WO2017043121A1 - Light-emitting device and illumination device - Google Patents

Light-emitting device and illumination device Download PDF

Info

Publication number
WO2017043121A1
WO2017043121A1 PCT/JP2016/064087 JP2016064087W WO2017043121A1 WO 2017043121 A1 WO2017043121 A1 WO 2017043121A1 JP 2016064087 W JP2016064087 W JP 2016064087W WO 2017043121 A1 WO2017043121 A1 WO 2017043121A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting device
phosphor film
light emitting
transmissive substrate
Prior art date
Application number
PCT/JP2016/064087
Other languages
French (fr)
Japanese (ja)
Inventor
一規 安念
高橋 幸司
佳伸 川口
智洋 坂上
宜幸 高平
要介 前村
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2017043121A1 publication Critical patent/WO2017043121A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/16Laser light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/176Light sources where the light is generated by photoluminescent material spaced from a primary light generating element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/24Light guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/37Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors characterised by their material, surface treatment or coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/71Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks using a combination of separate elements interconnected by heat-conducting means, e.g. with heat pipes or thermally conductive bars between separate heat-sink elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades

Definitions

  • the present invention relates to a light emitting device that uses fluorescence generated by irradiating phosphor with excitation light, and an illumination device using the light emitting device.
  • a light-emitting device that combines a light-emitting element and a wavelength conversion member that converts the wavelength of excitation light from the light-emitting element has been developed.
  • a light-emitting device using such a wavelength conversion member has (1) a configuration in which fluorescence is extracted from the opposite surface opposite to the excitation light irradiation surface irradiated with excitation light (in this application, “transmission type” And (2) a configuration in which fluorescence is extracted from an excitation light irradiation surface irradiated with excitation light (referred to as “reflection type” in the present application).
  • Examples of the transmissive light emitting device include the light emitting devices described in Patent Documents 1 and 2.
  • Patent Document 1 discloses a light emitting device in which light emitted from a semiconductor light emitting element fixed to a support is wavelength-converted by a wavelength conversion member fixed to an outer cap, and emits light having a wavelength different from the wavelength of the emitted light. Are listed.
  • Patent Document 2 discloses light emission that includes absorption means for absorbing excitation light on the side of the phosphor layer in order to prevent the excitation light that has not entered the phosphor layer from being projected to the outside as it is. An apparatus is described.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2008-305936 (Released on Dec. 18, 2008)” Japanese Patent Publication “JP 2012-99222 (published May 24, 2012)”
  • the heat generated by the wavelength conversion member is first transmitted to the outer cap and then radiated to the support.
  • produced with the wavelength conversion member is thermally radiated to a support body is long.
  • the outer cap is formed of stainless steel.
  • the thermal conductivity of stainless steel is not so high as 16 to 26 W / m ⁇ K at room temperature. For this reason, in the said light-emitting device, the thermal resistance between a wavelength conversion member and a support body becomes large, and there exists a problem that the temperature of a wavelength conversion member rises.
  • an absorbing means made of resin for absorbing excitation light that has not entered the phosphor layer is provided on the side surface of the phosphor layer.
  • the thermal conductivity of a resin is a small value of 1 W / m ⁇ K or less.
  • the thermal conductivity of the acrylic resin is 0.21 W / m ⁇ K.
  • the thermal conductivity of the silicone resin is 0.15 to 0.17 W / m ⁇ K.
  • the absorbing means covers the entire side surface of the phosphor layer. For this reason, all the light emitted from the side surface of the phosphor layer is absorbed by the absorbing means, and the brightness of the light emitting device is lowered.
  • the shape and cross-sectional area of the excitation light on the surface where the excitation light enters the phosphor layer are substantially equal to the shape and cross-sectional area of the entire surface. For this reason, a part of the excitation light enters the absorber from the side surface of the phosphor layer immediately after entering the phosphor layer.
  • the absorption means absorbs the excitation light and converts it into heat. That is, the absorption means becomes a heat source, and the temperature of the phosphor layer rises.
  • An object of this invention is to improve the thermal radiation efficiency of the fluorescent substance in a light-emitting device in view of said subject.
  • a light-emitting device includes a phosphor film that converts the wavelength of excitation light and emits fluorescence, and a light-transmitting substrate that transmits the excitation light.
  • the light transmissive substrate is provided with the phosphor film on a part of the surface, and a heat radiating portion for improving the heat radiation efficiency of the light transmissive substrate in a part different from the part where the phosphor film is provided. Is provided.
  • (A) is a figure which shows the state by which the thermal radiation part was formed on the light-transmitting board
  • (B) is a figure which shows the state by which the thermal radiation part and the fluorescent substance film were formed on the transparent substrate.
  • (C) is an enlarged view of the periphery of the phosphor film of (b). It is sectional drawing which shows the structure of the light-emitting device which concerns on Embodiment 5 of this invention. It is sectional drawing which shows the structure of the illuminating device which concerns on Embodiment 6 of this invention. It is sectional drawing which shows the structure of the illuminating device which concerns on Embodiment 7 of this invention. It is sectional drawing which shows the structure of the conventional light-emitting device.
  • Embodiment 1 Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. 1 to 2 and FIG.
  • a transmissive light emitting device 10 including the heat radiating unit 1 that improves the heat radiation efficiency of the phosphor film 11 will be described.
  • FIG. 1 is a cross-sectional view showing a configuration of a light emitting device 10 according to the present embodiment.
  • the light emitting device 10 includes a phosphor film 11, a light transmissive substrate 12, a heat radiating unit 1, and a fixing jig 13.
  • the phosphor film 11 is a phosphor film that converts the wavelength of excitation light from an excitation light source (not shown) and emits light (fluorescence) having a wavelength different from that of the excitation light.
  • the excitation light source is a laser element that emits laser light having a wavelength of 450 nm. Therefore, in this embodiment, the excitation light incident on the phosphor film 11 is blue laser light.
  • the wavelength of the laser beam is not limited to the above value.
  • the phosphor film 11 may be composed of, for example, phosphor particles (powder) and a sealing material that seals the powder.
  • phosphor particles particles
  • a sealing material that seals the powder.
  • examples of the phosphor include YAG (yttrium aluminum garnet) phosphor (fluorescence is yellow).
  • combinations include (i) a combination of ⁇ sialon (green) and ⁇ sialon (orange), (ii) ⁇ sialon (green) and CASN (CaAlSiN 3 ) (red ), Or (iii) a combination of YAG (yellow) and CASN (red).
  • examples of the combination include a combination of ⁇ sialon (green), ⁇ sialon (orange), and CASN (red). Moreover, you may use combining 4 or more types of fluorescent substance.
  • the material of the sealing material for sealing the powder may be appropriately selected from glass, silicone resin, acrylic resin, and the like.
  • the phosphor film 11 may be a phosphor single crystal plate or a polycrystalline plate, for example.
  • examples of the phosphor include a YAG phosphor.
  • the phosphor film 11 is bonded to a light transmissive substrate 12 described later using a transparent adhesive.
  • a transparent adhesive an acrylic or silicone-based adhesive can be used if it is organic, and an adhesive containing silica, alumina, zirconia, or the like can be used if it is inorganic.
  • the light emitting device 10 emits pseudo white light in which the excitation light described above and the fluorescence emitted from the phosphor film 11 are mixed. Further, the size of the spot of the excitation light on the surface irradiated with the excitation light (excitation light irradiation surface) of the phosphor film 11 is smaller than the size of the excitation light irradiation surface.
  • the light transmissive substrate 12 is a substrate on which the phosphor film 11 is formed.
  • the phosphor film 11 is formed on at least a part of the upper surface of the light transmissive substrate 12. In the present embodiment, the phosphor film 11 is formed on the entire top surface of the light transmissive substrate 12.
  • the material of the light transmissive substrate 12 glass or sapphire can be used.
  • the size of the light transmissive substrate 12 is the same as the size of the phosphor film 11 or larger than the size of the phosphor film 11.
  • the fixing jig 13 is a member to which the heat radiating unit 1 is fixed.
  • the fixing jig 13 has a cylindrical shape.
  • the heat radiation part 1 is thermally bonded to the fixing jig 13 using silicone grease or the like.
  • the material constituting the fixing jig 13 include metals such as aluminum, copper, iron, and silver. Moreover, about aluminum, the black alumite process may be given to the surface. In the present embodiment, as the material for the fixing jig 13, aluminum that has been subjected to black alumite treatment is used.
  • the heat dissipating part 1 is a member that improves the heat dissipating efficiency of heat generated in the phosphor film 11.
  • the heat dissipating part 1 is provided on a part of the surface of the light transmissive substrate 12 different from the part on which the phosphor film 11 is provided.
  • the heat radiating part 1 is a plate-like member having a hole in the center, and the light transmissive substrate 12 is fitted into the hole. At this time, the heat radiating portion 1 is in contact with the side surface of the light transmissive substrate 12. In other words, the heat radiating part 1 is provided on the side surface of the light transmissive substrate 12.
  • the heat dissipation part 1 includes a high thermal conductivity material.
  • the thermal conductivity of the high thermal conductivity material is 80 W / m ⁇ K or more. This value is set to include the thermal conductivity of iron (80.3 W / m ⁇ K).
  • the material constituting the heat radiating unit 1 include metals such as aluminum, copper, iron, and silver.
  • the thermal conductivity of the high thermal conductive material is more preferably 237 W / m ⁇ K or more. This value is a value set to include the thermal conductivity of aluminum.
  • the material having a thermal conductivity of 237 W / m ⁇ K or higher include metals such as aluminum, copper, and silver.
  • the black alumite process may be given to the surface.
  • the heat radiating portion 1 is made of a material that does not transmit the fluorescence emitted from the phosphor film 11.
  • the heat radiating section 1 functions as a fixing jig that fixes the phosphor film 11 and the light transmissive substrate 12.
  • the phosphor film 11 and the light transmissive substrate 12 are fixed by the heat dissipating unit 1 so as not to be in direct contact with the fixing jig 13.
  • FIG. 2 is a cross-sectional view showing a state before the phosphor film 11, the light transmissive substrate 12, and the heat radiation part 1 are assembled.
  • FIG. 2B is a cross-sectional view showing a state after the phosphor film 11, the light transmissive substrate 12, and the heat radiating unit 1 are assembled.
  • the phosphor film 11 is first formed on the light transmissive substrate 12 as shown in FIG.
  • the light transmissive substrate 12 is fitted into the heat radiating portion 1.
  • low-melting glass or resin is applied to the side surface of the light-transmitting substrate 12 or the inner surface of the hole of the heat dissipating unit 1.
  • the light transmissive substrate 12 and the heat radiating portion 1 are bonded by solidifying the low melting point glass or resin.
  • FIG. 10 is a cross-sectional view showing a configuration of a conventional transmissive light emitting device 90.
  • the light emitting device 90 includes the phosphor film 11, the light transmissive substrate 42, and the fixing jig 13.
  • the size of the light transmissive substrate 42 is substantially equal to the size of the fixing jig 13.
  • the heat generated in the phosphor film 11 is radiated to the fixing jig 13 that also serves as a heat radiating member via the light transmitting substrate 42 as shown by an arrow (broken line) in FIG.
  • the material of the light transmissive substrate 42 is generally not high in thermal conductivity. For this reason, in the light emitting device 90, the temperature of the phosphor film 11 is likely to rise. As a result, the luminous efficiency of the phosphor film 11 is lowered and the brightness of the fluorescence is lowered.
  • the above method (i) is adopted. Specifically, in the light emitting device 10, the heat radiating unit 1 having higher thermal conductivity than the light transmissive substrate 12 is included in a part of the heat radiating path through which heat generated in the phosphor film 11 is radiated to the fixing jig 13. It is. As a result, in the light emitting device 10, the thermal conductivity of the heat dissipation path from the phosphor film 11 to the fixing jig is improved as compared with the conventional light emitting device 90. For this reason, the heat generated in the phosphor film 11 is radiated to the fixing jig 13 via the light transmissive substrate 12 and the heat radiating portion 1 as indicated by arrows in FIG.
  • the thermal resistance between the phosphor film 11 and the fixing jig 13 is smaller than that of the light emitting device 90.
  • the heat dissipation efficiency of the light emitting device 10 which is a transmissive light emitting device can be improved. Therefore, the temperature of the phosphor film 11 is unlikely to rise, and a decrease in the efficiency of the phosphor film 11 is suppressed.
  • the lighting device is configured using the light-emitting device 10, it is possible to provide a lighting device in which the brightness of the fluorescent light is unlikely to decrease.
  • the phosphor film 11 is formed on the upper surface of the light transmissive substrate 12, and the heat radiating portion 1 is provided on the side surface of the light transmissive substrate 12. For this reason, the heat radiation part 1 can improve the heat radiation efficiency of the phosphor film 11 without blocking the excitation light incident on the phosphor film 11 and the fluorescence emitted from the phosphor film 11.
  • the excitation light source is a laser element.
  • the phosphor film 11 can be irradiated with high-density excitation light in the light emitting device 10.
  • the light-emitting device 10 is a light-emitting device with high luminance.
  • the usefulness of the heat radiating unit 1 included in the light emitting device 10 becomes more remarkable when the excitation light source is a laser element.
  • the spot size of the excitation light on the excitation light irradiation surface is substantially equal to the size of the excitation light irradiation surface, a part of the excitation light leaks from the side surface of the phosphor film immediately after entering the phosphor film. It will be. In this case, since the excitation light leaking from the side surface of the phosphor film does not excite the phosphor contained in the phosphor film, the intensity of the fluorescence decreases. Further, when the excitation light is laser light, it is not preferable from the viewpoint of safety that the excitation light is emitted outside the light emitting device.
  • the member when a member that absorbs light is provided around the phosphor film, the member absorbs light leaked from the side surface of the phosphor film and changes it into heat, so that the member becomes a heat source. As a result, the temperature near the phosphor film rises.
  • the size of the excitation light spot on the excitation light irradiation surface is smaller than the size of the excitation light irradiation surface. For this reason, there is little possibility that the excitation light leaks from the side surface of the phosphor film 11 immediately after entering the phosphor film 11.
  • the heat radiating unit 1 does not transmit the light emitted from the phosphor film 11. For this reason, fluorescence is not emitted from other than the phosphor film 11. That is, the fluorescence emitted from the lower surface and the side surface facing the upper surface of the phosphor film 11 is guided through the light-transmitting substrate 12, passes through the heat radiating portion 1, and is emitted from the upper surface of the heat radiating portion 1. There is no. Therefore, the spot property of the light emitting device 10 is improved.
  • the heat radiating section 1 functions as a fixing jig that fixes the phosphor film 11 and the light transmissive substrate 12. For this reason, compared with the structure provided with the fixing jig which fixes the fluorescent substance film 11 and the transparent substrate 12 separately, the number of parts which comprise the light-emitting device 10 can be reduced.
  • a part of the phosphor film 11 may be in contact with the heat radiating portion 1. In this case, part of the heat generated in the phosphor film 11 is directly transmitted to the heat radiating unit 1 without passing through the light transmissive substrate 12. For this reason, the heat dissipation efficiency of the phosphor film 11 is further improved.
  • a light emitting device 20 including the heat radiating part 2 having a shape different from that of the heat radiating part 1 will be described.
  • the heat radiation part 2 is the same as the heat radiation part 1 except for the shape.
  • members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted.
  • FIG. 3 is a diagram illustrating a configuration of the light emitting device 20 according to the present embodiment.
  • the light emitting device 20 includes a phosphor film 11, a light transmissive substrate 12, a heat radiating unit 2, and a fixing jig 13.
  • the heat radiating part 2 is made of a material having a higher thermal conductivity than the light-transmitting substrate 12, similarly to the heat radiating part 1.
  • the heat radiation part 2 has a fin shape.
  • the heat dissipation part 2 has improved convective heat transfer efficiency compared to the heat dissipation part 1. Therefore, a part of the heat generated in the phosphor film 11 is radiated from the heat radiating portion 2 to the atmosphere as indicated by an arrow (broken line) in FIG.
  • the thermal resistance between the phosphor film 11 and the fixing jig 13 is further smaller than that of the light emitting device 10.
  • the temperature of the phosphor film 11 is further unlikely to rise, and a decrease in the efficiency of the phosphor film 11 is suppressed.
  • the lighting device using the light-emitting device 20, it is possible to provide a lighting device in which the brightness of fluorescence is less likely to decrease.
  • the size and number of fins are determined appropriately by those skilled in the art depending on the required heat dissipation performance, that is, the temperature of the phosphor film 11 with respect to the heat generation amount of the phosphor film 11. You may decide.
  • FIG. 4 is a diagram illustrating a configuration of the light emitting device 30 according to the present embodiment.
  • the light emitting device 30 includes a phosphor film 11, a light transmissive substrate 12, a heat radiating unit 3, and a fixing jig 13.
  • the heat radiating part 3 is composed of a material having a higher thermal conductivity than the light transmissive substrate 12, as with the heat radiating part 1.
  • the heat dissipating part 3 has a reflector shape, and the surface around the phosphor film 11 is mirror-finished.
  • the heat radiating section 3 functions as a reflector that reflects the fluorescence emitted from the phosphor film 11.
  • the light emitting device 30 is easier to extract the fluorescence emitted from the phosphor film 11 than the light emitting device 10 or the like.
  • a brighter lighting device can be provided.
  • a paraboloid, a hemisphere, a cone shape, etc. are mentioned.
  • FIG. 5 is a cross-sectional view illustrating a configuration of the light emitting device 40 according to the present embodiment.
  • the light emitting device 40 includes the phosphor film 11, the light transmissive substrate 42, the heat radiating unit 4, and the fixing jig 13.
  • the light transmissive substrate 42 is a substrate on which the phosphor film 11 is formed.
