JP6575923B2 - Wavelength conversion member and light emitting device using the same - Google Patents

Wavelength conversion member and light emitting device using the same Download PDF

Info

Publication number
JP6575923B2
JP6575923B2 JP2014196115A JP2014196115A JP6575923B2 JP 6575923 B2 JP6575923 B2 JP 6575923B2 JP 2014196115 A JP2014196115 A JP 2014196115A JP 2014196115 A JP2014196115 A JP 2014196115A JP 6575923 B2 JP6575923 B2 JP 6575923B2
Authority
JP
Japan
Prior art keywords
wavelength conversion
conversion member
phosphor
layer
phosphor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014196115A
Other languages
Japanese (ja)
Other versions
JP2016066764A (en
Inventor
忠仁 古山
忠仁 古山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2014196115A priority Critical patent/JP6575923B2/en
Publication of JP2016066764A publication Critical patent/JP2016066764A/en
Application granted granted Critical
Publication of JP6575923B2 publication Critical patent/JP6575923B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Securing Globes, Refractors, Reflectors Or The Like (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Description

本発明は、プロジェクター用発光装置等に用いられる波長変換部材に関する。   The present invention relates to a wavelength conversion member used in a light emitting device for a projector or the like.

近年、プロジェクターを小型化するため、LED(Light Emitting Diode)やLD(Laser Diode)と、蛍光体とを用いた発光デバイスが提案されている。例えば、特許文献1には、蛍光体層と、蛍光体層に対して励起光を照射する光源とを備えた発光装置を用いたプロジェクターが開示されている。特許文献1には、蛍光体層を銅板等の放熱基板(伝熱部材)と接合することにより、蛍光体層で発生した熱を効率的に外部に放熱できることが記載されている。   In recent years, in order to reduce the size of projectors, light emitting devices using LEDs (Light Emitting Diodes) and LDs (Laser Diodes) and phosphors have been proposed. For example, Patent Document 1 discloses a projector using a light emitting device that includes a phosphor layer and a light source that emits excitation light to the phosphor layer. Patent Document 1 describes that the heat generated in the phosphor layer can be efficiently dissipated to the outside by joining the phosphor layer to a heat dissipation substrate (heat transfer member) such as a copper plate.

特開2010−86815号公報JP 2010-86815 A

蛍光体層と放熱基板は、通常、樹脂等の接着剤を用いて接合される。この場合、接着剤が蛍光体層内部に侵入し、蛍光体層の放熱基板とは反対側の表面に染み出すという問題がある。そのため、蛍光体層と放熱基板の間に存在する接着剤量が減少して、両者の接着強度が低下しやすくなる。さらに、蛍光体層と放熱基板との密着性が低下し、蛍光体層から放熱基板への熱伝導が不十分となる場合もある。   The phosphor layer and the heat dissipation substrate are usually bonded using an adhesive such as a resin. In this case, there is a problem that the adhesive penetrates into the phosphor layer and oozes out to the surface of the phosphor layer opposite to the heat dissipation substrate. Therefore, the amount of adhesive existing between the phosphor layer and the heat dissipation substrate decreases, and the adhesive strength between the two tends to decrease. Further, the adhesion between the phosphor layer and the heat dissipation substrate may be reduced, and heat conduction from the phosphor layer to the heat dissipation substrate may be insufficient.

以上に鑑み、本発明は、蛍光体層と放熱基板が接着剤を介して接着された波長変換部材であって、接着剤が蛍光体層内部に侵入して、放熱基板とは反対側の表面に染み出すことを抑制することが可能な波長変換部材を提供することを目的とする。   In view of the above, the present invention is a wavelength conversion member in which a phosphor layer and a heat dissipation substrate are bonded via an adhesive, and the adhesive penetrates into the phosphor layer, and the surface opposite to the heat dissipation substrate An object of the present invention is to provide a wavelength conversion member capable of suppressing the oozing out.

本発明の波長変換部材は、放熱基板と、放熱基板の上に設けられた蛍光体層と、放熱基板と蛍光体層とを接着する接着剤層とを備え、蛍光体層の内部に緻密ガラス層が形成されてなることを特徴とする。本発明の波長変換部材は、蛍光体層の内部、または蛍光体層の放熱基板側の表面に緻密ガラス層が形成されているため、接着剤が蛍光体層内部に侵入した場合であっても、当該緻密ガラス層がバリア層の役割を果たして、蛍光体層の放熱基板とは反対側の表面に接着剤が染み出すことを抑制することができる。   The wavelength conversion member of the present invention includes a heat dissipation substrate, a phosphor layer provided on the heat dissipation substrate, and an adhesive layer that bonds the heat dissipation substrate and the phosphor layer, and the dense glass is formed inside the phosphor layer. A layer is formed. In the wavelength conversion member of the present invention, a dense glass layer is formed inside the phosphor layer or on the surface of the phosphor layer on the heat dissipation substrate side, so that even when the adhesive enters the inside of the phosphor layer. The dense glass layer serves as a barrier layer, and it is possible to prevent the adhesive from seeping out on the surface of the phosphor layer opposite to the heat dissipation substrate.

