートの熱は接着剤に伝わり、ホルダーと十分接触している部分の接着剤は放熱性を確保しているため接着剤が熱で変質することはない。しかし、ホルダー開口端部の貫通孔側にはみ出して溜まった接着剤はホルダーと十分接触していないために、はみ出した接着剤の温度は上昇し分解が始まり黒化する。これにより、蛍光体プレートへのレーザー光の入射効率は低下し、混色光の光取出しも悪くなる。   The laser beam of Patent Document 1 that does not use a condenser lens is emitted at a relatively wide angle. Although this laser beam may hit the adhesive that protrudes from the opening edge, the wide-angle laser beam that is sufficiently divergent without using a condensing lens has a low power density, so the adhesive will change even if it hits the protruding adhesive. Never do. However, since the laser light hitting the phosphor is also converted into heat, the temperature of the phosphor plate itself rises. The heat of the phosphor plate is transmitted to the adhesive, and the adhesive in the portion sufficiently in contact with the holder ensures heat dissipation, so that the adhesive is not altered by heat. However, since the adhesive that protrudes and accumulates on the through-hole side of the holder opening end is not sufficiently in contact with the holder, the temperature of the protruding adhesive rises, and decomposition starts and blackens. Thereby, the incident efficiency of the laser beam to the phosphor plate is lowered, and the light extraction of the mixed color light is also deteriorated.

引用文献2の場合、接着剤より高価な固定部材や溶接スリーブを使用しているため素材費が高くなるという問題がある。   In the case of the cited document 2, there is a problem that the material cost becomes high because a fixing member and a welding sleeve which are more expensive than the adhesive are used.

本発明は、接着剤が貫通孔にはみ出しても高密度なレーザー光で変質することなく
安価な接着剤を蛍光体プレート固着に利用できる半導体発光装置を提供することを目的とする。
An object of the present invention is to provide a semiconductor light emitting device that can use an inexpensive adhesive for fixing a phosphor plate without being deteriorated by high-density laser light even if the adhesive protrudes into a through-hole.

上記目的を達成するために、半導体発光素子を備えた励起光源と、前記励起光源から出射された励起光を集光する集光レンズと、前記集光レンズで集光された励起光が通る貫通孔とを設けたホルダー部と、前記貫通孔を通過した励起光を波長変換する第1の透光性部材と、前記貫通孔内に位置する第2の透光性部材とを備え、前記貫通孔は前記励起光源側から順に小径部と中径部と大径部から成り、前記小径部の口径は前記中径部の口径より小さく、前記中径部の口径は前記大径部の口径より小さくなっており、前記第1の透光性部材は、前記励起光源と反対側の前記中径部のホルダー部上に接着剤で固着され、前記第2の透光性部材は、球状とされ、前記小径部と前記中径部の間の孔に嵌合しており、前記集光レンズで集光され発散した励起光は、前記球状の第2透光性部材を通過した後、第1の透光性部材に照射されることを特徴とする。 To achieve the above object, an excitation light source including a semiconductor light emitting element, a condensing lens that condenses the excitation light emitted from the excitation light source, and a penetration through which the excitation light collected by the condensing lens passes. A holder portion provided with a hole, a first translucent member that converts the wavelength of excitation light that has passed through the through-hole, and a second translucent member that is positioned in the through-hole, The hole is composed of a small diameter portion, a medium diameter portion, and a large diameter portion in order from the excitation light source side, the diameter of the small diameter portion is smaller than the diameter of the medium diameter portion, and the diameter of the medium diameter portion is smaller than the diameter of the large diameter portion. The first translucent member is fixed with an adhesive on the holder portion of the medium diameter portion opposite to the excitation light source, and the second translucent member is spherical. , Fitted in a hole between the small-diameter portion and the medium-diameter portion, and excited and diverged by the condenser lens. Light passes through the second light transmitting member of said spherical, characterized in that it is irradiated to the first light-transmitting member.

請求項1に記載の発明によれば、過剰に接着剤を使用しても貫通孔に嵌っている球状の第2の透光性部材が励起光源側の貫通孔への接着剤はみ出しを防止してくれるため、集光レンズで集光した高密度な励起光が直接接着剤に当ることはない。はみ出した接着剤は溜まることなく比較的広幅の貫通孔側面に沿って流れ薄い層として形成され、第1の透光性部材の励起で熱くなっても放熱も兼ねたホルダー部で熱引きされ、はみ出した接着剤は変質せず、波長変換部材である第1の透光性部材への入射効率を維持でき白色光の光取出しも低下することはない。   According to the first aspect of the present invention, the spherical second translucent member fitted in the through hole prevents the adhesive from protruding into the through hole on the excitation light source side even if the adhesive is used excessively. Therefore, the high-density excitation light condensed by the condenser lens does not directly hit the adhesive. The protruding adhesive is formed as a thin layer that flows along the side surface of the relatively wide through-hole without accumulating, and is heated by the holder portion that also serves as heat dissipation even when heated by excitation of the first light-transmissive member, The protruding adhesive does not change, the efficiency of incidence on the first light transmissive member, which is the wavelength conversion member, can be maintained, and the light extraction of white light is not reduced.

請求項2に記載の発明は、請求項1に記載の発明において、前記集光レンズで集光された励起光の焦点は、前記励起光源側の前記第2の透光性部材と前記励起光源と反対側の前記集光レンズとの間に位置していることを特徴とする。   According to a second aspect of the present invention, in the first aspect of the present invention, the focal point of the excitation light condensed by the condenser lens is the second light transmissive member on the excitation light source side and the excitation light source. And the condensing lens on the opposite side.

請求項2に記載の発明によれば、集光レンズで集光した高密度な励起光の焦点が励起光源側の第2の透光性部材よりも励起光源側にあるため、一度集光した励起光が発散しながら貫通孔内に入り第2の透光性部材の中へ入射する。球状の第2の透光性部材に入射した当該発散光は屈折しながら通過した光は平行光となって第1の透光性部材を照射する。小径部から中径部に係る貫通孔は、小径部から中径部へ向かうほど広くなっているため、球状の第2の透光性部材を通過した平行光線が該貫通孔の側面に付着した接着剤に当たることも変質することもない。   According to the invention described in claim 2, since the focal point of the high-density excitation light condensed by the condenser lens is closer to the excitation light source side than the second light-transmissive member on the excitation light source side, the light is once condensed. Excitation light enters the through-hole while diverging and enters the second translucent member. The diverging light incident on the spherical second light transmissive member is refracted and the light that has passed through is converted into parallel light and irradiates the first light transmissive member. Since the through hole from the small diameter part to the medium diameter part becomes wider as it goes from the small diameter part to the medium diameter part, the parallel rays that have passed through the spherical second light-transmissive member are attached to the side surface of the through hole. It will not hit or change the adhesive.

請求項3に記載の発明は、請求項1及び請求項2に記載の発明において、前記第2の透光性部材が透光性散乱体であることを特徴とする。   According to a third aspect of the present invention, in the first and second aspects of the present invention, the second translucent member is a translucent scatterer.