  • the phosphor film 11 is provided on a part of the upper surface.
  • the material of the light transmissive substrate 12 is sapphire.
  • the heat radiation part 4 is a thin film provided in a region other than the region where the phosphor film 11 is provided on the upper surface of the light-transmitting substrate 42.
  • the heat radiation part 4 contains a high emissivity material.
  • the emissivity of the high emissivity material is greater than 2% (sapphire emissivity).
  • the heat radiation part 4 is preferably in contact with at least a part of the phosphor film 11.
  • the heat dissipation part 4 is in contact with the side surface of the phosphor film 11. Further, the thickness of the heat radiating portion 4 is less than the thickness of the phosphor film 11.
  • the heat dissipating part 4 is preferably a deposited film of black alumina particles.
  • the black alumina particles may be sealed with a sealing material such as silica.
  • FIG. 6 (A) of FIG. 6 is a figure which shows the state by which the thermal radiation part 4 was formed on the light transmissive board
  • FIG. FIG. 6B is a view showing a state in which the heat radiating portion 4 and the phosphor film 11 are formed on the light transmissive substrate 42.
  • FIG. 6C is an enlarged view around the phosphor film 11 in FIG.
  • the heat radiating portion 4 and the phosphor film 11 are formed on the light transmissive substrate 42
  • the heat radiating portion 4 is first formed on the light transmissive substrate 42.
  • a thin film of black alumina particles is formed on the light transmissive substrate 42 by, for example, screen printing.
  • the thin film is not formed in the central portion of the light transmissive substrate 42.
  • the thin film may be formed by a film forming method other than screen printing, or may be formed of a material other than black alumina.
  • the heat radiating portion 4 is formed in addition to the central portion of the light transmissive substrate 42 by firing the thin film. Further, as shown in FIG. 6B, the phosphor film 11 is formed by applying the phosphor to the center of the light transmissive substrate 42 where the heat radiating portion 4 is not formed.
  • the light transmissive substrate 12 is made of sapphire.
  • the emissivity of sapphire is a low value, such as 2% or less for light having a wavelength of 2.6 ⁇ m to 3.7 ⁇ m.
  • the heat radiating part 4 which is a film of black alumina is formed on the surface of the light transmissive substrate.
  • the emissivity of black alumina is about 75% to 95%. That is, the emissivity of black alumina is significantly higher than that of sapphire. Therefore, in the light emitting device 40, the emissivity of the heat dissipation path between the phosphor film 11 and the fixing jig 13 is improved by forming the heat dissipation portion 4. For this reason, a part of the heat generated in the phosphor film 11 is radiated from the heat radiating portion 4 to the atmosphere as indicated by an arrow (broken line) in FIG.
  • the heat radiating part 4 is in contact with the side surface of the phosphor film 11, a part of the heat generated in the phosphor film 11 is indicated by an arrow (solid line) in FIG. 5.
  • the heat is radiated to the fixing jig 13 via
  • the thermal conductivity of black alumina is relatively high at about 32 W / m ⁇ K. Therefore, in the light emitting device 40, the thermal conductivity is also improved in the heat dissipation path from the phosphor film 11 to the fixing jig 13. For this reason, a part of the heat radiated to the fixing jig 13 is radiated from the side surface of the phosphor film 11 to the fixing jig 13 via the heat radiating portion 4.
  • the thermal resistance between the phosphor film 11 and the fixing jig 13 is reduced. As a result, the temperature of the phosphor film 11 is unlikely to rise, and a decrease in the efficiency of the phosphor film 11 is suppressed.
  • the thickness of the heat radiation part 4 is less than the thickness of the phosphor film 11 as described above. That is, a part of the side surface of the phosphor film 11 is not covered with the heat radiating part 4. For this reason, a part of the fluorescence emitted from the side surface of the phosphor film 11 is emitted to the outside without being absorbed by the heat radiation part 4. That is, the use efficiency of fluorescence is improved.
  • the heat radiation part 4 in the present embodiment is obtained by firing a thin film formed by screen printing as described above.
  • a film formed by screen printing is inclined so as to be thin at the edge.
  • the heat radiating portion 4 is inclined so that the portion in contact with the phosphor film 11 is thin.
  • the heat radiating portion on the side surface of the phosphor film 11 is formed.
  • the area of the portion that is not covered with 4 becomes wider, and more fluorescent light can be extracted from the phosphor film 11.
  • FIG. 7 is a cross-sectional view showing the configuration of the light emitting device 50 according to the present embodiment.
  • the light emitting device 50 includes the phosphor film 11, the light transmissive substrate 42, the heat radiating unit 5, and the fixing jig 13.
  • the heat dissipating part 5 is an uneven structure provided in a region other than the region where the phosphor film 11 is provided on the upper surface of the light-transmitting substrate 42.
  • a region of the light-transmitting substrate 42 other than the region where the phosphor film 11 is formed is ground glass.
  • the ground glass-like region of the light transmissive substrate 42 functions as the heat radiating portion 5.
  • the surface area of the light-transmitting substrate 42 is increased by forming the heat dissipating part 5. For this reason, the heat dissipation efficiency of the light transmissive substrate 42 is improved. That is, the heat transfer efficiency by convection is improved in the heat radiation path from the phosphor film 11 to the fixing jig 13. Therefore, the heat generated in the phosphor film 11 is easily radiated from the light transmissive substrate 42 to the atmosphere via the heat radiating portion 5 as indicated by an arrow (broken line) in FIG.
  • the following will describe another embodiment of the present invention with reference to FIG.
  • the illuminating device 100 is an illuminating device applicable to a spotlight or a vehicle headlamp.
  • FIG. 8 is a diagram illustrating a configuration of the illumination device 100 according to the present embodiment.
  • the illumination device 100 includes a light emitting device 10, a laser element 101, an optical fiber 102, a ferrule 103, a ferrule fixing unit 104, a lens 105, a lens fixing unit 106, and a heat radiation fin 107.
  • a light emitting device 10 a laser element 101
  • an optical fiber 102 a ferrule 103
  • ferrule fixing unit 104 a ferrule fixing unit 104
  • lens 105 a lens fixing unit
  • a heat radiation fin 107 a heat radiation fin 107.
  • the laser element 101 is an excitation light source that emits excitation light.
  • the laser element 101 emits excitation light having a wavelength of 450 nm.
  • the optical fiber 102 is a light guide member that guides the excitation light emitted from the laser element 101 to the phosphor film 11 included in the light emitting device 10.
  • the optical fiber 102 is a single unit that emits excitation light toward the number of incident ends 102 a corresponding to the number of laser elements 101 on which excitation light is incident and the phosphor film 11 included in the light emitting device 10.
  • the optical fiber 102 may be a bundle fiber in which a number of optical fibers corresponding to the number of laser elements 101 are bundled.
  • the ferrule 103 is a ferrule that holds the optical fiber 102. Specifically, the ferrule 103 holds the optical fiber 102 so as to surround the vicinity of the emission end 102b.
  • the ferrule fixing part 104 is a member for fixing the ferrule 103 to the light emitting device 10.
  • the ferrule fixing portion 104 is provided at an end portion of the fixing jig 13 that is a cylindrical member on the opposite side to the one end to which the heat radiating portion 1 is fixed.
  • the lens 105 is a light projecting member that projects light emitted from the light emitting device 10 to the outside.
  • the material of the lens 105 may be appropriately selected from acrylic resin, polycarbonate, silicone resin, borosilicate glass, BK7, or quartz.
  • the lens 105 may be a single lens as shown in FIG. 8 or a plurality of lenses.
  • the lens 105 may be either a spherical lens or an aspheric lens.
  • the lens fixing unit 106 is a member that fixes the relative position between the light emitting device 10 and the lens 105.
  • the lens fixing unit 106 is a cylindrical member surrounding the light emitting device 10 and the lens 105.
  • a material of the lens fixing portion 106 a material having high heat dissipation efficiency is preferable.
  • anodized aluminum or the like can be suitably used as the material for the lens fixing portion 106.
  • the heat radiation fin 107 is a member that improves the heat radiation efficiency of the fixing jig 13.
  • the radiating fins 107 are provided on the side of the fixing jig 13 where the ferrule fixing portion 104 is provided.
  • the shape, size, number, etc. of the radiation fins 107 are determined by the output of the excitation light emitted from the laser element 101 and the specifications of the phosphor film 11. Thereby, the heat dissipation efficiency of the fixing jig 13 is further improved. Therefore, a decrease in efficiency due to the temperature rise of the phosphor film 11 is further suppressed.
  • a dielectric multilayer film that transmits excitation light and reflects fluorescence may be formed between the phosphor film 11 and the light transmissive substrate 12.
  • the dielectric multilayer film transmits light having a wavelength of about 450 nm and reflects light having a wavelength of about 480 nm to 700 nm. Fluorescence generated in the phosphor film 11 is emitted from the phosphor film 11 in all directions. However, if the dielectric multilayer film is formed, the fluorescence emitted in the direction of the ferrule 103 is reflected in the direction of the lens 105 inside the phosphor film 11. Thereby, the light extraction efficiency from the light emitting device 10 is improved, and the lighting device 100 becomes a brighter lighting device.
  • the dielectric multilayer film is formed by alternately stacking a high refractive index dielectric thin film and a low refractive index dielectric thin film.
  • the high refractive index material include TiO 2 and Ta 2 O 3 .
  • the low refractive material SiO 2 or MgF 2 is generally used.
  • an AR (Anti-Reflection) coat for reducing the reflectance of the excitation light may be applied to the surface of the light transmissive substrate 12 on the ferrule 103 side.
  • the AR coat is, for example, a dielectric multilayer film.
  • the AR coating reduces the reflectivity of the excitation light on the surface of the light transmissive substrate 12 on the ferrule 103 side, so that the excitation light that enters the phosphor film 11 out of the excitation light emitted from the laser element 101.
  • the ratio of light increases. Thereby, the light extraction efficiency from the light emitting device 10 is improved. As a result, the lighting device 100 becomes a brighter lighting device.
  • the illumination device 100 described in the present embodiment includes the light emitting device 10 as a light emitting device.
  • the lighting device according to the present embodiment may include any one of the light emitting devices 20 to 50 as the light emitting device.
  • the following will describe another embodiment of the present invention with reference to FIG.
  • This embodiment demonstrates the illuminating device 200 which added the reflector 110 to the illuminating device 100 mentioned above.
  • the lighting device 200 is a lighting device that can be applied to a spotlight, a vehicle headlamp, or the like, similarly to the lighting device 100.
  • FIG. 9 is a diagram illustrating a configuration of the illumination device 200 according to the present embodiment. As illustrated in FIG. 9, the lighting device 200 has a configuration in which a reflector 110 is added to the configuration of the lighting device 100 illustrated in FIG. 8.
  • the reflector 110 is a member that reflects the fluorescence emitted from the phosphor film 11 toward the incident side of the excitation light toward the light transmissive substrate 12.
  • the reflector 110 is provided around the optical path of the light emitting device 10 where the excitation light enters the phosphor film 11.
  • the reflector 110 is made of a material having a high reflectance with respect to light having a fluorescent wavelength.
  • a specific example of the material constituting the reflector 110 includes mirror-finished aluminum.
  • a person skilled in the art appropriately determines the shape (hemisphere or paraboloid), size, and focal position of the reflector 110 according to the size of the phosphor film 11 and the specifications of the irradiation spot required for the illumination device 200. That's fine.
  • the lighting device 200 described in the present embodiment includes the light emitting device 10 as a light emitting device. Further, a reflector 110 is provided inside the fixing jig 13 included in the light emitting device 10. However, the illumination device according to the present embodiment includes any one of the light emitting devices 20 to 50 as the light emitting device, and further includes a reflector 110 provided inside the fixing jig 13 included in the light emitting device. Also good.
  • the light emitting device according to the present invention may be one in which the reflector 110 is provided in any of the light emitting devices 10 to 50.
  • a light emitting device (10) includes a phosphor film (11) that converts the wavelength of excitation light and emits fluorescence, and a light-transmitting substrate (12) that transmits the excitation light.
  • the light transmissive substrate is provided with the phosphor film on a part of the surface, and a heat radiating portion for improving the heat radiation efficiency of the light transmissive substrate in a part different from the part where the phosphor film is provided. (1) is provided.
  • the light-transmitting substrate included in the light emitting device according to the present invention has the phosphor film formed on a part of the surface and the heat radiating part provided on another part of the surface.
  • the heat dissipation part has a function of improving the heat dissipation efficiency of the light transmissive substrate.
  • the heat generated in the phosphor film is dissipated through the light transmissive substrate. Since the heat dissipation efficiency of the light transmissive substrate is improved by the heat radiating portion, the thermal resistance value of the light transmissive substrate is reduced, and heat is easily transmitted from the phosphor film to the light transmissive substrate. For this reason, since the thermal radiation efficiency of a fluorescent substance film improves, it becomes difficult to raise the temperature of a fluorescent substance film. Therefore, the heat dissipation efficiency of the phosphor in the light emitting device can be improved.
  • the heat radiating portion may include a high thermal conductivity material.
  • the heat radiating portion configured to include a material having high thermal conductivity is provided on the light transmissive substrate. Thereby, the heat dissipation efficiency of the light transmissive substrate is improved.
  • the high thermal conductivity material preferably has a thermal conductivity of 80 W / m ⁇ K or more.
  • the heat dissipation efficiency of the light transmissive substrate is improved.
  • the thermal conductivity of the high thermal conductivity material is preferably 237 W / m ⁇ K or more.
  • the heat dissipation efficiency of the light transmissive substrate is improved.
  • the light-emitting device according to Aspect 5 of the present invention is the light-emitting device according to any one of Aspects 2 to 4, wherein the surface of the light transmissive substrate opposite to the surface on which the excitation light is incident is the top surface.
  • the body film is preferably formed on at least a part of the upper surface, and the heat radiating portion is provided on a side surface of the light transmissive substrate.
  • the heat dissipation part can improve the heat dissipation efficiency of the phosphor film without blocking the excitation light incident on the phosphor film and the fluorescence emitted from the phosphor film.
  • the heat dissipating part may have a fin shape (heat dissipating part 2).
  • the surface area of the heat radiating portion is increased. For this reason, the heat dissipation efficiency of the phosphor film is further improved.
  • the heat dissipation part may function as a reflector (heat dissipation part 3) that reflects the fluorescence.
  • the utilization efficiency of the fluorescence emitted from the phosphor film is improved.
  • the heat dissipating part may include a high emissivity material (heat dissipating part 4).
  • the heat radiating portion configured to include a material having a high emissivity is provided on the light transmissive substrate. Thereby, the heat dissipation efficiency of the light transmissive substrate is improved.
  • the emissivity of the high emissivity material is preferably greater than 2%.
  • the heat dissipation efficiency of the light transmissive substrate is improved.
  • the phosphor film when the surface opposite to the surface on which the excitation light is incident is the upper surface of the light transmissive substrate, the phosphor film is Preferably, the heat dissipating part is provided in a part of the upper surface, and is provided in a region other than the region where the phosphor film is provided on the upper surface.
  • the heat dissipation part can improve the heat dissipation efficiency of the phosphor film without blocking the excitation light incident on the phosphor film and the fluorescence emitted from the phosphor film.
  • the heat dissipating part is in contact with at least a part of the phosphor film.
  • part of the heat generated in the phosphor film is radiated to the heat radiating portion. Therefore, the heat dissipation efficiency of the phosphor film is further improved.
  • the heat dissipating part may be an uneven structure (heat dissipating part 5) formed on the surface of the light transmitting substrate.
  • the uneven structure is formed on the surface of the light transmissive substrate. For this reason, the heat dissipation efficiency of the phosphor film is improved by the structure.
  • the light-emitting device according to Aspect 13 of the present invention is the light-emitting device according to Aspect 12, wherein when the surface opposite to the surface on which the excitation light is incident is the upper surface of the light-transmitting substrate, the phosphor film is It is preferable that the heat dissipating part is provided in a part of the upper surface of the light transmissive substrate in a region other than the region where the phosphor film is provided.
  • the heat dissipation part can improve the heat dissipation efficiency of the phosphor film without blocking the excitation light incident on the phosphor film and the fluorescence emitted from the phosphor film.
  • the light-emitting device according to aspect 14 of the present invention is the light-emitting device according to any one of aspects 1 to 13, wherein the phosphor film reflects the fluorescence emitted to the incident side of the excitation light toward the light-transmitting substrate.
  • a reflector (110) is preferably provided.
  • the utilization efficiency of the excitation light in the light emitting device is improved.
  • the excitation light is preferably laser light.
  • the light emitting device according to aspect 16 of the present invention is the light emitting device according to any one of aspects 1 to 15, wherein the excitation light spot size on the excitation light irradiation surface of the phosphor film is the size of the excitation light irradiation surface. It is preferable to be smaller.
  • the possibility that the excitation light leaks from the side surface of the phosphor film immediately after the excitation light enters the excitation light irradiation surface of the phosphor film is reduced. For this reason, the utilization efficiency of excitation light can be improved.
  • the heat dissipating part functions as a fixing jig that fixes the phosphor film and the light-transmitting substrate.
  • the number of parts constituting the light emitting device 10 can be reduced.
  • a lighting device (100) according to aspect 18 of the present invention includes any one of the light emitting devices according to aspects 1 to 17.
  • the lighting device includes the light emitting device in which the brightness is difficult to decrease. Therefore, the brightness of the lighting device is unlikely to decrease.
  • the light-emitting device includes a phosphor film, a light-transmitting substrate, and a fixing jig, and does not have a side surface of the light-transmitting substrate or the phosphor film of the light-transmitting substrate.
  • a heat dissipating part including at least one of a high thermal conductivity material, a high emissivity material, and a high convection heat transfer efficiency shape than the substrate is installed at a location (including a side surface of the substrate).