本発明の波長変換部材において、蛍光体層が、蛍光体粉末及びガラス粉末を含む混合粉末の焼結体からなることが好ましい。当該構成によれば、蛍光体層中に蛍光体粉末を均一に分散することができ、色ばらつきの少ない波長変換部材を得ることができる。なおこの場合、蛍光体層は多孔質となりやすく、内部に接着剤が侵入しやすくなる。そのため、蛍光体層中に緻密ガラス層を設けることによる上記の効果を享受しやすくなる。   In the wavelength conversion member of the present invention, it is preferable that the phosphor layer is composed of a sintered body of a mixed powder containing phosphor powder and glass powder. According to the said structure, fluorescent substance powder can be disperse | distributed uniformly in a fluorescent substance layer, and the wavelength conversion member with few color variations can be obtained. In this case, the phosphor layer is likely to be porous, and the adhesive is likely to enter the inside. Therefore, it becomes easy to enjoy the above-described effect by providing the dense glass layer in the phosphor layer.

本発明の波長変換部材において、蛍光体層における蛍光体粉末の含有量が30体積%以上であることが好ましい。当該構成によれば、発光強度の強い波長変換部材を得ることができ、特にプロジェクター用に好適となる。なおこの場合、蛍光体層は多孔質となりやすく、内部に接着剤が侵入しやすくなる。そのため、蛍光体層中に緻密ガラス層を設けることによる上記の効果を享受しやすくなる。   In the wavelength conversion member of the present invention, the phosphor powder content in the phosphor layer is preferably 30% by volume or more. According to this configuration, a wavelength conversion member with high emission intensity can be obtained, which is particularly suitable for a projector. In this case, the phosphor layer is likely to be porous, and the adhesive is likely to enter the inside. Therefore, it becomes easy to enjoy the above-described effect by providing the dense glass layer in the phosphor layer.

本発明の波長変換部材において、緻密ガラス層がガラス粉末の焼結体からなることが好ましい。当該構成によれば、緻密ガラス層を容易に形成することが可能となる。   In the wavelength conversion member of the present invention, the dense glass layer is preferably made of a sintered body of glass powder. According to the said structure, it becomes possible to form a dense glass layer easily.

本発明の波長変換部材において、放熱基板が金属基板であることが好ましい。   In the wavelength conversion member of the present invention, the heat dissipation substrate is preferably a metal substrate.

本発明の波長変換部材において、接着剤層が、シリコーン樹脂またはポリイミド樹脂からなることが好ましい。   In the wavelength conversion member of the present invention, the adhesive layer is preferably made of a silicone resin or a polyimide resin.

本発明の波長変換部材はプロジェクター用であることが好ましい。   The wavelength conversion member of the present invention is preferably for a projector.

本発明の蛍光体層は、放熱基板の上に接着剤層を介して接着されるものであり、内部、または放熱基板側の表面に緻密ガラス層が形成されてなることを特徴とする。   The phosphor layer of the present invention is bonded onto a heat dissipation substrate via an adhesive layer, and is characterized in that a dense glass layer is formed inside or on the surface on the heat dissipation substrate side.

本発明の発光装置は、上記の波長変換部材と、波長変換部材の蛍光体層に励起光を照射する光源とを備えることを特徴とする。   A light-emitting device of the present invention includes the above-described wavelength conversion member and a light source that irradiates excitation light on a phosphor layer of the wavelength conversion member.

本発明によれば、蛍光体層と放熱基板が接着剤を介して接着された波長変換部材において、接着剤が蛍光体層内部に侵入して、放熱基板とは反対側の表面に染み出すことを抑制することが可能となる。   According to the present invention, in the wavelength conversion member in which the phosphor layer and the heat dissipation substrate are bonded via the adhesive, the adhesive penetrates into the phosphor layer and oozes out to the surface opposite to the heat dissipation substrate. Can be suppressed.

本発明の第1の実施形態の波長変換部材を示す模式的斜視図である。It is a typical perspective view which shows the wavelength conversion member of the 1st Embodiment of this invention. 本発明の第2の実施形態の波長変換部材を示す模式的斜視図である。It is a typical perspective view which shows the wavelength conversion member of the 2nd Embodiment of this invention. 本発明の第3の実施形態の波長変換部材を示す模式的斜視図である。It is a typical perspective view which shows the wavelength conversion member of the 3rd Embodiment of this invention. 本発明の第1の実施形態に係る波長変換部材を用いた発光装置を示す模式的側面図である。It is a typical side view showing a light emitting device using a wavelength conversion member concerning a 1st embodiment of the present invention.

