JP2014187224A - Semiconductor light-emitting device - Google Patents

Semiconductor light-emitting device Download PDF

Info

Publication number
JP2014187224A
JP2014187224A JP2013061305A JP2013061305A JP2014187224A JP 2014187224 A JP2014187224 A JP 2014187224A JP 2013061305 A JP2013061305 A JP 2013061305A JP 2013061305 A JP2013061305 A JP 2013061305A JP 2014187224 A JP2014187224 A JP 2014187224A
Authority
JP
Japan
Prior art keywords
light
layer
wavelength conversion
hole
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013061305A
Other languages
Japanese (ja)
Inventor
Motoko Rikimaru
素子 力丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2013061305A priority Critical patent/JP2014187224A/en
Publication of JP2014187224A publication Critical patent/JP2014187224A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor light-emitting device capable of more efficiently obtaining light emission by exciting a phosphor by a laser light source.SOLUTION: A semiconductor light-emitting device comprises a base 2 having a through hole 6, a wavelength conversion unit 1 arranged on the base 2 so as to clog the through hole 6, and a semiconductor light-emitting element which irradiates the wavelength conversion unit 1 with light through the through hole 6. A translucent layer 8 is formed between the base 2 and the wavelength conversion unit 1.

Description

本願発明は、半導体発光装置に関する。より詳しくは、半導体発光素子から発した光によって波長変換材料を励起し、波長変換光を放出させ、この波長変換光を利用する光源装置に関する。   The present invention relates to a semiconductor light emitting device. More specifically, the present invention relates to a light source device that excites a wavelength conversion material with light emitted from a semiconductor light emitting element, emits wavelength converted light, and uses the wavelength converted light.

従来、半導体レーザー光源と蛍光体とを組み合わせた構造の発光装置が提案されている。   Conventionally, a light emitting device having a structure in which a semiconductor laser light source and a phosphor are combined has been proposed.

例えば、特許文献1には、レーザ光源と、レーザ光によって励起され、発光する蛍光体と、蛍光体の励起光照射側に配置される透光性熱伝導部材と、透光性熱伝導部材と蛍光体との間を埋める間隙層とで構成された発光装置が記載されている。この装置においては、蛍光体がレーザ光によって励起され、発光する際に発する熱を透光性熱伝導部材に効率よく伝達できるよう、熱伝導性粒子が間隙層に含まれている。   For example, Patent Document 1 discloses a laser light source, a phosphor that is excited by laser light and emits light, a translucent heat conductive member that is disposed on the excitation light irradiation side of the phosphor, and a translucent heat conductive member. A light emitting device is described that is composed of a gap layer that fills the space between the phosphors. In this apparatus, the heat conductive particles are included in the gap layer so that the heat generated when the phosphor is excited by the laser light and emits light can be efficiently transmitted to the translucent heat conductive member.

特開2012−059452JP2012-059452A

本願発明の目的は、レーザ光源によって蛍光体を励起し、発光を得る発光装置において、より効率よく発光を得られる装置を提供することである。   An object of the present invention is to provide a device capable of obtaining light emission more efficiently in a light-emitting device that emits light by exciting a phosphor with a laser light source.

上記課題を解決のため、本願発明者は研究の末、以下の手段を発明するに至った。即ち、貫通孔を有する基台と、
前記貫通孔を塞ぐように前記基台上に配置された波長変換部と、
前記貫通孔を通じて前記波長変換部に光を照射する半導体発光素子と、を備え、
前記基台と前記波長変換部の間に、30〜100μmの厚さの透光層が形成されている半導体発光装置とすることである。
In order to solve the above problems, the present inventors have invented the following means after research. That is, a base having a through hole;
A wavelength converter disposed on the base so as to close the through hole;
A semiconductor light emitting element that irradiates light to the wavelength conversion unit through the through hole, and
A semiconductor light emitting device in which a light-transmitting layer having a thickness of 30 to 100 μm is formed between the base and the wavelength conversion unit.

本願発明によれば、発光光率の良い半導体発光装置を得ることができる。   According to the present invention, it is possible to obtain a semiconductor light-emitting device with a high light emission rate.

本願発明の第一の実施形態の説明図である。It is explanatory drawing of 1st embodiment of this invention. 本願発明の第二の実施形態の説明図である。It is explanatory drawing of 2nd embodiment of this invention. 本願発明の第三の実施形態の説明図である。It is explanatory drawing of 3rd embodiment of this invention. 本願発明の第四の実施形態の説明図である。It is explanatory drawing of 4th embodiment of this invention. 本願発明の第五の実施形態の説明図である。It is explanatory drawing of 5th embodiment of this invention. 本願発明の効果を示す図である。It is a figure which shows the effect of this invention. 比較例の説明図である。It is explanatory drawing of a comparative example.