請求項3に記載の発明によれば、貫通孔内に嵌っている透光性散乱材が混ざった第2の透光性部材に一度集光した励起光が発散しながら入射し、透光性散乱材で励起光は散乱しながら第2の透光性部材を通過し、貫通孔内全体に広がる。散乱した励起光は高いパワー密度から低いパワー密度に下がるため、はみ出した接着剤が変質することはない。また、第1の透光性部材に当たる励起光が透光性散乱体の第2の透光性部材で散乱し、透光性散乱材が含まれない第2の透光性部材と比較して照射面積が広くなるため、透光性散乱材が含まれない第2の透光性部材に比べて第1の透光性部材で波長変換された混色光の色ムラは少なくなる。   According to the third aspect of the present invention, the excitation light once condensed is incident on the second translucent member mixed with the translucent scattering material fitted in the through hole while being diverged, thereby translucent. The excitation light is scattered by the scattering material, passes through the second light transmissive member, and spreads throughout the through hole. Since the scattered excitation light falls from a high power density to a low power density, the protruding adhesive does not change in quality. In addition, the excitation light impinging on the first translucent member is scattered by the second translucent member of the translucent scatterer, and compared with the second translucent member that does not include the translucent scattering material. Since the irradiation area is increased, the color unevenness of the mixed color light subjected to wavelength conversion by the first translucent member is reduced as compared with the second translucent member not including the translucent scattering material.

請求項4に記載の発明は、請求項1から請求項3に記載の発明において、前記第1の透光性部材と前記第2の透光性部材は空気層を介して離間していることを特徴とする。   According to a fourth aspect of the present invention, in the first to third aspects of the invention, the first light transmissive member and the second light transmissive member are spaced apart via an air layer. It is characterized by.

請求項4に記載の発明によれば、もしその接着剤が該貫通孔内に充填されれば、第1の透光性部材が励起された際発生する熱で接着剤は変質し、励起光の入射効率を低下させる。このような問題が起こることを防ぐために、前記第1の透光性部材と前記第2の透光性部材の間の貫通孔内は空気層になっていることが望ましい。   According to the fourth aspect of the present invention, if the adhesive is filled in the through hole, the adhesive is denatured by the heat generated when the first translucent member is excited, and the excitation light Reduces the incident efficiency of. In order to prevent such a problem from occurring, it is desirable that the inside of the through hole between the first translucent member and the second translucent member is an air layer.

請求項5に記載の発明は、請求項1から4に記載の発明において、前記第1の透光性部材は前記励起光源側から順に散乱プレートと蛍光体プレートが積層されていることを特徴とする。   According to a fifth aspect of the present invention, in the first to fourth aspects of the invention, the first translucent member is formed by laminating a scattering plate and a phosphor plate in order from the excitation light source side. To do.

請求項5に記載の発明によれば、集光レンズで集光され発散した励起光は、透光性散乱体の第2の透光性部材と散乱プレートの1の透光性部材により2段階に広がるため、1段階しか広がらない第3の請求項の発光装置に比べてより広く散乱させることができる。これにより、蛍光体プレートに照射される励起光強度は均一になり、外部へ出射する混色光の色ムラをさらに良くすることができる。   According to the fifth aspect of the present invention, the excitation light condensed and diverged by the condensing lens is divided into two stages by the second translucent member of the translucent scatterer and one translucent member of the scattering plate. Therefore, it is possible to scatter more widely than the light emitting device of the third claim which spreads only in one stage. Thereby, the intensity of the excitation light applied to the phosphor plate becomes uniform, and the color unevenness of the mixed color light emitted to the outside can be further improved.

本発明によれば、接着剤は励起光源側の貫通孔にはみ出し溜まることがないので、高密度な励起光で接着剤が変質することなく、第1の透光性部材への励起光の入射効率が低下することもなく、第1の透光性部材から出射する混色光の光取出しを長期的に維持することが可能になる。また第1の透光性部材の固着に安価な接着剤を使用できるため、半導体発光装置に掛かる素材費を安くすることができる。さらに、接着面に接着剤を十分に行き渡らせるほどの過剰の接着剤を使用することが可能になるため、製造ばらつきの尤度が大きく取れ、光取出し効率の再現性の確保や第1の透光性部材の接着強度を確保できる。   According to the present invention, since the adhesive does not protrude and accumulate in the through hole on the excitation light source side, the excitation light is incident on the first light-transmissive member without the adhesive being altered by high-density excitation light. It is possible to maintain the light extraction of the mixed color light emitted from the first translucent member for a long time without lowering the efficiency. Further, since an inexpensive adhesive can be used for fixing the first light transmissive member, the material cost for the semiconductor light emitting device can be reduced. Further, since it becomes possible to use an excessive amount of adhesive enough to spread the adhesive on the adhesive surface, the likelihood of manufacturing variation can be increased, and the reproducibility of the light extraction efficiency can be ensured and the first transparency can be ensured. The adhesive strength of the optical member can be ensured.

半導体発光装置1の光軸Aを含む鉛直面で切断した断面図Sectional drawing cut | disconnected by the vertical surface containing the optical axis A of the semiconductor light-emitting device 1 本発明の第1の実施の形態で、半導体発光装置1の貫通孔7付近の拡大図FIG. 3 is an enlarged view of the vicinity of the through hole 7 of the semiconductor light emitting device 1 in the first embodiment of the present invention. 第1の透光性部材9の接着工程の概略図Schematic of the bonding process of the first translucent member 9 第1の実施の形態における励起光の光線イメージLight image of excitation light in the first embodiment 本発明の第2の実施の形態で貫通孔7付近の拡大図The enlarged view of the through-hole 7 vicinity in the 2nd Embodiment of this invention 本発明の第3の実施の形態で貫通孔7付近の拡大図Enlarged view of the vicinity of the through hole 7 in the third embodiment of the present invention 本発明の第4の実施の形態で貫通孔7付近の拡大図Enlarged view of the vicinity of the through hole 7 in the fourth embodiment of the present invention 本発明の第5の実施の形態で貫通孔7付近の拡大図The enlarged view of the through-hole 7 vicinity in the 5th Embodiment of this invention 本発明の第6の実施の形態で貫通孔7付近の拡大図The enlarged view of the through-hole 7 vicinity in the 6th Embodiment of this invention

図1は、本発明の第1の実施の形態の半導体発光装置1の光軸Aを含む鉛直面で切断した断面図である。   FIG. 1 is a cross-sectional view taken along a vertical plane including the optical axis A of the semiconductor light emitting device 1 according to the first embodiment of the present invention.

図1に示すように、半導体発光装置1は、半導体発光素子2を備えた励起光源3、集光レンズ4、第2の透光性部材8、第1の透光性部材9、これら各要素を保持するホルダー(第1のホルダー6、第2のホルダー11、第3のホルダー12)などで構成されている。本実施の形態の励起光源3は半導体レーザー素子2を搭載したCANパッケージに相当する。   As shown in FIG. 1, a semiconductor light emitting device 1 includes an excitation light source 3 including a semiconductor light emitting element 2, a condenser lens 4, a second light transmissive member 8, a first light transmissive member 9, and each of these elements. Holders (first holder 6, second holder 11, third holder 12) and the like. The excitation light source 3 of the present embodiment corresponds to a CAN package on which the semiconductor laser element 2 is mounted.