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Led Device Packages (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

The purpose of the present invention is to improve the heat dissipation efficiency of a fluorescent body in a transmissive light-emitting device. A light-emitting device (10) is provided with a fluorescent body film (11) that converts the wavelength of excitation light and emits fluorescence, and a light-transmissive substrate (12) that transmits the excitation light. The light-transmissive substrate is provided, in a section of the surface thereof, with the fluorescent body film, and in another section different from the section where the fluorescent body film is disposed, with a heat dissipating part (1) that improves the heat dissipation efficiency of the light-transmissive substrate.

Description

発光装置および照明装置Light emitting device and lighting device
 本発明は、励起光を蛍光体に照射することで発生する蛍光を利用する発光装置、および当該発光装置を用いた照明装置に関する。 The present invention relates to a light emitting device that uses fluorescence generated by irradiating phosphor with excitation light, and an illumination device using the light emitting device.
 近年、発光素子と、当該発光素子からの励起光の波長を変換する波長変換部材とを組み合わせた発光装置が開発されている。このような波長変換部材を用いる発光装置は、その発光方式の相違により、(1)励起光が照射される励起光照射面と反対側の対向面から蛍光が取り出される構成(本願では「透過型」と呼ぶ。)と、(2)励起光が照射される励起光照射面から蛍光が取り出される構成(本願では「反射型」と呼ぶ。)とに分類することができる。透過型の発光装置の例として、特許文献1および2に記載されている発光装置が挙げられる。 In recent years, a light-emitting device that combines a light-emitting element and a wavelength conversion member that converts the wavelength of excitation light from the light-emitting element has been developed. A light-emitting device using such a wavelength conversion member has (1) a configuration in which fluorescence is extracted from the opposite surface opposite to the excitation light irradiation surface irradiated with excitation light (in this application, “transmission type” And (2) a configuration in which fluorescence is extracted from an excitation light irradiation surface irradiated with excitation light (referred to as “reflection type” in the present application). Examples of the transmissive light emitting device include the light emitting devices described in Patent Documents 1 and 2.
 特許文献1には、支持体に固定された半導体発光素子からの出射光が外側キャップに固定された波長変換部材で波長変換され、上記出射光の波長と異なる波長の光を出射する発光装置が記載されている。 Patent Document 1 discloses a light emitting device in which light emitted from a semiconductor light emitting element fixed to a support is wavelength-converted by a wavelength conversion member fixed to an outer cap, and emits light having a wavelength different from the wavelength of the emitted light. Are listed.
 また、特許文献2には、蛍光体層に入射しなかった励起光がそのまま外部へ投射されることを防止するため、蛍光体層の側部に励起光を吸収するための吸収手段を備える発光装置が記載されている。 Further, Patent Document 2 discloses light emission that includes absorption means for absorbing excitation light on the side of the phosphor layer in order to prevent the excitation light that has not entered the phosphor layer from being projected to the outside as it is. An apparatus is described.
日本国公開特許公報「特開2008-305936号(2008年12月18日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2008-305936 (Released on Dec. 18, 2008)” 日本国公開特許公報「特開2012-99222号(2012年5月24日公開)」Japanese Patent Publication “JP 2012-99222 (published May 24, 2012)”
 しかしながら、特許文献1に記載されている発光装置においては、波長変換部材で発生した熱は、まず外側キャップに伝わり、次に支持体へと放熱される。このように、上記発光装置においては、波長変換部材で発生した熱が支持体へ放熱されるまでの放熱経路が長い。また、上記発光装置においては、外側キャップがステンレスで形成されている。ステンレスの熱伝導率は、室温において16~26W/m・Kと、あまり高くない。このため、上記発光装置においては、波長変換部材から支持体までの間の熱抵抗が大きくなり、波長変換部材の温度が上昇するという問題がある。 However, in the light emitting device described in Patent Document 1, the heat generated by the wavelength conversion member is first transmitted to the outer cap and then radiated to the support. Thus, in the said light-emitting device, the heat dissipation path | route until the heat | fever generate | occur | produced with the wavelength conversion member is thermally radiated to a support body is long. In the light emitting device, the outer cap is formed of stainless steel. The thermal conductivity of stainless steel is not so high as 16 to 26 W / m · K at room temperature. For this reason, in the said light-emitting device, the thermal resistance between a wavelength conversion member and a support body becomes large, and there exists a problem that the temperature of a wavelength conversion member rises.
 また、特許文献2に記載されている発光装置においては、蛍光体層に入射しなかった励起光を吸収するための、樹脂で形成される吸収手段が、蛍光体層の側面に設けられている。一般に、樹脂の熱伝導率は、1W/m・K以下という小さい値である。例えば、室温において、アクリル樹脂の熱伝導率は、0.21W/m・Kである。また、室温において、シリコーン樹脂の熱伝導率は、0.15~0.17W/m・Kである。このように、吸収手段の熱伝導率が低いため、蛍光体層の側面から熱が逃げにくい。 Further, in the light emitting device described in Patent Document 2, an absorbing means made of resin for absorbing excitation light that has not entered the phosphor layer is provided on the side surface of the phosphor layer. . Generally, the thermal conductivity of a resin is a small value of 1 W / m · K or less. For example, at room temperature, the thermal conductivity of the acrylic resin is 0.21 W / m · K. At room temperature, the thermal conductivity of the silicone resin is 0.15 to 0.17 W / m · K. As described above, since the heat conductivity of the absorbing means is low, it is difficult for heat to escape from the side surface of the phosphor layer.
 また、特許文献2に記載されている発光装置においては、吸収手段は、蛍光体層の側面全体を覆っている。このため、蛍光体層の側面から出射する光はすべて吸収手段に吸収され、発光装置の明るさが低下する。 In the light emitting device described in Patent Document 2, the absorbing means covers the entire side surface of the phosphor layer. For this reason, all the light emitted from the side surface of the phosphor layer is absorbed by the absorbing means, and the brightness of the light emitting device is lowered.
 また、特許文献2に記載されている発光装置においては、励起光が蛍光体層に入射する面における励起光の形状および断面積が、上記面全体の形状および断面積とほぼ等しい。このため、励起光の一部は、蛍光体層に入射した直後に蛍光体層側面から吸収手段へ入射する。吸収手段は、励起光を吸収して熱に変える。つまり、吸収手段が熱源となり、蛍光体層の温度が上昇する。 In the light emitting device described in Patent Document 2, the shape and cross-sectional area of the excitation light on the surface where the excitation light enters the phosphor layer are substantially equal to the shape and cross-sectional area of the entire surface. For this reason, a part of the excitation light enters the absorber from the side surface of the phosphor layer immediately after entering the phosphor layer. The absorption means absorbs the excitation light and converts it into heat. That is, the absorption means becomes a heat source, and the temperature of the phosphor layer rises.
 さらに、特許文献2に記載されている発光装置においては、蛍光体層または光透過性基板を固定する固定冶具などは記載されていない。このため、蛍光体層または光透過性基板から熱がどう逃げるかが開示されていない。 Furthermore, in the light emitting device described in Patent Document 2, a fixing jig for fixing the phosphor layer or the light transmitting substrate is not described. For this reason, it is not disclosed how heat escapes from the phosphor layer or the light-transmitting substrate.
 一般に、蛍光体は、温度の上昇とともに励起光の波長を変換する効率が低下する。本発明は、上記の課題に鑑み、発光装置における蛍光体の放熱効率を向上させることを目的とする。 In general, the efficiency of phosphors that converts the wavelength of excitation light decreases with increasing temperature. An object of this invention is to improve the thermal radiation efficiency of the fluorescent substance in a light-emitting device in view of said subject.
 上記の課題を解決するために、本発明の一態様に係る発光装置は、励起光の波長を変換し、蛍光を発する蛍光体膜と、上記励起光を透過させる光透過性基板とを備え、上記光透過性基板は、表面の一部に上記蛍光体膜が設けられ、かつ上記蛍光体膜が設けられている部分とは別の部分に上記光透過性基板の放熱効率を向上させる放熱部が設けられている。 In order to solve the above problems, a light-emitting device according to one embodiment of the present invention includes a phosphor film that converts the wavelength of excitation light and emits fluorescence, and a light-transmitting substrate that transmits the excitation light. The light transmissive substrate is provided with the phosphor film on a part of the surface, and a heat radiating portion for improving the heat radiation efficiency of the light transmissive substrate in a part different from the part where the phosphor film is provided. Is provided.
 本発明の一態様によれば、発光装置における蛍光体の放熱効率を向上させることができるという効果を奏する。 According to one aspect of the present invention, there is an effect that the heat dissipation efficiency of the phosphor in the light emitting device can be improved.
本発明の実施形態1に係る発光装置の構成を示す断面図である。It is sectional drawing which shows the structure of the light-emitting device which concerns on Embodiment 1 of this invention. (a)は、蛍光体膜、光透過性基板、および放熱部が組み立てられる前の状態を示す断面図である。(b)は、蛍光体膜、光透過性基板、および放熱部が組み立てられた後の状態を示す断面図である。(A) is sectional drawing which shows the state before a fluorescent substance film | membrane, a transparent substrate, and a thermal radiation part are assembled. (B) is sectional drawing which shows the state after a fluorescent substance film | membrane, a transparent substrate, and a thermal radiation part were assembled. 本発明の実施形態2に係る発光装置の構成を示す断面図である。It is sectional drawing which shows the structure of the light-emitting device which concerns on Embodiment 2 of this invention. 本発明の実施形態3に係る発光装置の構成を示す断面図である。It is sectional drawing which shows the structure of the light-emitting device which concerns on Embodiment 3 of this invention. 本発明の実施形態4に係る発光装置の構成を示す断面図である。It is sectional drawing which shows the structure of the light-emitting device which concerns on Embodiment 4 of this invention. (a)は、光透過性基板上に放熱部が形成された状態を示す図である。(b)は、光透過性基板上に放熱部および蛍光体膜が形成された状態を示す図である。(c)は、(b)の、蛍光体膜の周囲の拡大図である。(A) is a figure which shows the state by which the thermal radiation part was formed on the light-transmitting board | substrate. (B) is a figure which shows the state by which the thermal radiation part and the fluorescent substance film were formed on the transparent substrate. (C) is an enlarged view of the periphery of the phosphor film of (b). 本発明の実施形態5に係る発光装置の構成を示す断面図である。It is sectional drawing which shows the structure of the light-emitting device which concerns on Embodiment 5 of this invention. 本発明の実施形態6に係る照明装置の構成を示す断面図である。It is sectional drawing which shows the structure of the illuminating device which concerns on Embodiment 6 of this invention. 本発明の実施形態7に係る照明装置の構成を示す断面図である。It is sectional drawing which shows the structure of the illuminating device which concerns on Embodiment 7 of this invention. 従来の発光装置の構成を示す断面図である。It is sectional drawing which shows the structure of the conventional light-emitting device.
 〔実施形態1〕
 以下、本発明の実施の形態について、図1~図2および図10を用いて詳細に説明する。本実施形態では、蛍光体膜11の放熱効率を向上させる放熱部1を備える、透過型の発光装置10について説明する。
Embodiment 1
Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. 1 to 2 and FIG. In the present embodiment, a transmissive light emitting device 10 including the heat radiating unit 1 that improves the heat radiation efficiency of the phosphor film 11 will be described.
 図1は、本実施形態に係る発光装置10の構成を示す断面図である。図1に示すように、発光装置10は、蛍光体膜11と、光透過性基板12と、放熱部1と、固定冶具13とを備える。 FIG. 1 is a cross-sectional view showing a configuration of a light emitting device 10 according to the present embodiment. As shown in FIG. 1, the light emitting device 10 includes a phosphor film 11, a light transmissive substrate 12, a heat radiating unit 1, and a fixing jig 13.
 (蛍光体膜11)
 蛍光体膜11は、励起光源(不図示)からの励起光の波長を変換し、当該励起光と異なる波長の光(蛍光)を出射する蛍光体の膜である。本実施形態では、励起光源は、波長が450nmのレーザ光を出射するレーザ素子である。したがって、本実施形態において、蛍光体膜11に入射する励起光は、青色のレーザ光である。ただし、レーザ光の波長は、上記の値に限定されない。
(Phosphor film 11)
The phosphor film 11 is a phosphor film that converts the wavelength of excitation light from an excitation light source (not shown) and emits light (fluorescence) having a wavelength different from that of the excitation light. In the present embodiment, the excitation light source is a laser element that emits laser light having a wavelength of 450 nm. Therefore, in this embodiment, the excitation light incident on the phosphor film 11 is blue laser light. However, the wavelength of the laser beam is not limited to the above value.
 蛍光体膜11は、例えば蛍光体の粒子(パウダー)と、当該パウダーを封止する封止材とで構成されていてもよい。蛍光体を1種類だけ用いる場合、蛍光体の例としてはYAG(イットリウムアルミニウムガーネット)蛍光体(蛍光は黄色)などが挙げられる。 The phosphor film 11 may be composed of, for example, phosphor particles (powder) and a sealing material that seals the powder. When only one type of phosphor is used, examples of the phosphor include YAG (yttrium aluminum garnet) phosphor (fluorescence is yellow).
 2種類の蛍光体を組み合わせて用いる場合、組み合わせの例としては、(i)βサイアロン(緑)およびαサイアロン(橙)の組み合わせ、(ii)βサイアロン(緑)およびCASN(CaAlSiN)(赤)の組み合わせ、または(iii)YAG(黄)およびCASN(赤)の組み合わせなどが挙げられる。 When two types of phosphors are used in combination, examples of combinations include (i) a combination of β sialon (green) and α sialon (orange), (ii) β sialon (green) and CASN (CaAlSiN 3 ) (red ), Or (iii) a combination of YAG (yellow) and CASN (red).
 3種類の蛍光体を組み合わせて用いる場合、組み合わせの例としては、βサイアロン(緑)、αサイアロン(橙)、およびCASN(赤)の組み合わせなどが挙げられる。また、4種類以上の蛍光体を組み合わせて用いてもよい。 When three types of phosphors are used in combination, examples of the combination include a combination of β sialon (green), α sialon (orange), and CASN (red). Moreover, you may use combining 4 or more types of fluorescent substance.
 上記のパウダーを封止する封止材の材質は、ガラス、シリコーン樹脂、またはアクリル樹脂などから適宜選択すればよい。 The material of the sealing material for sealing the powder may be appropriately selected from glass, silicone resin, acrylic resin, and the like.
 また、蛍光体膜11は、例えば蛍光体の単結晶板または多結晶板であってもよい。この場合、蛍光体の例としては、YAG蛍光体などが挙げられる。また、この場合、蛍光体膜11は、後述する光透過性基板12に、透明接着剤を用いて接合される。透明接着剤としては、有機系であればアクリル系またはシリコーン系、無機系であればシリカ、アルミナ、またはジルコニアなどを含む接着剤を用いることができる。 The phosphor film 11 may be a phosphor single crystal plate or a polycrystalline plate, for example. In this case, examples of the phosphor include a YAG phosphor. In this case, the phosphor film 11 is bonded to a light transmissive substrate 12 described later using a transparent adhesive. As the transparent adhesive, an acrylic or silicone-based adhesive can be used if it is organic, and an adhesive containing silica, alumina, zirconia, or the like can be used if it is inorganic.
 発光装置10は、上述した励起光と、蛍光体膜11が発する蛍光とが混合された擬似白色光を発する。また、蛍光体膜11の、励起光が照射される面(励起光照射面)における励起光のスポットの大きさは、当該励起光照射面の大きさより小さい。 The light emitting device 10 emits pseudo white light in which the excitation light described above and the fluorescence emitted from the phosphor film 11 are mixed. Further, the size of the spot of the excitation light on the surface irradiated with the excitation light (excitation light irradiation surface) of the phosphor film 11 is smaller than the size of the excitation light irradiation surface.
 (光透過性基板12)
 光透過性基板12は、蛍光体膜11が形成される基板である。光透過性基板12について、励起光が入射する面と逆側の面を上面としたとき、蛍光体膜11は、光透過性基板12の上面の少なくとも一部に形成される。本実施形態においては、蛍光体膜11は、光透過性基板12の上面全体に形成されている。
(Light transmissive substrate 12)
The light transmissive substrate 12 is a substrate on which the phosphor film 11 is formed. When the surface opposite to the surface on which the excitation light is incident is the upper surface of the light transmissive substrate 12, the phosphor film 11 is formed on at least a part of the upper surface of the light transmissive substrate 12. In the present embodiment, the phosphor film 11 is formed on the entire top surface of the light transmissive substrate 12.
 光透過性基板12の材質としては、ガラスまたはサファイアなどを用いることができる。発光装置10を蛍光体膜11からの蛍光の出射側から見た場合、光透過性基板12のサイズは、蛍光体膜11のサイズと同じか、または蛍光体膜11のサイズより大きい。 As the material of the light transmissive substrate 12, glass or sapphire can be used. When the light emitting device 10 is viewed from the emission side of the fluorescence from the phosphor film 11, the size of the light transmissive substrate 12 is the same as the size of the phosphor film 11 or larger than the size of the phosphor film 11.
 (固定冶具13)
 固定冶具13は、放熱部1が固定される部材である。固定冶具13は、筒状の形状を有している。放熱部1は、固定冶具13に、シリコーングリスなどを用いて熱的に接着されている。
(Fixing jig 13)
The fixing jig 13 is a member to which the heat radiating unit 1 is fixed. The fixing jig 13 has a cylindrical shape. The heat radiation part 1 is thermally bonded to the fixing jig 13 using silicone grease or the like.
 固定冶具13を構成する材料の具体的な例としては、アルミニウム、銅、鉄、または銀といった金属が挙げられる。また、アルミニウムについては、表面に黒アルマイト処理が施されていてもよい。本実施形態においては、固定冶具13の材料として、黒アルマイト処理が施されたアルミニウムを用いている。 Specific examples of the material constituting the fixing jig 13 include metals such as aluminum, copper, iron, and silver. Moreover, about aluminum, the black alumite process may be given to the surface. In the present embodiment, as the material for the fixing jig 13, aluminum that has been subjected to black alumite treatment is used.
 (放熱部1)
 放熱部1は、蛍光体膜11で発生した熱の放熱効率を向上させる部材である。放熱部1は、光透過性基板12の表面の、蛍光体膜11が設けられている部分とは別の部分に設けられている。放熱部1は、中央に孔部を有する板状の部材であり、当該孔部に光透過性基板12が嵌合される。このとき、放熱部1は、光透過性基板12の側面に接している。換言すれば、放熱部1は、光透過性基板12の側面に設けられている。
(Heat dissipation part 1)
The heat dissipating part 1 is a member that improves the heat dissipating efficiency of heat generated in the phosphor film 11. The heat dissipating part 1 is provided on a part of the surface of the light transmissive substrate 12 different from the part on which the phosphor film 11 is provided. The heat radiating part 1 is a plate-like member having a hole in the center, and the light transmissive substrate 12 is fitted into the hole. At this time, the heat radiating portion 1 is in contact with the side surface of the light transmissive substrate 12. In other words, the heat radiating part 1 is provided on the side surface of the light transmissive substrate 12.