本願発明の課題を説明するため、まず図7に示す比較例から説明する。図7(A)は、本願発明に関連する発光装置の概観図、図7(B)は、図7(A)中の点線で囲んだ部分の拡大図である。この図において、波長変換部1は貫通孔6を有する基台2に、貫通孔6を塞ぐように配置されている。また、波長変換部1は、基台2に対して接着剤等(図示せず)で固定されている。この接着剤は、波長変換部1で発生する熱を有効に基台2に伝達するため、しばしば数μm〜十数μm程度の厚みに抑えられる。波長変換部1の外周は反射性樹脂4によって覆われ、波長変換部1内部を伝播し波長変換部1の外周に達する光を内部に戻す。また、反射性樹脂4は基台2の外周から上方へ延びる外壁3と波長変換部1との間を充填している。レーザダイオード5とレンズ15は、光軸を貫通孔6の中心に合わせてあり、電力を投入することによって波長変換部1の下面に照射される。ここで、波長変換部1は下層側の散乱層12と上層側の蛍光体層11とを積層して構成される。   In order to explain the problems of the present invention, a comparative example shown in FIG. 7 will be described first. FIG. 7A is a schematic view of a light emitting device related to the present invention, and FIG. 7B is an enlarged view of a portion surrounded by a dotted line in FIG. 7A. In this figure, the wavelength converter 1 is arranged on a base 2 having a through hole 6 so as to block the through hole 6. The wavelength conversion unit 1 is fixed to the base 2 with an adhesive or the like (not shown). Since this adhesive effectively transfers the heat generated in the wavelength conversion section 1 to the base 2, it is often suppressed to a thickness of about several μm to tens of μm. The outer periphery of the wavelength conversion unit 1 is covered with the reflective resin 4, and light that propagates inside the wavelength conversion unit 1 and reaches the outer periphery of the wavelength conversion unit 1 is returned to the inside. The reflective resin 4 fills the space between the outer wall 3 extending upward from the outer periphery of the base 2 and the wavelength conversion unit 1. The laser diode 5 and the lens 15 have their optical axes aligned with the center of the through hole 6 and are irradiated on the lower surface of the wavelength conversion unit 1 by applying power. Here, the wavelength conversion unit 1 is configured by laminating a scattering layer 12 on the lower layer side and a phosphor layer 11 on the upper layer side.

レーザダイオード5から出射光7が貫通孔6を介して波長変換部1へ入射すると、出射光7は散乱層12に入射し、散乱層12の中を散乱、導波しながら蛍光体層11を照射する。蛍光体層11には出射光7によって励起され、蛍光を発する蛍光体が含まれているため、蛍光体層11は蛍光を発し、それらは波長変換部1の上面から外部に放出される。なお、出射光7の一部が蛍光体層11の蛍光体を励起せずにそのまま上面から放出され、蛍光と出射光の混合光が放出される場合もある。   When the emitted light 7 is incident on the wavelength conversion unit 1 from the laser diode 5 through the through-hole 6, the emitted light 7 is incident on the scattering layer 12, and the phosphor layer 11 is scattered while being guided in the scattering layer 12. Irradiate. Since the phosphor layer 11 includes a phosphor that is excited by the emitted light 7 and emits fluorescence, the phosphor layer 11 emits fluorescence, which is emitted to the outside from the upper surface of the wavelength conversion unit 1. In some cases, a part of the emitted light 7 is emitted from the upper surface as it is without exciting the phosphor of the phosphor layer 11, and a mixed light of the fluorescence and the emitted light is emitted.

ここで、レーザダイオード5から入射した出射光7は、その全てが散乱層12に入射するわけではなく、レーザダイオード5側へ反射される戻り光9も存在する。戻り光9の分だけ波長変換部1へ入射して蛍光体を励起する光が減少し、全体としての発光光率は低下する。この戻り光9の全入射光束に対する割合は40〜50%程度であることを本願発明者は発見した。そこで、本願発明者は、この戻り光9による効率低下を抑制する、との課題を発見し、これを解決する方法を得た。   Here, not all of the outgoing light 7 incident from the laser diode 5 is incident on the scattering layer 12, and there is also return light 9 reflected to the laser diode 5 side. The amount of light that enters the wavelength conversion unit 1 and excites the phosphor by the amount of the return light 9 decreases, and the overall light emission rate decreases. The inventor of the present application has found that the ratio of the return light 9 to the total incident light flux is about 40 to 50%. Therefore, the inventor of the present application has found a problem that the decrease in efficiency due to the return light 9 is suppressed, and has obtained a method for solving this problem.

次に、図1に本願発明の第一の実施形態の説明図を示す。この図において、波長変換部1は貫通孔6を有する基台2に、貫通孔6を塞ぐように配置されている。波長変換部1の外周は反射性樹脂4によって覆われ、波長変換部1内部を伝播し波長変換部1の外周に達する光を内部に戻す。また、反射性樹脂4は基台2の外周から上方へ延びる外壁3と波長変換部1との間を充填している。レーザダイオード5は、光軸を貫通孔6の中心に合わせてあり、電力を投入することによって波長変換部1の下面に照射される。ここで、波長変換部1は下層側の散乱層12と上層側の蛍光体層11とを積層して構成される。また、波長変換部1は透光層8を介して基台2に固定されている。   Next, FIG. 1 shows an explanatory diagram of the first embodiment of the present invention. In this figure, the wavelength converter 1 is arranged on a base 2 having a through hole 6 so as to block the through hole 6. The outer periphery of the wavelength conversion unit 1 is covered with the reflective resin 4, and light that propagates inside the wavelength conversion unit 1 and reaches the outer periphery of the wavelength conversion unit 1 is returned to the inside. The reflective resin 4 fills the space between the outer wall 3 extending upward from the outer periphery of the base 2 and the wavelength conversion unit 1. The laser diode 5 has an optical axis aligned with the center of the through hole 6 and is irradiated on the lower surface of the wavelength conversion unit 1 by applying power. Here, the wavelength conversion unit 1 is configured by laminating a scattering layer 12 on the lower layer side and a phosphor layer 11 on the upper layer side. In addition, the wavelength conversion unit 1 is fixed to the base 2 via the light transmitting layer 8.

