JP2013089419A - Lighting device - Google Patents

Lighting device Download PDF

Info

Publication number
JP2013089419A
JP2013089419A JP2011228104A JP2011228104A JP2013089419A JP 2013089419 A JP2013089419 A JP 2013089419A JP 2011228104 A JP2011228104 A JP 2011228104A JP 2011228104 A JP2011228104 A JP 2011228104A JP 2013089419 A JP2013089419 A JP 2013089419A
Authority
JP
Japan
Prior art keywords
light
conversion member
wavelength conversion
wavelength
primary light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011228104A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kamee
宏幸 亀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2011228104A priority Critical patent/JP2013089419A/en
Publication of JP2013089419A publication Critical patent/JP2013089419A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Securing Globes, Refractors, Reflectors Or The Like (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lighting device capable of improving an amount of light of wavelength-converted light of which the wavelength is converted and attaining bright illumination.SOLUTION: In the lighting device 100, a wavelength conversion unit 300 includes a wavelength conversion member 302 for converting excited light into a desired wavelength-converted light, a light transmission section 328 having a function for transmitting the excited light and the wavelength-converted light, and a holding member 304 having a through-hole 320 having a function for internally holding the light transmission section. An excited light emitting end 206 of a light source 200 separated from a light conversion member is arranged in the vicinity of a light-incident section 322 as one end of the through-hole. The light conversion section is separated from the holding member, and a part of the light transmission section is arranged at a gap between the excited-light emitting end and the light conversion member, and at least a part of the light conversion member is continuously formed from the light-incident section to a light-emitting section 324 as the other end of the through-hole of the holding member. Further, the lighting device 100 has a function for thermally connecting the light conversion member and the holding member, and has a heat conductive member 308 having a heat conductivity higher than that of a light transmission member 306 arranged at the light transmission section.

Description

本発明は、照明装置に関する。   The present invention relates to a lighting device.

現在、小型固体光源と光ファイバとを組み合わせたファイバ光源が開発されている。このファイバ光源は、例えば細い構造物の先端から光を照射する照明装置として用いられる。   Currently, fiber light sources combining a small solid light source and an optical fiber have been developed. This fiber light source is used, for example, as an illumination device that emits light from the tip of a thin structure.

このような照明装置として、たとえば、特許文献1では、固体光源を用いたファイバ光源装置(発光装置)が提案されている。図9は、上記特許文献1に開示されている従来の照明装置を示すもので、(A)は波長変換部材周辺の概略構成を示す図、(B)は該照明装置に用いるスペーサの正面図、(C)は該スペーサの斜視図である。   As such an illuminating device, for example, Patent Document 1 proposes a fiber light source device (light emitting device) using a solid light source. 9A and 9B show a conventional illumination device disclosed in Patent Document 1, wherein FIG. 9A is a diagram showing a schematic configuration around a wavelength conversion member, and FIG. 9B is a front view of a spacer used in the illumination device. , (C) is a perspective view of the spacer.

上記特許文献1に開示のファイバ光源装置では、小型固体光源(図示せず)にファイバ(光ファイバ)920が接続され、そのファイバ920の先端に波長変換部材(蛍光体)940が設置されている。ファイバ920は、保持部材930に取り付けられており、ファイバ920と波長変換部材940との間には、スペーサ950が設置されている。このスペーサ950は、貫通孔950cを有し、表面には金属薄膜950aが形成されている。このファイバ光源装置では、波長変換部材940からファイバ920側に射出された後方射出光を、スペーサ950の貫通孔950cの内面に設けた金属薄膜950aからなる反射部により反射させることでファイバ920側への射出光を波長変換部材940側へ戻し、波長変換光の照明光量を上げている。   In the fiber light source device disclosed in Patent Document 1, a fiber (optical fiber) 920 is connected to a small solid light source (not shown), and a wavelength conversion member (phosphor) 940 is installed at the tip of the fiber 920. . The fiber 920 is attached to the holding member 930, and a spacer 950 is installed between the fiber 920 and the wavelength conversion member 940. The spacer 950 has a through hole 950c, and a metal thin film 950a is formed on the surface. In this fiber light source device, the backward emission light emitted from the wavelength conversion member 940 to the fiber 920 side is reflected by the reflecting portion made of the metal thin film 950a provided on the inner surface of the through hole 950c of the spacer 950, thereby returning to the fiber 920 side. Is returned to the wavelength conversion member 940 side to increase the illumination light quantity of the wavelength conversion light.

このような特許文献1に開示のファイバ光源装置は、発光素子と、発光素子からの光を導くファイバと、ファイバの少なくとも射出側端部に取り付けられる保持部材と、ファイバの射出側に設けられ、発光素子からの光の少なくとも一部を吸収して異なる波長の光に変換する波長変換部材、とを有し、保持部材またはファイバと、波長変換部材と、の間に、波長変換部材からの後方射出光を反射するスペーサが取り付けられた構成を備え、この構成により、波長変換部材で反射や発生した光が保持部材の端面に入射することにより生じる光の損失を低減できるため、光出力を向上させることができる。したがって、それまでは有効に使われなかった後方射出光を、光出力すべき方向に反射する手段を設けることで、明るさを向上することができる。   Such a fiber light source device disclosed in Patent Document 1 is provided on a light emitting element, a fiber that guides light from the light emitting element, a holding member that is attached to at least an emission side end of the fiber, and an emission side of the fiber, A wavelength conversion member that absorbs at least part of the light from the light emitting element and converts it into light of a different wavelength, and a rear side from the wavelength conversion member between the holding member or the fiber and the wavelength conversion member It has a structure with a spacer that reflects the emitted light, and this structure can reduce the loss of light caused by the light reflected or generated by the wavelength conversion member entering the end face of the holding member, thus improving the light output Can be made. Therefore, the brightness can be improved by providing means for reflecting the backward emission light that has not been used effectively until then in the direction in which the light should be output.

特開2009−3228号公報JP 2009-3228 A

上述のファイバ光源装置では、スペーサ950の射出側開口の全面を波長変換部材940で覆うように構成されている。このため、スペーサ950の貫通孔950cの内面である反射部で反射された後方射出光は、波長変換部材940を通過して外部に出力される。しかし、波長変換部材940は、一般に、可視光を散乱させる特性や自ら発した波長変換した波長変換光を吸収する特性を有する。このように、自らが波長変換した波長変換光の一部を吸収したり本来有効に外部に出力される光を散乱させたりするため、外部に射出される波長変換光の光量が低下してしまう。したがって、上述のファイバ光源装置の構成では、波長変換部材940からの波長変換光が十分利用できず、期待されたほど光取り出し効率が向上されないという問題がある。   The above-described fiber light source device is configured to cover the entire exit side opening of the spacer 950 with the wavelength conversion member 940. For this reason, the backward emission light reflected by the reflection part which is the inner surface of the through-hole 950c of the spacer 950 passes through the wavelength conversion member 940 and is output to the outside. However, the wavelength conversion member 940 generally has a characteristic of scattering visible light and a characteristic of absorbing wavelength-converted wavelength light generated by itself. In this way, a part of the wavelength-converted light that has been wavelength-converted by itself is absorbed, or light that is originally output effectively is scattered, so that the amount of wavelength-converted light emitted to the outside is reduced. . Therefore, in the configuration of the above-described fiber light source device, there is a problem that the wavelength conversion light from the wavelength conversion member 940 cannot be sufficiently utilized, and the light extraction efficiency is not improved as expected.

また、ファイバ(光ファイバ)920の先端と波長変換部材(蛍光体)940の距離が近接しており、且つ波長変換部材940やその周囲にある部材に対する材料規定がなされていないため、波長変換部材940による波長変換に伴って発生する熱量が波長変換部材940の底面周辺に局所集中し、波長変換部材940やその周囲にある部材が熱劣化し易く、発光素子の光量をあまり上げられないという問題がある。   In addition, since the distance between the tip of the fiber (optical fiber) 920 and the wavelength conversion member (phosphor) 940 is close, and there is no material regulation for the wavelength conversion member 940 and its surrounding members, the wavelength conversion member The problem is that the amount of heat generated along with the wavelength conversion by the 940 is concentrated locally around the bottom surface of the wavelength conversion member 940, the wavelength conversion member 940 and its surrounding members are likely to be thermally deteriorated, and the light quantity of the light emitting element cannot be increased so much. There is.

本発明は、上記の点に鑑みてなされたもので、波長変換部材によって波長変換された波長変換光の光量を向上させ、明るい照明が得られる照明装置を提供することを目的とする。   This invention is made | formed in view of said point, and it aims at providing the illuminating device which improves the light quantity of the wavelength conversion light wavelength-converted by the wavelength conversion member, and can obtain bright illumination.

本発明の照明装置の一態様は、
1次光源部と、光変換ユニット部を有する照明装置において、
前記1次光源部は、1次光を射出する1次光射出端を有し、
前記光変換ユニット部は、
前記1次光を所望の2次光に光変換する光変換部材と、
前記1次光及び前記2次光を透過する機能を有する光透過部と、
前記光透過部をその内部に保持する機能を有する貫通孔を有する保持部材と、
を有しており、
前記保持部材の貫通孔の一端である入射部は、その付近に前記1次光射出端が設置され、
前記1次光射出端は前記光変換部材と離間しており、且つ、前記光変換部材は前記保持部材と離間しており、
前記光透過部は、前記1次光射出端と前記光変換部材との間隙にその一部が設置され、且つ前記入射部から前記保持部材の貫通孔の他端である射出部まで少なくとも一部は連続して構成され、
前記照明装置は、前記光変換部材と前記保持部材とを熱的に接続する機能を有し、且つ前記光透過部に設置されている光透過部材よりも高熱伝導率である、熱伝導部材を更に具備していることを特徴とする。
One aspect of the lighting device of the present invention is:
In an illumination device having a primary light source unit and a light conversion unit unit,
The primary light source unit has a primary light emitting end for emitting primary light,
The light conversion unit is
A light conversion member that converts the primary light into desired secondary light;
A light transmission part having a function of transmitting the primary light and the secondary light;
A holding member having a through-hole having a function of holding the light transmitting portion therein;
Have
The incident portion which is one end of the through hole of the holding member is provided with the primary light emitting end in the vicinity thereof,
The primary light emitting end is separated from the light conversion member, and the light conversion member is separated from the holding member;
The light transmission part is at least partially installed in the gap between the primary light emission end and the light conversion member, and from the incident part to the emission part which is the other end of the through hole of the holding member. Is composed continuously,
The lighting device has a function of thermally connecting the light conversion member and the holding member, and a heat conduction member having a higher thermal conductivity than the light transmission member installed in the light transmission portion. Furthermore, it is characterized by comprising.