 放熱部1は、高熱伝導率材料を含む。ここで、高熱伝導率材料の熱伝導率は、80W/m・K以上である。この値は、鉄の熱伝導率(80.3W/m・K)を含むように設定した値である。放熱部1を構成する材料の具体的な例としては、アルミニウム、銅、鉄、または銀といった金属が挙げられる。また、高熱伝導材料の熱伝導率は、237W/m・K以上であることが、より好ましい。この値は、アルミニウムの熱伝導率を含むように設定した値である。熱伝導率が237W/m・K以上である材料の具体的な例としては、アルミニウム、銅、または銀といった金属が挙げられる。また、アルミニウムについては、表面に黒アルマイト処理が施されていてもよい。また、放熱部1は、蛍光体膜11から出射される蛍光を透過させない材料で構成されている。 The heat dissipation part 1 includes a high thermal conductivity material. Here, the thermal conductivity of the high thermal conductivity material is 80 W / m · K or more. This value is set to include the thermal conductivity of iron (80.3 W / m · K). Specific examples of the material constituting the heat radiating unit 1 include metals such as aluminum, copper, iron, and silver. Further, the thermal conductivity of the high thermal conductive material is more preferably 237 W / m · K or more. This value is a value set to include the thermal conductivity of aluminum. Specific examples of the material having a thermal conductivity of 237 W / m · K or higher include metals such as aluminum, copper, and silver. Moreover, about aluminum, the black alumite process may be given to the surface. Further, the heat radiating portion 1 is made of a material that does not transmit the fluorescence emitted from the phosphor film 11.
 また、放熱部1は、蛍光体膜11および光透過性基板12を固定する固定冶具として機能する。蛍光体膜11および光透過性基板12は、放熱部1により、固定冶具13に直接接しないように固定されている。 The heat radiating section 1 functions as a fixing jig that fixes the phosphor film 11 and the light transmissive substrate 12. The phosphor film 11 and the light transmissive substrate 12 are fixed by the heat dissipating unit 1 so as not to be in direct contact with the fixing jig 13.
 図2の(a)は、蛍光体膜11、光透過性基板12、および放熱部1が組み立てられる前の状態を示す断面図である。図2の(b)は、蛍光体膜11、光透過性基板12、および放熱部1が組み立てられた後の状態を示す断面図である。 (A) of FIG. 2 is a cross-sectional view showing a state before the phosphor film 11, the light transmissive substrate 12, and the heat radiation part 1 are assembled. FIG. 2B is a cross-sectional view showing a state after the phosphor film 11, the light transmissive substrate 12, and the heat radiating unit 1 are assembled.
 蛍光体膜11、光透過性基板12、および放熱部1が組み立てられる時には、図2の(a)に示すように、まず、光透過性基板12上に蛍光体膜11が形成される。次に、図2の(b)に示すように、光透過性基板12が放熱部1に嵌合される。このとき、光透過性基板12の側面、または放熱部1が有する孔部の内面に、低融点ガラスまたは樹脂を塗っておく。そして、光透過性基板12が放熱部1に嵌合された状態で、低融点ガラスまたは樹脂を固化させることで、光透過性基板12と放熱部1とが接着される。 When the phosphor film 11, the light transmissive substrate 12, and the heat dissipating unit 1 are assembled, the phosphor film 11 is first formed on the light transmissive substrate 12 as shown in FIG. Next, as shown in FIG. 2B, the light transmissive substrate 12 is fitted into the heat radiating portion 1. At this time, low-melting glass or resin is applied to the side surface of the light-transmitting substrate 12 or the inner surface of the hole of the heat dissipating unit 1. Then, in a state where the light transmissive substrate 12 is fitted to the heat radiating portion 1, the light transmissive substrate 12 and the heat radiating portion 1 are bonded by solidifying the low melting point glass or resin.
 (発光装置10の効果)
 図10は、従来の透過型の発光装置90の構成を示す断面図である。図10に示すように、発光装置90は、蛍光体膜11と、光透過性基板42と、固定冶具13とを備える。発光装置90を蛍光体膜11からの蛍光の出射側から見た場合、光透過性基板42のサイズは、固定冶具13のサイズと略等しい。
(Effect of the light emitting device 10)
FIG. 10 is a cross-sectional view showing a configuration of a conventional transmissive light emitting device 90. As shown in FIG. 10, the light emitting device 90 includes the phosphor film 11, the light transmissive substrate 42, and the fixing jig 13. When the light emitting device 90 is viewed from the emission side of the fluorescence from the phosphor film 11, the size of the light transmissive substrate 42 is substantially equal to the size of the fixing jig 13.
 発光装置90においては、蛍光体膜11で発生した熱は、図10において矢印(破線)で示すように、光透過性基板42を経由して、放熱部材を兼ねる固定冶具13へ放熱される。しかし、光透過性基板42の材質は、一般に熱伝導率が高くない。このため、発光装置90においては、蛍光体膜11の温度が上昇しやすい。この結果、蛍光体膜11の発光効率が低下し、蛍光の明るさが低下する。 In the light emitting device 90, the heat generated in the phosphor film 11 is radiated to the fixing jig 13 that also serves as a heat radiating member via the light transmitting substrate 42 as shown by an arrow (broken line) in FIG. However, the material of the light transmissive substrate 42 is generally not high in thermal conductivity. For this reason, in the light emitting device 90, the temperature of the phosphor film 11 is likely to rise. As a result, the luminous efficiency of the phosphor film 11 is lowered and the brightness of the fluorescence is lowered.
 このような問題を解決する方法として、蛍光体膜11から固定冶具13までの間の放熱経路について、(i)熱伝導率を向上させる、(ii)放射率を向上させる、(iii)対流熱伝達効率を向上させる、といった方法が考えられる。 As a method for solving such a problem, (i) improving the thermal conductivity, (ii) improving the emissivity, (iii) convection heat, regarding the heat radiation path from the phosphor film 11 to the fixing jig 13. A method of improving the transmission efficiency can be considered.
 本実施形態に係る発光装置10においては、上記の(i)の方法が採られている。具体的には、発光装置10においては、蛍光体膜11で発生した熱が固定冶具13へ放熱される放熱経路の一部に、光透過性基板12より熱伝導率が高い放熱部1が含まれる。この結果、発光装置10においては、従来の発光装置90と比較して、蛍光体膜11から固定冶具までの間の放熱経路の熱伝導率が向上している。このため、蛍光体膜11で発生した熱は、図1において矢印で示すように、光透過性基板12および放熱部1を経由して固定冶具13へ放熱される。 In the light emitting device 10 according to the present embodiment, the above method (i) is adopted. Specifically, in the light emitting device 10, the heat radiating unit 1 having higher thermal conductivity than the light transmissive substrate 12 is included in a part of the heat radiating path through which heat generated in the phosphor film 11 is radiated to the fixing jig 13. It is. As a result, in the light emitting device 10, the thermal conductivity of the heat dissipation path from the phosphor film 11 to the fixing jig is improved as compared with the conventional light emitting device 90. For this reason, the heat generated in the phosphor film 11 is radiated to the fixing jig 13 via the light transmissive substrate 12 and the heat radiating portion 1 as indicated by arrows in FIG.
 したがって、発光装置10においては、発光装置90と比較して、蛍光体膜11から固定冶具13までの間の熱抵抗が小さくなる。この結果、透過型の発光装置である発光装置10の放熱効率を向上させることができる。したがって、蛍光体膜11の温度が上昇しにくくなり、蛍光体膜11の効率の低下が抑制される。また、発光装置10を用いて照明装置を構成した場合、蛍光の明るさが低下しにくい照明装置を提供することができる。 Therefore, in the light emitting device 10, the thermal resistance between the phosphor film 11 and the fixing jig 13 is smaller than that of the light emitting device 90. As a result, the heat dissipation efficiency of the light emitting device 10 which is a transmissive light emitting device can be improved. Therefore, the temperature of the phosphor film 11 is unlikely to rise, and a decrease in the efficiency of the phosphor film 11 is suppressed. In addition, when the lighting device is configured using the light-emitting device 10, it is possible to provide a lighting device in which the brightness of the fluorescent light is unlikely to decrease.
 また、上述した通り、蛍光体膜11は、光透過性基板12の上面に形成され、放熱部1は、光透過性基板12の側面に設けられている。このため、放熱部1は、蛍光体膜11へ入射する励起光、および蛍光体膜11から出射する蛍光を遮ることなく、蛍光体膜11の放熱効率を向上させることができる。 Further, as described above, the phosphor film 11 is formed on the upper surface of the light transmissive substrate 12, and the heat radiating portion 1 is provided on the side surface of the light transmissive substrate 12. For this reason, the heat radiation part 1 can improve the heat radiation efficiency of the phosphor film 11 without blocking the excitation light incident on the phosphor film 11 and the fluorescence emitted from the phosphor film 11.
 また、本実施形態においては、上述した通り、励起光源は、レーザ素子である。励起光源としてレーザ素子を用いることで、発光装置10においては、蛍光体膜11に高密度の励起光を照射することができる。このため、発光装置10は、輝度の高い発光装置となる。しかし、一般的な発光装置においては、励起光が高密度である場合、励起光が入射する蛍光体膜の温度が上昇しやすくなり、発光効率が低下しやすいという問題が生じる。したがって、発光装置10が備える放熱部1の有用性は、励起光源がレーザ素子であることで、より顕著になる。 In this embodiment, as described above, the excitation light source is a laser element. By using a laser element as the excitation light source, the phosphor film 11 can be irradiated with high-density excitation light in the light emitting device 10. For this reason, the light-emitting device 10 is a light-emitting device with high luminance. However, in a general light emitting device, when the excitation light has a high density, there is a problem that the temperature of the phosphor film on which the excitation light enters easily rises and the light emission efficiency tends to decrease. Therefore, the usefulness of the heat radiating unit 1 included in the light emitting device 10 becomes more remarkable when the excitation light source is a laser element.
 また、一般に、励起光照射面における励起光のスポットの大きさが当該励起光照射面の大きさと略等しい場合、励起光の一部は蛍光体膜へ入射した直後に蛍光体膜の側面から漏れることになる。この場合、蛍光体膜の側面から漏れた励起光は蛍光体膜に含まれる蛍光体を励起しないため、蛍光の強度が小さくなる。また、励起光がレーザ光である場合、励起光が発光装置の外へ出射されることは、安全性の観点から好ましくない。さらに、蛍光体膜の周囲に、光を吸収する部材が設けられている場合には、当該部材が蛍光体膜の側面から漏れた光を吸収して熱に変えるため、当該部材が熱源となって、蛍光体膜付近の温度が上昇する。 In general, when the spot size of the excitation light on the excitation light irradiation surface is substantially equal to the size of the excitation light irradiation surface, a part of the excitation light leaks from the side surface of the phosphor film immediately after entering the phosphor film. It will be. In this case, since the excitation light leaking from the side surface of the phosphor film does not excite the phosphor contained in the phosphor film, the intensity of the fluorescence decreases. Further, when the excitation light is laser light, it is not preferable from the viewpoint of safety that the excitation light is emitted outside the light emitting device. Furthermore, when a member that absorbs light is provided around the phosphor film, the member absorbs light leaked from the side surface of the phosphor film and changes it into heat, so that the member becomes a heat source. As a result, the temperature near the phosphor film rises.
 これに対し、本実施形態に係る発光装置10においては、上述した通り、励起光照射面における励起光のスポットの大きさは、当該励起光照射面の大きさより小さい。このため、励起光が蛍光体膜11に入射した直後に蛍光体膜11の側面から漏れる虞は小さい。 On the other hand, in the light emitting device 10 according to the present embodiment, as described above, the size of the excitation light spot on the excitation light irradiation surface is smaller than the size of the excitation light irradiation surface. For this reason, there is little possibility that the excitation light leaks from the side surface of the phosphor film 11 immediately after entering the phosphor film 11.
 さらに、上述した通り、放熱部1は、蛍光体膜11から出射される光を透過させない。このため、蛍光体膜11以外から蛍光が出射されることがない。つまり、蛍光体膜11の上面と対向する下面、および側面から出射された蛍光が、光透過性基板12中を導光され、放熱部1を透過して放熱部1の上面から出射されることがない。したがって発光装置10のスポット性が向上する。 Furthermore, as described above, the heat radiating unit 1 does not transmit the light emitted from the phosphor film 11. For this reason, fluorescence is not emitted from other than the phosphor film 11. That is, the fluorescence emitted from the lower surface and the side surface facing the upper surface of the phosphor film 11 is guided through the light-transmitting substrate 12, passes through the heat radiating portion 1, and is emitted from the upper surface of the heat radiating portion 1. There is no. Therefore, the spot property of the light emitting device 10 is improved.
 また、放熱部1は、蛍光体膜11および光透過性基板12を固定する固定冶具として機能する。このため、蛍光体膜11および光透過性基板12を固定する固定冶具を別に備える構成と比較して、発光装置10を構成する部品の点数を削減することができる。 The heat radiating section 1 functions as a fixing jig that fixes the phosphor film 11 and the light transmissive substrate 12. For this reason, compared with the structure provided with the fixing jig which fixes the fluorescent substance film 11 and the transparent substrate 12 separately, the number of parts which comprise the light-emitting device 10 can be reduced.
 また、蛍光体膜11の一部が、放熱部1に接していてもよい。この場合、蛍光体膜11で発生した熱の一部は、光透過性基板12を経由せず、直接放熱部1へ伝達される。このため、蛍光体膜11の放熱効率がさらに向上する。 Further, a part of the phosphor film 11 may be in contact with the heat radiating portion 1. In this case, part of the heat generated in the phosphor film 11 is directly transmitted to the heat radiating unit 1 without passing through the light transmissive substrate 12. For this reason, the heat dissipation efficiency of the phosphor film 11 is further improved.
 〔実施形態2〕
 本発明の他の実施形態について、図3に基づいて説明すれば、以下の通りである。本実施形態では、放熱部1とは異なる形状の放熱部2を備える発光装置20について説明する。放熱部2は、形状以外は放熱部1と同様である。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 2]
The following will describe another embodiment of the present invention with reference to FIG. In the present embodiment, a light emitting device 20 including the heat radiating part 2 having a shape different from that of the heat radiating part 1 will be described. The heat radiation part 2 is the same as the heat radiation part 1 except for the shape. For convenience of explanation, members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted.
 図3は、本実施形態に係る発光装置20の構成を示す図である。図3に示すように、発光装置20は、蛍光体膜11と、光透過性基板12と、放熱部2と、固定冶具13とを備える。 FIG. 3 is a diagram illustrating a configuration of the light emitting device 20 according to the present embodiment. As shown in FIG. 3, the light emitting device 20 includes a phosphor film 11, a light transmissive substrate 12, a heat radiating unit 2, and a fixing jig 13.
 放熱部2は、放熱部1と同様、光透過性基板12より高い熱伝導率を有する材料で構成される。これにより、発光装置20においては、発光装置10と同様、従来の発光装置90と比較して、蛍光体膜11から固定冶具13までの間の放熱経路の熱伝導率が向上している。したがって、蛍光体膜11で発生した熱は、図3において矢印(実線)で示すように、光透過性基板12および放熱部2を経由して固定冶具13へ放熱される。 The heat radiating part 2 is made of a material having a higher thermal conductivity than the light-transmitting substrate 12, similarly to the heat radiating part 1. Thereby, in the light emitting device 20, as in the light emitting device 10, the thermal conductivity of the heat dissipation path from the phosphor film 11 to the fixing jig 13 is improved as compared with the conventional light emitting device 90. Therefore, the heat generated in the phosphor film 11 is radiated to the fixing jig 13 via the light transmissive substrate 12 and the heat radiating section 2 as indicated by an arrow (solid line) in FIG.
 また、放熱部2は、フィン形状を有する。このため、放熱部2は、放熱部1と比較して、対流熱伝達効率が向上している。したがって、蛍光体膜11で発生した熱の一部は、図3において矢印(破線)で示すように、放熱部2から大気中へ放熱される。 Moreover, the heat radiation part 2 has a fin shape. For this reason, the heat dissipation part 2 has improved convective heat transfer efficiency compared to the heat dissipation part 1. Therefore, a part of the heat generated in the phosphor film 11 is radiated from the heat radiating portion 2 to the atmosphere as indicated by an arrow (broken line) in FIG.
 したがって、発光装置20においては、蛍光体膜11から固定冶具13までの間の熱抵抗が、発光装置10よりさらに小さくなる。この結果、蛍光体膜11の温度がさらに上昇しにくくなり、蛍光体膜11の効率の低下が抑制される。また、発光装置20を用いて照明装置を構成することで、より蛍光の明るさが低下しにくい照明装置を提供することができる。 Therefore, in the light emitting device 20, the thermal resistance between the phosphor film 11 and the fixing jig 13 is further smaller than that of the light emitting device 10. As a result, the temperature of the phosphor film 11 is further unlikely to rise, and a decrease in the efficiency of the phosphor film 11 is suppressed. In addition, by configuring the lighting device using the light-emitting device 20, it is possible to provide a lighting device in which the brightness of fluorescence is less likely to decrease.
 放熱部2が有するフィン形状について、フィンの大きさおよび数は、求める放熱性能、すなわち蛍光体膜11の発熱量に対して蛍光体膜11の温度を何度にするかによって、当業者が適宜定めてよい。 As for the fin shape of the heat radiating section 2, the size and number of fins are determined appropriately by those skilled in the art depending on the required heat dissipation performance, that is, the temperature of the phosphor film 11 with respect to the heat generation amount of the phosphor film 11. You may decide.
 〔実施形態3〕
 本発明の他の実施形態について、図4に基づいて説明すれば、以下の通りである。本実施形態では、放熱部1、2とは異なる形状の放熱部3を備える発光装置30について説明する。
[Embodiment 3]
The following will describe another embodiment of the present invention with reference to FIG. In the present embodiment, a light emitting device 30 including the heat dissipating unit 3 having a shape different from that of the heat dissipating units 1 and 2 will be described.
 図4は、本実施形態に係る発光装置30の構成を示す図である。図4に示すように、発光装置30は、蛍光体膜11と、光透過性基板12と、放熱部3と、固定冶具13とを備える。 FIG. 4 is a diagram illustrating a configuration of the light emitting device 30 according to the present embodiment. As shown in FIG. 4, the light emitting device 30 includes a phosphor film 11, a light transmissive substrate 12, a heat radiating unit 3, and a fixing jig 13.
 放熱部3は、放熱部1と同様、光透過性基板12より高い熱伝導率を有する材料で構成される。これにより、発光装置30においては、発光装置10と同様、従来の発光装置90と比較して、蛍光体膜11から固定冶具13までの間の放熱経路の熱伝導率が向上している。したがって、蛍光体膜11で発生した熱は、光透過性基板12および放熱部2を経由して固定冶具13へ放熱される。 The heat radiating part 3 is composed of a material having a higher thermal conductivity than the light transmissive substrate 12, as with the heat radiating part 1. Thereby, in the light emitting device 30, as in the light emitting device 10, the thermal conductivity of the heat radiation path from the phosphor film 11 to the fixing jig 13 is improved as compared with the conventional light emitting device 90. Therefore, the heat generated in the phosphor film 11 is radiated to the fixing jig 13 via the light transmissive substrate 12 and the heat radiating unit 2.
 また、放熱部3は、リフレクタ形状を有するとともに、蛍光体膜11の周囲の面が鏡面加工されている。このため、放熱部3は、蛍光体膜11から出射される蛍光を反射するリフレクタとして機能する。具体的には、光透過性基板12から蛍光体膜11へ向かう方向を前方としたとき、蛍光体膜11から出射された蛍光の一部が、放熱部3により反射されて前方へ向かう。したがって、発光装置30は、発光装置10などと比較して、蛍光体膜11から出射する蛍光を取り出しやすくなっている。また、発光装置30を用いて照明装置を構成することで、より明るい照明装置を提供することができる。放熱部3が有するリフレクタ形状については、放物面、半球、または円錐形状などが挙げられる。 Further, the heat dissipating part 3 has a reflector shape, and the surface around the phosphor film 11 is mirror-finished. For this reason, the heat radiating section 3 functions as a reflector that reflects the fluorescence emitted from the phosphor film 11. Specifically, assuming that the direction from the light-transmitting substrate 12 toward the phosphor film 11 is the front, a part of the fluorescence emitted from the phosphor film 11 is reflected by the heat radiating unit 3 and travels forward. Therefore, the light emitting device 30 is easier to extract the fluorescence emitted from the phosphor film 11 than the light emitting device 10 or the like. In addition, by configuring the lighting device using the light emitting device 30, a brighter lighting device can be provided. About the reflector shape which the thermal radiation part 3 has, a paraboloid, a hemisphere, a cone shape, etc. are mentioned.
 〔実施形態4〕
 本発明の他の実施形態について、図5に基づいて説明すれば、以下の通りである。本実施形態では、光透過性基板42上に放熱部4が形成されている発光装置40について説明する。