レーザダイオード5から入射した出射光7は、その全てが散乱層12に入射しない点は、比較例と同様である。しかし、本願発明においては、散乱層12によってレーザダイオード5側へ反射される戻り光9の一部は、貫通孔6に面した端面から透光層8へ入射し、基台2による反射を介して再度波長変換部1に照射される。この結果、戻り光9をより効果的に蛍光体の励起に用いることができ、発光装置の効率向上の効果を得ることができる。   The outgoing light 7 incident from the laser diode 5 is not incident on the scattering layer 12 in the same way as the comparative example. However, in the present invention, a part of the return light 9 reflected to the laser diode 5 side by the scattering layer 12 is incident on the light transmitting layer 8 from the end face facing the through hole 6 and is reflected by the base 2. Then, the wavelength conversion unit 1 is irradiated again. As a result, the return light 9 can be used for excitation of the phosphor more effectively, and the effect of improving the efficiency of the light emitting device can be obtained.

特に、透光層8へ入射した戻り光9は、透光層8中で導光によって隅々まで広がって波長変換部1に入射する。比較例においては、波長変換部1を蛍光体層12側から見ると、中央部分が一番明るく、散乱層12によっても入射した光を蛍光体層12に均一に励起していないことが分かるが、本発明では戻り光9の導光によって蛍光体層12がほぼ均一に励起され、結果として励起光の輝度ムラなどを改善できる。   In particular, the return light 9 incident on the light transmissive layer 8 spreads to every corner by the light guide in the light transmissive layer 8 and enters the wavelength conversion unit 1. In the comparative example, when the wavelength conversion unit 1 is viewed from the phosphor layer 12 side, it can be seen that the central portion is brightest, and the incident light is not evenly excited to the phosphor layer 12 even by the scattering layer 12. In the present invention, the phosphor layer 12 is excited almost uniformly by guiding the return light 9, and as a result, uneven brightness of the excitation light can be improved.

波長変換部1は、レーザダイオード5からの光によって励起される蛍光体を含む蛍光体層11を有する。しかし、図1の通り、蛍光体層11に、更に散乱層12を含んでも良い。散乱層12によって、より効果的にレーザダイオード5からの光を散乱し、蛍光体層11全体に光を分配することができる。   The wavelength conversion unit 1 includes a phosphor layer 11 including a phosphor excited by light from the laser diode 5. However, as shown in FIG. 1, the phosphor layer 11 may further include a scattering layer 12. The scattering layer 12 can more effectively scatter light from the laser diode 5 and distribute the light to the entire phosphor layer 11.

蛍光体層11は、蛍光体を含む樹脂を板状に形成したもの、蛍光体を含むガラス又はセラミックを板状に成形し、焼結したもの、蛍光体自体を板状に成形し、焼結したもの等を利用しうる。樹脂を用いる場合には、耐光性の観点からシリコーン樹脂を用いることが望ましい。セラミックを用いる場合には、透光性である必要があることからアルミナ等が好適である。蛍光体自体を用いる場合には、Ceを所定の濃度に調整したYAG:Ce蛍光体の焼結体が望ましい。セラミック又は蛍光体自体の焼結体は、レーザダイオードからの光によって劣化する有機物を含まず、使用中の光度低下の恐れが少ないため、特に好ましい。   The phosphor layer 11 is formed by forming a resin containing a phosphor into a plate shape, molding a glass or ceramic containing the phosphor into a plate shape, sintering, and forming the phosphor itself into a plate shape and sintering. Can be used. When using a resin, it is desirable to use a silicone resin from the viewpoint of light resistance. When ceramic is used, alumina or the like is preferable because it needs to be translucent. When using the phosphor itself, a sintered body of YAG: Ce phosphor in which Ce is adjusted to a predetermined concentration is desirable. A sintered body of ceramic or phosphor itself is particularly preferable because it does not contain an organic substance that deteriorates due to light from the laser diode, and there is little risk of a decrease in light intensity during use.

散乱層12は、例えば散乱材を含む樹脂を板状に形成したもの、散乱材を含むガラスを板状としたもの、セラミックを板状としたもの等を利用しうる。セラミックを用いる場合には、その材料中に入るポア(空孔)が入射した光を散乱させて蛍光体層11全体に広げることができる。散乱層12は、蛍光体層11とは接着剤等を介して接着される。   As the scattering layer 12, for example, a resin containing a scattering material formed in a plate shape, a glass containing a scattering material in a plate shape, a ceramic in a plate shape, or the like can be used. In the case of using ceramic, light entering through pores (holes) entering the material can be scattered and spread over the entire phosphor layer 11. The scattering layer 12 is bonded to the phosphor layer 11 via an adhesive or the like.