本発明によれば、波長変換部材が波長変換する際に同時に発生する熱を熱伝導経路となる熱伝導部材を介して効率良く放熱することができるため、波長変換部材に入射する励起光量を増加させることができるので、波長変換部材によって波長変換された波長変換光の光量を向上させ、明るい照明が得られる照明装置を提供することができる。   According to the present invention, the heat generated simultaneously when the wavelength conversion member performs wavelength conversion can be efficiently dissipated through the heat conduction member serving as a heat conduction path, so the amount of excitation light incident on the wavelength conversion member is increased. Therefore, it is possible to provide an illuminating device in which the amount of wavelength-converted light that has been wavelength-converted by the wavelength conversion member can be improved and bright illumination can be obtained.

図1(A)は、本発明の第1実施形態に係る照明装置の概略構成を示す図であり、図1(B)は、一部の部材の図示を省略した図1(A)の波長変換ユニットの一部を拡大して示す斜視図であり、図1(C)は、光透過部材と波長変換部材底面と励起光照射エリアと熱伝導部材との位置関係を説明するための模式図である。FIG. 1A is a diagram illustrating a schematic configuration of the illumination device according to the first embodiment of the present invention, and FIG. 1B is a wavelength diagram of FIG. It is a perspective view which expands and shows a part of conversion unit, and FIG.1 (C) is a schematic diagram for demonstrating the positional relationship of a light transmissive member, a wavelength conversion member bottom face, an excitation light irradiation area, and a heat conductive member. It is. 図2は、熱伝導部材の別の配置例を説明するための模式図である。FIG. 2 is a schematic diagram for explaining another arrangement example of the heat conducting members. 図3(A)は、本発明の第1実施形態の変形例に係る照明装置の概略構成を示す図であり、図3(B)は、一部の部材の図示を省略した図3(A)の波長変換ユニットの一部を拡大して示す斜視図であり、図3(C)は、光透過部材と波長変換部材底面と励起光照射エリアと熱伝導部材との位置関係を説明するための模式図である。FIG. 3A is a diagram illustrating a schematic configuration of a lighting device according to a modification of the first embodiment of the present invention, and FIG. 3B is a diagram in which some members are not illustrated. ) Is an enlarged perspective view showing a part of the wavelength conversion unit of FIG. 3, and FIG. 3C is for explaining the positional relationship among the light transmission member, the wavelength conversion member bottom surface, the excitation light irradiation area, and the heat conduction member. FIG. 図4(A)は、第2実施形態に係る照明装置の概略構成を示す図であり、図4(B)は、一部の部材の図示を省略した図4(A)の波長変換ユニットの一部を拡大して示す斜視図であり、図4(C)は、光透過部材と波長変換部材底面と励起光照射エリアと熱伝導部材との位置関係を説明するための模式図である。FIG. 4A is a diagram showing a schematic configuration of the illumination device according to the second embodiment, and FIG. 4B is a diagram of the wavelength conversion unit of FIG. FIG. 4C is a schematic diagram for explaining the positional relationship among the light transmission member, the wavelength conversion member bottom surface, the excitation light irradiation area, and the heat conduction member. 図5は、本発明の第2実施形態の第1の変形例に係る照明装置における光透過部材と波長変換部材底面と励起光照射エリアと熱伝導部材との位置関係を説明するための模式図である。FIG. 5 is a schematic diagram for explaining the positional relationship among a light transmission member, a wavelength conversion member bottom surface, an excitation light irradiation area, and a heat conduction member in a lighting device according to a first modification of the second embodiment of the present invention. It is. 図6(A)は、本発明の第2実施形態の第2の変形例に係る照明装置の概略構成を示す図であり、図6(B)は、一部の部材の図示を省略した図6(A)の波長変換ユニットの一部を拡大して示す斜視図である。FIG. 6A is a diagram illustrating a schematic configuration of a lighting device according to a second modification of the second embodiment of the present invention, and FIG. 6B is a diagram in which illustration of some members is omitted. It is a perspective view which expands and shows a part of wavelength conversion unit of 6 (A). 図7(A)は、第3実施形態に係る照明装置の概略構成を示す図であり、図7(B)は、一部の部材の図示を省略した図7(A)の波長変換ユニットの一部を拡大して示す斜視図であり、図7(C)は、光透過部材と波長変換部材底面と励起光照射エリアと熱伝導部材との位置関係を説明するための模式図である。FIG. 7A is a diagram showing a schematic configuration of the illumination device according to the third embodiment, and FIG. 7B is a diagram of the wavelength conversion unit of FIG. FIG. 7C is a schematic diagram for explaining the positional relationship among the light transmission member, the wavelength conversion member bottom surface, the excitation light irradiation area, and the heat conduction member. 図8(A)は、第4実施形態に係る照明装置の概略構成を示す図であり、図8(B)は、一部の部材の図示を省略した図8(A)の波長変換ユニットの一部を拡大して示す斜視図である。FIG. 8A is a diagram showing a schematic configuration of the illumination device according to the fourth embodiment, and FIG. 8B is a diagram of the wavelength conversion unit of FIG. It is a perspective view which expands and shows a part. 図9は、従来の照明装置の構成を示す図である。FIG. 9 is a diagram illustrating a configuration of a conventional lighting device.

以下、本発明を実施するための形態を図面を参照して説明する。
[第1実施形態]
(構成)
まず、本発明の第1実施形態に係る照明装置の構成について説明する。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
[First Embodiment]
(Constitution)
First, the configuration of the illumination device according to the first embodiment of the present invention will be described.

図1(A)に示すように、本発明の第1実施形態に係る照明装置100は、主に、1次光源部としての光源部200と波長変換ユニット部300とに分けられ、光源部200から射出された1次光である励起光を、波長変換ユニット部300内にある波長変換部材302に照射して、所望の2次光に光変換する構成である。なお、ここでは、1次光を励起光、2次光を波長変換光とし、光変換部材として波長変換部材302を用いた例を説明するが、本発明はこれに限定されるものではないことは勿論である。   As shown in FIG. 1A, the illumination device 100 according to the first embodiment of the present invention is mainly divided into a light source unit 200 as a primary light source unit and a wavelength conversion unit unit 300. The wavelength conversion member 302 in the wavelength conversion unit section 300 is irradiated with the excitation light that is the primary light emitted from the light, and is converted into desired secondary light. Here, an example will be described in which the primary light is excitation light, the secondary light is wavelength converted light, and the wavelength conversion member 302 is used as a light conversion member, but the present invention is not limited to this. Of course.

以下、各部の詳細な構造を次に説明する。
光源部200は、半導体レーザ202と、導光部材であるファイバ204と、を備える。半導体レーザ202は、1次光として励起光を射出する。ファイバ204は、半導体レーザ202と接続されている端面と対向する面を有し、本明細書では、この面を励起光射出端206と呼ぶこととする。励起光射出端206は、半導体レーザ202から導波されてきた励起光を法線方向に射出する機能を有し、該励起光射出端206の中心から励起光が射出される軸を光軸Oとする。即ち、励起光射出端206は、1次光を射出する1次光射出端として機能する。
The detailed structure of each part will be described below.
The light source unit 200 includes a semiconductor laser 202 and a fiber 204 that is a light guide member. The semiconductor laser 202 emits excitation light as primary light. The fiber 204 has a surface facing an end surface connected to the semiconductor laser 202, and in this specification, this surface is referred to as an excitation light emitting end 206. The pumping light exit end 206 has a function of emitting the pumping light guided from the semiconductor laser 202 in the normal direction, and an axis from which the pumping light is emitted from the center of the pumping light exit end 206 is an optical axis O. And That is, the excitation light emission end 206 functions as a primary light emission end that emits primary light.

光源部200の一部であるファイバ204の光軸O前方には、波長変換ユニット部300が形成されており、その内部には、保持部材304、光透過部材306、波長変換部材302、熱伝導部材308が設置されている。   A wavelength conversion unit unit 300 is formed in front of the optical axis O of the fiber 204 that is a part of the light source unit 200, and a holding member 304, a light transmission member 306, a wavelength conversion member 302, and heat conduction are formed therein. A member 308 is installed.

ファイバ204の励起光射出端206には、図1(B)に示すような円柱形状の光透過部材306が接着される。この光透過部材306が有する2つの円平面の中心を通る中心軸は、上記光軸Oと一致している。ここで、該光透過部材306が有する面のうち、励起光射出端206と接着している円平面を光透過部材入射面310、その面と対向する平面を光透過部材射出面312とする。   A cylindrical light transmission member 306 as shown in FIG. 1B is bonded to the excitation light exit end 206 of the fiber 204. A central axis passing through the centers of the two circular planes of the light transmitting member 306 coincides with the optical axis O. Here, among the surfaces of the light transmitting member 306, a circular plane bonded to the excitation light emitting end 206 is defined as a light transmitting member incident surface 310, and a plane facing the surface is defined as a light transmitting member emitting surface 312.

光透過部材射出面312と接続しているのは、図1(B)に示すような円柱形状の波長変換部材302である。この波長変換部材302が有する2つの円状平面の中心を通る中心軸は、上記光軸Oと一致している。ここで、該波長変換部材302が有する面のうち、光透過部材射出面312と接続している面を波長変換部材入射面314、その面と対向する面を波長変換部材射出面316とする。また、それら波長変換部材入射面314および波長変換部材射出面316と接している波長変換部材302の側面を波長変換部材側面318とする。   Connected to the light transmitting member exit surface 312 is a cylindrical wavelength conversion member 302 as shown in FIG. A central axis passing through the centers of the two circular planes of the wavelength conversion member 302 coincides with the optical axis O. Here, of the surfaces of the wavelength conversion member 302, the surface connected to the light transmission member exit surface 312 is referred to as the wavelength conversion member entrance surface 314, and the surface facing the surface is referred to as the wavelength conversion member exit surface 316. The side surface of the wavelength conversion member 302 that is in contact with the wavelength conversion member incident surface 314 and the wavelength conversion member emission surface 316 is referred to as a wavelength conversion member side surface 318.