第1の透光性部材9は蛍光体プレートで、励起光源の励起光より長波長の光に波長変換する。蛍光体プレートの材料としては、Ce等の付活剤が導入されたYAGとAl23との複合体からなる板材であってもよいし、Al23の代わりにガラスバインダーやその他の材料から成ってもよい。 The first translucent member 9 is a phosphor plate, and converts the wavelength of light into light having a longer wavelength than the excitation light of the excitation light source. The material of the phosphor plate may be a plate made of a composite of YAG and Al 2 O 3 into which an activator such as Ce is introduced, or a glass binder or other material instead of Al 2 O 3 It may consist of materials.

本実施形態の蛍光体層は、Ce等の付活剤が導入されたYAGとAl23との複合体からなる板材(0.4mm×0.8mmの矩形板状)を用いている。蛍光体プレートの厚みは200μmのものを用いた。ただ用途により所望の色度に調整する必要があるため、蛍光体濃度にもよるが蛍光体層の厚みは50〜300μmの範囲で適宜変更している。また、第1の透光性部材は矩形板状に限定されず円柱、直方体であってもよい。 The phosphor layer of this embodiment uses a plate material (0.4 mm × 0.8 mm rectangular plate shape) made of a composite of YAG and Al 2 O 3 into which an activator such as Ce is introduced. The thickness of the phosphor plate was 200 μm. However, since it is necessary to adjust the chromaticity to a desired value depending on the application, the thickness of the phosphor layer is appropriately changed within the range of 50 to 300 μm depending on the phosphor concentration. The first light transmissive member is not limited to a rectangular plate shape, and may be a cylinder or a rectangular parallelepiped.

第1のホルダー6は、第1の透光性部材9を保持するための部材で、ステンレスやアルミニウム等の高い熱伝導性材料の金属製円筒型の筒部6bと、半導体発光素子から出射するレーザー光の光軸上で第1のホルダー6の中心にはその厚み方向に貫通孔7が形成されている。   The first holder 6 is a member for holding the first translucent member 9, and emits from a metal cylindrical tube portion 6b made of a highly heat conductive material such as stainless steel or aluminum, and the semiconductor light emitting element. A through hole 7 is formed in the thickness direction in the center of the first holder 6 on the optical axis of the laser beam.

図2に半導体発光装置1の貫通孔7付近の拡大図を示す。図2に示すように、貫通孔7は、集光レンズ4で集光され発散した励起光が通過する孔で、励起光源3側の小径部7aと、励起光源3と反対側の大径部7dと、小径部7aと大径部7dとの間に位置する中径部7cと、3種類の異なる口径をもつ孔で形成されている。小径部7aの直径サイズは中径部7cより小さく、中径部7cの直径サイズは大径部7dより小さい。第1の実施の形態では小径部7aから中径部7cのかかる孔は励起光源の反対側へ向かうほど傾斜状に徐々に広くなっている。大径部7dの孔は段差状になっている。すなわち実施の形態1の貫通孔7は、小径部7aから中径部7cにかかる傾斜状の孔と、大径部7dの直径サイズをもった段差状の孔が繋がった断面構造になっている。   FIG. 2 shows an enlarged view of the vicinity of the through hole 7 of the semiconductor light emitting device 1. As shown in FIG. 2, the through-hole 7 is a hole through which the excitation light condensed and diverged by the condenser lens 4 passes, and a small-diameter portion 7 a on the excitation light source 3 side and a large-diameter portion on the opposite side to the excitation light source 3. 7d, a medium diameter portion 7c located between the small diameter portion 7a and the large diameter portion 7d, and a hole having three different calibers. The diameter size of the small diameter portion 7a is smaller than the medium diameter portion 7c, and the diameter size of the medium diameter portion 7c is smaller than the large diameter portion 7d. In the first embodiment, the hole from the small diameter portion 7a to the medium diameter portion 7c is gradually widened in an inclined manner toward the opposite side of the excitation light source. The hole of the large diameter portion 7d is stepped. That is, the through hole 7 of the first embodiment has a cross-sectional structure in which an inclined hole extending from the small diameter portion 7a to the medium diameter portion 7c and a stepped hole having a diameter size of the large diameter portion 7d are connected. .

第1の透光性部材9は、中径部7cの励起光源3と反対側の接着面14に接着剤で固定されている。接着面14や貫通孔7の側面部はAg、Alもしくはこれらを含む合金の反射膜が形成されている(図示せず)。中径部7cの口径は、励起光漏れや第1の透光性部材9への入射効率を考えて、第1の透光性部材9のサイズより小さくしている。本実施形態の中径部7cの口径は、Φ200μmとしているが蛍光体プレートの最小幅が400μmのため、Φ100μm〜Φ400μmを適宜選ぶことは可能である。小径部7aのサイズは、小径部7aへ入射する励起光のサイズが約Φ50μmであることや光軸精度や加工精度を考え2倍のΦ100μmとしたが、Φ50〜300μmを適宜選ぶことも可能である。   The 1st translucent member 9 is being fixed to the adhesion surface 14 on the opposite side to the excitation light source 3 of the intermediate diameter part 7c with the adhesive agent. A reflective film made of Ag, Al, or an alloy containing these is formed on the adhesive surface 14 or the side surface of the through hole 7 (not shown). The diameter of the medium diameter portion 7 c is made smaller than the size of the first light transmissive member 9 in consideration of the excitation light leakage and the incident efficiency to the first light transmissive member 9. The diameter of the medium diameter portion 7c of this embodiment is Φ200 μm, but since the minimum width of the phosphor plate is 400 μm, Φ100 μm to Φ400 μm can be appropriately selected. The size of the small-diameter portion 7a is set to double Φ100 μm in consideration of the size of the excitation light incident on the small-diameter portion 7a being about Φ50 μm and the optical axis accuracy and processing accuracy, but Φ50 to 300 μm can be appropriately selected. is there.

球状の第2の透光性部材8は、励起光源3と反対側の小径部7aから中径部7cまでの傾斜状の孔に嵌っている。球状の第2の透光性部材8の材料としては、ガラスSiO2、アルミナAl23、酸化チタンTiO2、もしくは、これらの材料を少なくとも一つ以上混ぜ合わせたものを使用した。本発明の実施形態ではガラスビースを使用したが、屈折率の高いアルミナや酸化チタンを使えば励起光の屈曲を大きくすることができる。第2の透光性部材8の直径サイズは、最小が小径部7aの直径1割以上で、最大が中径部の1割以下とした。これは第2の透光性部材が貫通孔からはみ出さないようにするためである。本実施形態ではΦ120のサイズを使用した。 The spherical second light transmissive member 8 is fitted in an inclined hole from the small diameter portion 7a to the medium diameter portion 7c on the opposite side to the excitation light source 3. As the material of the spherical second light transmissive member 8, glass SiO 2 , alumina Al 2 O 3 , titanium oxide TiO 2 , or a mixture of at least one of these materials was used. Although glass beads are used in the embodiment of the present invention, bending of excitation light can be increased by using alumina or titanium oxide having a high refractive index. As for the diameter size of the 2nd translucent member 8, the minimum was 10% or more of the diameter of the small diameter part 7a, and the maximum was 10% or less of the medium diameter part. This is to prevent the second translucent member from protruding from the through hole. In this embodiment, a size of Φ120 is used.