レーザダイオード5は、所望の波長の光を出力として得るために、波長変換部1を励起しうる光源として適切なものを選択すればよい。黄色蛍光体を含む波長変換部1を励起して黄色蛍光を放出させ、レーザ光と合わせて白色光を出力として得るのであれば、青色発光レーザが望ましい。例えば、発光波長450nmのInGaN/GaN系レーザを利用しうる。   The laser diode 5 may be selected as an appropriate light source that can excite the wavelength converter 1 in order to obtain light of a desired wavelength as an output. A blue light emitting laser is desirable if the wavelength converter 1 including a yellow phosphor is excited to emit yellow fluorescence and white light is output as an output together with the laser light. For example, an InGaN / GaN laser with an emission wavelength of 450 nm can be used.

透光層8は、スペーサーとしての役割を持ち、透明ガラス、樹脂シート、印刷・スタンプによる高粘度の樹脂(1Pa・s以上、好ましくは5Pa・s以上)などを用いることができる。特に高粘度の樹脂を使用する際、透光層8を基台2の上に形成してから波長変換部1をその上から配置することになるが、波長変換部1からのプレス荷重を調整することでより高精度に高粘度樹脂の高さを制御することができる。樹脂を用いる場合、耐熱性や耐光性の観点からジメチル系シリコーン樹脂が好ましい。樹脂中には貫通孔に入射し散乱層12で後方散乱したレーザ光が透光層8に導波しやすくするためフィラーを混入させていない。しかし、光学散乱に寄与しない100nm以下の微粒子であれば入れても良い。なお、必ずしも樹脂等の物質で埋まっている必要はなく、空気層の隙間でもよい。   The light-transmitting layer 8 has a role as a spacer, and transparent glass, a resin sheet, a high-viscosity resin (1 Pa · s or more, preferably 5 Pa · s or more) by printing / stamping, or the like can be used. In particular, when using a highly viscous resin, the wavelength converting portion 1 is arranged from the top after the light transmitting layer 8 is formed on the base 2, but the press load from the wavelength converting portion 1 is adjusted. By doing so, the height of the high viscosity resin can be controlled with higher accuracy. When using a resin, a dimethyl silicone resin is preferable from the viewpoint of heat resistance and light resistance. In the resin, a filler is not mixed so that the laser light incident on the through-hole and back-scattered by the scattering layer 12 is easily guided to the light-transmitting layer 8. However, fine particles of 100 nm or less that do not contribute to optical scattering may be added. In addition, it is not always necessary to be filled with a substance such as a resin, and a gap in the air layer may be used.

基台2は、波長変換部1から発生する熱を放出する他、透光層8を導光する光に対して反射損失が少ないものが望ましい。このため、熱伝導性に優れた銅の上面に反射率に優れたアルミニウムをコーティングしたもの等が好適に利用しうる。また、好ましくは、基台上面部を鏡面加工することにより反射率を向上させる。   It is desirable that the base 2 has a small reflection loss with respect to the light guided through the light transmitting layer 8 in addition to releasing the heat generated from the wavelength conversion unit 1. For this reason, what coated aluminum which was excellent in the reflectance on the upper surface of copper excellent in thermal conductivity, etc. can be used suitably. Preferably, the reflectance is improved by mirror-finishing the upper surface of the base.

反射性樹脂4は、例えばシリコーン樹脂にTiO等の光反射性の高い樹脂を混合したものからなる。反射性樹脂4は、散乱層12や蛍光体層11を導波してその端面に至った光を反射し、再度散乱層12や蛍光体層11の内部へ戻す機能を有する。 The reflective resin 4 is made of, for example, a silicone resin mixed with a highly light-reflective resin such as TiO 2 . The reflective resin 4 has a function of reflecting the light that has been guided through the scattering layer 12 and the phosphor layer 11 and reached its end face, and returned to the inside of the scattering layer 12 and the phosphor layer 11 again.

図2に、本発明の第二の実施形態を示す。図2において、基本的な構成は図1と同様である。違いは、樹脂製の透光層8中に膜厚を保つためにビーズ13(スペーサ)を有していることである。ここで、ビーズ13は、球状かつ透光性である。また、熱伝導性が高いことがより望ましい。図2(B)は、本発光装置の波長変換部1の載置部分を蛍光体層11の側から見た図、図2(A)は点線部XX’で切断した断面図である。図2(B)において、ビーズ13が配置されている場所は、基台2に設けられた貫通孔6以外の場所であり、対応する配置場所を丸印で示している。ビーズ13は、3つ以上あれば透光層8の厚さを一定にすることができる。   FIG. 2 shows a second embodiment of the present invention. In FIG. 2, the basic configuration is the same as in FIG. The difference is that the resin-made translucent layer 8 has beads 13 (spacers) in order to keep the film thickness. Here, the beads 13 are spherical and translucent. Moreover, it is more desirable that the thermal conductivity is high. FIG. 2B is a view of the mounting portion of the wavelength conversion unit 1 of the light emitting device as viewed from the phosphor layer 11 side, and FIG. 2B, the place where the beads 13 are arranged is a place other than the through hole 6 provided in the base 2, and the corresponding arrangement place is indicated by a circle. If there are three or more beads 13, the thickness of the translucent layer 8 can be made constant.