また、図1(B)に示すように、光透過部材射出面312の、波長変換部材入射面314が接続されている以外の一部には、薄膜状または四角柱状に熱伝導部材308が接続されている。熱伝導部材308は、波長変換部材302の側面である波長変換部材側面318の一部と、光透過部材射出面312の一部と、後述の保持部材304の貫通孔320の内壁と接続されている。この熱伝導部材308は、光透過部材射出面312から波長変換部材入射面314を除いた領域のうち、全ての領域を覆わず、一部に設置する。   Further, as shown in FIG. 1B, a heat conducting member 308 is connected in a thin film shape or a rectangular column shape to a part of the light transmitting member exit surface 312 other than the wavelength conversion member incident surface 314 is connected. Has been. The heat conducting member 308 is connected to a part of the wavelength conversion member side surface 318 that is a side surface of the wavelength conversion member 302, a part of the light transmission member emission surface 312, and an inner wall of a through hole 320 of the holding member 304 described later. Yes. The heat conducting member 308 is installed in a part of the region excluding the wavelength conversion member incident surface 314 from the light transmitting member exit surface 312 without covering all the regions.

保持部材304は、貫通孔320を有しており、該貫通孔320の内部にファイバ204の励起光射出端206、光透過部材306、波長変換部材302、熱伝導部材308を保持するよう、それらを取り囲んでいる。保持部材304の外形は、円柱形状をしており、カップ状、別言すると円柱形状の空洞を有した内部構造をしている。貫通孔320は、径の小さな孔と大きな径の孔とが連通したものであり、保持部材304の内部底面(円状)の中心に径の小さな孔が開いている。この小さな孔の付近に、ファイバ204の励起光射出端206が設置される。貫通孔320の一端である径の小さな孔を入射部322、他端である大きな径の開口を射出部324とする。   The holding member 304 has a through hole 320, and the excitation light emitting end 206, the light transmitting member 306, the wavelength converting member 302, and the heat conducting member 308 of the fiber 204 are held in the through hole 320 so as to hold them. Surrounding. The outer shape of the holding member 304 has a cylindrical shape, and has an internal structure having a cup shape, in other words, a cylindrical cavity. The through-hole 320 has a small-diameter hole and a large-diameter hole communicating with each other, and a small-diameter hole is opened at the center of the inner bottom surface (circular shape) of the holding member 304. An excitation light exit end 206 of the fiber 204 is installed near the small hole. A small-diameter hole that is one end of the through-hole 320 is an incident portion 322, and a large-diameter opening that is the other end is an emission portion 324.

入射部322にはファイバ204の励起光射出端206が設置され、続いて光透過部材306、波長変換部材302、熱伝導部材308が設置されており、射出部324には、波長変換部材射出面316が略一致して設置されている。   The incident portion 322 is provided with an excitation light exit end 206 of the fiber 204, followed by a light transmission member 306, a wavelength conversion member 302, and a heat conduction member 308, and the emission portion 324 has a wavelength conversion member exit surface. 316 are installed substantially coincident with each other.

保持部材304の貫通孔320の中心軸は光軸Oと一致している。また、貫通孔320の内壁と光透過部材306の側面は接着され、また、貫通孔320の内壁の一部と熱伝導部材308の一部も接着されている。   The central axis of the through hole 320 of the holding member 304 coincides with the optical axis O. Further, the inner wall of the through hole 320 and the side surface of the light transmission member 306 are bonded, and a part of the inner wall of the through hole 320 and a part of the heat conducting member 308 are also bonded.

それぞれの部材の光軸Oに垂直な方向の径は、次のような大きさの順である。
ファイバ204の励起光射出端206(ファイバ204の図示しないコア部先端)
< 保持部材304の入射部322
< 波長変換部材入射面314
≒ 波長変換部材射出面316
< 光透過部材入射面310
≒ 光透過部材射出面312
≒ 保持部材304の射出部324。
The diameters of the respective members in the direction perpendicular to the optical axis O are in the following order of magnitude.
Excitation light exit end 206 of fiber 204 (core end of fiber 204 not shown)
<Incoming portion 322 of holding member 304
<Wavelength conversion member incident surface 314
≒ Wavelength conversion member exit surface 316
<Light transmitting member incident surface 310
≒ Light transmission member exit surface 312
injection part 324 of holding member 304.

保持部材304の射出部324に対し波長変換部材射出面316は径が小さく、波長変換部材側面318は保持部材304の貫通孔320の内壁とは全面接していない。   The wavelength conversion member emission surface 316 has a small diameter with respect to the emission part 324 of the holding member 304, and the wavelength conversion member side surface 318 is not in full contact with the inner wall of the through hole 320 of the holding member 304.

なお、保持部材304の貫通孔320内部の何も充填されていない箇所を光透過部空間326、光透過部空間326と光透過部材306を合わせた領域を光透過部328と呼ぶこととする。つまり、貫通孔320は、光透過部328をその内部に保持する機能を有することとなる。光透過部328は、1次光である励起光と2次光である波長変換光の両方を透過する機能を有する。ファイバ204の励起光射出端206は波長変換部材302と離間しており、且つ、波長変換部材302は保持部材304と離間している。そして、光透過部328は、励起光射出端206と波長変換部材302との間隙にその一部が設置され、且つ入射部322から射出部324まで少なくとも一部は連続して構成されている。   A portion of the holding member 304 that is not filled with the inside of the through hole 320 is referred to as a light transmitting portion space 326, and a region where the light transmitting portion space 326 and the light transmitting member 306 are combined is referred to as a light transmitting portion 328. That is, the through hole 320 has a function of holding the light transmission part 328 therein. The light transmission unit 328 has a function of transmitting both excitation light that is primary light and wavelength converted light that is secondary light. The excitation light exit end 206 of the fiber 204 is separated from the wavelength conversion member 302, and the wavelength conversion member 302 is separated from the holding member 304. A part of the light transmission part 328 is installed in the gap between the excitation light emission end 206 and the wavelength conversion member 302, and at least part of the light transmission part 328 is continuously formed from the incident part 322 to the emission part 324.

(主な部材の材料)
ここで、主な部材の材料について説明する。
ファイバ204の図示していないコア部は無色透明ガラス、光透過部材306は無色透明ガラスもしくは無色透明樹脂が望ましい。
(Material of main components)
Here, materials of main members will be described.
The core portion (not shown) of the fiber 204 is preferably colorless transparent glass, and the light transmitting member 306 is preferably colorless transparent glass or colorless transparent resin.

波長変換部材302は、光の光学的性質であるピーク波長、放射角、スペクトル形状の全てを変換する蛍光体であり、無機粉末蛍光体粒子を無色透明な蛍光体モールド樹脂に均一分散させたものが望ましい。無機粉末蛍光体粒子には、紫外光や、青紫光、青光などの可視光の短波長領域を吸収することで、励起光よりも長波長の可視光を等方的に射出する機能を有する。その時、同時に熱も発生する。   The wavelength conversion member 302 is a phosphor that converts all of the optical properties of light, such as peak wavelength, radiation angle, and spectral shape, and is obtained by uniformly dispersing inorganic powder phosphor particles in a colorless and transparent phosphor mold resin. Is desirable. The inorganic powder phosphor particles have a function of isotropically emitting visible light having a wavelength longer than that of excitation light by absorbing a short wavelength region of visible light such as ultraviolet light, blue-violet light, and blue light. . At the same time, heat is also generated.

熱伝導部材308は、波長変換部材302と保持部材304とを熱的に接続する機能を有している。この熱伝導部材308は、光透過部328に設置されている光透過部材306よりも高熱伝導率のものであり、例えば銀が望ましい。なぜならば、銀は熱伝導率が金属の中でもかなり高いため、効率的に波長変換部材302で発生した熱量を伝達することができる。また、可視光全領域に対し非常に高い反射率を示すため、照射される励起光や波長変換光を高効率に反射し、ロスすることなく、その一部は射出部324より有効に照明光として射出されるようにすることができる。その他としては、銅やアルミなどの金属、または、グラファイト、フラーレン、カーボンナノチューブ、グラフェンなどの炭素材料、または、それらを含む材料が特に熱伝導率が高く望ましい。   The heat conducting member 308 has a function of thermally connecting the wavelength conversion member 302 and the holding member 304. This heat conducting member 308 has a higher thermal conductivity than the light transmitting member 306 installed in the light transmitting portion 328, and for example, silver is desirable. This is because silver has a considerably high thermal conductivity among metals, and therefore can efficiently transfer the amount of heat generated in the wavelength conversion member 302. In addition, since it exhibits a very high reflectivity with respect to the entire visible light region, the excitation light and wavelength conversion light to be irradiated are reflected with high efficiency, and a part of the illumination light is effectively emitted from the emission unit 324 without loss. Can be injected as. In addition, a metal such as copper or aluminum, or a carbon material such as graphite, fullerene, carbon nanotube, or graphene, or a material containing them is particularly preferable because of high thermal conductivity.

保持部材304は、真鍮などの金属が望ましく、また体積は大きいほど望ましい。なぜならば、金属であれば、加工性も良く安価に作製できるほか、一般的に熱伝導率が高く、波長変換部材302内部で発生し熱伝導部材308を介して伝わってきた熱量を迅速に吸熱することができるからである。また、保持部材304の外表面は大きい方が望ましい。なぜならば、波長変換部材302から熱伝導部材308を介して伝達されてきた熱量を保持部材304の外表面を通して外部の空気中等に熱拡散させることができるからである。   The holding member 304 is preferably made of a metal such as brass, and more desirably as the volume is larger. This is because if it is a metal, it can be manufactured at a low cost with good workability, and generally has high thermal conductivity, and quickly absorbs the amount of heat generated inside the wavelength conversion member 302 and transmitted through the heat conduction member 308. Because it can be done. Further, it is desirable that the outer surface of the holding member 304 is large. This is because the amount of heat transferred from the wavelength conversion member 302 via the heat conducting member 308 can be diffused through the outer surface of the holding member 304 into the outside air.