以下、本発明の好ましい実施形態について説明する。但し、以下の実施形態は単なる例示であり、本発明は以下の実施形態に限定されるものではない。また、各図面において、実質的に同一の機能を有する部材は同一の符号で参照する場合がある。   Hereinafter, preferred embodiments of the present invention will be described. However, the following embodiments are merely examples, and the present invention is not limited to the following embodiments. Moreover, in each drawing, the member which has the substantially the same function may be referred with the same code | symbol.

(第1の実施形態の波長変換部材)
図1は、本発明の第1の実施形態の波長変換部材を示す模式的斜視図である。波長変換部材1は、放熱基板11と蛍光体層12を備えており、両者は接着剤層13により接着されている。蛍光体層12の内部には緻密ガラス層14が形成されている。接着剤層13における接着剤が蛍光体層12内部に侵入した場合であっても、緻密ガラス層14がバリア層の役割を果たして、蛍光体層12の放熱基板11とは反対側の表面に接着剤が染み出すことを抑制することができる。
(Wavelength conversion member of the first embodiment)
FIG. 1 is a schematic perspective view showing a wavelength conversion member according to the first embodiment of the present invention. The wavelength conversion member 1 includes a heat dissipation substrate 11 and a phosphor layer 12, and both are bonded by an adhesive layer 13. A dense glass layer 14 is formed inside the phosphor layer 12. Even when the adhesive in the adhesive layer 13 penetrates into the phosphor layer 12, the dense glass layer 14 serves as a barrier layer and adheres to the surface of the phosphor layer 12 opposite to the heat dissipation substrate 11. The agent can be prevented from oozing out.

放熱基板11としては、金属基板やカーボン基板等が挙げられる。本実施形態では、放熱基板11として金属基板が用いられており、放熱だけでなく、光反射の役割も担っている。具体的には、金属基板は、蛍光体層12に入射する励起光、及び励起光の入射により蛍光体から出射される蛍光を反射する。金属基板は、一般に、金属または合金から形成され、表面処理が施されていてもよい。金属基板としては、反射率の高いものが好ましく、例えば、表面に金属酸化物などからなる増反射膜が形成されたアルミニウム基板が挙げられる。このようなものとしては、アラノッド(Alanod)社製のMiro(登録商標)及びMiro−Silver(登録商標)等が挙げられる。   Examples of the heat dissipation substrate 11 include a metal substrate and a carbon substrate. In the present embodiment, a metal substrate is used as the heat dissipation substrate 11 and plays a role of not only heat dissipation but also light reflection. Specifically, the metal substrate reflects excitation light incident on the phosphor layer 12 and fluorescence emitted from the phosphor upon incidence of the excitation light. The metal substrate is generally formed from a metal or an alloy and may be subjected to a surface treatment. As the metal substrate, one having a high reflectance is preferable, and for example, an aluminum substrate having an increased reflection film made of a metal oxide or the like on the surface can be given. Examples of such include Miro (registered trademark) and Miro-Silver (registered trademark) manufactured by Alanod.

本実施形態において、蛍光体層12は蛍光体粉末及びガラス粉末を含む混合粉末の焼結体からなる。本実施形態では、蛍光体粉末として、無機蛍光体の粒子が用いられている。   In the present embodiment, the phosphor layer 12 is made of a sintered powder of a mixed powder containing phosphor powder and glass powder. In this embodiment, inorganic phosphor particles are used as the phosphor powder.

ガラス粉末は、無機蛍光体等の蛍光体粉末の分散媒として用いることができるものであれば特に限定されない。例えば、ホウ珪酸塩系ガラス、リン酸塩系ガラスなどを用いることができる。ガラスマトリクスの軟化点は、250〜1000℃であることが好ましく、300〜850℃であることがより好ましい。ガラス粉末の軟化点が低すぎると、蛍光体層12の機械的強度が低下しやすくなる。一方、ガラス粉末の軟化点が高すぎると、製造時における焼成工程で蛍光体粉末が劣化して、蛍光体層の発光強度が低下しやすくなる。   Glass powder will not be specifically limited if it can be used as a dispersion medium of fluorescent substance powder, such as an inorganic fluorescent substance. For example, borosilicate glass or phosphate glass can be used. The softening point of the glass matrix is preferably 250 to 1000 ° C, and more preferably 300 to 850 ° C. If the softening point of the glass powder is too low, the mechanical strength of the phosphor layer 12 tends to decrease. On the other hand, if the softening point of the glass powder is too high, the phosphor powder is deteriorated in the firing step during production, and the emission intensity of the phosphor layer is likely to be lowered.