波長変換部1を蛍光体層11の側から見た際の大きさは、レーザ光によってある程度均一に励起され、蛍光を発することができる程度に設定される。このため、波長変換部1の面積は800μm×400μm程度となる。従って、波長変換部1の下に形成される透光層8の面積は上記面積から貫通孔6の面積を引いた値になる。貫通孔6は、レーザ光のスポットサイズ次第ではあるが、φ200μm程度の円形である。ここで、ビーズ13の球径φ、即ち透光層8の厚さは30μmから100μm程度である。φ30μmのビーズを3つ用いる場合、波長変換部1の下に形成される透光層8の中に占めるビーズ13の面積の割合は、3×((30/2)×π)/{(800×400)−(200/2)×π}≒0.007、即ち1%にもならない。従って、φ30μmのビーズを3つ使うだけであれば、透光層8中の導光を妨げることがほとんどない。 The size of the wavelength conversion unit 1 when viewed from the phosphor layer 11 side is set to such an extent that it can be excited to some extent by the laser light and emit fluorescence. For this reason, the area of the wavelength converter 1 is about 800 μm × 400 μm. Therefore, the area of the translucent layer 8 formed under the wavelength converting portion 1 is a value obtained by subtracting the area of the through hole 6 from the above area. The through hole 6 has a circular shape of about φ200 μm, depending on the spot size of the laser beam. Here, the spherical diameter φ of the beads 13, that is, the thickness of the light transmitting layer 8 is about 30 μm to 100 μm. When three beads having a diameter of 30 μm are used, the ratio of the area of the beads 13 in the translucent layer 8 formed under the wavelength conversion unit 1 is 3 × ((30/2) 2 × π) / {( 800 × 400) − (200/2) 2 × π} ≈0.007, that is, not 1%. Therefore, if only three φ30 μm beads are used, the light guide in the light-transmitting layer 8 is hardly hindered.

透光層8の中に配置されるビーズ13の個数(即ち、透光層におけるビーズの濃度)が大きくなるにつれて、透光層8とビーズ13との間の界面が増えていくことになり、これが透光層中の導光を妨げ始める。従って、導光の観点からビーズ13は最小限であることが望ましい。上記で計算例を示した透光層中にしめるビーズの面積の割合は、大きくとも20%以下とすべきである。   As the number of beads 13 arranged in the light-transmitting layer 8 (that is, the concentration of beads in the light-transmitting layer) increases, the interface between the light-transmitting layer 8 and the beads 13 increases. This begins to hinder light guiding in the translucent layer. Therefore, it is desirable that the number of beads 13 is minimal from the viewpoint of light guide. The ratio of the area of the beads to be included in the light-transmitting layer shown in the above calculation example should be 20% or less at most.

ここで、第二の実施形態の変形例として、ビーズ13と透光層8との屈折率をほぼ一致させた物質同士の組み合わせとしてもよい。例えば、ジメチル系シリコーン樹脂の屈折率は1.41程度であり、他方でSiOビーズの屈折率も同程度である。また、フェニル系シリコーン樹脂の屈折率は1.5〜1.65であるため、アルミナ(n=1.58〜1.65)のような熱伝導性に優れた材料を選択できる。このような樹脂とビーズの材料同士の組み合わせであれば、透光層8中に占める面積の割合などを気にすることなくビーズ13を透光層8に含ませることができる。なお、ここで屈折率が同程度とは、2つの物質の屈折率差Δnが±0.05以内に収まることを言うものとする。 Here, as a modification of the second embodiment, a combination of substances in which the refractive indexes of the beads 13 and the light transmitting layer 8 are substantially matched may be used. For example, the refractive index of dimethyl silicone resin is about 1.41, while the refractive index of SiO 2 beads is about the same. Moreover, since the refractive index of a phenyl-type silicone resin is 1.5-1.65, the material excellent in thermal conductivity like an alumina (n = 1.58-1.65) can be selected. With such a combination of resin and bead materials, the bead 13 can be included in the translucent layer 8 without worrying about the proportion of the area in the translucent layer 8 or the like. Here, the same refractive index means that the refractive index difference Δn between the two substances is within ± 0.05.

図3に、本発明の第三の実施形態を示す。図3において、基本的な構成は図1、2と同様である。違いは、樹脂製の透光層8の膜厚を保つために凹部14を有していることである。凹部14は、波長変換部1の大きさに対してやや小さく、かつ、その底部に貫通孔6が形成されている。貫通孔部分を除く凹部14底面と波長変換部1との間には、透光層8が形成され、戻り光9が導光するようになっている。この構成は、凹部14の深さのみで透光層8の厚さを制御でき、ビーズの屈折率等を気にする必要がないため、制御性が良く簡便である。   FIG. 3 shows a third embodiment of the present invention. In FIG. 3, the basic configuration is the same as in FIGS. The difference is that the concave portion 14 is provided in order to maintain the film thickness of the resin-made translucent layer 8. The concave portion 14 is slightly smaller than the size of the wavelength converting portion 1, and the through hole 6 is formed at the bottom thereof. A translucent layer 8 is formed between the bottom surface of the recess 14 excluding the through-hole portion and the wavelength conversion unit 1, and the return light 9 is guided. In this configuration, the thickness of the light-transmitting layer 8 can be controlled only by the depth of the recess 14 and there is no need to worry about the refractive index of the beads, so that the controllability is good and simple.

図4に、本発明の第四の実施形態を示す。図4において、基本的な構成は図1〜3と同様である。違いは、樹脂製の透光層8の膜厚を保つために散乱層12の底部であって、上面視貫通孔6と重ならない部分に散乱層凸部16を有していることである。散乱層凸部16は、散乱層12の底部に3つ以上同じ高さで形成される。基台2と散乱層12との間には透光層8が形成され、波長変換部1と基台2との間を接着しつつ、戻り光9が導光する機能をも備える。この構成は、散乱層凸部16の高さのみで透光層8の厚さを制御でき、ビーズの屈折率等を気にする必要がないため、制御性が良く簡便である。   FIG. 4 shows a fourth embodiment of the present invention. In FIG. 4, the basic configuration is the same as in FIGS. The difference is that the scattering layer convex portion 16 is provided at the bottom portion of the scattering layer 12 in order to keep the film thickness of the resin-made translucent layer 8 and not overlapping the through-hole 6 when viewed from above. Three or more scattering layer convex portions 16 are formed at the same height on the bottom of the scattering layer 12. A translucent layer 8 is formed between the base 2 and the scattering layer 12 and has a function of guiding the return light 9 while adhering between the wavelength conversion unit 1 and the base 2. In this configuration, the thickness of the light-transmitting layer 8 can be controlled only by the height of the scattering layer projections 16 and there is no need to worry about the refractive index of the beads, so that the controllability is good and simple.

図5に、本発明の第五の実施形態を示す。図5において、基本的な構成は図1〜4と同様である。違いは、樹脂製の透光層8の膜厚を保つために基台2の上面であって、上面視貫通孔と重ならない部分に基台2から飛び出して散乱層12底部に接触する基台凸部17を有していることである。基台凸部17は、散乱層12の底部に接するように3つ以上同じ高さで形成され、波長変換部1との間の距離を一定に保つ。基台2と散乱層12との間には透光層8が形成され、波長変換部1と基台2との間を接着しつつ、戻り光9が導光する機能をも備える。この構成は、基台凸部17の高さのみで透光層8の厚さを制御でき、ビーズの屈折率等を気にする必要がないため、制御性が良く簡便である。   FIG. 5 shows a fifth embodiment of the present invention. In FIG. 5, the basic configuration is the same as in FIGS. The difference is that the base 2 protrudes from the base 2 on the upper surface of the base 2 so as to maintain the film thickness of the resin-made translucent layer 8 and does not overlap with the through hole when viewed from above and contacts the bottom of the scattering layer 12. It has the convex part 17. Three or more base protrusions 17 are formed at the same height so as to be in contact with the bottom of the scattering layer 12, and the distance from the wavelength conversion unit 1 is kept constant. A translucent layer 8 is formed between the base 2 and the scattering layer 12 and has a function of guiding the return light 9 while adhering between the wavelength conversion unit 1 and the base 2. In this configuration, the thickness of the light-transmitting layer 8 can be controlled only by the height of the base convex portion 17, and there is no need to worry about the refractive index of the beads.

図6に、本発明の実施において、透光層8の厚さに対して装置全体の光束がどの程度向上するか、その結果を示す。この図において、透光層厚み0μmとは、透光層を設けない比較例の値である。また、光束向上率とは、厚み0μmの比較例の場合の光束に対する向上した光束の比率を示す。   FIG. 6 shows how much the luminous flux of the entire apparatus is improved with respect to the thickness of the light-transmitting layer 8 in the implementation of the present invention. In this figure, the translucent layer thickness of 0 μm is a value of a comparative example in which no translucent layer is provided. Further, the luminous flux improvement rate indicates the ratio of the improved luminous flux to the luminous flux in the comparative example having a thickness of 0 μm.

透光層8は、貫通孔6に面した端面部分から戻り光9を取り込むため、透光層8が厚いほど、端面部分の面積が大きく、光束向上率も上昇を見込むことができる。一方で、透光層8が厚すぎると、透光層8を介して波長変換部1で生じた熱を逃がすことができないため、蛍光体層11の温度消光現象により発光光率が低下する。従って、発光装置の全体としての発光強度という観点から、透光層8の厚さには良好なバランスが取れる最適な範囲が存在する。   Since the translucent layer 8 captures the return light 9 from the end surface portion facing the through-hole 6, the thicker the translucent layer 8 is, the larger the area of the end surface portion can be expected to increase the luminous flux improvement rate. On the other hand, if the light-transmitting layer 8 is too thick, the heat generated in the wavelength conversion unit 1 cannot be released through the light-transmitting layer 8, so that the light emission rate decreases due to the temperature quenching phenomenon of the phosphor layer 11. Therefore, from the viewpoint of the light emission intensity of the light emitting device as a whole, there is an optimum range in which the thickness of the light transmitting layer 8 can be well balanced.

図6から、透光層8の厚さが30μmのとき、光束向上率は約7%である。概ね、この程度の厚さ以上であれば、効果があると考えられる。一方、放熱性の観点から、透光層8の厚さは透光層が樹脂の場合には100μm以下が妥当と考えられる。また、セラミック等の熱伝導率がより高い材料を透光層として用いる場合には、200μm程度であっても良い。   From FIG. 6, when the thickness of the translucent layer 8 is 30 μm, the luminous flux improvement rate is about 7%. In general, it is considered that there is an effect if the thickness exceeds this level. On the other hand, from the viewpoint of heat dissipation, the thickness of the translucent layer 8 is considered to be 100 μm or less when the translucent layer is a resin. In addition, when a material having higher thermal conductivity such as ceramic is used for the light-transmitting layer, it may be about 200 μm.

1 波長変換部
2 基台
3 外壁
4 反射性樹脂
5 レーザダイオード
6 貫通孔
7 出射光
8 透光層
9 戻り光
11 蛍光体層
12 散乱層
13 ビーズ
14 凹部
15 レンズ
DESCRIPTION OF SYMBOLS 1 Wavelength conversion part 2 Base 3 Outer wall 4 Reflective resin 5 Laser diode 6 Through-hole 7 Outgoing light 8 Translucent layer 9 Return light 11 Phosphor layer 12 Scattering layer 13 Beads 14 Concave part 15 Lens

Claims (8)

貫通孔を有する基台と、
前記貫通孔を塞ぐように前記基台上に配置された波長変換部と、
前記貫通孔を通じて前記波長変換部に光を照射する半導体発光素子と、を備え、
前記基台と前記波長変換部の間に、30μm以上の厚さの透光層が前記貫通孔に端面を露出するように形成されている半導体発光装置。
A base having a through hole;
A wavelength converter disposed on the base so as to close the through hole;
A semiconductor light emitting element that irradiates light to the wavelength conversion unit through the through hole, and
A semiconductor light-emitting device in which a light-transmitting layer having a thickness of 30 μm or more is formed between the base and the wavelength conversion unit so that an end face is exposed in the through hole.
前記透光層は、ビーズを含む樹脂によって構成される請求項1に記載の半導体発光装置。   The semiconductor light emitting device according to claim 1, wherein the light transmissive layer is made of a resin including beads. 前記ビーズは、前記樹脂との屈折率差が±0.05以内である請求項2に記載の半導体発光装置   The semiconductor light emitting device according to claim 2, wherein the bead has a refractive index difference within ± 0.05 of the resin. 前記貫通孔は、前記基台に形成された凹部底面に形成されており、前記透光層は、前記波長変換部と前記凹部底面との間に配置された樹脂層である、請求項1に記載の半導体発光装置。   The said through-hole is formed in the recessed part bottom face formed in the said base, The said translucent layer is a resin layer arrange | positioned between the said wavelength conversion part and the said recessed part bottom face. The semiconductor light-emitting device as described. 前記透光層は、ガラス、セラミックのいずれかで形成されている請求項1に記載の半導体発光装置。   The semiconductor light emitting device according to claim 1, wherein the light transmissive layer is formed of any one of glass and ceramic. 前記波長変換部の前記貫通孔側に向いた面であって前記貫通孔に上面視重ならない部分に、前記基台に接触する凸部が形成され、前記透光層の厚さを規定する請求項1に記載の半導体発光装置。   A convex portion that contacts the base is formed on a portion of the wavelength conversion portion that faces the through-hole side and does not overlap the through-hole in top view, thereby defining a thickness of the light-transmitting layer. Item 14. The semiconductor light emitting device according to Item 1. 前記基台上面の前記波長変換部側に向いた面であって前記貫通孔に上面視重ならない部分に、前記波長変換部に接触する凸部が形成され、前記透光層の厚さを規定する請求項1に記載の半導体発光装置。   A convex portion that contacts the wavelength conversion portion is formed on a portion of the upper surface of the base that faces the wavelength conversion portion and does not overlap the through hole when viewed from above, and defines the thickness of the light-transmitting layer The semiconductor light emitting device according to claim 1. 前記波長変換部の側面は、反射性樹脂で覆われている請求項1から請求項7のいずれか1項に記載の半導体発光装置。   The semiconductor light-emitting device according to claim 1, wherein a side surface of the wavelength conversion unit is covered with a reflective resin.
JP2013061305A 2013-03-25 2013-03-25 Semiconductor light-emitting device Pending JP2014187224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013061305A JP2014187224A (en) 2013-03-25 2013-03-25 Semiconductor light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013061305A JP2014187224A (en) 2013-03-25 2013-03-25 Semiconductor light-emitting device

Publications (1)

Publication Number Publication Date
JP2014187224A true JP2014187224A (en) 2014-10-02

Family

ID=51834479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013061305A Pending JP2014187224A (en) 2013-03-25 2013-03-25 Semiconductor light-emitting device

Country Status (1)

Country Link
JP (1) JP2014187224A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3142200A1 (en) * 2015-08-28 2017-03-15 Nichia Corporation Semiconductor laser device
JP2017142479A (en) * 2016-02-05 2017-08-17 セイコーエプソン株式会社 Wavelength conversion element, light source device, and projector
JP2017216362A (en) * 2016-05-31 2017-12-07 日亜化学工業株式会社 Light-emitting device
JP2019075577A (en) * 2018-12-26 2019-05-16 日亜化学工業株式会社 Light-emitting device
WO2019203078A1 (en) * 2018-04-19 2019-10-24 パナソニックIpマネジメント株式会社 Light-emitting device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007027688A (en) * 2005-06-13 2007-02-01 Nichia Chem Ind Ltd Light emitting device
JP2008004419A (en) * 2006-06-23 2008-01-10 Nichia Chem Ind Ltd Light emitting device
JP2008305936A (en) * 2007-06-07 2008-12-18 Nichia Corp Semiconductor light emitting device
JP2009003228A (en) * 2007-06-22 2009-01-08 Nichia Corp Light emitting device
JP2012039031A (en) * 2010-08-11 2012-02-23 Nitto Denko Corp Light emitting device
JP2012041496A (en) * 2010-08-23 2012-03-01 Shin-Etsu Chemical Co Ltd Curable silicone resin composition and light-emitting diode device using the same
JP2012059452A (en) * 2010-09-07 2012-03-22 Sharp Corp Light emitting device, lighting system, and headlamp for vehicle
WO2013039072A1 (en) * 2011-09-16 2013-03-21 シャープ株式会社 Light-emitting device, display apparatus, illumination apparatus, and electricity-generating apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007027688A (en) * 2005-06-13 2007-02-01 Nichia Chem Ind Ltd Light emitting device
JP2008004419A (en) * 2006-06-23 2008-01-10 Nichia Chem Ind Ltd Light emitting device
JP2008305936A (en) * 2007-06-07 2008-12-18 Nichia Corp Semiconductor light emitting device
JP2009003228A (en) * 2007-06-22 2009-01-08 Nichia Corp Light emitting device
JP2012039031A (en) * 2010-08-11 2012-02-23 Nitto Denko Corp Light emitting device
JP2012041496A (en) * 2010-08-23 2012-03-01 Shin-Etsu Chemical Co Ltd Curable silicone resin composition and light-emitting diode device using the same
JP2012059452A (en) * 2010-09-07 2012-03-22 Sharp Corp Light emitting device, lighting system, and headlamp for vehicle
WO2013039072A1 (en) * 2011-09-16 2013-03-21 シャープ株式会社 Light-emitting device, display apparatus, illumination apparatus, and electricity-generating apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3142200A1 (en) * 2015-08-28 2017-03-15 Nichia Corporation Semiconductor laser device
US9685759B2 (en) 2015-08-28 2017-06-20 Nichia Corporation Semiconductor laser device
JP2017142479A (en) * 2016-02-05 2017-08-17 セイコーエプソン株式会社 Wavelength conversion element, light source device, and projector
JP2017216362A (en) * 2016-05-31 2017-12-07 日亜化学工業株式会社 Light-emitting device
WO2019203078A1 (en) * 2018-04-19 2019-10-24 パナソニックIpマネジメント株式会社 Light-emitting device
JPWO2019203078A1 (en) * 2018-04-19 2021-06-17 パナソニックIpマネジメント株式会社 Light emitting device
JP7016034B2 (en) 2018-04-19 2022-02-04 パナソニックIpマネジメント株式会社 Luminescent device
JP2019075577A (en) * 2018-12-26 2019-05-16 日亜化学工業株式会社 Light-emitting device

Similar Documents

Publication Publication Date Title
JP6246622B2 (en) Light source device and lighting device
KR101892593B1 (en) A light emitting device and the manufacturing method
JP5647028B2 (en) Light emitting device and manufacturing method thereof
JP5883662B2 (en) Light emitting device
JP5052397B2 (en) Light emitting device and light emitting apparatus
JP6422636B2 (en) Light source device
KR20150113144A (en) Wavelength conversion device, light-emitting device and projection system
JP2014187224A (en) Semiconductor light-emitting device
JP6221950B2 (en) Light emitting device
JP2015060871A (en) Light emitting device
JP2010225791A (en) Semiconductor light emitting device
JP6909695B2 (en) Wavelength conversion member and light source module
JP6493308B2 (en) Light emitting device
JP2016092271A (en) Phosphor sheet and lighting system
JP2016082014A (en) Light-emitting device
JP2011114093A (en) Lighting system
JP2019145690A (en) Light-emitting device and manufacturing method of light-emitting device
JPWO2015190242A1 (en) Light emitting device
JP2018077535A (en) Wavelength conversion member and light source device using the same
JP2014096419A (en) Optoelectronic device
JP2015076456A (en) Light-emitting apparatus and manufacturing method therefor
JP2012227536A (en) Led light source and luminous body using the same
JP2006179658A (en) Light emitting device
US11508882B2 (en) Quantum dot LED, manufacturing method thereof and display device
US20210148547A1 (en) Illumination device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170516

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171121