(動作と機能)
次に、本実施形態に係る照明装置100の動作と機能について説明する。
(Operation and function)
Next, the operation and function of the illumination device 100 according to the present embodiment will be described.

半導体レーザ202は、波長変換部材302が波長変換を行うのに対し効率の良い波長の光(=励起光)を射出する機能を有する。その光をファイバ204の入射端方向に射出することで高効率にファイバ204の図示しないコア部の内部へ入射することができる。   The semiconductor laser 202 has a function of emitting light having a wavelength (= excitation light) that is efficient while the wavelength conversion member 302 performs wavelength conversion. By emitting the light in the direction of the incident end of the fiber 204, it is possible to enter the inside of a core portion (not shown) of the fiber 204 with high efficiency.

ファイバ204に入射した励起光は、ファイバ204が持つコア及びクラッドの屈折率差などを利用してコア内を導波し、ファイバ204が持つ励起光射出端206までほとんど光のロスすることはなく、励起光を伝える。   The excitation light incident on the fiber 204 is guided in the core using the difference in refractive index between the core and cladding of the fiber 204, and almost no light is lost to the excitation light exit end 206 of the fiber 204. Communicate excitation light.

励起光は、励起光射出端206から、励起光射出端206の法線方向(=光軸O)を最大とした強度分布を持った配光分布で射出される。励起光射出端206から光軸前方に射出された励起光は、励起光射出端206の光軸前方に設置された光透過部材306に入射される。このとき、ファイバ204と光透過部材306との間には、光を高効率に通過させる機能を有することが必要である。そのために、ファイバ204の図示しないコア部と光透過部材306とそれらを接着させる部材全てが略同じ屈折率であり、かつ励起光を高効率に透過する特性を有することが望ましい。   The excitation light is emitted from the excitation light exit end 206 in a light distribution having an intensity distribution that maximizes the normal direction (= optical axis O) of the excitation light exit end 206. Excitation light emitted from the excitation light exit end 206 in front of the optical axis is incident on a light transmitting member 306 installed in front of the excitation light exit end 206 in the optical axis. At this time, it is necessary to have a function of allowing light to pass through between the fiber 204 and the light transmitting member 306 with high efficiency. Therefore, it is desirable that the core (not shown) of the fiber 204, the light transmitting member 306, and all the members for bonding them have substantially the same refractive index and have a characteristic of transmitting excitation light with high efficiency.

ある配光分布を持って光透過部材306に入射した励起光は、光透過部材306の内部をほとんど吸収されることなく進行し、光透過部材射出面312から光軸前方に射出される。このとき励起光は、光透過部材射出面312の中心点を最大とした面内分布を持って射出される。この励起光は、光透過部材306の光軸前方に配置された波長変換部材302に、波長変換部材入射面314から入射される。このとき、励起光のほとんど全てが波長変換部材入射面314を照射するよう、励起光射出端206および波長変換部材302の径、光透過部材306の厚さを決定する。   Excitation light that has entered the light transmission member 306 with a certain light distribution travels through the light transmission member 306 with little absorption, and is emitted from the light transmission member exit surface 312 to the front of the optical axis. At this time, the excitation light is emitted with an in-plane distribution in which the central point of the light transmission member emission surface 312 is maximized. This excitation light enters the wavelength conversion member 302 disposed in front of the optical axis of the light transmission member 306 from the wavelength conversion member incident surface 314. At this time, the diameter of the excitation light emitting end 206 and the wavelength conversion member 302 and the thickness of the light transmission member 306 are determined so that almost all of the excitation light irradiates the wavelength conversion member incident surface 314.

具体的には、図1(C)に示すように、励起光射出端206から射出された励起光が波長変換部材入射面314を含む平面上に形成するビームスポット330が、波長変換部材入射面314よりも小さくなるように構成される。ここで、ビームスポット330とは、波長変換部材入射面314の中で、励起光射出端206から射出される励起光の最大強度に対し、1/eより大きな光強度を有する領域と定義し、eは自然体数の底としてのネイピア数である。また、このビームスポット330のうち、励起光が波長変換部材302を主に照射する領域を主要励起光照射領域332、それ以外を準励起光照射領域334と定義する。ここで、主要励起光照射領域332とは、上記励起光の最大強度に対し1/e以上の光量が照射される円状領域である。様々な光源に接続したファイバ204から射出される光は、一般的に光軸Oに対し略円対称の配光分布を示すため、1/e以上の光量が照射される領域は、光軸Oを含む円状領域となる。 Specifically, as shown in FIG. 1C, a beam spot 330 formed by excitation light emitted from the excitation light exit end 206 on a plane including the wavelength conversion member incident surface 314 is a wavelength conversion member incident surface. It is configured to be smaller than 314. Here, the beam spot 330 is defined as a region having a light intensity greater than 1 / e 2 with respect to the maximum intensity of the excitation light emitted from the excitation light exit end 206 in the wavelength conversion member incident surface 314. , E is the Napier number as the base of the natural number. Further, in this beam spot 330, a region where the excitation light mainly irradiates the wavelength conversion member 302 is defined as a main excitation light irradiation region 332, and the other region is defined as a quasi-excitation light irradiation region 334. Here, the main excitation light irradiation region 332 is a circular region irradiated with a light amount of 1 / e or more with respect to the maximum intensity of the excitation light. Since light emitted from the fiber 204 connected to various light sources generally exhibits a substantially circularly symmetric light distribution with respect to the optical axis O, a region irradiated with a light quantity of 1 / e or more is the optical axis O. A circular region including

波長変換部材302は、その内部に励起光が入射することで、一部は励起光とは波長の異なる光(即ち、波長変換光)に、一部は熱に、その他を透過もしくは散乱させる機能を有する。従って、光軸前方に射出された励起光は、ほとんど全て波長変換部材入射面314から波長変換部材302内部に入射される。これらの励起光は、そのエネルギーを波長変換光及び熱に変換されながら、散乱透過し、波長変換部材射出面316から射出する前にほとんど全ての励起光が変換される。波長変換部材302は、そのような励起光透過率を有するよう、厚さと波長変換機能の濃度を決定する。   The wavelength converting member 302 has a function of transmitting or scattering a part of the light into a light having a wavelength different from that of the excitation light (that is, a wavelength converted light), a part of the light into heat, and the other when the excitation light is incident on the inside thereof. Have Accordingly, almost all of the excitation light emitted in front of the optical axis enters the wavelength conversion member 302 from the wavelength conversion member incident surface 314. These excitation lights are scattered and transmitted while converting their energy into wavelength conversion light and heat, and almost all of the excitation light is converted before exiting from the wavelength conversion member exit surface 316. The wavelength conversion member 302 determines the thickness and the concentration of the wavelength conversion function so as to have such excitation light transmittance.

(波長変換光の動き)
ここで、波長変換光の動きについて説明する。
波長変換部材302内部で波長変換された波長変換光は主に、(1)一部は入射部322へ到達し、(2)一部は保持部材304の内壁へ到達し、(3)一部は波長変換部材302の内部、光透過部材306、もしくは熱伝導部材308に吸収され、(4)一部は射出部324へ到達する。
(Movement of wavelength conversion light)
Here, the movement of the wavelength converted light will be described.
The wavelength-converted light that has been wavelength-converted inside the wavelength conversion member 302 mainly (1) partly reaches the incident part 322, (2) partly reaches the inner wall of the holding member 304, and (3) partly. Is absorbed by the inside of the wavelength converting member 302, the light transmitting member 306, or the heat conducting member 308, and (4) part of the light reaches the emitting portion 324.

このうち、上記(1)の入射部322へ到達した波長変換光は、ファイバ204に入射され、ファイバ204の図示しないコア部を導波し半導体レーザ202内部等でほとんど吸収される。   Of these, the wavelength-converted light that has reached the incident portion 322 in (1) above is incident on the fiber 204, is guided through a core portion (not shown) of the fiber 204, and is almost absorbed inside the semiconductor laser 202 and the like.

また、上記(2)の保持部材304の内壁へ到達した波長変換光は、保持部材304の内壁(内部底面も含む)が有する波長変換光反射機能により一部は反射され、一部は保持部材304に吸収される。この反射機能は、保持部材304内壁に持たせても良いし、または光透過部材306の側面に持たせても良い。この反射機能を反射層と呼ぶこととする。この反射層を反射した波長変換光は、もう一度上記(1)〜(4)の何れかを繰り返す。このとき、光透過部材306の径よりも波長変換部材302の径が小さいため、励起光射出端206側から見て、保持部材304の貫通孔320内壁と波長変換部材302との間に空間(即ち、光透過部空間326)がある。従って、反射層により反射した波長変換光は、全て波長変換部材入射面314から波長変換部材302に再入射するのではなく、光透過部材射出面312の光透過部空間326と接している箇所より、光透過部空間326に入射し、射出部324より外部へ射出される上記(4)の波長変換光が一定割合で存在する。この割合は、光透過部材306の径(≒貫通孔320の内壁径≒射出部324の径)と波長変換部材302の径の違いが大きければ大きいほど大きい。   Further, the wavelength-converted light that has reached the inner wall of the holding member 304 in (2) is partially reflected by the wavelength-converted light reflecting function of the inner wall (including the inner bottom surface) of the holding member 304, and partly the holding member. 304 is absorbed. This reflection function may be provided on the inner wall of the holding member 304 or may be provided on the side surface of the light transmission member 306. This reflection function is called a reflection layer. The wavelength-converted light reflected from the reflective layer repeats any one of the above (1) to (4). At this time, since the diameter of the wavelength conversion member 302 is smaller than the diameter of the light transmission member 306, a space (see FIG. 3) between the inner wall of the through hole 320 of the holding member 304 and the wavelength conversion member 302 is viewed from the excitation light emission end 206 side. That is, there is a light transmitting portion space 326). Therefore, all the wavelength converted light reflected by the reflective layer does not re-enter the wavelength converting member 302 from the wavelength converting member incident surface 314, but from a portion in contact with the light transmitting portion space 326 of the light transmitting member exit surface 312. The wavelength-converted light (4) that is incident on the light transmitting portion space 326 and is emitted to the outside from the emitting portion 324 is present at a constant rate. This ratio increases as the difference between the diameter of the light transmitting member 306 (≈the inner wall diameter of the through hole 320 ≈the diameter of the emission portion 324) and the diameter of the wavelength conversion member 302 increases.