[Embodiment 4]
The following will describe another embodiment of the present invention with reference to FIG. In the present embodiment, a light emitting device 40 in which the heat radiation part 4 is formed on the light transmissive substrate 42 will be described.
 (発光装置40の構成)
 図5は、本実施形態に係る発光装置40の構成を示す断面図である。図5に示すように、発光装置40は、蛍光体膜11と、光透過性基板42と、放熱部4と、固定冶具13とを備える。
(Configuration of Light Emitting Device 40)
FIG. 5 is a cross-sectional view illustrating a configuration of the light emitting device 40 according to the present embodiment. As shown in FIG. 5, the light emitting device 40 includes the phosphor film 11, the light transmissive substrate 42, the heat radiating unit 4, and the fixing jig 13.
 光透過性基板42は、蛍光体膜11が形成される基板である。光透過性基板について、励起光が入射する面と逆側の面を上面としたとき、蛍光体膜11は、当該上面の一部に設けられる。本実施形態において、光透過性基板12の材質は、サファイアである。発光装置40を蛍光体膜11からの蛍光の出射側から見た場合、光透過性基板42のサイズは、固定冶具13のサイズと略等しい。 The light transmissive substrate 42 is a substrate on which the phosphor film 11 is formed. When the surface opposite to the surface on which the excitation light is incident is the upper surface of the light transmissive substrate, the phosphor film 11 is provided on a part of the upper surface. In the present embodiment, the material of the light transmissive substrate 12 is sapphire. When the light emitting device 40 is viewed from the emission side of the fluorescence from the phosphor film 11, the size of the light transmissive substrate 42 is substantially equal to the size of the fixing jig 13.
 放熱部4は、光透過性基板42の上面の、蛍光体膜11が設けられている領域以外の領域に設けられている薄膜である。放熱部4は、高放射率材料を含んでいる。高放射率材料の放射率は、2%(サファイアの放射率)より大きい。 The heat radiation part 4 is a thin film provided in a region other than the region where the phosphor film 11 is provided on the upper surface of the light-transmitting substrate 42. The heat radiation part 4 contains a high emissivity material. The emissivity of the high emissivity material is greater than 2% (sapphire emissivity).
 放熱部4は、蛍光体膜11の少なくとも一部に接していることが好ましい。本実施形態において、放熱部4は、蛍光体膜11の側面と接している。また、放熱部4の厚さは、蛍光体膜11の厚さ未満である。放熱部4は、好ましくは、黒アルミナの粒子の堆積膜である。また、黒アルミナの粒子は、シリカなどの封止材により封止されていてもよい。 The heat radiation part 4 is preferably in contact with at least a part of the phosphor film 11. In the present embodiment, the heat dissipation part 4 is in contact with the side surface of the phosphor film 11. Further, the thickness of the heat radiating portion 4 is less than the thickness of the phosphor film 11. The heat dissipating part 4 is preferably a deposited film of black alumina particles. The black alumina particles may be sealed with a sealing material such as silica.
 図6の(a)は、光透過性基板42上に放熱部4が形成された状態を示す図である。図6の(b)は、光透過性基板42上に放熱部4および蛍光体膜11が形成された状態を示す図である。図6の(c)は、図6の(b)の、蛍光体膜11の周囲の拡大図である。 (A) of FIG. 6 is a figure which shows the state by which the thermal radiation part 4 was formed on the light transmissive board | substrate 42. FIG. FIG. 6B is a view showing a state in which the heat radiating portion 4 and the phosphor film 11 are formed on the light transmissive substrate 42. FIG. 6C is an enlarged view around the phosphor film 11 in FIG.
 図6の(a)に示すように、光透過性基板42上に放熱部4および蛍光体膜11を形成する際には、まず光透過性基板42上に放熱部4が形成される。具体的には、例えばスクリーン印刷により黒アルミナ粒子の薄膜が光透過性基板42上に成膜される。このとき、光透過性基板42の中央部分には、上記薄膜を形成しない。なお、上記薄膜は、スクリーン印刷以外の成膜方法によって成膜されていてもよく、黒アルミナ以外の材料で構成されていてもよい。 As shown in FIG. 6A, when the heat radiating portion 4 and the phosphor film 11 are formed on the light transmissive substrate 42, the heat radiating portion 4 is first formed on the light transmissive substrate 42. Specifically, a thin film of black alumina particles is formed on the light transmissive substrate 42 by, for example, screen printing. At this time, the thin film is not formed in the central portion of the light transmissive substrate 42. The thin film may be formed by a film forming method other than screen printing, or may be formed of a material other than black alumina.
 その後、上記薄膜を焼成することにより、光透過性基板42の中央部分以外に、放熱部4が形成される。さらに、図6の(b)に示すように、光透過性基板42の中央の、放熱部4が形成されていない領域に蛍光体を塗布することにより、蛍光体膜11が形成される。 Thereafter, the heat radiating portion 4 is formed in addition to the central portion of the light transmissive substrate 42 by firing the thin film. Further, as shown in FIG. 6B, the phosphor film 11 is formed by applying the phosphor to the center of the light transmissive substrate 42 where the heat radiating portion 4 is not formed.
 (発光装置40の効果)
 本実施形態に係る発光装置40において、光透過性基板12は、サファイアで構成されている。サファイアの放射率は、波長が2.6μm~3.7μmである光について2%以下であるなど、低い値である。
(Effect of the light emitting device 40)
In the light emitting device 40 according to the present embodiment, the light transmissive substrate 12 is made of sapphire. The emissivity of sapphire is a low value, such as 2% or less for light having a wavelength of 2.6 μm to 3.7 μm.
 そこで、発光装置40においては、光透過性基板42の表面に、黒アルミナの膜である放熱部4が形成されている。黒アルミナの放射率は、75%~95%程度である。すなわち、黒アルミナの放射率は、サファイアの放射率より著しく高い。したがって、発光装置40においては、放熱部4が形成されることで、蛍光体膜11から固定冶具13までの間の放熱経路について、放射率が向上する。このため、蛍光体膜11で発生した熱の一部は、図5において矢印(破線)で示すように、放熱部4から大気中へ放熱される。 Therefore, in the light emitting device 40, the heat radiating part 4 which is a film of black alumina is formed on the surface of the light transmissive substrate. The emissivity of black alumina is about 75% to 95%. That is, the emissivity of black alumina is significantly higher than that of sapphire. Therefore, in the light emitting device 40, the emissivity of the heat dissipation path between the phosphor film 11 and the fixing jig 13 is improved by forming the heat dissipation portion 4. For this reason, a part of the heat generated in the phosphor film 11 is radiated from the heat radiating portion 4 to the atmosphere as indicated by an arrow (broken line) in FIG.
 また上述した通り、放熱部4は、蛍光体膜11の側面に接しているため、蛍光体膜11で発生した熱の一部は、図5において矢印(実線)で示すように、放熱部4を介して固定冶具13へ放熱される。ここで、黒アルミナの熱伝導率は、32W/m・K程度と比較的高い。したがって、発光装置40においては、蛍光体膜11から固定冶具13までの間の放熱経路について、熱伝導率も向上する。このため、固定冶具13へ放熱される熱の一部は、蛍光体膜11の側面から放熱部4を介して固定冶具13へ放熱される。 Further, as described above, since the heat radiating part 4 is in contact with the side surface of the phosphor film 11, a part of the heat generated in the phosphor film 11 is indicated by an arrow (solid line) in FIG. 5. The heat is radiated to the fixing jig 13 via Here, the thermal conductivity of black alumina is relatively high at about 32 W / m · K. Therefore, in the light emitting device 40, the thermal conductivity is also improved in the heat dissipation path from the phosphor film 11 to the fixing jig 13. For this reason, a part of the heat radiated to the fixing jig 13 is radiated from the side surface of the phosphor film 11 to the fixing jig 13 via the heat radiating portion 4.
 したがって、発光装置40においては、発光装置90と比較して、蛍光体膜11から固定冶具13までの間の熱抵抗が小さくなる。この結果、蛍光体膜11の温度が上昇しにくくなり、蛍光体膜11の効率の低下が抑制される。 Therefore, in the light emitting device 40, compared with the light emitting device 90, the thermal resistance between the phosphor film 11 and the fixing jig 13 is reduced. As a result, the temperature of the phosphor film 11 is unlikely to rise, and a decrease in the efficiency of the phosphor film 11 is suppressed.
 また、放熱部4の厚さは、上述した通り、蛍光体膜11の厚さ未満である。すなわち、蛍光体膜11の側面の一部は、放熱部4に覆われない。このため、蛍光体膜11の側面から出射する蛍光の一部は、放熱部4に吸収されることなく、外部へ放出される。すなわち、蛍光の利用効率が向上する。 Moreover, the thickness of the heat radiation part 4 is less than the thickness of the phosphor film 11 as described above. That is, a part of the side surface of the phosphor film 11 is not covered with the heat radiating part 4. For this reason, a part of the fluorescence emitted from the side surface of the phosphor film 11 is emitted to the outside without being absorbed by the heat radiation part 4. That is, the use efficiency of fluorescence is improved.
 特に、本実施形態における放熱部4は、上述したように、スクリーン印刷により成膜された薄膜を焼成したものである。一般に、スクリーン印刷により成膜された膜は、縁において薄くなるような傾斜が形成される。このため、放熱部4には、図6の(c)に示すように、蛍光体膜11と接する部分が薄くなるような傾斜が形成されるこの結果、蛍光体膜11の側面の、放熱部4に覆われない部分の面積が広くなり、蛍光体膜11から、より多くの蛍光を取り出すことができる。 In particular, the heat radiation part 4 in the present embodiment is obtained by firing a thin film formed by screen printing as described above. In general, a film formed by screen printing is inclined so as to be thin at the edge. For this reason, as shown in FIG. 6C, the heat radiating portion 4 is inclined so that the portion in contact with the phosphor film 11 is thin. As a result, the heat radiating portion on the side surface of the phosphor film 11 is formed. The area of the portion that is not covered with 4 becomes wider, and more fluorescent light can be extracted from the phosphor film 11.
 〔実施形態5〕
 本発明の他の実施形態について、図7に基づいて説明すれば、以下の通りである。本実施形態では、光透過性基板42上に放熱部4とは異なる放熱部5が形成されている発光装置50について説明する。
[Embodiment 5]
The following will describe another embodiment of the present invention with reference to FIG. In the present embodiment, a light emitting device 50 in which a heat radiating part 5 different from the heat radiating part 4 is formed on a light transmissive substrate 42 will be described.
 図7は、本実施形態に係る発光装置50の構成を示す断面図である。図7に示すように、発光装置50は、蛍光体膜11と、光透過性基板42と、放熱部5と、固定冶具13とを備える。 FIG. 7 is a cross-sectional view showing the configuration of the light emitting device 50 according to the present embodiment. As shown in FIG. 7, the light emitting device 50 includes the phosphor film 11, the light transmissive substrate 42, the heat radiating unit 5, and the fixing jig 13.
 放熱部5は、光透過性基板42の上面の、蛍光体膜11が設けられている領域以外の領域に設けられている、凹凸形状の構造物である。具体的には、例えば、光透過性基板42の、蛍光体膜11が形成されている領域以外の領域が、すりガラス状になっているものが挙げられる。この場合、光透過性基板42の、すりガラス状の領域が、放熱部5として機能する。 The heat dissipating part 5 is an uneven structure provided in a region other than the region where the phosphor film 11 is provided on the upper surface of the light-transmitting substrate 42. Specifically, for example, a region of the light-transmitting substrate 42 other than the region where the phosphor film 11 is formed is ground glass. In this case, the ground glass-like region of the light transmissive substrate 42 functions as the heat radiating portion 5.
 光透過性基板42は、放熱部5が形成されていることにより、表面積が増加している。このため、光透過性基板42の放熱効率が向上している。すなわち、蛍光体膜11から固定冶具13までの間の放熱経路について、対流による熱伝達効率が向上している。したがって、蛍光体膜11で発生した熱は、図7において矢印(破線)で示すように、光透過性基板42から放熱部5を経由して大気中へ放熱されやすくなっている。 The surface area of the light-transmitting substrate 42 is increased by forming the heat dissipating part 5. For this reason, the heat dissipation efficiency of the light transmissive substrate 42 is improved. That is, the heat transfer efficiency by convection is improved in the heat radiation path from the phosphor film 11 to the fixing jig 13. Therefore, the heat generated in the phosphor film 11 is easily radiated from the light transmissive substrate 42 to the atmosphere via the heat radiating portion 5 as indicated by an arrow (broken line) in FIG.
 〔実施形態6〕
 本発明の他の実施形態について、図8に基づいて説明すれば、以下の通りである。本実施形態では、上述した実施形態1で説明した発光装置10を用いた照明装置100について説明する。照明装置100は、スポットライト、または車の前照灯などに適用可能な照明装置である。
[Embodiment 6]
The following will describe another embodiment of the present invention with reference to FIG. In the present embodiment, a lighting device 100 using the light emitting device 10 described in the first embodiment will be described. The illuminating device 100 is an illuminating device applicable to a spotlight or a vehicle headlamp.
 図8は、本実施形態に係る照明装置100の構成を示す図である。図8に示すように、照明装置100は、発光装置10と、レーザ素子101と、光ファイバ102と、フェルール103と、フェルール固定部104と、レンズ105と、レンズ固定部106と、放熱フィン107とを備える。 FIG. 8 is a diagram illustrating a configuration of the illumination device 100 according to the present embodiment. As shown in FIG. 8, the illumination device 100 includes a light emitting device 10, a laser element 101, an optical fiber 102, a ferrule 103, a ferrule fixing unit 104, a lens 105, a lens fixing unit 106, and a heat radiation fin 107. With.
 レーザ素子101は、励起光を発する励起光源である。本実施形態において、レーザ素子101は、波長450nmの励起光を発する。レーザ素子101は複数であり、必要な出力に応じて適宜個数を変更すればよい。 The laser element 101 is an excitation light source that emits excitation light. In the present embodiment, the laser element 101 emits excitation light having a wavelength of 450 nm. There are a plurality of laser elements 101, and the number may be changed as appropriate according to the required output.
 光ファイバ102は、レーザ素子101が発した励起光を、発光装置10が備える蛍光体膜11へ案内する導光部材である。本実施形態において、光ファイバ102は、励起光が入射する、レーザ素子101の数に対応する数の入射端102aと、発光装置10が備える蛍光体膜11に向けて励起光を出射する単一の出射端102bとを備える。また、光ファイバ102は、レーザ素子101の数に対応する本数の光ファイバが束ねられた、バンドルファイバであってもよい。 The optical fiber 102 is a light guide member that guides the excitation light emitted from the laser element 101 to the phosphor film 11 included in the light emitting device 10. In the present embodiment, the optical fiber 102 is a single unit that emits excitation light toward the number of incident ends 102 a corresponding to the number of laser elements 101 on which excitation light is incident and the phosphor film 11 included in the light emitting device 10. Output end 102b. The optical fiber 102 may be a bundle fiber in which a number of optical fibers corresponding to the number of laser elements 101 are bundled.
 フェルール103は、光ファイバ102を保持するフェルールである。具体的には、フェルール103は、光ファイバ102の周囲を、出射端102bの近傍において囲むように保持している。 The ferrule 103 is a ferrule that holds the optical fiber 102. Specifically, the ferrule 103 holds the optical fiber 102 so as to surround the vicinity of the emission end 102b.
 フェルール固定部104は、フェルール103を発光装置10に固定するための部材である。フェルール固定部104は、筒状の部材である固定冶具13の、放熱部1が固定されている一端とは逆側の端部に設けられている。フェルール103がフェルール固定部104に固定されることで、フェルール103に保持されている光ファイバ102の出射端102bが、蛍光体膜11と対向する位置に固定される。 The ferrule fixing part 104 is a member for fixing the ferrule 103 to the light emitting device 10. The ferrule fixing portion 104 is provided at an end portion of the fixing jig 13 that is a cylindrical member on the opposite side to the one end to which the heat radiating portion 1 is fixed. By fixing the ferrule 103 to the ferrule fixing portion 104, the emission end 102 b of the optical fiber 102 held by the ferrule 103 is fixed at a position facing the phosphor film 11.
 レンズ105は、発光装置10が発した光を外部へ投光する投光部材である。レンズ105の材質は、アクリル樹脂、ポリカーボネイト、シリコーン樹脂、ホウケイ酸ガラス、BK7、または石英などから適宜選択すればよい。レンズ105は、図8に記載されているように単独であってもよいし、複数であってもよい。また、レンズ105は、球面レンズまたは非球面レンズのどちらでもよい。 The lens 105 is a light projecting member that projects light emitted from the light emitting device 10 to the outside. The material of the lens 105 may be appropriately selected from acrylic resin, polycarbonate, silicone resin, borosilicate glass, BK7, or quartz. The lens 105 may be a single lens as shown in FIG. 8 or a plurality of lenses. The lens 105 may be either a spherical lens or an aspheric lens.
 レンズ固定部106は、発光装置10とレンズ105との相対位置を固定する部材である。レンズ固定部106は、発光装置10およびレンズ105の周囲を囲む、円筒形の部材である。レンズ固定部106の材質としては、放熱効率の高いものが好ましい。例えば、レンズ固定部106の材料として、アルマイト処理されたアルミニウムなどを好適に用いることができる。 The lens fixing unit 106 is a member that fixes the relative position between the light emitting device 10 and the lens 105. The lens fixing unit 106 is a cylindrical member surrounding the light emitting device 10 and the lens 105. As a material of the lens fixing portion 106, a material having high heat dissipation efficiency is preferable. For example, anodized aluminum or the like can be suitably used as the material for the lens fixing portion 106.
 放熱フィン107は、固定冶具13の放熱効率を向上させる部材である。放熱フィン107は、固定冶具13の、フェルール固定部104が設けられている側に設けられている。放熱フィン107の形状、大きさ、数などは、レーザ素子101が発する励起光の出力、および蛍光体膜11の仕様などにより定まる。これにより、固定冶具13の放熱効率がさらに向上する。したがって、蛍光体膜11の温度上昇に伴う効率の低下がさらに抑制される。 The heat radiation fin 107 is a member that improves the heat radiation efficiency of the fixing jig 13. The radiating fins 107 are provided on the side of the fixing jig 13 where the ferrule fixing portion 104 is provided. The shape, size, number, etc. of the radiation fins 107 are determined by the output of the excitation light emitted from the laser element 101 and the specifications of the phosphor film 11. Thereby, the heat dissipation efficiency of the fixing jig 13 is further improved. Therefore, a decrease in efficiency due to the temperature rise of the phosphor film 11 is further suppressed.
 また、発光装置10において、蛍光体膜11と光透過性基板12との間に、励起光を透過し、かつ蛍光を反射する誘電体多層膜が形成されていてもよい。上記誘電体多層膜は、具体的には、波長が450nm程度の光を透過させ、波長が480nm~700nm程度の光を反射する。蛍光体膜11で発生した蛍光は、蛍光体膜11から全方位に向けて出射される。しかし、上記誘電体多層膜が形成されていれば、蛍光体膜11の内部において、フェルール103の方向に出射される蛍光が、レンズ105の方向に反射される。これにより、発光装置10からの光の取り出し効率が向上し、照明装置100は、より明るい照明装置となる。 Further, in the light emitting device 10, a dielectric multilayer film that transmits excitation light and reflects fluorescence may be formed between the phosphor film 11 and the light transmissive substrate 12. Specifically, the dielectric multilayer film transmits light having a wavelength of about 450 nm and reflects light having a wavelength of about 480 nm to 700 nm. Fluorescence generated in the phosphor film 11 is emitted from the phosphor film 11 in all directions. However, if the dielectric multilayer film is formed, the fluorescence emitted in the direction of the ferrule 103 is reflected in the direction of the lens 105 inside the phosphor film 11. Thereby, the light extraction efficiency from the light emitting device 10 is improved, and the lighting device 100 becomes a brighter lighting device.
 上記の誘電体多層膜は、高屈折率の誘電体薄膜と、低屈折率の誘電体薄膜とを交互に重ねることで形成される。高屈折率材料の例としては、例えばTiOまたはTaなどである。また、低屈折材料の例としては、SiOまたはMgFなどが一般的である。 The dielectric multilayer film is formed by alternately stacking a high refractive index dielectric thin film and a low refractive index dielectric thin film. Examples of the high refractive index material include TiO 2 and Ta 2 O 3 . As an example of the low refractive material, SiO 2 or MgF 2 is generally used.