第1の透光性部材9は、励起光源3と反対側の中径部7cの接着面14に接着剤で固定されている。接着剤13は耐熱性や耐光性に比較的強いシリコーン系の樹脂を使った。本発明の実施形態ではジメチル系シリコーン樹脂を使用した。接着剤は吐出量を精度良く制御できるディスペンサー15で塗布した。   The first translucent member 9 is fixed to the adhesive surface 14 of the medium diameter part 7c opposite to the excitation light source 3 with an adhesive. As the adhesive 13, a silicone-based resin that is relatively strong in heat resistance and light resistance is used. In the embodiment of the present invention, a dimethyl silicone resin is used. The adhesive was applied by a dispenser 15 that can accurately control the discharge amount.

図3に第1の透光性部材9の接着工程を示す。図3の(a)のように、まず球状の第2の透光性部材8を貫通孔7bに嵌める。球状の第2の透光性部材8の固着はせき止め部16に微量の接着剤を塗布して行った(図示せず)。   FIG. 3 shows the bonding process of the first light transmissive member 9. As shown in FIG. 3A, first, the spherical second translucent member 8 is fitted into the through hole 7b. The spherical second translucent member 8 was fixed by applying a small amount of adhesive to the dam 16 (not shown).

図3の(b)のように、ディスペンサー15で第1の透光性部材9と接着面14が接触する面のほぼ中間位置に、第1の透光性部材9の相似形の概ね線状(図示せず)に接着剤13を塗布する。接着材量は第1の透光性部材9と接着面14に必要な量よりも多めで、本実施の形態では5割増し過剰に塗布した。   As shown in FIG. 3B, the linear shape of the similar shape of the first translucent member 9 is provided at approximately the middle position of the surface where the first translucent member 9 and the adhesive surface 14 are contacted by the dispenser 15. Adhesive 13 is applied to (not shown). The amount of the adhesive material is larger than the amount necessary for the first light-transmissive member 9 and the adhesive surface 14, and in this embodiment, the amount is increased by 50% and applied excessively.

図3の(c)のように、第1の透光性部材9を載せ、第1の透光性部材9の接触する面全体に接着剤13が均一な厚みで行き渡るように、第1の透光性部材9の上から荷重を加える。   As shown in FIG. 3C, the first translucent member 9 is placed, and the first adhesive member 13 is spread over the entire surface that the first translucent member 9 contacts with a uniform thickness. A load is applied from above the translucent member 9.

図3の(d)のように、接着剤13は貫通孔7bの側面に流れ薄膜13bとして形成され、さらに傾斜面を流れ落ちても球状の第2の透光性部材8と貫通孔側面が接触しているせき止め部16で接着剤13は止まる。せき止め部16に達するほどの接着剤13を常時使用する場合は図3(a)で使用した微量の接着剤は省いてもよい。本発明の実施形態の接着剤13の粘度は1Pa・sのものを使用したが、0.3〜10Pa・sであってもよく、好ましくは0.5〜3Pa・sの方がよい。接着剤の硬化は恒温槽に第1のホルダーをセットし、150℃×4時間で硬化させた。貫通孔7bの側面に流れた接着剤の厚さより精度良く調節したい場合は接着剤の流動性が高くなる仮硬化温度60℃で30分保った後、本硬化温度の150℃に昇温した方がよい。仮硬化温度は50℃〜80℃であればよい。   As shown in FIG. 3D, the adhesive 13 is formed on the side surface of the through hole 7b as a thin film 13b, and the spherical second translucent member 8 and the side surface of the through hole are in contact with each other even if it flows down the inclined surface. The adhesive 13 stops at the damming portion 16. When the adhesive 13 that reaches the damming portion 16 is always used, the trace amount of adhesive used in FIG. 3A may be omitted. Although the viscosity of the adhesive 13 of the embodiment of the present invention is 1 Pa · s, it may be 0.3 to 10 Pa · s, preferably 0.5 to 3 Pa · s. The adhesive was cured by setting the first holder in a thermostat and curing at 150 ° C. for 4 hours. If you want to adjust more accurately than the thickness of the adhesive that has flowed to the side of the through hole 7b, maintain the temporary curing temperature at 60 ° C for 30 minutes, which increases the fluidity of the adhesive, and then increase the temperature to 150 ° C, the main curing temperature Is good. The temporary curing temperature may be 50 ° C to 80 ° C.

図3(d)にあるように第1の透光性部材9の固定に使用した接着剤は球状の第2の透光性部材8のせき止め部16で止まるため、励起光源3側の小径部7aへ接着剤がはみ出て溜まることはなく、高密度で集光された励起光17に曝されることを防ぐことができる。また従来、接着剤13の粘度ははみ出しを考慮すると低粘度の接着剤は選べなかったが、本発明では接着剤13がはみ出しても励起光に曝される懸念がないので、接着剤13が第1の透光部材9に容易に行き渡り易くなる低粘度接着剤を選択することが可能である。   As shown in FIG. 3D, the adhesive used for fixing the first light transmissive member 9 stops at the damming portion 16 of the spherical second light transmissive member 8, so that the small-diameter portion on the excitation light source 3 side. It is possible to prevent the adhesive from protruding and accumulating to 7a and to be exposed to the excitation light 17 collected at high density. Conventionally, a low-viscosity adhesive could not be selected considering the protrusion of the adhesive 13, but in the present invention, there is no concern that the adhesive 13 may be exposed to excitation light even if it protrudes. It is possible to select a low-viscosity adhesive that easily reaches one translucent member 9.

第1の透光性部材9の蛍光体プレートの周囲には光反射部材10が埋められている。光反射部材10は、酸化チタン、硫酸バリウムもしくは酸化亜鉛など高屈折率なサブミクロンサイズの粒子をシリコーン樹脂に混ぜて作製した白色樹脂を使用しており、ディスペンサーなどの吐出機で蛍光体プレートの周囲を埋め、その後加熱し硬化させた。この光反射部材10は第1の透光性部材9から漏れた励起光や波長変換光を反射し、第1の透光性部材の上方へ取り出す役目をしているため、輝度を向上させることができる。この光反射部材10を十分厚く形成すれば大径部7dのある段差部は省いてもよい。   A light reflecting member 10 is buried around the phosphor plate of the first translucent member 9. The light reflecting member 10 uses a white resin prepared by mixing high refractive index submicron sized particles such as titanium oxide, barium sulfate or zinc oxide with a silicone resin. The surrounding area was filled and then heated to be cured. Since this light reflecting member 10 serves to reflect the excitation light and wavelength converted light leaking from the first light transmissive member 9 and to extract the light upward from the first light transmissive member, the luminance is improved. Can do. If the light reflecting member 10 is formed to be sufficiently thick, the stepped portion having the large diameter portion 7d may be omitted.