上記特許文献1に開示されているように、従来では、励起光射出端と波長変換部材(940)が接しているか、近接しており、且つ射出部全体をほぼ全て波長変換部材で覆われている構造が一般的であった。しかしながらそのような構造の場合、波長変換光を射出部から有効に照明光として射出させる際、必ず波長変換部材を通過しなければならない。しかしながら、無機粉末蛍光粒子のような一般的な波長変換部材には、自ら波長変換した波長変換光を吸収したり、散乱したりする特性を有する。そのため、自らが波長変換した波長変換光の一部を吸収してしまったり本来外部に出力される光を散乱させてしまったりするため、なかなか射出部より射出されず、その間に熱に変換されてしまうため、外部に射出される波長変換光の光量が低下してしまう。また、励起光射出端と波長変換部材が接していると、波長変換部材の内部で波長変換される領域がかなり小さくなり、その部分から局所的に発熱が発生する。そのため、励起光射出端付近の波長変換部材の小さな領域のみ高温になり劣化してしまってしまうため、安全を考慮すると低出力しか励起光入力できなかった。   As disclosed in Patent Document 1, conventionally, the excitation light emission end and the wavelength conversion member (940) are in contact with each other or close to each other, and the entire emission part is almost entirely covered with the wavelength conversion member. The structure is common. However, in the case of such a structure, when the wavelength converted light is effectively emitted as illumination light from the emitting portion, it must pass through the wavelength converting member. However, a general wavelength conversion member such as inorganic powder fluorescent particles has a characteristic of absorbing or scattering wavelength-converted light that has been wavelength-converted by itself. For this reason, it absorbs part of the wavelength-converted light that has been wavelength-converted by itself or scatters the light that is originally output to the outside, so it is not easily emitted from the emitting part and is converted into heat during that time. As a result, the amount of wavelength-converted light emitted to the outside is reduced. Further, when the excitation light exit end and the wavelength conversion member are in contact with each other, the region where the wavelength is converted inside the wavelength conversion member becomes considerably small, and heat is generated locally from that portion. For this reason, only a small region of the wavelength conversion member in the vicinity of the excitation light emission end becomes high temperature and deteriorates, and therefore, only low output can be input for safety reasons.

また、熱伝導部材308は、光透過部材射出面312から波長変換部材入射面314を除いた領域のうち全ての領域を覆わず一部に設置することが重要である。なぜならば、反射層から射出部324までの間に可視光を吸収したり散乱したりする部材があると、射出部324からの照明光の光量が低下してしまう。従って、熱伝導部材308は、なるべく面積の小さく作製することが望ましい。   In addition, it is important that the heat conducting member 308 is installed in a part of the region excluding the wavelength conversion member incident surface 314 from the light transmitting member exit surface 312 without covering all the regions. This is because if there is a member that absorbs or scatters visible light between the reflective layer and the emission part 324, the amount of illumination light from the emission part 324 decreases. Therefore, it is desirable to manufacture the heat conducting member 308 with as small an area as possible.

また、上記(3)の波長変換部材302の内部、光透過部材306、もしくは熱伝導部材308に吸収される波長変換光は、それら波長変換部材302、光透過部材306、及び熱伝導部材308が有する波長変換光に対する吸収機能により、それぞれの部材内部で熱に変換される。特に、波長変換部材302には、波長変換光も一部吸収する機能を有する材料が多い。従って、上記(3)の波長変換光のうち波長変換部材302内部で吸収される光量が一定割合で存在する。波長変換部材302内部で発生した波長変換光、もしくは波長変換部材入射面314、波長変換部材側面318から入射した波長変換光が一定割合で吸収される。   Further, the wavelength conversion light absorbed by the inside of the wavelength conversion member 302 of the above (3), the light transmission member 306, or the heat conduction member 308 is transmitted to the wavelength conversion member 302, the light transmission member 306, and the heat conduction member 308. It is converted into heat inside each member by the absorption function for the wavelength-converted light. In particular, the wavelength converting member 302 has many materials having a function of partially absorbing wavelength converted light. Therefore, the amount of light absorbed in the wavelength conversion member 302 in the wavelength conversion light (3) is present at a constant rate. The wavelength conversion light generated inside the wavelength conversion member 302 or the wavelength conversion light incident from the wavelength conversion member incident surface 314 and the wavelength conversion member side surface 318 is absorbed at a constant rate.

また、上記(4)の射出部324へ到達する波長変換光は、射出部324を通過して対象物等を照らす照明光として有効に外部に射出される。   Further, the wavelength-converted light reaching the emission part 324 in (4) is effectively emitted to the outside as illumination light that passes through the emission part 324 and illuminates the object or the like.

(熱の動き)
次に、熱の動きについて説明する。
波長変換部材302の内部で変換された熱は、波長変換部材302に接している各部材に拡散していく。その拡散ルートは主に、
(1) 波長変換部材302→光透過部空間326→外部空間
(2) 波長変換部材302→光透過部空間326→保持部材304→外部空間
(3) 波長変換部材302→外部空間
(4) 波長変換部材302→熱伝導部材308→保持部材304→外部空間
(5) 波長変換部材302→光透過部材306→保持部材304→外部空間
(6) 波長変換部材302→光透過部材306→ファイバ204→外部空間
の6種類である。
(Movement of heat)
Next, the movement of heat will be described.
The heat converted inside the wavelength conversion member 302 is diffused to each member in contact with the wavelength conversion member 302. The diffusion route is mainly
(1) Wavelength converting member 302 → light transmitting part space 326 → external space (2) Wavelength converting member 302 → light transmitting part space 326 → holding member 304 → external space (3) Wavelength converting member 302 → external space (4) Wavelength Conversion member 302 → heat conduction member 308 → holding member 304 → external space (5) Wavelength conversion member 302 → light transmission member 306 → holding member 304 → external space (6) Wavelength conversion member 302 → light transmission member 306 → fiber 204 → There are six types of external space.

これらのうち優先されるのは、各部材が持つ熱伝導率に依存する。例えば、光透過部空間326及び外部空間は、空気で充たされているため熱伝導率が約0.02W/mKとかなり低く、他が優先される。また、波長変換部材302で発生した熱量に対し、これら全ての順序に関連する部材の各熱伝導率が何れも低い場合、波長変換部材302からの熱拡散が効率良く行われず、長い時間、波長変換部材302に留まる。本発明は照明装置に関するものであるため、波長変換部材302に励起光を照射し続け波長変換光を射出部324から射出し続ける。従ってこのような場合、発熱量が増大し、波長変換部材302の内部温度が上昇し、高い温度で部材内部が安定する。その温度が300度などに高温になると、波長変換部材302やその周辺部材が熱劣化してしまう。波長変換部材302やその周辺部材が熱劣化すると、可視光に対する光吸収機能が増大し発熱がより促進されてしまい、装置の故障に繋がる。従って、安全を考慮すると、弱い励起光しか入射できず、暗い照明装置となる。   Of these, priority is given to the thermal conductivity of each member. For example, since the light transmission space 326 and the external space are filled with air, the thermal conductivity is considerably low at about 0.02 W / mK, and others are given priority. In addition, when each of the thermal conductivity of the members related to all of these orders is low with respect to the amount of heat generated in the wavelength conversion member 302, heat diffusion from the wavelength conversion member 302 is not efficiently performed, and a long time, wavelength It remains on the conversion member 302. Since the present invention relates to an illuminating device, the wavelength conversion member 302 is continuously irradiated with excitation light, and wavelength conversion light is continuously emitted from the emission unit 324. Therefore, in such a case, the heat generation amount increases, the internal temperature of the wavelength conversion member 302 rises, and the inside of the member is stabilized at a high temperature. When the temperature is as high as 300 degrees, the wavelength conversion member 302 and its peripheral members are thermally deteriorated. When the wavelength conversion member 302 and its peripheral members are thermally deteriorated, the light absorption function with respect to visible light is increased and heat generation is further promoted, leading to failure of the apparatus. Therefore, in consideration of safety, only weak excitation light can enter, resulting in a dark illumination device.

波長変換部材302は、光学的観点からガラス(1W/mK)か樹脂(0.2W/mK)が望ましく、熱伝導率としては金属などと比較して大きくない。それらと比較して熱伝導部材308として用いた銀は、約420W/mKとかなり大きいため、上記(4)の拡散ルートが他の拡散ルートに優先され熱拡散する。保持部材304も金属で作製しまた体積や表面積も大きいため、励起光を入射し続け熱が連続的に発生しても、波長変換部材302もしくは熱伝導部材308で熱が滞ることなく次々と保持部材304やそこから外部へ熱が拡散されていく。   The wavelength conversion member 302 is desirably glass (1 W / mK) or resin (0.2 W / mK) from an optical viewpoint, and its thermal conductivity is not large compared to metal or the like. Compared with them, silver used as the heat conducting member 308 is considerably large at about 420 W / mK, and therefore, the diffusion route of the above (4) is prioritized over other diffusion routes and thermally diffuses. Since the holding member 304 is also made of metal and has a large volume and surface area, even if heat continues to be incident and the heat is continuously generated, the wavelength conversion member 302 or the heat conducting member 308 holds the heat one after another without stagnation. Heat is diffused from the member 304 to the outside.

(効果)
以上説明したような構造とすることで、従来よりも大きな光量の射出光を創出する照明装置を提供することができる。すなわち、波長変換部材302の側方に光透過部328が存在していることから、反射層で反射され光軸前方方向に射出された波長変換光が波長変換部材302に入射されずに射出部324から射出される光量割合が大幅に増大する。反射層で反射され光軸前方方向に射出された波長変換光が波長変換部材に照射されると、波長変換部材の光吸収機能により吸収されたり、散乱によって射出部方向に向かわなくなるため光量が減少するが、本実施形態に係る照明装置100では、このような現象を回避しているため、同じ入力励起光光量で、従来より大きい光量の波長変換光の射出光を創出することができる。
(effect)
With the structure as described above, it is possible to provide an illuminating device that creates a larger amount of emitted light than before. That is, since the light transmission part 328 exists on the side of the wavelength conversion member 302, the wavelength conversion light reflected by the reflection layer and emitted in the forward direction of the optical axis is not incident on the wavelength conversion member 302 and is emitted. The ratio of the amount of light emitted from 324 is greatly increased. If the wavelength conversion light reflected by the reflection layer and emitted in the forward direction of the optical axis is irradiated to the wavelength conversion member, the light is reduced by being absorbed by the light absorption function of the wavelength conversion member or not being directed toward the emission part due to scattering. However, since the lighting apparatus 100 according to the present embodiment avoids such a phenomenon, it is possible to create emission light of wavelength-converted light having a larger light amount than the conventional light amount with the same input excitation light amount.