蛍光体粉末は、励起光の入射により蛍光を出射するものであれば、特に限定されるものではない。蛍光体粉末の具体例としては、例えば、酸化物蛍光体、窒化物蛍光体、酸窒化物蛍光体、塩化物蛍光体、酸塩化物蛍光体、硫化物蛍光体、酸硫化物蛍光体、ハロゲン化物蛍光体、カルコゲン化物蛍光体、アルミン酸塩蛍光体、ハロリン酸塩化物蛍光体、ガーネット系化合物蛍光体から選ばれた1種以上が挙げられる。励起光として青色光を用いる場合、例えば、緑色光または黄色光を蛍光として出射する蛍光体粉末を混合して用いることができる。   The phosphor powder is not particularly limited as long as it emits fluorescence upon incidence of excitation light. Specific examples of the phosphor powder include oxide phosphor, nitride phosphor, oxynitride phosphor, chloride phosphor, acid chloride phosphor, sulfide phosphor, oxysulfide phosphor, halogen And at least one selected from a phosphor fluoride, a chalcogenide phosphor, an aluminate phosphor, a halophosphate phosphor, and a garnet compound phosphor. When blue light is used as the excitation light, for example, a phosphor powder that emits green light or yellow light as fluorescence can be mixed and used.

蛍光体粉末の平均粒子径は、1〜50μmであることが好ましく、5〜25μmであることがより好ましい。蛍光体粉末の平均粒子径が小さすぎると、発光強度が低下しやすくなる。一方、蛍光体粉末の平均粒子径が大きすぎると、波長変換部材1の発光色が不均一になる場合がある。   The average particle size of the phosphor powder is preferably 1 to 50 μm, and more preferably 5 to 25 μm. If the average particle size of the phosphor powder is too small, the emission intensity tends to decrease. On the other hand, if the average particle diameter of the phosphor powder is too large, the emission color of the wavelength conversion member 1 may be non-uniform.

蛍光体層12における蛍光体粉末の含有量は30体積%以上であることが好ましく、40体積%以上であることがより好ましく、50体積%以上であることがさらに好ましい。蛍光体粉末の含有量が少なすぎると、所望の発光強度が得られにくくなる。一方、蛍光体粉末の含有量が多すぎると、蛍光体層12の機械的強度が低下しやすくなる。よって、蛍光体粉末の含有量は90体積%以下であることが好ましく、85体積%以下であることがより好ましく、80体積%以下であることがさらに好ましい。   The phosphor powder content in the phosphor layer 12 is preferably 30% by volume or more, more preferably 40% by volume or more, and still more preferably 50% by volume or more. When there is too little content of fluorescent substance powder, it will become difficult to obtain desired luminescence intensity. On the other hand, if the content of the phosphor powder is too large, the mechanical strength of the phosphor layer 12 tends to decrease. Therefore, the content of the phosphor powder is preferably 90% by volume or less, more preferably 85% by volume or less, and still more preferably 80% by volume or less.

蛍光体層12の厚みが大きすぎると、蛍光体層12における光の散乱や吸収が大きくなりすぎ、蛍光の出射効率が低くなってしまう場合がある。よって、蛍光体層12の厚みは、1mm以下であることが好ましく、0.5mm以下であることがより好ましく、0.3mm以下であることがさらに好ましい。なお、励起光が確実に蛍光体粉末に吸収されるようにするため、蛍光体層12の厚みは0.03mm以上とすることが好ましい。   If the thickness of the phosphor layer 12 is too large, light scattering and absorption in the phosphor layer 12 become too large, and the emission efficiency of fluorescence may be lowered. Therefore, the thickness of the phosphor layer 12 is preferably 1 mm or less, more preferably 0.5 mm or less, and further preferably 0.3 mm or less. In order to ensure that the excitation light is absorbed by the phosphor powder, the thickness of the phosphor layer 12 is preferably 0.03 mm or more.

放熱基板11と蛍光体層12との間には、接着剤層13が設けられている。接着剤層13に用いられる接着剤の具体例としては、シリコーン樹脂及びポリイミド樹脂等が挙げられる。   An adhesive layer 13 is provided between the heat dissipation substrate 11 and the phosphor layer 12. Specific examples of the adhesive used for the adhesive layer 13 include a silicone resin and a polyimide resin.

シリコーン樹脂としては、一般的なシロキサン結合を有するシリコーン樹脂を用いることができ、特に、耐熱性の高いシルセスキオキサンを好ましく用いることができる。シルセスキオキサンは、主鎖骨格がSi−O−Si結合からなるシロキサン系化合物であり、3官能性シランを加水分解することで得られる(RSiO1.5の構造を持つネットワーク型ポリマーまたは多面体クラスターである。 As the silicone resin, a silicone resin having a general siloxane bond can be used, and in particular, silsesquioxane having high heat resistance can be preferably used. Silsesquioxane is a siloxane-based compound whose main chain skeleton is composed of Si—O—Si bonds, and is obtained by hydrolyzing a trifunctional silane (RSiO 1.5 ) n network type polymer having a structure Or a polyhedral cluster.