図4に第1の実施の形態における励起光の光線イメージを示す。集光レンズ4で集光した高密度な励起光17の焦点18を励起光源3側の球状の第2の透光性部材8の近くに置くことにより、一度集光した励起光17は発散しながら球状の第2の透光性部材8に入射する。球状の第2の透光性部材8に入射した当該発散光は屈折しながら通過しほぼ平行光となって第1の透光性部材を照射する。小径部7aから中径部7cにかかる傾斜状の孔の口径は前記第1の透光性部材9側へ向かうほど広くなっているため、貫通孔7bの側面に薄く付着している接着剤13bに向かう光線は、球状の第2の透光性部材8の集光作用により著しく低減する。よって接着剤13bが変質することもない。球状の第2の透光性部材8から出た平行光線は第1の透光性部材9である蛍光体プレートに入射し波長変換され、一部透過する励起光と混色し白色光を外部に放出する。蛍光体プレートに励起光が当たった時一部のエネルギーは熱に変換されるため、蛍光体プレートの温度は上昇し接着剤13も熱くなるが、貫通孔7bの側面に形成された接着剤は薄く密着しているためホルダー6aで放熱され、熱による接着剤の変質も起こることはない。   FIG. 4 shows a light beam image of the excitation light in the first embodiment. By placing the focal point 18 of the high-density excitation light 17 collected by the condenser lens 4 near the spherical second light-transmissive member 8 on the excitation light source 3 side, the once-extracted excitation light 17 diverges. However, it is incident on the spherical second translucent member 8. The divergent light incident on the spherical second light transmissive member 8 passes through while being refracted and becomes almost parallel light, and irradiates the first light transmissive member. Since the diameter of the inclined hole extending from the small diameter part 7a to the medium diameter part 7c becomes wider toward the first translucent member 9 side, the adhesive 13b adhering thinly to the side surface of the through hole 7b. The light beam traveling toward is significantly reduced by the light collecting action of the spherical second translucent member 8. Therefore, the adhesive 13b is not altered. The parallel light beam emitted from the spherical second light transmissive member 8 is incident on the phosphor plate, which is the first light transmissive member 9, is converted in wavelength, and is mixed with the partially transmitted excitation light so that white light is emitted to the outside. discharge. When excitation light hits the phosphor plate, part of the energy is converted into heat, so the temperature of the phosphor plate rises and the adhesive 13 also heats up, but the adhesive formed on the side surface of the through hole 7b is Since it is thin and in close contact, heat is radiated from the holder 6a, and the adhesive is not altered by heat.

球状の第2の透光性部材8により屈折率の高い材料のアルミナや酸化チタンなどを選べば入射した励起光の屈折を大きくすることが可能になり、より大きなサイズの球や扁平な形状の非球面に設計することも可能である。   By selecting alumina, titanium oxide or the like having a high refractive index by using the spherical second translucent member 8, it becomes possible to increase the refraction of the incident excitation light, so that a larger sphere or flat shape can be obtained. It is also possible to design an aspherical surface.

これにより、集光レンズ4で集光した励起光17は焦点18で集光した後に発散光となる。その発散光は貫通孔7に入り球状の第2の透光性部材8でより大きく屈折させて平行光の幅を狭めることができるため、全ての光は第1の透光性部材9に入射することができる。また、集光レンズ4の焦点18の位置を励起光源側のホルダー6aの下面の直下よりさらに遠ざけて発散光の幅を広めに取ることも可能になる。   Thereby, the excitation light 17 condensed by the condenser lens 4 becomes divergent light after being condensed at the focal point 18. Since the divergent light enters the through-hole 7 and can be refracted more greatly by the spherical second light-transmissive member 8 to narrow the width of the parallel light, all the light is incident on the first light-transmissive member 9. can do. It is also possible to make the width of the diverging light wider by moving the position of the focal point 18 of the condenser lens 4 further away from directly below the lower surface of the holder 6a on the excitation light source side.

貫通孔7b内には、その側面に薄い層として形成しているはみ出した接着剤13b以外は何もない空間、いわゆる空気層になっている。もしその貫通孔7b内が接着剤で充填されていれば、レーザー光で励起された蛍光体から発する熱で接着剤が変質し、励起光の第1の透光性部材9への入射効率を低下すると考えられるからである。このことから第1の透光性部材と第2の透光性部材の間は空気層になっていた方がよい。尚、球状の第2の透光性部材8の励起光源3と反対側の頂点と第1の透光性部材9の励起光源側の面が接触してもよいが、その場合第1と第2の透光性部材の位置精度を考慮する必要が出てくるため、組み立て易さを第一に考えれば第1と第2の透光性部材は接触しないよう設計にした方がよい。   In the through-hole 7b, there is nothing but a so-called air layer other than the protruding adhesive 13b formed as a thin layer on the side surface. If the inside of the through-hole 7b is filled with an adhesive, the adhesive is altered by the heat generated from the phosphor excited by the laser beam, and the incident efficiency of the excitation light on the first light-transmissive member 9 is increased. This is because it is considered to decrease. For this reason, it is better that an air layer is formed between the first translucent member and the second translucent member. The apex of the spherical second light transmissive member 8 on the side opposite to the excitation light source 3 may be in contact with the surface of the first light transmissive member 9 on the excitation light source side. Since it is necessary to consider the positional accuracy of the two translucent members, it is better to design the first and second translucent members so as not to contact each other, considering the ease of assembly.

図5は、本発明の第2の実施の形態で、第1の実施の形態における貫通孔7の変形例の断面図ある。   FIG. 5 is a sectional view of a modified example of the through hole 7 in the first embodiment in the second embodiment of the present invention.

図5に示すように、貫通孔7は集光レンズ4からの励起光が通過する孔で、励起光源3側から励起光源3の反対側へ向かって小径部7a、中径部7c、大径部7dから形成されており、小径部7aの直径サイズは中径部7cより小さく、中径部7cの直径サイズは大径部7dより小さくなっている。当該貫通孔7は小径部7a、中径部7c、大径部7dのサイズをもった3つの孔が段差状になって繋がった断面構造になっている。球状の第2の透光性部材8は、励起光源3と反対側の小径部7aの段差状の孔に嵌っている。第1の透光性部材9は、励起光源3と反対側の中径部7cの段差状の孔の上面に接着剤13で固定されている。   As shown in FIG. 5, the through hole 7 is a hole through which the excitation light from the condenser lens 4 passes, and from the excitation light source 3 side toward the opposite side of the excitation light source 3, the small diameter portion 7 a, the medium diameter portion 7 c, and the large diameter. The small-diameter portion 7a has a diameter size smaller than that of the medium-diameter portion 7c, and the medium-diameter portion 7c has a diameter size smaller than that of the large-diameter portion 7d. The through-hole 7 has a cross-sectional structure in which three holes having sizes of a small diameter portion 7a, a medium diameter portion 7c, and a large diameter portion 7d are connected in a step shape. The spherical second translucent member 8 is fitted in a stepped hole in the small diameter portion 7a on the opposite side to the excitation light source 3. The first translucent member 9 is fixed with an adhesive 13 on the upper surface of the stepped hole in the medium diameter portion 7 c on the opposite side to the excitation light source 3.