また、波長変換部材302の内部で発生した熱量を熱伝導部材308により効果的に拡散できるため、波長変換部材302やその周辺部材が低温で安定する。よって、安全を考慮しても従来よりもより大きな励起光光量を入力することができ、明るい波長変換光の射出光を創出することができる。   Further, since the heat generated inside the wavelength conversion member 302 can be effectively diffused by the heat conducting member 308, the wavelength conversion member 302 and its peripheral members are stabilized at a low temperature. Therefore, even if safety is taken into consideration, it is possible to input a larger amount of excitation light than in the past, and to create bright emission light of wavelength-converted light.

また、熱伝導部材308は、銀で出来ているため、ほとんど光吸収しない。そのため、光透過部328の内部に存在しているが、光吸収し熱を発生することがほとんどなく、効率よく波長変換光の射出光を創出することができる。   Further, since the heat conducting member 308 is made of silver, it hardly absorbs light. Therefore, although it exists in the inside of the light transmission part 328, it absorbs light and hardly generates heat | fever and can produce | generate the emission light of wavelength conversion light efficiently.

なお、光源部200の光源は、半導体レーザ202に限らない。例えばLEDを用いることで、より安価に装置を作製することができる。   Note that the light source of the light source unit 200 is not limited to the semiconductor laser 202. For example, by using an LED, a device can be manufactured at a lower cost.

また、ファイバ204を設置せず、半導体レーザ202のレーザ射出端を励起光射出端206として、保持部材304の入射部322付近に直接設置してもよい。   Alternatively, the fiber 204 may not be installed, and the laser emission end of the semiconductor laser 202 may be directly set near the incident portion 322 of the holding member 304 as the excitation light emission end 206.

また、保持部材304の貫通孔320の形状は、テーパのついた円錐形状でも良い。その場合、光透過部は円錐台形状となる。   Further, the shape of the through hole 320 of the holding member 304 may be a tapered conical shape. In that case, the light transmission part has a truncated cone shape.

さらに、波長変換部材302は、円柱である必要はない。円錐や円錐台、ドーム形状、四角柱でもよい。   Furthermore, the wavelength conversion member 302 need not be a cylinder. A cone, a truncated cone, a dome shape, or a quadrangular prism may be used.

また、光透過部空間326は、透明な材料で充填されていても良い。例えば、光透過部328全体が光透過部材306で満たされていても良い。   Further, the light transmission part space 326 may be filled with a transparent material. For example, the entire light transmission part 328 may be filled with the light transmission member 306.

さらに、光透過部材306に、励起光もしくは波長変換光を散乱させる機能を有していても良い。両光を光吸収せず隣接部材に伝えることが肝要である。   Further, the light transmitting member 306 may have a function of scattering excitation light or wavelength converted light. It is important to transmit both lights to adjacent members without absorbing light.

また、熱伝導部材308を保持部材304もしくは波長変換部材側面318と接する際、物理的に接していることが望ましいが、それに限らない。なぜならば、両者が物理的に接していると効果的に熱量伝達がなされるが、両者が接していなくても一般的に50μm以下の短い距離で近接していれば熱的に効率よく伝達するためである。それは、その間隙に反射層や接着層、空気層などが介在していても、その介在層材質に関係なく熱的に効率よく伝達する。すなわち、熱的に接続とは、間隙の材料有無に関わらず物理的に接しているかもしくは50μm以下に近接していることとする。   Further, when the heat conducting member 308 is in contact with the holding member 304 or the wavelength conversion member side surface 318, it is desirable that the heat conducting member 308 is in physical contact with the holding member 304 or the wavelength conversion member side surface 318, but this is not a limitation. This is because, when both are in physical contact with each other, heat is effectively transferred, but even if they are not in contact with each other, they are generally efficiently transferred if they are close to each other at a short distance of 50 μm or less. Because. Even if a reflective layer, an adhesive layer, an air layer or the like is interposed in the gap, it is efficiently and efficiently transmitted regardless of the material of the interposed layer. That is, the term “thermally connected” means that the contact is physically made regardless of the presence / absence of the material of the gap or is close to 50 μm or less.

さらに、熱伝導部材308の数も1個に限らない。図2に示すような2個、さらにはそれ以上であって良い。即ち、熱伝導部材308は、少なくとも1個あれば良く、その数は、発熱量と、耐熱温度、使用環境上守らなければならない外表面の温度、等に応じて、決定すれば良い。なお、複数設ける場合には、対角に配置したり、等角度に配置することが好ましい。   Further, the number of heat conducting members 308 is not limited to one. There may be two or more as shown in FIG. That is, at least one heat conducting member 308 may be provided, and the number may be determined according to the amount of heat generation, the heat resistant temperature, the temperature of the outer surface that must be protected in the use environment, and the like. In addition, when providing two or more, it is preferable to arrange | position diagonally or equidistantly.

[変形例]
次に、本実施形態の変形例を説明する。
図3(A)乃至(C)に示すように、熱伝導部材308は、波長変換部材302と一体的に構成したもの、つまり波長変換部材302を一部、保持部材304まで延設して形成しても良い。なぜならば、波長変換部材302の一部としても用いられる無機粉末蛍光体は、約10W/mkと、樹脂やガラスよりも高い特性を有しているため、この材料を用いて保持部材304まで熱拡散させることができるからである。このような構成では、波長変換部材302は、保持部材304と物理的には離間していないこととなるが、発熱に寄与する波長変換部材302の大部分が保持部材304と熱的に離間している。
[Modification]
Next, a modification of this embodiment will be described.
As shown in FIGS. 3A to 3C, the heat conducting member 308 is formed integrally with the wavelength conversion member 302, that is, a part of the wavelength conversion member 302 is extended to the holding member 304. You may do it. This is because the inorganic powder phosphor used also as a part of the wavelength conversion member 302 has a characteristic higher than that of resin or glass of about 10 W / mk. This is because it can be diffused. In such a configuration, the wavelength conversion member 302 is not physically separated from the holding member 304, but most of the wavelength conversion member 302 contributing to heat generation is thermally separated from the holding member 304. ing.

この構成の場合、上記第1実施形態よりも部材点数が減少し、製造プロセスが簡易になることがその他の効果として挙げられる。また、波長変換部材302内で吸収されず散乱し反射層で反射した励起光の一部が、熱伝導部材308として設置した波長変換部材302によって波長変換光に波長変換されるため、励起光の抜けが減少し、効率良く波長変換光を創出できる。   In the case of this configuration, the other effect is that the number of members is reduced as compared with the first embodiment and the manufacturing process is simplified. In addition, since a part of the excitation light that is not absorbed in the wavelength conversion member 302 and is scattered and reflected by the reflection layer is converted into wavelength converted light by the wavelength conversion member 302 installed as the heat conducting member 308, the excitation light Omission is reduced and wavelength converted light can be efficiently created.

[第2実施形態]
次に、本発明の第2実施形態を説明する。
(構成)
本第2実施形態は、上記第1実施形態とは熱伝導部材308の設置位置が異なる。即ち、図4(A)乃至(C)に示すように、第2実施形態に係る照明装置100では、波長変換部材入射面314の光軸中心を含んだ場所から保持部材304まで、銀の薄膜でなる熱伝導部材308が形成されている。
[Second Embodiment]
Next, a second embodiment of the present invention will be described.
(Constitution)
The second embodiment is different from the first embodiment in the installation position of the heat conducting member 308. That is, as shown in FIGS. 4A to 4C, in the illuminating device 100 according to the second embodiment, a silver thin film is formed from the place including the optical axis center of the wavelength conversion member incident surface 314 to the holding member 304. A heat conduction member 308 is formed.

(効果)
このような構造とすることで、本実施形態に係る照明装置100は、励起光の入力光を大きくする事ができる。即ち、ファイバ204の励起光射出端206から射出される励起光は、光軸方向が一番強く射出されており、光軸Oから傾いていくにつれ光量が下がっていく傾向が一般的にある。従って、本実施形態のような構造の場合、波長変換部材入射面314のうち、励起光が強く照射され、発熱量が大きい場所にまで熱伝導部材308が伸びているため、より効率良く、発熱量を保持部材304まで熱拡散することができる。
(effect)
By setting it as such a structure, the illuminating device 100 which concerns on this embodiment can enlarge the input light of excitation light. That is, the excitation light emitted from the excitation light exit end 206 of the fiber 204 is emitted most strongly in the optical axis direction, and generally tends to decrease in light quantity as it is tilted from the optical axis O. Therefore, in the case of the structure as in the present embodiment, the excitation light is strongly irradiated on the wavelength conversion member incident surface 314, and the heat conduction member 308 extends to a place where the heat generation amount is large. The amount can be thermally diffused to the holding member 304.

なお、熱伝導部材308に直接照射された励起光に関しては、銀で薄膜を形成しているため、ロスによって熱に変換されることはほとんどなく、反射散乱され、一部は再び波長変換部材302の別の箇所から入射し波長変換に寄与することができる。   Note that the excitation light directly irradiated on the heat conducting member 308 is formed into a thin film with silver, so that it is hardly converted into heat by loss, and is reflected and scattered, and a part thereof is again the wavelength converting member 302. It is possible to make an incident from another part of the light and contribute to wavelength conversion.

[第1の変形例]
ここで、本第2実施形態の第1の変形例を説明する。
上記第2実施形態に係る照明装置100では、熱伝導部材308は、銀で形成していたが、図5に示すように、いわゆる透明電極用途で使われるような透明導電体で形成しても良い。この透明導電体としては、例えばITO(酸化インジウムスズ)や、ZnO(酸化亜鉛)、SnO(酸化スズ)などが知られている。これらは、8〜100W/mKと比較的高い熱伝導率を有し、且つ透明である。
[First Modification]
Here, a first modification of the second embodiment will be described.
In the lighting device 100 according to the second embodiment, the heat conducting member 308 is made of silver. However, as shown in FIG. 5, the heat conducting member 308 may be made of a transparent conductor used for so-called transparent electrode applications. good. As this transparent conductor, for example, ITO (indium tin oxide), ZnO (zinc oxide), SnO (tin oxide) and the like are known. These have a relatively high thermal conductivity of 8 to 100 W / mK and are transparent.