接着剤層13の厚みは、2〜100μmであることが好ましく、5〜50μmであることがより好ましい。接着剤層13の厚みが小さすぎると、放熱基板11と蛍光体層12の接着強度に劣る場合がある。一方、接着剤層13の厚みが大きすぎると、蛍光体層12で発生した熱が放熱基板11へ放熱されにくくなる場合がある。   The thickness of the adhesive layer 13 is preferably 2 to 100 μm, and more preferably 5 to 50 μm. If the thickness of the adhesive layer 13 is too small, the adhesive strength between the heat dissipation substrate 11 and the phosphor layer 12 may be inferior. On the other hand, if the thickness of the adhesive layer 13 is too large, the heat generated in the phosphor layer 12 may be difficult to dissipate to the heat dissipation substrate 11.

緻密ガラス層14は、ガラス粉末の焼結体からなる。ガラス粉末としては既述のものを使用することができる。なお、蛍光体層12に用いるガラス粉末と緻密ガラス層14に用いるガラス粉末は同一組成を有することが好ましい。これにより、蛍光体層12及び緻密ガラス層14の屈折率を近づけることができ、両者の界面での光反射を低減することができる。結果として、波長変換部材1の発光強度を高めることが可能となる。また、後述するように、蛍光体層12と緻密ガラス層14を同時焼成した場合に、両者の焼結状態が良好になりやすい。   The dense glass layer 14 is made of a sintered body of glass powder. As the glass powder, those described above can be used. The glass powder used for the phosphor layer 12 and the glass powder used for the dense glass layer 14 preferably have the same composition. Thereby, the refractive index of the fluorescent substance layer 12 and the dense glass layer 14 can be closely approached, and the light reflection in both interface can be reduced. As a result, the emission intensity of the wavelength conversion member 1 can be increased. As will be described later, when the phosphor layer 12 and the dense glass layer 14 are fired at the same time, the sintered state of both tends to be good.

緻密ガラス層14の厚みは、0.005〜0.5mmであることが好ましく、0.01〜0.2mmであることがより好ましく、0.01〜0.1mmであることがさらに好ましい。緻密ガラス層14の厚みが小さすぎると、接着剤の侵入に対するバリア層としての役割が得られにくくなる。緻密ガラス層14の厚みが大きすぎると、励起光及び蛍光が緻密ガラス層14内部で吸収されて、波長変換部材1の発光強度が低下しやすくなる。   The thickness of the dense glass layer 14 is preferably 0.005 to 0.5 mm, more preferably 0.01 to 0.2 mm, and still more preferably 0.01 to 0.1 mm. When the thickness of the dense glass layer 14 is too small, it becomes difficult to obtain a role as a barrier layer against the penetration of the adhesive. If the thickness of the dense glass layer 14 is too large, excitation light and fluorescence are absorbed inside the dense glass layer 14, and the emission intensity of the wavelength conversion member 1 tends to decrease.

(第1の実施形態の波長変換部材の製造方法)
以下に、第1の実施形態の波長変換部材の製造方法の一例を説明する。
(Method for Manufacturing Wavelength Conversion Member of First Embodiment)
Below, an example of the manufacturing method of the wavelength conversion member of 1st Embodiment is demonstrated.

ガラス粉末と、蛍光体粉末と、バインダー樹脂や溶剤等の有機成分とを含むスラリーを、ポリエチレンテレフタレート等の樹脂フィルム上にドクターブレード法等により塗布し、加熱乾燥することにより、蛍光体層形成用グリーンシートを作製する。   Applying a slurry containing glass powder, phosphor powder, and organic components such as binder resin and solvent onto a resin film such as polyethylene terephthalate by the doctor blade method, etc. Make a green sheet.

また、ガラス粉末と、バインダー樹脂や溶剤等の有機成分とを含むスラリーを、ポリエチレンテレフタレート等の樹脂フィルム上にドクターブレード法等により塗布し、加熱乾燥することにより、緻密ガラス層形成用グリーンシートを作製する。   In addition, a slurry containing glass powder and an organic component such as a binder resin or a solvent is applied onto a resin film such as polyethylene terephthalate by a doctor blade method or the like, and dried by heating to obtain a green sheet for forming a dense glass layer. Make it.