図6は、本発明の第3の実施の形態で、第1の実施の形態における貫通孔7の変形例の断面図ある。   FIG. 6 is a cross-sectional view of a modification of the through hole 7 in the first embodiment according to the third embodiment of the present invention.

図6に示すように、貫通孔7は集光レンズ4からの励起光が通過する孔で、励起光源3側から励起光源3の反対側へ向かって入射部7e、小径部7a、中径部7c、大径部7dから形成されており、入射部7eは小径部7aより広く、小径部7aの直径サイズは中径部7cより小さく、中径部7cの直径サイズは大径部7dより小さくなっている。当該貫通孔7は、入射部7eから小径部7aの間は傾斜状になっており、小径部7aから中径部7cの間は傾斜状になっており、中径部7cから大径部7dの間は段差状になって繋がって構成されている。球状の第2の透光性部材は小径部7aと中径部7cとの間の励起光源3と反対側の小径部の上面に嵌っている。   As shown in FIG. 6, the through-hole 7 is a hole through which the excitation light from the condenser lens 4 passes, and the incident portion 7 e, the small diameter portion 7 a, and the medium diameter portion from the excitation light source 3 side to the opposite side of the excitation light source 3. 7c and the large diameter portion 7d. The incident portion 7e is wider than the small diameter portion 7a, the diameter size of the small diameter portion 7a is smaller than the medium diameter portion 7c, and the diameter size of the medium diameter portion 7c is smaller than the large diameter portion 7d. It has become. The through-hole 7 is inclined between the incident portion 7e and the small diameter portion 7a, is inclined between the small diameter portion 7a and the medium diameter portion 7c, and is formed between the medium diameter portion 7c and the large diameter portion 7d. The gaps are connected in steps. The spherical second translucent member is fitted on the upper surface of the small-diameter portion opposite to the excitation light source 3 between the small-diameter portion 7a and the medium-diameter portion 7c.

集光レンズで集光した高密度な励起光は焦点18を境に発散するが、半導体レーザー素子2、励起光源3、集光レンズ4、貫通孔7の位置精度や加工精度や組み立て精度が低ければ、発散した励起光の一部が励起光源3側の貫通孔7周囲の第1のホルダー面で当たり、貫通孔7への入射効率が低下する懸念がある。そこで、第3の実施の形態のように、入射部7eから小径部7aにかけて徐々に入射部7eが広くなるよう形成すれば、これら精度の尤度を大きく取れ、半導体発光装置を組み立て易くすることが可能になる。   Although the high-density excitation light condensed by the condenser lens diverges at the focal point 18, the positional accuracy, processing accuracy, and assembly accuracy of the semiconductor laser element 2, the excitation light source 3, the condenser lens 4, and the through hole 7 are low. For example, a part of the diverging excitation light hits the first holder surface around the through-hole 7 on the excitation light source 3 side, and there is a concern that the incident efficiency to the through-hole 7 is lowered. Therefore, as in the third embodiment, if the incident portion 7e is formed so as to gradually widen from the incident portion 7e to the small diameter portion 7a, the likelihood of these accuracy can be increased, and the semiconductor light emitting device can be easily assembled. Is possible.

図7は、本発明の第4の実施の形態で、第1の実施の形態における球状の第2の透光性部材8の変形例の断面図ある。   FIG. 7 is a cross-sectional view of a modification of the spherical second light transmissive member 8 in the first embodiment according to the fourth embodiment of the present invention.

図7に示すように、貫通孔7は第1の実施の形態と同様の形状である。球状の第2の透光性部材19には光を拡散させるための透光性散乱材が混入されている。本実施の形態では、Al23粒子25wt%を母体となるガラスに混ぜている。散乱材はTiO2など母体となる材料よりも高屈折率であればよい。この透光性散乱材入り球状の第2の透光性部材19は、小径部7aと中径部7cとの間の励起光源3と反対側の小径部の上面に嵌っている。 As shown in FIG. 7, the through-hole 7 has the same shape as that of the first embodiment. The spherical second translucent member 19 is mixed with a translucent scattering material for diffusing light. In the present embodiment, 25 wt% of Al 2 O 3 particles are mixed into the base glass. The scattering material only needs to have a higher refractive index than the base material such as TiO 2 . The spherical second translucent member 19 containing the translucent scattering material is fitted on the upper surface of the small-diameter portion opposite to the excitation light source 3 between the small-diameter portion 7a and the medium-diameter portion 7c.

一度集光した励起光が貫通孔7内に嵌っている透光性散乱材が混ざった第2の透光性部材19に入射し、第2の透光性部材19に含まれる透光性散乱材で励起光は散乱し、貫通孔7b内に広がる。散乱した励起光は高密度から低密度に変化するため、はみ出した接着剤13bを変質させることはない。励起光で第1の透光性部材の温度が上昇し接着剤も加熱されるが、はみ出した接着剤13bは貫通孔7bの側面に沿って流れ薄い層として密着しているため、はみ出した接着剤13bは放熱を兼ねたホルダー部で熱引きされ、分解したり変質することはない。さらに、第1の透光性部材9に当たる励起光が透光性散乱体の第2の透光性部材19で散乱した後第1の透光性部材9を照射するため、透光性散乱材が含まない第2の透光性部材8と比較して照射面積が広くなり、第1の透光性部材9で波長変換された混色光の色ムラは、透光性散乱材が含まれない第2の透光性部材8に比べて透光性散乱体の第2の透光性部材19の方が良好になる。
第4の実施の形態で貫通孔7は第1の実施の形態と同じ形状を使用したが、第2の実施の形態や第3の実施の形態で使用した貫通孔形状でも同様の効果を得ることができる。
The once-extracted excitation light is incident on the second translucent member 19 mixed with the translucent scattering material fitted in the through hole 7, and the translucent scattering contained in the second translucent member 19. The excitation light is scattered by the material and spreads in the through hole 7b. Since the scattered excitation light changes from a high density to a low density, the protruding adhesive 13b is not altered. The temperature of the first translucent member is increased by the excitation light and the adhesive is also heated, but the protruding adhesive 13b flows along the side surface of the through-hole 7b and adheres as a thin layer. The agent 13b is heated by the holder portion that also serves as heat dissipation, and does not decompose or deteriorate. Furthermore, since the excitation light impinging on the first translucent member 9 is scattered by the second translucent member 19 of the translucent scatterer and then irradiates the first translucent member 9, the translucent scattering material Compared with the second translucent member 8 that does not contain the light, the irradiation area is widened, and the color unevenness of the mixed color light subjected to wavelength conversion by the first translucent member 9 does not include the translucent scattering material. Compared with the second translucent member 8, the second translucent member 19 of the translucent scatterer is better.
In the fourth embodiment, the through hole 7 has the same shape as that of the first embodiment, but the same effect can be obtained with the shape of the through hole used in the second embodiment or the third embodiment. be able to.

図8は、本発明の第5の実施の形態で、第4の実施の形態における第1の透光性部材9の変形例の断面図ある。   FIG. 8 is a cross-sectional view of a modification of the first light transmissive member 9 in the fourth embodiment according to the fifth embodiment of the present invention.

図8に示すように、貫通孔7は第4の実施の形態と同じであるが、第1の透光性部材は、蛍光体プレート9aと拡散プレート9bが積層されていて、励起光源3側から拡散プレート9b、蛍光体プレート9aの順に配置されている。拡散プレート9bは散乱材となる12.5wt%Al23粒子を母体のガラスに混ぜて板状に成型したものを使用した(厚み400μm)。蛍光体プレート9aは実施の形態1で記載したものと同様の組成のものを用いた(厚み80μm)。形状やサイズは実施の形態1と同じとした。透光性散乱材を混ぜた球状の第2の透光性部材19は、材料は同じだが散乱材の濃度を12.5wt%としている。つまり、本実施の形態では、透光性散乱材を混ぜた球状の第2の透光性部材19と拡散プレート9bのそれぞれの散乱材濃度を足して実施の形態4の濃度になるように調整した。これは、散乱材濃度が高すぎると散乱材による後方散乱も増大し、蛍光体プレートに当たる励起光の入射効率を低下するのを防ぐためである。蛍光体プレートから外部に放出する混色光の色度や色ムラを制御するために、第2の透光性部材19と拡散プレート9bの散乱材濃度や厚みを調整したり、蛍光体プレートの蛍光体濃度やサイズの調整が適宜必要になるのは言うまでもない。 As shown in FIG. 8, the through hole 7 is the same as that of the fourth embodiment, but the first translucent member is formed by laminating the phosphor plate 9a and the diffusion plate 9b, and the excitation light source 3 side. To the diffusion plate 9b and the phosphor plate 9a. As the diffusion plate 9b, a plate obtained by mixing 12.5 wt% Al 2 O 3 particles serving as a scattering material into a base glass and molding it into a plate shape (thickness 400 μm) was used. The phosphor plate 9a has the same composition as that described in Embodiment 1 (thickness 80 μm). The shape and size are the same as those in the first embodiment. The spherical second translucent member 19 mixed with the translucent scattering material is made of the same material, but the concentration of the scattering material is 12.5 wt%. That is, in this embodiment, the concentration of the scattering material of the spherical second light-transmitting member 19 mixed with the light-transmitting scattering material and the diffusion plate 9b are added to obtain the concentration of the fourth embodiment. did. This is because when the scattering material concentration is too high, backscattering by the scattering material also increases, and the incident efficiency of excitation light impinging on the phosphor plate is prevented from being lowered. In order to control the chromaticity and color unevenness of the mixed color light emitted to the outside from the phosphor plate, the scattering material concentration and thickness of the second translucent member 19 and the diffusion plate 9b are adjusted, or the fluorescence of the phosphor plate Needless to say, adjustment of body concentration and size is necessary.

一度集光した励起光は、第2の透光性部材19に入射し、混ざっている透光性散乱材で散乱され、貫通孔7b内に広がる。貫通孔7b内に広がった励起光は拡散プレート9bに入射すると、中径部7cの口径よりも広がり蛍光体プレート9aの面全体に強度ムラなく照射する。散乱材の総濃度は第4の実施の形態と変わらないが、空気層を介して第2の透光性部材19と厚み400μmの拡散プレート9bの2段階で励起光は広がるため、第2の透光性部材による1段階の散乱しかない第4の実施の形態に比べて、励起光の広がりは大きく面内強度も均一になり、蛍光体プレート9aから外部へ放出される混色光の色ムラはより良好になる。   The once-extracted excitation light enters the second light transmissive member 19, is scattered by the mixed light transmissive scattering material, and spreads in the through hole 7b. When the excitation light spreading in the through hole 7b enters the diffusion plate 9b, the excitation light spreads beyond the diameter of the medium diameter portion 7c and irradiates the entire surface of the phosphor plate 9a without unevenness in intensity. Although the total concentration of the scattering material is the same as that in the fourth embodiment, the excitation light spreads in two stages of the second translucent member 19 and the diffusion plate 9b having a thickness of 400 μm through the air layer. Compared with the fourth embodiment having only one stage of scattering by the translucent member, the spread of the excitation light is large and the in-plane intensity is uniform, and the color unevenness of the mixed color light emitted from the phosphor plate 9a to the outside. Will be better.

第5の実施形態で第2の透光性部材19は透光性散乱材を含まないものを使用してもよいが、その場合拡散プレート9bの散乱材濃度を上げることになるため、色ムラ改善の効果は透光性散乱材を含む第2の透光性部材19ほど望むことはできない。
また、貫通孔7は第1の実施の形態と同じ形状を使用したが、第2の実施の形態や第3の実施の形態で使用した貫通孔形状でも同様の効果を得ることができる。
In the fifth embodiment, the second translucent member 19 may not include a translucent scattering material, but in this case, since the scattering material concentration of the diffusion plate 9b is increased, color unevenness is caused. The improvement effect cannot be expected as much as the second translucent member 19 including the translucent scattering material.
Moreover, although the same shape as 1st Embodiment was used for the through-hole 7, the same effect can be acquired even if it is the through-hole shape used in 2nd Embodiment or 3rd Embodiment.

図9に第6の実施の形態で、第1の実施の形態における第2の透光性部材20の変形例の断面図ある。図9に示すとおり、第2の透光性部材を球状から非球面に変更している。透光性散乱材を含まない第2の透光性部材20の場合、その励起光源3側の曲面のみで入射してくる励起光を平行光線に変えられるように非球面の形状を設計することで、第1の実施の形態と同様の効果を得るようにしている。透光性散乱材を含んだ第2の透光性部材の場合であれば、第2に透光性部材20に入射した光は散乱光となるため、曲面状に加工もしくは成型していればよく、効果としては第4の実施の形態と同様の効果を得ることができる。   FIG. 9 is a cross-sectional view of a modification of the second light transmissive member 20 in the first embodiment in the sixth embodiment. As shown in FIG. 9, the second translucent member is changed from spherical to aspherical. In the case of the second translucent member 20 that does not include the translucent scattering material, the aspherical shape is designed so that the excitation light incident only on the curved surface on the side of the excitation light source 3 can be changed into parallel rays. Thus, the same effect as that of the first embodiment is obtained. In the case of the second translucent member including the translucent scattering material, secondly, since the light incident on the translucent member 20 becomes scattered light, if it is processed or molded into a curved surface shape As an effect, the same effect as that of the fourth embodiment can be obtained.