このような材料を本実施形態の熱伝導部材308として使用することで、熱伝導部材308によって励起光の波長変換部材302への入射を遮り、波長変換光の光量が減少するということを防げることができる。また、熱伝導部材308によって波長変換光を遮り、射出部324からの射出を減少させるということも防げることができる。   By using such a material as the heat conducting member 308 of the present embodiment, it is possible to prevent the excitation light from entering the wavelength conversion member 302 by the heat conducting member 308 and reduce the amount of the wavelength converted light. Can do. In addition, it is possible to prevent the wavelength conversion light from being blocked by the heat conducting member 308 to reduce the emission from the emission unit 324.

なお、上記第1実施形態に係る照明装置100においても、熱伝導部材308に、このような透明導電体を用いても良いことは言うまでもない。   Needless to say, such a transparent conductor may be used for the heat conducting member 308 also in the lighting device 100 according to the first embodiment.

[第2の変形例]
次に、本第2実施形態の第2の変形例を説明する。
図6(A)及び(B)に示すように、本変形例による照明装置100では、上記第1の変形例で説明したような透明導電体を用いた熱伝導部材308を、光透過部材射出面312全体に形成したものである。
[Second Modification]
Next, a second modification of the second embodiment will be described.
As shown in FIGS. 6A and 6B, in the lighting device 100 according to the present modification, the heat conductive member 308 using the transparent conductor as described in the first modification is emitted from the light transmitting member. It is formed on the entire surface 312.

熱伝導部材308が透明であれば、励起光及び波長変換光に対して吸収や散乱させることがないため、薄膜形成面積を増加させて熱拡散効果を高めることができる。最も熱拡散効果が高いのは、光透過部材射出面312全体に透明な熱伝導体を形成することである。この場合、熱伝導部材308が透明であるため光透過部材306も兼ね、励起光射出端206から射出部324まで光透過部328が連続して形成されている。   If the heat conducting member 308 is transparent, it is not absorbed or scattered with respect to the excitation light and the wavelength converted light, so that the thermal diffusion effect can be enhanced by increasing the thin film formation area. The highest thermal diffusion effect is to form a transparent heat conductor on the entire light transmitting member exit surface 312. In this case, since the heat conducting member 308 is transparent, it also serves as the light transmitting member 306, and the light transmitting portion 328 is continuously formed from the excitation light emitting end 206 to the emitting portion 324.

[第3実施形態]
次に、本発明の第3実施形態を説明する。
(構成)
本第3実施形態は、上記第1実施形態とは熱伝導部材308の設置位置が異なる。即ち、図7(A)乃至(C)に示すように、第3実施形態に係る照明装置100では、熱伝導部材308は、光透過部材射出面312のうち一部に形成され、それは励起光が波長変換部材302を主に照射する領域である主要励起光照射領域332の周囲端の一部分から、長方形状に保持部材304まで伸びている。なお、上述したように、主要励起光照射領域332とは、波長変換部材入射面314の中で、励起光射出端206から射出される励起光光量のうち、1/e以上の光量が照射される円状領域である。この円の外周のうち一部分から外側に銀を形成し、ある一定幅を持って保持部材304まで形成することで、熱伝導部材308を配置している。即ち、熱伝導部材308は、準励起光照射領域334と保持部材304とを熱的に接続している。
[Third Embodiment]
Next, a third embodiment of the present invention will be described.
(Constitution)
The third embodiment differs from the first embodiment in the installation position of the heat conducting member 308. That is, as shown in FIGS. 7A to 7C, in the lighting device 100 according to the third embodiment, the heat conducting member 308 is formed on a part of the light transmitting member exit surface 312, which is excitation light. Extends from the part of the peripheral edge of the main excitation light irradiation region 332, which is a region for mainly irradiating the wavelength conversion member 302, to the holding member 304 in a rectangular shape. As described above, the main excitation light irradiation region 332 is irradiated with a light amount of 1 / e or more of the excitation light amount emitted from the excitation light emission end 206 in the wavelength conversion member incident surface 314. This is a circular area. The heat conducting member 308 is arranged by forming silver from a part of the outer periphery of the circle to the outside and forming the holding member 304 with a certain width. That is, the heat conducting member 308 thermally connects the quasi-excitation light irradiation region 334 and the holding member 304.

(効果)
このような構造とすることで、励起光が波長変換部材302の主要励起光照射領域332に入射することを妨げる部材がないため、効率よく波長変換が行われ、且つ、熱伝導部材308が波長変換部材入射面314のうち主要励起光照射領域332の外周まで延びているため、波長変換部材302の光軸付近で主に発生する熱量を効率よく保持部材304に熱拡散することができる。
(effect)
With such a structure, there is no member that prevents the excitation light from entering the main excitation light irradiation region 332 of the wavelength conversion member 302, so that wavelength conversion is performed efficiently and the heat conducting member 308 has a wavelength. Since the conversion member incident surface 314 extends to the outer periphery of the main excitation light irradiation region 332, heat generated mainly in the vicinity of the optical axis of the wavelength conversion member 302 can be efficiently diffused to the holding member 304.

[第4実施形態]
次に、本発明の第4実施形態を説明する。
(構成)
本第4実施形態は、上記第1実施形態とは熱伝導部材308及び光透過部材306の設置位置及び形状が異なる。即ち、図8(A)及び(B)に示すように、第4実施形態に係る照明装置100では、熱伝導部材308は、波長変換部材302の厚さ方向に関する中央付近の内部から保持部材304までを、棒状もしくは線状の銀で形成されている。また、光透過部材306は、光透過部空間326にも充填される、すなわち、光透過部328全体に充填されている。なお、光透過部材306の材質に関しては、透明樹脂とする。
[Fourth Embodiment]
Next, a fourth embodiment of the present invention will be described.
(Constitution)
The fourth embodiment is different from the first embodiment in the installation positions and shapes of the heat conducting member 308 and the light transmitting member 306. That is, as shown in FIGS. 8A and 8B, in the lighting device 100 according to the fourth embodiment, the heat conducting member 308 is held from the inside near the center in the thickness direction of the wavelength conversion member 302. Up to, it is made of rod-like or linear silver. Further, the light transmission member 306 is also filled in the light transmission portion space 326, that is, the light transmission portion 328 is entirely filled. The material of the light transmission member 306 is a transparent resin.

(効果)
波長変換部材302によって波長変換される箇所は、波長変換部材入射面314に近い波長変換部材302内部が大部分であり、それから光軸前方に進むに従って指数関数的に変換量が低下する。また、波長変換部材302の内部で発生する熱及び波長変換光は、両者とも360度等方的に拡散を開始する。しかし、波長変換光に関しては、射出部324方向には波長変換部材302が設置されているため散乱され易く、入射部322方向には透明な光透過部材306が有るため、光軸後方に優先的に射出される。一方、熱に関しては、入射部322方向に熱伝導率の低い光透過部材306が有る一方、光軸前方には光透過部材306より熱伝導率が高い波長変換部材302が設置されているため、光軸前方に優先的に拡散される。
(effect)
The portion of the wavelength converted by the wavelength converting member 302 is mostly inside the wavelength converting member 302 close to the wavelength converting member incident surface 314, and then the conversion amount decreases exponentially as it advances in front of the optical axis. Further, both the heat generated in the wavelength converting member 302 and the wavelength converted light both start to diffuse 360 degrees isotropically. However, the wavelength converted light is likely to be scattered because the wavelength converting member 302 is installed in the direction of the emitting portion 324, and the transparent light transmitting member 306 is provided in the direction of the incident portion 322. Is injected into. On the other hand, for heat, there is a light transmission member 306 with low thermal conductivity in the direction of the incident portion 322, while a wavelength conversion member 302 with higher thermal conductivity than the light transmission member 306 is installed in front of the optical axis. It is preferentially diffused in front of the optical axis.

よって、本実施形態のように、波長変換部材302内部の波長変換部材302の厚さ方向の中央付近から熱拡散させることで、励起光も波長変換光も到達しにくい場所に熱伝導部材308が設置されているため、励起光及び波長変換光をほとんど阻害することなく、波長変換部材302の内部で発生する熱を効率よく保持部材304に伝達することができる。そのため、波長変換部材302があまり発熱せず、入力励起光を大きく入力することができ、また、効率よく励起光を波長変換光に変換でき、その波長変換光を射出部324より外部に射出することができる。   Therefore, as in the present embodiment, the heat conducting member 308 is located in a place where neither the excitation light nor the wavelength converted light can easily reach by being thermally diffused from near the center in the thickness direction of the wavelength converting member 302 inside the wavelength converting member 302. Since it is installed, the heat generated inside the wavelength conversion member 302 can be efficiently transferred to the holding member 304 without substantially inhibiting the excitation light and the wavelength conversion light. For this reason, the wavelength conversion member 302 does not generate much heat, the input excitation light can be largely input, the excitation light can be efficiently converted into the wavelength conversion light, and the wavelength conversion light is emitted from the emission unit 324 to the outside. be able to.

以上、実施形態に基づいて本発明を説明したが、本発明は、上述した実施形態に限定されるものではなく、本発明の要旨の範囲内で種々の変形や応用が可能なことは勿論である。   The present invention has been described above based on the embodiments. However, the present invention is not limited to the above-described embodiments, and various modifications and applications are possible within the scope of the gist of the present invention. is there.

例えば、上述した全ての実施形態において、励起光源である半導体レーザ202と波長変換部材302とを組み合わせた照明装置100に関する例を示したが、本発明は、これに限らない。1次光源と、1次光源から放射される1次光の、ピーク波長、放射角、スペクトル形状等の光学的性質の少なくとも一部を変換し、2次光として放射する光変換部材を組み合わせた光源装置であれば、本発明の効果を得ることが可能である。すなわち、光源装置から放射される2次光の安全レベルが、1次光がそのまま放射された場合の安全レベルと比較して向上するような光源装置であれば、どのような光源装置にも適用することができる。例えば、光変換部材として上記3つの光学的性質のうちの放射角のみを変換する拡散部材を用いて、1次光であるレーザ光の放射角を広げ、光源使用者の眼に入射するレーザ光の光密度を減少させて安全性を向上させるような光源装置において、好適である。   For example, in all of the above-described embodiments, the example relating to the illumination device 100 in which the semiconductor laser 202 serving as the excitation light source and the wavelength conversion member 302 are combined has been described, but the present invention is not limited thereto. A primary light source and a light conversion member that converts at least part of the optical properties of the primary light emitted from the primary light source, such as peak wavelength, radiation angle, and spectral shape, and emits the secondary light are combined. If it is a light source device, it is possible to obtain the effects of the present invention. In other words, any light source device can be used as long as the safety level of the secondary light emitted from the light source device is improved as compared with the safety level when the primary light is emitted as it is. can do. For example, using a diffusion member that converts only the radiation angle among the above three optical properties as the light conversion member, the radiation angle of the laser light that is the primary light is widened, and the laser light that enters the eyes of the light source user This is suitable for a light source device that improves the safety by reducing the light density.

100…照明装置、 200…光源部、 202…半導体レーザ、 204…ファイバ、 206…励起光射出端、 300…波長変換ユニット部、 302…波長変換部材、 304…保持部材、 306…光透過部材、 308…熱伝導部材、 310…光透過部材入射面、 312…光透過部材射出面、 314…波長変換部材入射面、 316…波長変換部材射出面、 318…波長変換部材側面、 320…貫通孔、 322…入射部、 324…射出部、 326…光透過部空間、 328…光透過部、 330…ビームスポット、 332…主要励起光照射領域、 334…準励起光照射領域。     DESCRIPTION OF SYMBOLS 100 ... Illuminating device, 200 ... Light source part, 202 ... Semiconductor laser, 204 ... Fiber, 206 ... Excitation light emission end, 300 ... Wavelength conversion unit part, 302 ... Wavelength conversion member, 304 ... Holding member, 306 ... Light transmission member, 308... Heat conducting member, 310. Light transmitting member incident surface, 312. Light transmitting member emitting surface, 314. Wavelength converting member incident surface, 316. Wavelength converting member emitting surface, 318. Wavelength converting member side surface, 320. 322... Incident portion, 324... Exit portion, 326... Light transmitting portion space, 328... Light transmitting portion, 330 .. beam spot, 332 .. main excitation light irradiation region, 334.

Claims (9)

1次光源部と、光変換ユニット部を有する照明装置において、
前記1次光源部は、1次光を射出する1次光射出端を有し、
前記光変換ユニット部は、
前記1次光を所望の2次光に光変換する光変換部材と、
前記1次光及び前記2次光を透過する機能を有する光透過部と、
前記光透過部をその内部に保持する機能を有する貫通孔を有する保持部材と、
を有しており、
前記保持部材の貫通孔の一端である入射部は、その付近に前記1次光射出端が設置され、
前記1次光射出端は前記光変換部材と離間しており、且つ、前記光変換部材は前記保持部材と離間しており、
前記光透過部は、前記1次光射出端と前記光変換部材との間隙にその一部が設置され、且つ前記入射部から前記保持部材の貫通孔の他端である射出部まで少なくとも一部は連続して構成され、
前記照明装置は、前記光変換部材と前記保持部材とを熱的に接続する機能を有し、且つ前記光透過部に設置されている光透過部材よりも高熱伝導率である、熱伝導部材を更に具備していることを特徴とする照明装置。
In an illumination device having a primary light source unit and a light conversion unit unit,
The primary light source unit has a primary light emitting end for emitting primary light,
The light conversion unit is
A light conversion member that converts the primary light into desired secondary light;
A light transmission part having a function of transmitting the primary light and the secondary light;
A holding member having a through-hole having a function of holding the light transmitting portion therein;
Have
The incident portion which is one end of the through hole of the holding member is provided with the primary light emitting end in the vicinity thereof,
The primary light emitting end is separated from the light conversion member, and the light conversion member is separated from the holding member;
The light transmission part is at least partially installed in the gap between the primary light emission end and the light conversion member, and from the incident part to the emission part which is the other end of the through hole of the holding member. Is composed continuously,
The lighting device has a function of thermally connecting the light conversion member and the holding member, and a heat conduction member having a higher thermal conductivity than the light transmission member installed in the light transmission portion. A lighting device further comprising the lighting device.
前記光変換部材は、前記1次光射出端と離間し且つ前記1次光射出端と対向した光変換部材入射面と、前記光変換部材入射面と接している光変換部材側面と、を有し、
前記熱伝導部材は、前記光変換部材側面の一部と、前記保持部材と、を熱的に接続していることを特徴とする請求項1に記載の照明装置。
The light conversion member has a light conversion member incident surface that is separated from the primary light emission end and faces the primary light emission end, and a light conversion member side surface that is in contact with the light conversion member incident surface. And
The lighting device according to claim 1, wherein the heat conducting member thermally connects a part of a side surface of the light conversion member and the holding member.
前記熱伝導部材は、前記光変換部材の内部と前記保持部材とを熱的に接続していることを特徴とする請求項1に記載の照明装置。   The lighting device according to claim 1, wherein the heat conducting member thermally connects the inside of the light conversion member and the holding member. 前記熱伝導部材は、前記1次光射出端と離間し且つ前記1次光射出端と対向した光変換部材入射面の一部と、前記保持部材と、を熱的に接続していることを特徴とする請求項1に記載の照明装置。   The heat conducting member thermally connects a part of the light conversion member incident surface that is spaced apart from the primary light emitting end and faces the primary light emitting end, and the holding member. The lighting device according to claim 1, wherein 前記1次光射出端の中心を通り、前記1次光射出端から射出される前記1次光が主に射出される軸を光軸とすると、前記熱伝導部材は、前記光軸と前記光変換部材入射面とが交わる一点を含む前記光変換部材入射面の一部と、前記保持部材と、を熱的に接続していることを特徴とする請求項4に記載の照明装置。   Assuming that an axis passing through the center of the primary light emission end and mainly emitting the primary light emitted from the primary light emission end is an optical axis, the heat conducting member includes the optical axis and the light. The lighting device according to claim 4, wherein a part of the light conversion member incident surface including one point where the conversion member incident surface intersects is thermally connected to the holding member. 前記1次光射出端の中心を通り、前記1次光射出端から射出される前記1次光が主に射出される軸を光軸と定義し、且つ、前記光変換部材入射面のうち、前記光軸を通る点を通過する1次光の光量に対し1/e以上の割合の光量が照射される領域を主要1次光照射領域、それ以外の領域を準1次光照射領域と定義すると、前記熱伝導部材は、前記光変換部材のうち、前記準1次光照射領域と、前記保持部材と、を熱的に接続していることを特徴とする請求項4に記載の照明装置。   An axis through which the primary light exiting from the primary light exit end passes through the center of the primary light exit end is defined as an optical axis, and of the light conversion member entrance surface, A region irradiated with a light amount of 1 / e or more with respect to the light amount of the primary light passing through the point passing through the optical axis is defined as a main primary light irradiation region, and the other region is defined as a quasi-primary light irradiation region. Then, the heat conduction member thermally connects the quasi-primary light irradiation region and the holding member in the light conversion member. . 前記熱伝導部材は、金属、または炭素材料、またはその何れかを含む材料であることを特徴とする請求項2、3、5または6に記載の照明装置。   The lighting device according to claim 2, 3, 5, or 6, wherein the heat conducting member is a metal, a carbon material, or a material containing any of them. 前記熱伝導部材は、前記光変換部材と一体に形成されていることを特徴とする請求項2、3、5または6に記載の照明装置。   The lighting device according to claim 2, 3, 5, or 6, wherein the heat conducting member is formed integrally with the light conversion member. 前記熱伝導部材は、透明導電体であることを特徴とする請求項2、3、5または6に記載の照明装置。   The lighting device according to claim 2, wherein the heat conducting member is a transparent conductor.
JP2011228104A 2011-10-17 2011-10-17 Lighting device Pending JP2013089419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011228104A JP2013089419A (en) 2011-10-17 2011-10-17 Lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011228104A JP2013089419A (en) 2011-10-17 2011-10-17 Lighting device

Publications (1)

Publication Number Publication Date
JP2013089419A true JP2013089419A (en) 2013-05-13

Family

ID=48533133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011228104A Pending JP2013089419A (en) 2011-10-17 2011-10-17 Lighting device

Country Status (1)

Country Link
JP (1) JP2013089419A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017043121A1 (en) * 2015-09-10 2017-03-16 シャープ株式会社 Light-emitting device and illumination device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017043121A1 (en) * 2015-09-10 2017-03-16 シャープ株式会社 Light-emitting device and illumination device

Similar Documents

Publication Publication Date Title
JP5478232B2 (en) Lighting device
JP3129322U (en) Brightness improvement structure of edge light type backlight of liquid crystal display
US8864328B2 (en) Illumination device and vehicle headlight
JP5323998B2 (en) Luminaire with phosphor, excitation light source, optical system, and heat sink
US20140085923A1 (en) Light emitting device
WO2014203484A1 (en) Wavelength conversion member, light source and vehicle headlamp
US20120212931A1 (en) Light emitting device
US9746140B2 (en) LED lighting device
JP5993766B2 (en) Lighting device
JP6697765B2 (en) Light source device and light projecting device
JP5722068B2 (en) Light source device, lighting device and vehicle headlamp
JP6012936B2 (en) Lighting device
JP2012160666A (en) Light source module and lighting device
WO2014003062A1 (en) Light source device
US9423103B2 (en) Light source device for tubular observation device
JP2017523572A (en) Illumination device for coupling light from a light source into a light guide plate
JP2012248401A (en) Light source device
JP5851123B2 (en) Lighting device
JP2013058454A (en) Light guide body and lighting system
JP2012028095A (en) Fluorescent rod system
WO2017043121A1 (en) Light-emitting device and illumination device
JP2013089419A (en) Lighting device
JP2018006128A (en) Light source device and lighting fixture
JP5686039B2 (en) Vehicle lighting
JP2012069324A (en) Light source unit