2枚の蛍光体層形成用グリーンシートの間に緻密ガラス層形成用グリーンシートを挟持した状態で焼成することにより、内部に緻密ガラス層14が形成された蛍光体層12を得る。焼成温度は、ガラス粉末の軟化点±150℃以内であることが好ましく、ガラス粉末の軟化点±100℃以内であることがより好ましい。焼成温度が低すぎると、ガラス粉末が軟化流動せず、焼結が不十分となり、蛍光体層12の機械的強度が低下しやすくなる。一方、焼成温度が高すぎると、蛍光体粉末がガラス粉末中に溶出して、蛍光体としての機能が低下することにより発光強度が低下しやすくなる。また、蛍光体成分がガラス粉末中に拡散してガラス粉末が着色することにより発光強度が低下する場合もある。   By firing in a state where the dense glass layer forming green sheet is sandwiched between two phosphor layer forming green sheets, the phosphor layer 12 having the dense glass layer 14 formed therein is obtained. The firing temperature is preferably within the softening point of glass powder within ± 150 ° C, and more preferably within the softening point of glass powder within ± 100 ° C. If the firing temperature is too low, the glass powder does not soften and flow, sintering becomes insufficient, and the mechanical strength of the phosphor layer 12 tends to decrease. On the other hand, if the firing temperature is too high, the phosphor powder is eluted in the glass powder, and the function as the phosphor is lowered, so that the emission intensity is likely to be lowered. Further, the phosphor component may diffuse into the glass powder and the glass powder may be colored to reduce the light emission intensity.

放熱基板11及び蛍光体層12を接着剤により接着することにより、第1の実施形態の波長変換部材を作製することができる。   The wavelength conversion member of the first embodiment can be manufactured by bonding the heat dissipation substrate 11 and the phosphor layer 12 with an adhesive.

なお、第1の実施形態の波長変換部材は蛍光体層12が略上下対称構造となっているため、焼成時における各グリーンシートの熱収縮率の違いによる反り変形を抑制できるという利点がある。   The wavelength conversion member according to the first embodiment has an advantage that the warp deformation due to the difference in thermal shrinkage of each green sheet during firing can be suppressed because the phosphor layer 12 has a substantially vertical symmetrical structure.

(第2の実施形態の波長変換部材)
図2は、本発明の第2の実施形態の波長変換部材を示す模式的斜視図である。第1の実施形態では、緻密ガラス層14が蛍光体層12内部中央付近に設けられているが、本実施形態の波長変換部材2は、緻密ガラス層14が蛍光体層12の放熱基板11側の表面に設けられている点で、第1の実施形態とは異なる。本実施形態の構成によれば、接着剤層13における接着剤が蛍光体層12内部に侵入することを効果的に抑制できる。
(Wavelength conversion member of the second embodiment)
FIG. 2 is a schematic perspective view showing a wavelength conversion member according to the second embodiment of the present invention. In the first embodiment, the dense glass layer 14 is provided near the inside center of the phosphor layer 12. However, in the wavelength conversion member 2 of the present embodiment, the dense glass layer 14 is on the heat dissipation substrate 11 side of the phosphor layer 12. It differs from the first embodiment in that it is provided on the surface. According to the configuration of the present embodiment, it is possible to effectively suppress the adhesive in the adhesive layer 13 from entering the phosphor layer 12.

(第3の実施形態の波長変換部材)
図3は本発明の第3の実施形態の波長変換部材を示す模式的斜視図である。第1の実施形態の波長変換部材は矩形状であるが、本実施形態の波長変換部材3はホイール形状を有している。本実施形態の波長変換部材は、プロジェクター用途に使用されるいわゆる蛍光体ホイールとして好適である。波長変換部材3は周方向に回転する。これにより、放熱基板11から外部への熱放出がさらに促進される。
(Wavelength conversion member of the third embodiment)
FIG. 3 is a schematic perspective view showing a wavelength conversion member according to a third embodiment of the present invention. The wavelength conversion member of the first embodiment is rectangular, but the wavelength conversion member 3 of the present embodiment has a wheel shape. The wavelength conversion member of this embodiment is suitable as a so-called phosphor wheel used for projector applications. The wavelength conversion member 3 rotates in the circumferential direction. Thereby, the heat release from the heat dissipation substrate 11 to the outside is further promoted.

(第1の実施形態に係る波長変換部材を用いた発光装置)
図4は、本発明の第1の実施形態に係る波長変換部材を用いた発光装置の模式的側面図である。実施形態に係る発光装置は、反射型の波長変換部材を用いた発光装置である。発光装置4は、波長変換部材1と光源15とビームスプリッタ16を備えている。光源15から出射された励起光L0は、ビームスプリッタ16によって波長変換部材1に導かれ、波長変換部材1における蛍光体層12により、光L0よりも波長の長い光L1に波長変換される。光L1は、反射機能を備えた放熱基板11によって入射側に反射され、ビームスプリッタ16を透過して外部に出射される。光源15の具体例としては、LED光源やレーザー光源などが挙げられる。
(Light-emitting device using the wavelength conversion member according to the first embodiment)
FIG. 4 is a schematic side view of a light emitting device using the wavelength conversion member according to the first embodiment of the present invention. The light emitting device according to the embodiment is a light emitting device using a reflective wavelength conversion member. The light emitting device 4 includes a wavelength conversion member 1, a light source 15, and a beam splitter 16. The excitation light L0 emitted from the light source 15 is guided to the wavelength conversion member 1 by the beam splitter 16, and is converted into light L1 having a longer wavelength than the light L0 by the phosphor layer 12 in the wavelength conversion member 1. The light L1 is reflected to the incident side by the heat dissipation substrate 11 having a reflection function, passes through the beam splitter 16, and is emitted to the outside. Specific examples of the light source 15 include an LED light source and a laser light source.

1、2、3 波長変換部材
4 発光装置
11 放熱基板
12 蛍光体層
13 接着剤層
14 緻密ガラス層
15 光源
16 ビームスプリッタ
1, 2, 3 Wavelength conversion member 4 Light emitting device 11 Heat dissipation substrate 12 Phosphor layer 13 Adhesive layer 14 Dense glass layer 15 Light source 16 Beam splitter

Claims (7)

放熱基板と、
前記放熱基板の上に設けられた蛍光体層と、
前記放熱基板と前記蛍光体層とを接着する接着剤層とを備え、
前記蛍光体層の内部にガラス粉末の焼結体からなるガラス層(ガラス層が蛍光を発するものを除く)が形成されてなることを特徴とする波長変換部材。
A heat dissipation substrate;
A phosphor layer provided on the heat dissipation substrate;
An adhesive layer that bonds the heat dissipation substrate and the phosphor layer;
A wavelength conversion member, wherein a glass layer (excluding one in which the glass layer emits fluorescence) formed of a sintered body of glass powder is formed inside the phosphor layer.
前記蛍光体層が、蛍光体粉末及びガラス粉末を含む混合粉末の焼結体からなることを特徴とする請求項1に記載の波長変換部材。   The wavelength conversion member according to claim 1, wherein the phosphor layer is made of a sintered body of a mixed powder containing phosphor powder and glass powder. 前記蛍光体層における蛍光体粉末の含有量が30体積%以上であることを特徴とする請求項1または2に記載の波長変換部材。   The wavelength conversion member according to claim 1 or 2, wherein a content of the phosphor powder in the phosphor layer is 30% by volume or more. 前記放熱基板が金属基板であることを特徴とする請求項1〜3のいずれか一項に記載の波長変換部材。   The wavelength conversion member according to claim 1, wherein the heat dissipation substrate is a metal substrate. 前記接着剤層が、シリコーン樹脂またはポリイミド樹脂からなることを特徴とする請求項1〜4のいずれか一項に記載の波長変換部材。   The wavelength conversion member according to claim 1, wherein the adhesive layer is made of a silicone resin or a polyimide resin. プロジェクター用であることを特徴とする請求項1〜5のいずれか一項に記載の波長変換部材。   The wavelength conversion member according to claim 1, wherein the wavelength conversion member is used for a projector. 請求項1〜6のいずれか一項に記載の波長変換部材と、
前記波長変換部材の前記蛍光体層に励起光を照射する光源とを備えることを特徴とする発光装置。
The wavelength conversion member according to any one of claims 1 to 6,
And a light source that irradiates the phosphor layer of the wavelength conversion member with excitation light.
JP2014196115A 2014-09-26 2014-09-26 Wavelength conversion member and light emitting device using the same Active JP6575923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014196115A JP6575923B2 (en) 2014-09-26 2014-09-26 Wavelength conversion member and light emitting device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014196115A JP6575923B2 (en) 2014-09-26 2014-09-26 Wavelength conversion member and light emitting device using the same

Publications (2)

Publication Number Publication Date
JP2016066764A JP2016066764A (en) 2016-04-28
JP6575923B2 true JP6575923B2 (en) 2019-09-18

Family

ID=55804302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014196115A Active JP6575923B2 (en) 2014-09-26 2014-09-26 Wavelength conversion member and light emitting device using the same

Country Status (1)

Country Link
JP (1) JP6575923B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017217486A1 (en) 2016-06-16 2017-12-21 日本碍子株式会社 Phosphor element and lighting device
JP2018013670A (en) * 2016-07-22 2018-01-25 日本電気硝子株式会社 Wavelength conversion member and light emitting device prepared therewith
WO2019131730A1 (en) * 2017-12-27 2019-07-04 京セラ株式会社 Color wheel and projector
DE102018128753A1 (en) * 2018-11-15 2020-05-20 Osram Opto Semiconductors Gmbh METHOD FOR PRODUCING A CONVERSION ELEMENT, CONVERSION ELEMENT AND RADIATION-EMITTING COMPONENT
JP7088218B2 (en) 2020-01-22 2022-06-21 セイコーエプソン株式会社 Wavelength conversion element, manufacturing method of wavelength conversion element, light source device and projector
JP2023013092A (en) 2021-07-15 2023-01-26 セイコーエプソン株式会社 Wavelength conversion element, light source device, and projector

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323265A (en) * 1976-08-16 1978-03-03 Toshiba Corp Fluores cent screen
JP4668577B2 (en) * 2003-10-06 2011-04-13 日本特殊陶業株式会社 Ceramic substrate for thin film electronic component, manufacturing method thereof, and thin film electronic component using the same
JP2007182529A (en) * 2005-05-11 2007-07-19 Nippon Electric Glass Co Ltd Fluorescent composite glass, fluorescent composite glass green sheet and process for production of fluorescent composite glass
JP4765525B2 (en) * 2005-06-29 2011-09-07 日本電気硝子株式会社 Luminescent color conversion member
GB0801509D0 (en) * 2008-01-28 2008-03-05 Photonstar Led Ltd Light emitting system with optically transparent thermally conductive element
WO2010140417A1 (en) * 2009-06-05 2010-12-09 コニカミノルタオプト株式会社 Method for producing glass member for wavelength conversion
JP2010280537A (en) * 2009-06-05 2010-12-16 Konica Minolta Opto Inc Method for manufacturing glass member for wavelength conversion
JP4872137B2 (en) * 2009-07-02 2012-02-08 Tdk株式会社 Coil parts
CN102574367A (en) * 2009-09-25 2012-07-11 海洋王照明科技股份有限公司 Luminescent glass, producing method thereof and luminescent device
JP2012015254A (en) * 2010-06-30 2012-01-19 Nitto Denko Corp Phosphor ceramic and light emitting device
JP2012059893A (en) * 2010-09-08 2012-03-22 Nippon Electric Glass Co Ltd Wavelength conversion member, light source, and manufacturing method for wavelength conversion member
DE102010042217A1 (en) * 2010-10-08 2012-04-12 Osram Ag Optoelectronic semiconductor component and method for its production
JP5759776B2 (en) * 2011-04-20 2015-08-05 スタンレー電気株式会社 Light source device and lighting device
JP6063126B2 (en) * 2012-01-10 2017-01-18 日本電気硝子株式会社 Wavelength conversion member, light emitting device, and method of manufacturing wavelength conversion member
JP6119192B2 (en) * 2012-10-31 2017-04-26 日本電気硝子株式会社 Method for manufacturing wavelength conversion member and wavelength conversion member

Also Published As

Publication number Publication date
JP2016066764A (en) 2016-04-28

Similar Documents

Publication Publication Date Title
JP7094496B2 (en) Wavelength conversion member and light emitting device
JP6575923B2 (en) Wavelength conversion member and light emitting device using the same
JP6314472B2 (en) Fluorescent wheel for projector, manufacturing method thereof, and light emitting device for projector
JP6677680B2 (en) Wavelength conversion device, method of manufacturing the same, and related light emitting device
JP6879417B2 (en) Wavelength conversion member and light emitting device using it
JP6394144B2 (en) Fluorescent wheel for projector and light emitting device for projector
US20180158995A1 (en) Wavelength coinventor, fluorescent color wheel, and light-emitting device
JP6232951B2 (en) Fluorescent wheel for projector, manufacturing method thereof, and light emitting device for projector
WO2018016357A1 (en) Wavelength conversion member and light-emitting device using same
JP2016027613A (en) Wavelength conversion member and light emitting device using the same
WO2018083903A1 (en) Wavelength conversion member, light-emitting device, and method for manufacturing wavelength conversion member
JP2017107071A (en) Wavelength conversion member and wavelength conversion element, and light emitting device using the same
JP2016225581A (en) Wavelength conversion member and light-emitting device including the same
CN106195925A (en) A kind of Wavelength converter, light-emitting device and projection arrangement
JP5919968B2 (en) Wavelength conversion member and light emitting device
US20170137328A1 (en) Method of making a ceramic wavelength converter assembly
JP2015118107A (en) Projector fluorescent wheel and projector light-emitting device
JP2015206940A (en) Fluorescent wheel for projector and light-emitting device for projector
JP2014179231A (en) Light source device and lighting device
JP6476545B2 (en) Fluorescent wheel for projector and light emitting device for projector
JP6917996B2 (en) Fluorescent plate package, luminescent package and vehicle headlamps including it
JP2017188686A (en) Light-emitting device and method for manufacturing the same
JP6500744B2 (en) Method of manufacturing wavelength conversion element
JP7296951B2 (en) Photoconversion device with improved inorganic binder
JP6582907B2 (en) Method for manufacturing wavelength conversion element, wavelength conversion element and light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180502

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190403

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190729

R150 Certificate of patent or registration of utility model

Ref document number: 6575923

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190811