 また、発光装置10において、光透過性基板12のフェルール103側の面に、励起光の反射率を低下させるAR(Anti-Reflection)コートが施されていてもよい。ARコートは、例えば誘電体の多層膜である。この場合、ARコートによって、光透過性基板12のフェルール103側の面における励起光の反射率が低下することで、レーザ素子101から出射される励起光のうち、蛍光体膜11に入射する励起光の比率が増加する。これにより、発光装置10からの光の取り出し効率が向上する。その結果、照明装置100は、より明るい照明装置となる。 Further, in the light emitting device 10, an AR (Anti-Reflection) coat for reducing the reflectance of the excitation light may be applied to the surface of the light transmissive substrate 12 on the ferrule 103 side. The AR coat is, for example, a dielectric multilayer film. In this case, the AR coating reduces the reflectivity of the excitation light on the surface of the light transmissive substrate 12 on the ferrule 103 side, so that the excitation light that enters the phosphor film 11 out of the excitation light emitted from the laser element 101. The ratio of light increases. Thereby, the light extraction efficiency from the light emitting device 10 is improved. As a result, the lighting device 100 becomes a brighter lighting device.
 上述した通り、本実施形態で説明した照明装置100は、発光装置として発光装置10を備えている。しかし、本実施形態に係る照明装置は、発光装置として発光装置20~50のいずれかを備えていてもよい。 As described above, the illumination device 100 described in the present embodiment includes the light emitting device 10 as a light emitting device. However, the lighting device according to the present embodiment may include any one of the light emitting devices 20 to 50 as the light emitting device.
 〔実施形態7〕
 本発明の他の実施形態について、図9に基づいて説明すれば、以下の通りである。本実施形態では、上述した照明装置100にリフレクタ110を追加した照明装置200について説明する。照明装置200は、照明装置100と同様、スポットライト、または車の前照灯などに適用可能な照明装置である。
[Embodiment 7]
The following will describe another embodiment of the present invention with reference to FIG. This embodiment demonstrates the illuminating device 200 which added the reflector 110 to the illuminating device 100 mentioned above. The lighting device 200 is a lighting device that can be applied to a spotlight, a vehicle headlamp, or the like, similarly to the lighting device 100.
 図9は、本実施形態に係る照明装置200の構成を示す図である。図9に示すように、照明装置200は、図8に示した照明装置100の構成に、リフレクタ110を追加した構成を有する。 FIG. 9 is a diagram illustrating a configuration of the illumination device 200 according to the present embodiment. As illustrated in FIG. 9, the lighting device 200 has a configuration in which a reflector 110 is added to the configuration of the lighting device 100 illustrated in FIG. 8.
 リフレクタ110は、蛍光体膜11が励起光の入射側に出射した蛍光を、光透過性基板12へ向けて反射する部材である。リフレクタ110は、発光装置10の、励起光が蛍光体膜11へ入射する光路の周りに設けられている。 The reflector 110 is a member that reflects the fluorescence emitted from the phosphor film 11 toward the incident side of the excitation light toward the light transmissive substrate 12. The reflector 110 is provided around the optical path of the light emitting device 10 where the excitation light enters the phosphor film 11.
 リフレクタ110は、蛍光の波長の光に対して高い反射率を有する材料で構成される。リフレクタ110を構成する材料の具体例としては、鏡面加工されたアルミニウムなどが挙げられる。リフレクタ110の形状(半球または放物面)、サイズ、および焦点の位置などは、蛍光体膜11の大きさ、および照明装置200に必要とされる照射スポットの仕様などによって当業者が適宜決定すればよい。 The reflector 110 is made of a material having a high reflectance with respect to light having a fluorescent wavelength. A specific example of the material constituting the reflector 110 includes mirror-finished aluminum. A person skilled in the art appropriately determines the shape (hemisphere or paraboloid), size, and focal position of the reflector 110 according to the size of the phosphor film 11 and the specifications of the irradiation spot required for the illumination device 200. That's fine.
 本実施形態で説明した照明装置200は、発光装置として発光装置10を備える。さらに、発光装置10が備える固定冶具13の内部に、リフレクタ110が設けられている。しかし、本実施形態に係る照明装置は、発光装置として発光装置20~50のいずれかを備え、さらに、当該発光装置が備える固定冶具13の内部に、リフレクタ110が設けられているものであってもよい。 The lighting device 200 described in the present embodiment includes the light emitting device 10 as a light emitting device. Further, a reflector 110 is provided inside the fixing jig 13 included in the light emitting device 10. However, the illumination device according to the present embodiment includes any one of the light emitting devices 20 to 50 as the light emitting device, and further includes a reflector 110 provided inside the fixing jig 13 included in the light emitting device. Also good.
 また、本発明に係る発光装置は、発光装置10~50のいずれかに、リフレクタ110が設けられているものであってもよい。 Also, the light emitting device according to the present invention may be one in which the reflector 110 is provided in any of the light emitting devices 10 to 50.
 〔まとめ〕
 本発明の態様1に係る発光装置(10)は、励起光の波長を変換し、蛍光を発する蛍光体膜(11)と、上記励起光を透過させる光透過性基板(12)とを備え、上記光透過性基板は、表面の一部に上記蛍光体膜が設けられ、かつ上記蛍光体膜が設けられている部分とは別の部分に上記光透過性基板の放熱効率を向上させる放熱部(1)が設けられている。
[Summary]
A light emitting device (10) according to aspect 1 of the present invention includes a phosphor film (11) that converts the wavelength of excitation light and emits fluorescence, and a light-transmitting substrate (12) that transmits the excitation light. The light transmissive substrate is provided with the phosphor film on a part of the surface, and a heat radiating portion for improving the heat radiation efficiency of the light transmissive substrate in a part different from the part where the phosphor film is provided. (1) is provided.
 上記の構成によれば、本発明に係る発光装置が備える光透過性基板には、表面の一部に蛍光体膜が形成されるとともに、表面の別の部分に放熱部が設けられている。放熱部は、光透過性基板の放熱効率を向上させる機能を有する。 According to the above configuration, the light-transmitting substrate included in the light emitting device according to the present invention has the phosphor film formed on a part of the surface and the heat radiating part provided on another part of the surface. The heat dissipation part has a function of improving the heat dissipation efficiency of the light transmissive substrate.
 蛍光体膜で発生した熱は、光透過性基板を経由して放熱される。放熱部により光透過性基板の放熱効率が向上することで、光透過性基板の熱抵抗値が低下し、蛍光体膜から光透過性基板へ熱が伝わりやすくなる。このため、蛍光体膜の放熱効率が向上するため、蛍光体膜の温度が上昇しにくくなる。したがって、発光装置における蛍光体の放熱効率を向上させることができる。 The heat generated in the phosphor film is dissipated through the light transmissive substrate. Since the heat dissipation efficiency of the light transmissive substrate is improved by the heat radiating portion, the thermal resistance value of the light transmissive substrate is reduced, and heat is easily transmitted from the phosphor film to the light transmissive substrate. For this reason, since the thermal radiation efficiency of a fluorescent substance film improves, it becomes difficult to raise the temperature of a fluorescent substance film. Therefore, the heat dissipation efficiency of the phosphor in the light emitting device can be improved.
 本発明の態様2に係る発光装置は、上記態様1において、上記放熱部は、高熱伝導率材料を含んでもよい。 In the light emitting device according to aspect 2 of the present invention, in the above aspect 1, the heat radiating portion may include a high thermal conductivity material.
 上記の構成によれば、高い熱伝導率を有する材料を含んで構成された放熱部が光透過性基板に設けられる。これにより、光透過性基板の放熱効率が向上する。 According to the above configuration, the heat radiating portion configured to include a material having high thermal conductivity is provided on the light transmissive substrate. Thereby, the heat dissipation efficiency of the light transmissive substrate is improved.
 本発明の態様3に係る発光装置は、上記態様2において、上記高熱伝導率材料の熱伝導率は、80W/m・K以上であることが好ましい。 In the light emitting device according to aspect 3 of the present invention, in the aspect 2, the high thermal conductivity material preferably has a thermal conductivity of 80 W / m · K or more.
 上記の構成によれば、光透過性基板の放熱効率が向上する。 According to the above configuration, the heat dissipation efficiency of the light transmissive substrate is improved.
 本発明の態様4に係る発光装置は、上記態様3において、上記高熱伝導率材料の熱伝導率は、237W/m・K以上であることが好ましい。 In the light emitting device according to aspect 4 of the present invention, in the above aspect 3, the thermal conductivity of the high thermal conductivity material is preferably 237 W / m · K or more.
 上記の構成によれば、光透過性基板の放熱効率が向上する。 According to the above configuration, the heat dissipation efficiency of the light transmissive substrate is improved.
 本発明の態様5に係る発光装置は、上記態様2から4のいずれか1つにおいて、上記光透過性基板について、上記励起光が入射する面と逆側の面を上面としたとき、上記蛍光体膜は、上記上面の少なくとも一部に形成され、上記放熱部は、上記光透過性基板の側面に設けられていることが好ましい。 The light-emitting device according to Aspect 5 of the present invention is the light-emitting device according to any one of Aspects 2 to 4, wherein the surface of the light transmissive substrate opposite to the surface on which the excitation light is incident is the top surface. The body film is preferably formed on at least a part of the upper surface, and the heat radiating portion is provided on a side surface of the light transmissive substrate.
 上記の構成によれば、放熱部は、蛍光体膜へ入射する励起光、および蛍光体膜から出射する蛍光を遮ることなく、蛍光体膜の放熱効率を向上させることができる。 According to the above configuration, the heat dissipation part can improve the heat dissipation efficiency of the phosphor film without blocking the excitation light incident on the phosphor film and the fluorescence emitted from the phosphor film.
 本発明の態様6に係る発光装置は、上記態様5において、上記放熱部は、フィン形状(放熱部2)を有してもよい。 In the light emitting device according to aspect 6 of the present invention, in the aspect 5, the heat dissipating part may have a fin shape (heat dissipating part 2).
 上記の構成によれば、放熱部の表面積が大きくなる。このため、蛍光体膜の放熱効率がさらに向上する。 According to the above configuration, the surface area of the heat radiating portion is increased. For this reason, the heat dissipation efficiency of the phosphor film is further improved.
 本発明の態様7に係る発光装置は、上記態様5において、上記放熱部は、上記蛍光を反射するリフレクタ(放熱部3)として機能してもよい。 In the light emitting device according to aspect 7 of the present invention, in the aspect 5, the heat dissipation part may function as a reflector (heat dissipation part 3) that reflects the fluorescence.
 上記の構成によれば、蛍光体膜から出射される蛍光の利用効率が向上する。 According to the above configuration, the utilization efficiency of the fluorescence emitted from the phosphor film is improved.
 本発明の態様8に係る発光装置は、上記態様1において、上記放熱部は、高放射率材料(放熱部4)を含んでもよい。 In the light emitting device according to aspect 8 of the present invention, in the aspect 1, the heat dissipating part may include a high emissivity material (heat dissipating part 4).
 上記の構成によれば、高い放射率を有する材料を含んで構成された放熱部が光透過性基板に設けられる。これにより、光透過性基板の放熱効率が向上する。 According to the above configuration, the heat radiating portion configured to include a material having a high emissivity is provided on the light transmissive substrate. Thereby, the heat dissipation efficiency of the light transmissive substrate is improved.
 本発明の態様9に係る発光装置は、上記態様8において、上記高放射率材料の放射率は、2%より大きいことが好ましい。 In the light emitting device according to aspect 9 of the present invention, in the aspect 8, the emissivity of the high emissivity material is preferably greater than 2%.
 上記の構成によれば、光透過性基板の放熱効率が向上する。 According to the above configuration, the heat dissipation efficiency of the light transmissive substrate is improved.
 本発明の態様10に係る発光装置は、上記態様8または9において、上記光透過性基板について、上記励起光が入射する面と逆側の面を上面としたとき、上記蛍光体膜は、上記上面の一部に設けられ、上記放熱部は、上記上面の、上記蛍光体膜が設けられている領域以外の領域に設けられていることが好ましい。 In the light emitting device according to aspect 10 of the present invention, in the above aspect 8 or 9, when the surface opposite to the surface on which the excitation light is incident is the upper surface of the light transmissive substrate, the phosphor film is Preferably, the heat dissipating part is provided in a part of the upper surface, and is provided in a region other than the region where the phosphor film is provided on the upper surface.
 上記の構成によれば、放熱部は、蛍光体膜へ入射する励起光、および蛍光体膜から出射する蛍光を遮ることなく、蛍光体膜の放熱効率を向上させることができる。 According to the above configuration, the heat dissipation part can improve the heat dissipation efficiency of the phosphor film without blocking the excitation light incident on the phosphor film and the fluorescence emitted from the phosphor film.
 本発明の態様11に係る発光装置は、上記態様1から10のいずれか1つにおいて、上記放熱部は、上記蛍光体膜の少なくとも一部に接していることが好ましい。 In the light emitting device according to the eleventh aspect of the present invention, in any one of the first to tenth aspects, it is preferable that the heat dissipating part is in contact with at least a part of the phosphor film.
 上記の構成によれば、蛍光体膜で発生した熱の一部は、放熱部へ放熱される。したがって、蛍光体膜の放熱効率がさらに向上する。 According to the above configuration, part of the heat generated in the phosphor film is radiated to the heat radiating portion. Therefore, the heat dissipation efficiency of the phosphor film is further improved.
 本発明の態様12に係る発光装置は、上記態様1において、上記放熱部は、上記光透過性基板の表面に形成された、凹凸形状の構造物(放熱部5)であってもよい。 In the light emitting device according to aspect 12 of the present invention, in the aspect 1, the heat dissipating part may be an uneven structure (heat dissipating part 5) formed on the surface of the light transmitting substrate.
 上記の構成によれば、凹凸形状の構造物が、光透過性基板の表面に形成される。このため、当該構造物により、蛍光体膜の放熱効率が向上する。 According to the above configuration, the uneven structure is formed on the surface of the light transmissive substrate. For this reason, the heat dissipation efficiency of the phosphor film is improved by the structure.
 本発明の態様13に係る発光装置は、上記態様12において、上記光透過性基板について、上記励起光が入射する面と逆側の面を上面としたとき、上記蛍光体膜は、上記上面の一部に設けられ、上記放熱部は、上記光透過性基板の上面の、上記蛍光体膜が設けられている領域以外の領域に設けられていることが好ましい。 The light-emitting device according to Aspect 13 of the present invention is the light-emitting device according to Aspect 12, wherein when the surface opposite to the surface on which the excitation light is incident is the upper surface of the light-transmitting substrate, the phosphor film is It is preferable that the heat dissipating part is provided in a part of the upper surface of the light transmissive substrate in a region other than the region where the phosphor film is provided.
 上記の構成によれば、放熱部は、蛍光体膜へ入射する励起光、および蛍光体膜から出射する蛍光を遮ることなく、蛍光体膜の放熱効率を向上させることができる。 According to the above configuration, the heat dissipation part can improve the heat dissipation efficiency of the phosphor film without blocking the excitation light incident on the phosphor film and the fluorescence emitted from the phosphor film.
 本発明の態様14に係る発光装置は、上記態様1から13のいずれか1つにおいて、上記蛍光体膜が上記励起光の入射側に出射した蛍光を、上記光透過性基板へ向けて反射するリフレクタ(110)が設けられていることが好ましい。 The light-emitting device according to aspect 14 of the present invention is the light-emitting device according to any one of aspects 1 to 13, wherein the phosphor film reflects the fluorescence emitted to the incident side of the excitation light toward the light-transmitting substrate. A reflector (110) is preferably provided.
 上記の構成によれば、発光装置における励起光の利用効率が向上する。 According to the above configuration, the utilization efficiency of the excitation light in the light emitting device is improved.
 本発明の態様15に係る発光装置は、上記態様1から14のいずれか1つにおいて、上記励起光は、レーザ光であることが好ましい。 In the light emitting device according to aspect 15 of the present invention, in any one of the aspects 1 to 14, the excitation light is preferably laser light.
 上記の構成によれば、蛍光体膜に高密度のレーザ光が入射することで、蛍光体膜の温度が上昇しやすくなる場合であっても、蛍光体膜の温度上昇を抑制することが可能となる。 According to said structure, even if it is a case where the temperature of a fluorescent substance film rises easily because a high-density laser beam injects into a fluorescent substance film, it is possible to suppress the temperature rise of a fluorescent substance film. It becomes.
 本発明の態様16に係る発光装置は、上記態様1から15のいずれか1つにおいて、上記蛍光体膜の励起光照射面における上記励起光のスポットの大きさは、当該励起光照射面の大きさより小さいことが好ましい。 The light emitting device according to aspect 16 of the present invention is the light emitting device according to any one of aspects 1 to 15, wherein the excitation light spot size on the excitation light irradiation surface of the phosphor film is the size of the excitation light irradiation surface. It is preferable to be smaller.
 上記の構成によれば、励起光が蛍光体膜の励起光照射面に入射した直後に、蛍光体膜の側面から励起光が漏れる虞が低減される。このため、励起光の利用効率を高めることができる。 According to the above configuration, the possibility that the excitation light leaks from the side surface of the phosphor film immediately after the excitation light enters the excitation light irradiation surface of the phosphor film is reduced. For this reason, the utilization efficiency of excitation light can be improved.
 本発明の態様17に係る発光装置は、上記態様1から16のいずれか1つにおいて、上記放熱部は、上記蛍光体膜および上記光透過性基板を固定する固定冶具として機能することが好ましい。 In the light-emitting device according to Aspect 17 of the present invention, in any one of Aspects 1 to 16, it is preferable that the heat dissipating part functions as a fixing jig that fixes the phosphor film and the light-transmitting substrate.
 上記の構成によれば、発光装置10を構成する部品の点数を削減することができる。 According to the above configuration, the number of parts constituting the light emitting device 10 can be reduced.
 本発明の態様18に係る照明装置(100)は、上記態様1から17のいずれか1つの発光装置を備える。 A lighting device (100) according to aspect 18 of the present invention includes any one of the light emitting devices according to aspects 1 to 17.
 上記の構成によれば、照明装置は、明るさが低下しにくい発光装置を備える。したがって、照明装置の明るさが低下しにくくなる。 According to the above configuration, the lighting device includes the light emitting device in which the brightness is difficult to decrease. Therefore, the brightness of the lighting device is unlikely to decrease.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment.
 〔本発明の別の表現〕
 なお、本発明は、以下のようにも表現できる。
[Another expression of the present invention]
The present invention can also be expressed as follows.
 すなわち、本発明の一態様に係る発光装置は、蛍光体膜と光透過性基板と固定治具で構成され、光透過性基板の側面、または、光透過性基板の蛍光体膜が付いていない箇所(前記基板の側面も含む)に、前記基板より高熱伝導率材料、高放射率材料、高対流熱伝達効率形状のうち、少なくとも一つを構成に含む放熱部が設置されていることを特徴とする。 That is, the light-emitting device according to one embodiment of the present invention includes a phosphor film, a light-transmitting substrate, and a fixing jig, and does not have a side surface of the light-transmitting substrate or the phosphor film of the light-transmitting substrate. A heat dissipating part including at least one of a high thermal conductivity material, a high emissivity material, and a high convection heat transfer efficiency shape than the substrate is installed at a location (including a side surface of the substrate). And
 1、2、3、4、5 放熱部
 10、20、30、40、50、90 発光装置
 11 蛍光体膜
 12、42 光透過性基板
 100、200 照明装置
 110 リフレクタ
1, 2, 3, 4, 5 Heat radiation part 10, 20, 30, 40, 50, 90 Light emitting device 11 Phosphor film 12, 42 Light transmissive substrate 100, 200 Illuminating device 110 Reflector