1…発光装置、2・・・半導体発光素子、3・・・励起光源、4・・・集光レンズ、5・・・給電部、6・・・第1のホルダー、7・・・貫通孔、8・・・第2の透光性部材、9・・・第1の透光性部材、10・・・光反射部材、11・・・第2のホルダー、12・・・第3のホルダー、13・・・接着剤、14・・・接着面、15・・・ディスペンサー、16・・・せき止め部、17・・・励起光、18・・・焦点、19・・・透光性散乱材入り第2の透光性部材、20・・・非球面状の第2の透光性部材   DESCRIPTION OF SYMBOLS 1 ... Light-emitting device, 2 ... Semiconductor light-emitting device, 3 ... Excitation light source, 4 ... Condensing lens, 5 ... Feed part, 6 ... 1st holder, 7 ... Through-hole , 8 ... second translucent member, 9 ... first translucent member, 10 ... light reflecting member, 11 ... second holder, 12 ... third holder , 13 ... Adhesive, 14 ... Adhesive surface, 15 ... Dispenser, 16 ... Damping part, 17 ... Excitation light, 18 ... Focus, 19 ... Translucent scattering material Entering second translucent member, 20 ... aspherical second translucent member

Claims (5)

半導体発光素子を備えた励起光源と、前記励起光源から出射された励起光を集光する集光レンズと、前記集光レンズで集光された励起光が通る貫通孔とを設けたホルダー部と、前記貫通孔を通過した励起光を波長変換する第1の透光性部材と、前記貫通孔内に位置する第2の透光性部材とを備え、
前記貫通孔は前記励起光源側から順に小径部と中径部と大径部から成り、前記小径部の口径は前記中径部の口径より小さく、前記中径部の口径は前記大径部の口径より小さくなっており、
前記第1の透光性部材は、前記励起光源と反対側の前記中径部のホルダー部上に接着剤で固着され、
前記第2の透光性部材は、球状とされ、前記小径部と前記中径部の間の孔に嵌合しており、
前記集光レンズで集光され発散した励起光は、前記球状の第2透光性部材を通過した後、第1の透光性部材に照射されることを特徴とする半導体発光装置。
A holder provided with an excitation light source including a semiconductor light emitting element, a condensing lens for condensing the excitation light emitted from the excitation light source, and a through-hole through which the excitation light condensed by the condensing lens passes; A first translucent member that converts the wavelength of the excitation light that has passed through the through-hole, and a second translucent member that is located in the through-hole,
The through hole is composed of a small diameter portion, a medium diameter portion, and a large diameter portion in order from the excitation light source side, the diameter of the small diameter portion is smaller than the diameter of the medium diameter portion, and the diameter of the medium diameter portion is that of the large diameter portion. Smaller than the aperture,
The first translucent member is fixed with an adhesive on a holder part of the medium diameter part opposite to the excitation light source,
The second translucent member has a spherical shape and is fitted in a hole between the small diameter portion and the medium diameter portion,
The semiconductor light emitting device, wherein the excitation light condensed and diverged by the condensing lens is irradiated to the first light transmissive member after passing through the spherical second light transmissive member.
請求項1に記載の発明において、前記集光レンズで集光された励起光の焦点は、前記励起光源側の前記第2の透光性部材と前記励起光源と反対側の前記集光レンズとの間に位置していることを特徴とする半導体発光装置。   2. The invention according to claim 1, wherein the focal point of the excitation light condensed by the condenser lens is the second translucent member on the excitation light source side and the condenser lens on the opposite side of the excitation light source. A semiconductor light-emitting device, which is located between the two. 請求項1及び請求項2に記載の発明において、前記第2の透光性部材が透光性散乱体であることを特徴とする半導体発光装置。   3. The semiconductor light emitting device according to claim 1, wherein the second light transmissive member is a light transmissive scatterer. 請求項1から請求項3に記載の発明において、前記第1の透光性部材と前記第2の透光性部材は空気層を介して離間していることを特徴とする半導体発光装置。   4. The semiconductor light emitting device according to claim 1, wherein the first light transmissive member and the second light transmissive member are separated from each other through an air layer. 請求項1から4に記載の発明において、前記第1の透光性部材は前記励起光源側から順に散乱プレートと蛍光体プレートが積層されていることを特徴とする半導体発光装置。   5. The semiconductor light emitting device according to claim 1, wherein a scattering plate and a phosphor plate are stacked in order from the excitation light source side.
JP2013050248A 2013-03-13 2013-03-13 Semiconductor light-emitting device Pending JP2014175644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013050248A JP2014175644A (en) 2013-03-13 2013-03-13 Semiconductor light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013050248A JP2014175644A (en) 2013-03-13 2013-03-13 Semiconductor light-emitting device

Publications (1)

Publication Number Publication Date
JP2014175644A true JP2014175644A (en) 2014-09-22

Family

ID=51696540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013050248A Pending JP2014175644A (en) 2013-03-13 2013-03-13 Semiconductor light-emitting device

Country Status (1)

Country Link
JP (1) JP2014175644A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016167492A (en) * 2015-03-09 2016-09-15 スタンレー電気株式会社 Light emission device
WO2017056470A1 (en) * 2015-09-29 2017-04-06 パナソニックIpマネジメント株式会社 Wavelength conversion element and light emitting device
US10514135B2 (en) 2016-08-30 2019-12-24 Nichia Corporation Light emitting device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016167492A (en) * 2015-03-09 2016-09-15 スタンレー電気株式会社 Light emission device
WO2017056470A1 (en) * 2015-09-29 2017-04-06 パナソニックIpマネジメント株式会社 Wavelength conversion element and light emitting device
US10514135B2 (en) 2016-08-30 2019-12-24 Nichia Corporation Light emitting device

Similar Documents

Publication Publication Date Title
CN108139523B (en) Wavelength conversion element and light emitting device
JP6061130B2 (en) Light emitting device
JP6302762B2 (en) Light emitting device and lighting device
US9080732B2 (en) Light emitting device and vehicle lamp
JP5588368B2 (en) Light emitting device and manufacturing method thereof
JP6444837B2 (en) Light source device
US20140160782A1 (en) Light emitting device and vehicle lamp
JP2010225791A (en) Semiconductor light emitting device
JP2014137973A (en) Light source device
JP6604598B2 (en) Wavelength conversion device and illumination device
JP5919968B2 (en) Wavelength conversion member and light emitting device
JP2016100090A (en) Light-emitting module and light-emitting device using the same
US20150372198A1 (en) Light emitting module
JP6162537B2 (en) LIGHT SOURCE DEVICE, LIGHTING DEVICE, AND VEHICLE LIGHT
JP6575923B2 (en) Wavelength conversion member and light emitting device using the same
JP2014175644A (en) Semiconductor light-emitting device
JP2014187224A (en) Semiconductor light-emitting device
WO2017043121A1 (en) Light-emitting device and illumination device
US11067242B2 (en) Phosphor module
JP6021485B2 (en) Semiconductor light emitting device with optical member
US10781987B2 (en) Light converting device
JP2009152307A (en) Light-emitting diode element
JP2014192288A (en) Semiconductor light-emitting device
JP2013214629A (en) Wavelength conversion member and light emitting device
CN206361633U (en) Lighting device