Claims (18)

  1.  励起光の波長を変換し、蛍光を発する蛍光体膜と、
     上記励起光を透過させる光透過性基板とを備え、
     上記光透過性基板は、表面の一部に上記蛍光体膜が設けられ、かつ上記蛍光体膜が設けられている部分とは別の部分に上記光透過性基板の放熱効率を向上させる放熱部が設けられていることを特徴とする発光装置。
    A phosphor film that converts the wavelength of the excitation light and emits fluorescence;
    A light-transmitting substrate that transmits the excitation light,
    The light transmissive substrate is provided with the phosphor film on a part of the surface, and a heat radiating portion for improving the heat radiation efficiency of the light transmissive substrate in a part different from the part where the phosphor film is provided. A light emitting device comprising:
  2.  上記放熱部は、高熱伝導率材料を含むことを特徴とする請求項1に記載の発光装置。 The light-emitting device according to claim 1, wherein the heat dissipating part includes a high thermal conductivity material.
  3.  上記高熱伝導率材料の熱伝導率は、80W/m・K以上であることを特徴とする請求項2に記載の発光装置。 3. The light emitting device according to claim 2, wherein the thermal conductivity of the high thermal conductivity material is 80 W / m · K or more.
  4.  上記高熱伝導率材料の熱伝導率は、237W/m・K以上であることを特徴とする請求項3に記載の発光装置。 4. The light emitting device according to claim 3, wherein the high thermal conductivity material has a thermal conductivity of 237 W / m · K or more.
  5.  上記光透過性基板について、上記励起光が入射する面と逆側の面を上面としたとき、
     上記蛍光体膜は、上記上面の少なくとも一部に形成され、
     上記放熱部は、上記光透過性基板の側面に設けられていることを特徴とする請求項2から4のいずれか1項に記載の発光装置。
    When the surface opposite to the surface on which the excitation light is incident is the upper surface of the light transmissive substrate,
    The phosphor film is formed on at least a part of the upper surface,
    The light-emitting device according to claim 2, wherein the heat radiating portion is provided on a side surface of the light-transmitting substrate.
  6.  上記放熱部は、フィン形状を有することを特徴とする請求項5に記載の発光装置。 6. The light emitting device according to claim 5, wherein the heat radiating portion has a fin shape.
  7.  上記放熱部は、上記蛍光を反射するリフレクタとして機能することを特徴とする請求項5に記載の発光装置。 6. The light emitting device according to claim 5, wherein the heat radiating portion functions as a reflector that reflects the fluorescence.
  8.  上記放熱部は、高放射率材料を含むことを特徴とする請求項1に記載の発光装置。 2. The light emitting device according to claim 1, wherein the heat radiating portion includes a high emissivity material.
  9.  上記高放射率材料の放射率は、2%より大きいことを特徴とする請求項8に記載の発光装置。 The light emitting device according to claim 8, wherein the emissivity of the high emissivity material is greater than 2%.
  10.  上記光透過性基板について、上記励起光が入射する面と逆側の面を上面としたとき、
     上記蛍光体膜は、上記上面の一部に設けられ、
     上記放熱部は、上記上面の、上記蛍光体膜が設けられている領域以外の領域に設けられていることを特徴とする請求項8または9に記載の発光装置。
    When the surface opposite to the surface on which the excitation light is incident is the upper surface of the light transmissive substrate,
    The phosphor film is provided on a part of the upper surface,
    10. The light emitting device according to claim 8, wherein the heat radiating portion is provided in a region of the upper surface other than a region where the phosphor film is provided.
  11.  上記放熱部は、上記蛍光体膜の少なくとも一部に接していることを特徴とする請求項1から10のいずれか1項に記載の発光装置。 The light emitting device according to any one of claims 1 to 10, wherein the heat radiating portion is in contact with at least a part of the phosphor film.
  12.  上記放熱部は、上記光透過性基板の表面に形成された、凹凸形状の構造物であることを特徴とする請求項1に記載の発光装置。 2. The light emitting device according to claim 1, wherein the heat dissipating part is an uneven structure formed on a surface of the light transmissive substrate.
  13.  上記光透過性基板について、上記励起光が入射する面と逆側の面を上面としたとき、
     上記蛍光体膜は、上記上面の一部に設けられ、
     上記放熱部は、上記光透過性基板の上面の、上記蛍光体膜が設けられている領域以外の領域に設けられていることを特徴とする請求項12に記載の発光装置。
    When the surface opposite to the surface on which the excitation light is incident is the upper surface of the light transmissive substrate,
    The phosphor film is provided on a part of the upper surface,
    13. The light emitting device according to claim 12, wherein the heat radiating portion is provided in a region other than a region where the phosphor film is provided on the upper surface of the light transmissive substrate.
  14.  上記蛍光体膜が上記励起光の入射側に出射した蛍光を、上記光透過性基板へ向けて反射するリフレクタが設けられていることを特徴とする請求項1から13のいずれか1項に記載の発光装置。 The reflector which reflects the fluorescence which the said fluorescent substance film radiate | emitted to the incident side of the said excitation light toward the said light transmissive board | substrate is provided. Light-emitting device.
  15.  上記励起光は、レーザ光であることを特徴とする請求項1から14のいずれか1項に記載の発光装置。 The light emitting device according to any one of claims 1 to 14, wherein the excitation light is laser light.
  16.  上記蛍光体膜の励起光照射面における上記励起光のスポットの大きさは、当該励起光照射面の大きさより小さいことを特徴とする請求項1から15のいずれか1項に記載の発光装置。 The light emitting device according to any one of claims 1 to 15, wherein the size of the spot of the excitation light on the excitation light irradiation surface of the phosphor film is smaller than the size of the excitation light irradiation surface.
  17.  上記放熱部は、上記蛍光体膜および上記光透過性基板を固定する固定冶具として機能することを特徴とする請求項1から16のいずれか1項に記載の発光装置。 The light emitting device according to any one of claims 1 to 16, wherein the heat radiating portion functions as a fixing jig for fixing the phosphor film and the light transmissive substrate.
  18.  請求項1から17のいずれか1項に記載の発光装置を備える照明装置。 A lighting device comprising the light-emitting device according to any one of claims 1 to 17.
PCT/JP2016/064087 2015-09-10 2016-05-12 Light-emitting device and illumination device WO2017043121A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015178818 2015-09-10
JP2015-178818 2015-09-10

Publications (1)

Publication Number Publication Date
WO2017043121A1 true WO2017043121A1 (en) 2017-03-16

Family

ID=58240339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064087 WO2017043121A1 (en) 2015-09-10 2016-05-12 Light-emitting device and illumination device

Country Status (1)

Country Link
WO (1) WO2017043121A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3239595A1 (en) * 2016-04-18 2017-11-01 LG Innotek Co., Ltd. Lighting apparatus
CN109830885A (en) * 2019-02-27 2019-05-31 深圳市丰泰工业科技有限公司 A kind of white laser emitter
JP2021057414A (en) * 2019-09-27 2021-04-08 豊田合成株式会社 Light emitting device, wavelength conversion unit, and headlight or display device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013004479A (en) * 2011-06-21 2013-01-07 Sharp Corp Light emitting device, luminaire, vehicular headlamp, projector and manufacturing method of light emitting device
JP2013004208A (en) * 2011-06-13 2013-01-07 Olympus Corp Lighting device
JP2013089419A (en) * 2011-10-17 2013-05-13 Olympus Corp Lighting device
JP2014078518A (en) * 2006-08-09 2014-05-01 Philips Lumileds Lightng Co Llc Illumination device including wavelength converting element side holding heat sink
JP2014154313A (en) * 2013-02-07 2014-08-25 Olympus Corp Illumination device
JP2015162315A (en) * 2014-02-27 2015-09-07 日立アプライアンス株式会社 Flush lighting fixture

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014078518A (en) * 2006-08-09 2014-05-01 Philips Lumileds Lightng Co Llc Illumination device including wavelength converting element side holding heat sink
JP2013004208A (en) * 2011-06-13 2013-01-07 Olympus Corp Lighting device
JP2013004479A (en) * 2011-06-21 2013-01-07 Sharp Corp Light emitting device, luminaire, vehicular headlamp, projector and manufacturing method of light emitting device
JP2013089419A (en) * 2011-10-17 2013-05-13 Olympus Corp Lighting device
JP2014154313A (en) * 2013-02-07 2014-08-25 Olympus Corp Illumination device
JP2015162315A (en) * 2014-02-27 2015-09-07 日立アプライアンス株式会社 Flush lighting fixture

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3239595A1 (en) * 2016-04-18 2017-11-01 LG Innotek Co., Ltd. Lighting apparatus
US10208939B2 (en) 2016-04-18 2019-02-19 Lg Innotek Co., Ltd. Lighting apparatus
CN109830885A (en) * 2019-02-27 2019-05-31 深圳市丰泰工业科技有限公司 A kind of white laser emitter
JP2021057414A (en) * 2019-09-27 2021-04-08 豊田合成株式会社 Light emitting device, wavelength conversion unit, and headlight or display device
EP4036624A4 (en) * 2019-09-27 2023-05-10 Sony Group Corporation Light-emitting device, wavelength conversion unit, and headlight or display device
JP7356311B2 (en) 2019-09-27 2023-10-04 豊田合成株式会社 Light emitting device, wavelength conversion unit, and headlight or display device

Similar Documents

Publication Publication Date Title
US10060580B2 (en) Light emitting device
US10514151B2 (en) Light-emitting device, illumination device, and vehicle headlamp
US10054798B2 (en) Light-emitting device
US9494284B2 (en) Light source device and illumination apparatus
JP5323998B2 (en) Luminaire with phosphor, excitation light source, optical system, and heat sink
JP5269115B2 (en) LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, VEHICLE HEADLAMP, LIGHTING DEVICE, AND LIGHT EMITTING DEVICE MANUFACTURING METHOD
KR102114607B1 (en) Laser Light Source
WO2014203484A1 (en) Wavelength conversion member, light source and vehicle headlamp
US20120106127A1 (en) Light emitting device
JP6644081B2 (en) Light-emitting device, lighting device, and method for manufacturing light-emitting body included in light-emitting device
JP6424336B2 (en) Floodlight device
JP6067629B2 (en) Light emitting device, lighting device, and vehicle headlamp
JP2017526192A (en) Light emitting device
WO2017043121A1 (en) Light-emitting device and illumination device
JP2017183300A (en) Led light-emitting device
JP6266796B2 (en) Light emitting device, lighting device, spotlight, vehicle headlamp, and endoscope
JP6085204B2 (en) Light emitting device
CN114110524B (en) Light source device and car lamp
WO2020189405A1 (en) Optical element, vehicle headlight, light source device, and projection device
JP2013030380A (en) Light-emitting device
WO2014112231A1 (en) Light emitting device, light guide device, and method for manufacturing light emitting device
JP6305967B2 (en) Light emitting device, lighting device, and vehicle headlamp
CN110778973A (en) Lighting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16843987

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16843987

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP