JP6444837B2 - Light source device - Google Patents

Light source device Download PDF

Info

Publication number
JP6444837B2
JP6444837B2 JP2015179959A JP2015179959A JP6444837B2 JP 6444837 B2 JP6444837 B2 JP 6444837B2 JP 2015179959 A JP2015179959 A JP 2015179959A JP 2015179959 A JP2015179959 A JP 2015179959A JP 6444837 B2 JP6444837 B2 JP 6444837B2
Authority
JP
Japan
Prior art keywords
phosphor layer
light
excitation light
light source
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015179959A
Other languages
Japanese (ja)
Other versions
JP2017054785A (en
Inventor
智也 三澤
智也 三澤
昌作 石原
昌作 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maxell Ltd filed Critical Maxell Ltd
Priority to JP2015179959A priority Critical patent/JP6444837B2/en
Priority to PCT/JP2016/070877 priority patent/WO2017043180A1/en
Publication of JP2017054785A publication Critical patent/JP2017054785A/en
Application granted granted Critical
Publication of JP6444837B2 publication Critical patent/JP6444837B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/28Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by coatings
    • F21V7/30Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by coatings the coatings comprising photoluminescent substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/16Laser light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/176Light sources where the light is generated by photoluminescent material spaced from a primary light generating element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V17/00Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/32Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Semiconductor Lasers (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)

Description

本発明は、励起光源と蛍光体を用いた光源装置に関し、特に、励起光源としてレーザー発光素子を用いた光源装置に関する。   The present invention relates to a light source device using an excitation light source and a phosphor, and more particularly to a light source device using a laser light emitting element as an excitation light source.

近年の自動車用ヘッドライトなどの光源装置では、光源の消費エネルギー低減のため、発光ダイオード(LED)やレーザーダイオード(LD)を用いた製品が提案され、一部実用化されている。特にLD光源の場合、光変換効率が高くまた発光面積が小さいので、灯具の小型化のため有利となる。LD光源を用いる光源装置では、LD素子から蛍光体へ励起光(例えば青色レーザー光)を照射し、蛍光体が励起されて発する光(例えば黄色光)と励起光とを混色させて可視光(例えば白色光)を出射させる構成となっている。   In light source devices such as automobile headlights in recent years, products using light emitting diodes (LEDs) and laser diodes (LDs) have been proposed and partially put into practical use in order to reduce energy consumption of the light sources. Particularly in the case of an LD light source, the light conversion efficiency is high and the light emitting area is small, which is advantageous for downsizing of the lamp. In a light source device using an LD light source, excitation light (for example, blue laser light) is emitted from a LD element to a phosphor, and light (for example, yellow light) emitted by excitation of the phosphor is mixed with excitation light to produce visible light ( For example, white light) is emitted.

例えば特許文献1には、紫外光から可視光までの波長領域のうちの所定の波長の光を発光する固体光源と、該固体光源からの励起光により励起され該固体光源の発光波長よりも長波長の蛍光を発光する少なくとも1種類の蛍光体を含む蛍光体層と、該蛍光体層の前記励起光が入射する側の面とは反対の面側に設けられる放熱基板とを備え、前記蛍光体層は実質的に樹脂成分を含まず、前記固体光源と前記蛍光体層とが空間的に離れて配置されており、前記蛍光体層の面のうち励起光が入射する側の面とは反対側に設けられた反射面による反射を用いて蛍光を取り出す構成とした光源装置が記載されている。   For example, Patent Document 1 discloses a solid-state light source that emits light having a predetermined wavelength in a wavelength region from ultraviolet light to visible light, and an excitation wavelength from the solid-state light source that is longer than the emission wavelength of the solid-state light source. A phosphor layer including at least one phosphor that emits fluorescence of a wavelength; and a heat dissipation substrate provided on a surface of the phosphor layer opposite to a surface on which the excitation light is incident. The body layer substantially does not contain a resin component, the solid light source and the phosphor layer are arranged spatially separated, and the surface of the phosphor layer on which excitation light is incident is There is described a light source device configured to extract fluorescence using reflection by a reflection surface provided on the opposite side.

特開2011−129354号公報JP 2011-129354 A

LD素子と蛍光体を組み合わせた光源装置を高輝度化するためには、LD素子の出力を上げて蛍光体を励起する励起光の強度を大きくする必要がある。しかし、励起光強度を大きくすると、蛍光体の発熱量が増加し、蛍光体の温度消光による発光効率低下や、蛍光体や周辺部材の材料の変質・劣化といった問題が発生する恐れがある。   In order to increase the luminance of a light source device that combines an LD element and a phosphor, it is necessary to increase the intensity of excitation light that excites the phosphor by increasing the output of the LD element. However, when the excitation light intensity is increased, the calorific value of the phosphor increases, which may cause problems such as a decrease in light emission efficiency due to temperature quenching of the phosphor and deterioration / degradation of materials of the phosphor and peripheral members.

これに関し特許文献1に記載される光源装置では、蛍光体層を熱伝導率の高い蛍光体セラミックスとし、これを放熱基板に接合し放熱することによって蛍光体層の温度上昇を抑制している。   In this regard, in the light source device described in Patent Document 1, the phosphor layer is made of phosphor ceramic having high thermal conductivity, and this is joined to a heat dissipation substrate to dissipate heat, thereby suppressing the temperature rise of the phosphor layer.

しかし、セラミックスの熱膨張係数と放熱基板の熱膨張係数との間に差がある場合、環境温度の変化や励起時の蛍光体層の温度上昇によって、接合部の剥離やセラミックスの破壊が発生する恐れがある。   However, when there is a difference between the thermal expansion coefficient of ceramics and the thermal expansion coefficient of the heat dissipation substrate, peeling of the joints and destruction of the ceramics occur due to changes in the environmental temperature and temperature rise of the phosphor layer during excitation. There is a fear.

これを防止する方法として、セラミックスと放熱板の中間の熱膨張係数を有する物質を介在させる方法や、接合部材として有機接着剤などの弾性を有する物質を使用する方法があるが、これらの方法を用いた場合、放熱性が低下し励起光強度を強めることが困難になる。   As a method for preventing this, there are a method of interposing a substance having a thermal expansion coefficient between ceramics and a heat sink, and a method of using an elastic substance such as an organic adhesive as a joining member. If used, the heat dissipation is reduced, and it becomes difficult to increase the excitation light intensity.

そこで本発明は、温度上昇による接合部の剥離や蛍光体層の破壊を抑制し、かつ高い放熱性を有する光源装置を提供することを目的とする。   Therefore, an object of the present invention is to provide a light source device that suppresses peeling of a bonded portion and destruction of a phosphor layer due to a temperature rise and has high heat dissipation.

上記課題を解決するために、本発明は、励起光を出射する光源と、励起光を受けて蛍光および拡散された励起光を出射する蛍光体層とを有し、蛍光および拡散された励起光を照射光として出射する光源装置であって、蛍光体層と接合して蛍光体層で発生した熱を放熱する放熱板を備え、蛍光体層と放熱板との接合面において、蛍光体層または放熱板の少なくとも一方に複数の凹部を形成し、凹部の少なくとも一部には接着剤が充填され、接着剤によって蛍光体層と放熱板が接着されていることを特徴とする。   In order to solve the above-described problems, the present invention includes a light source that emits excitation light and a phosphor layer that emits fluorescence and diffused excitation light in response to the excitation light, and the fluorescence and diffused excitation light. Is a light source device that emits light as irradiation light, and includes a heat dissipation plate that is bonded to the phosphor layer and dissipates heat generated in the phosphor layer, and the phosphor layer or A plurality of recesses are formed in at least one of the heat dissipation plates, and at least a part of the recesses is filled with an adhesive, and the phosphor layer and the heat dissipation plate are bonded by the adhesive.

本発明によれば、温度上昇による接合部の剥離や蛍光体層の破壊を抑制し、かつ高い放熱性を有する光源装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the peeling of the junction part by the temperature rise and the destruction of a fluorescent substance layer can be suppressed, and the light source device which has high heat dissipation can be provided.

実施例1における光源装置の構成を示す斜視図である。1 is a perspective view illustrating a configuration of a light source device in Example 1. FIG. 蛍光体層3および放熱板4の断面図である。FIG. 3 is a cross-sectional view of the phosphor layer 3 and the heat sink 4. 蛍光体層3に形成する凹部6の配置の一例を示す図である。It is a figure which shows an example of arrangement | positioning of the recessed part 6 formed in the fluorescent substance layer. 実施例2における蛍光体層3および放熱板4の断面図である。6 is a cross-sectional view of a phosphor layer 3 and a heat sink 4 in Example 2. FIG. 実施例3における蛍光体層3に形成する凹部の配置の一例を示す図である。6 is a diagram illustrating an example of the arrangement of recesses formed in the phosphor layer 3 in Example 3. FIG. 蛍光体層3に形成する凹部の配置の一変形例を示す図である。It is a figure which shows the modification of arrangement | positioning of the recessed part formed in the fluorescent substance layer. 蛍光体層3に形成する凹部の配置の他の変形例を示す図である。It is a figure which shows the other modification of arrangement | positioning of the recessed part formed in the fluorescent substance layer. 実施例4における蛍光体層3および放熱板4の断面図である。6 is a cross-sectional view of a phosphor layer 3 and a heat sink 4 in Example 4. FIG. 蛍光体層3および放熱板4の変形例を示す断面図である。It is sectional drawing which shows the modification of the fluorescent substance layer 3 and the heat sink 4. FIG. 蛍光体層3および放熱板4の他の変形例を示す断面図である。It is sectional drawing which shows the other modification of the fluorescent substance layer 3 and the heat sink 4. FIG. 実施例5における光源装置の構成を示す斜視図である。FIG. 10 is a perspective view illustrating a configuration of a light source device according to a fifth embodiment. 蛍光体層3および透光性放熱板18の断面図である。FIG. 4 is a cross-sectional view of the phosphor layer 3 and the light transmissive heat sink 18. 透光性放熱板18に形成する凹部19の配置の一例を示す図である。It is a figure which shows an example of arrangement | positioning of the recessed part 19 formed in the translucent heat sink.

以下、本発明に係る光源装置の実施の形態について、図面を基に説明する。   Hereinafter, embodiments of a light source device according to the present invention will be described with reference to the drawings.

実施例1では、励起光を蛍光体層に入射させ蛍光体層から反射光を取り出す反射型の光源装置の構成を説明する。   In the first embodiment, a configuration of a reflective light source device in which excitation light is incident on a phosphor layer and reflected light is extracted from the phosphor layer will be described.

図1は、実施例1における光源装置の構成を示す斜視図である。光源装置100は、半導体発光素子1と、集光レンズ2と、蛍光体層3と、放熱板4と、リフレクタ(反射器)5とを備えている。光源となる半導体発光素子1にはレーザーダイオード(LD)を備えており、蛍光体層3の励起光としての青色レーザー光を出射する。集光レンズ2は、半導体発光素子1の出射側に配置され、半導体発光素子1から出射された励起光(青色レーザー光)20を、上方に配置された蛍光体層3の表面に集光させる。蛍光体層3は、励起光を受けて蛍光30および拡散反射された励起光20’を出射する。   FIG. 1 is a perspective view illustrating a configuration of a light source device according to the first embodiment. The light source device 100 includes a semiconductor light emitting element 1, a condenser lens 2, a phosphor layer 3, a heat sink 4, and a reflector (reflector) 5. The semiconductor light-emitting element 1 serving as a light source includes a laser diode (LD), and emits blue laser light as excitation light for the phosphor layer 3. The condenser lens 2 is disposed on the emission side of the semiconductor light emitting element 1 and condenses the excitation light (blue laser light) 20 emitted from the semiconductor light emitting element 1 on the surface of the phosphor layer 3 disposed above. . The phosphor layer 3 receives the excitation light and emits the fluorescence 30 and the diffusely reflected excitation light 20 '.

リフレクタ5は、上方斜め前方に開口する湾曲板状に形成されていて、蛍光体層3の下方を臨むように配設されている。このリフレクタ5の上面は、蛍光体層3から出射された蛍光30および拡散反射された励起光20’を前方へ反射させる反射面5aとなっている。反射面5aは、所望の配光分布を得られるよう自由曲面状に、例えば、放物面が基調とされた形状に形成されている。この反射面5aは、蛍光体層3の後方から下方にかけて蛍光体層3を臨むように配設されており、この蛍光体層3から出射された蛍光30および拡散反射された励起光20’を、装置前方に照射光として出射する。   The reflector 5 is formed in a curved plate shape that opens obliquely forward and upward, and is disposed so as to face the lower side of the phosphor layer 3. The upper surface of the reflector 5 is a reflection surface 5a that reflects the fluorescence 30 emitted from the phosphor layer 3 and the diffusely reflected excitation light 20 'forward. The reflecting surface 5a is formed in a free-form surface, for example, a shape based on a paraboloid, so as to obtain a desired light distribution. The reflecting surface 5a is disposed so as to face the phosphor layer 3 from the rear side to the lower side of the phosphor layer 3, and the fluorescence 30 emitted from the phosphor layer 3 and the diffusely reflected excitation light 20 ′ are received. , And emitted as irradiation light in front of the apparatus.

図2は、実施例1における蛍光体層3および放熱板4の断面図である。蛍光体層3は、蛍光体粒子と無機材料からなる分散媒体で構成される。蛍光体粒子は、青色光の励起によって蛍光を発する蛍光材料であり、例えば、YAl12:Ce、Y(Al,Ga)12:Ce、(Y,Gd)Al12:Ce、(Y,Lu)Al12:Ce、(Ba,Sr)SiO:Eu、CaScSi12:Ce、(Ca,Sr)Si:Eu、(Ca,Sr)AlSiN:Eu、Cax(Si,Al)12(O,N)16:Eu、(Si,Al)(O,N):Eu、(Ba,Sr,Ca)Si:Eu、CaMgSi1612:Eu、SrAl:Eu、SrAl1425:Eu、(Ca,Sr)S:Eu、ZnS:Cu,Al、CaGa:Eu、SrGa:Eu等を用いることができる。 FIG. 2 is a cross-sectional view of the phosphor layer 3 and the heat sink 4 in the first embodiment. The phosphor layer 3 is composed of a dispersion medium made of phosphor particles and an inorganic material. The phosphor particles are fluorescent materials that emit fluorescence when excited with blue light. For example, Y 3 Al 5 O 12 : Ce, Y 3 (Al, Ga) 5 O 12 : Ce, (Y, Gd) 3 Al 5 O 12: Ce, (Y, Lu) 3 Al 5 O 12: Ce, (Ba, Sr) 2 SiO 4: Eu, Ca 3 Sc 2 Si 3 O 12: Ce, (Ca, Sr) 2 Si 5 N 8 : Eu, (Ca, Sr) AlSiN 3 : Eu, Ca x (Si, Al) 12 (O, N) 16 : Eu, (Si, Al) 6 (O, N) 8 : Eu, (Ba, Sr, Ca ) Si 2 O 2 N 2: Eu, Ca 8 MgSi 4 O 16 C 12: Eu, SrAl 2 O 4: Eu, Sr 4 Al 14 O 25: Eu, (Ca, Sr) S: Eu, ZnS: Cu, Al, CaGa 2 S 4: Eu , SrGa S 4: Eu or the like can be used.

分散媒体は、その内部に蛍光体粒子を分散し、蛍光体粒子の熱を拡散させる材料であり、例えば、Al、MgO、SiO、TiO、BaSO、SrTiO、Y、La、YAl12、ダイヤモンド、各種透明ガラス等の励起光および蛍光に対して透光性を有する材料を用いることができる。 The dispersion medium is a material that disperses the phosphor particles therein and diffuses the heat of the phosphor particles. For example, Al 2 O 3 , MgO, SiO 2 , TiO 2 , BaSO 4 , SrTiO 4 , Y 2 O 3 , La 2 O 3 , Y 3 Al 5 O 12 , diamond, various transparent glasses, and other materials having transparency to excitation light and fluorescence can be used.

蛍光体層3の形成方法としては、例えば、蛍光体粒子と分散媒体粒子を所定の比率で混合し、プレス機で圧粉してペレット状にし、これを加熱炉で加熱して焼結させる方法がある。また、蛍光体層3は、蛍光体材料のみで構成され蛍光体粒子の焼結体や蛍光体材料の単結晶体であってもよい。   As a method for forming the phosphor layer 3, for example, a method in which phosphor particles and dispersion medium particles are mixed at a predetermined ratio, pressed into a pellet by a press, and then heated and sintered in a heating furnace. There is. The phosphor layer 3 may be composed of only a phosphor material, and may be a sintered body of phosphor particles or a single crystal of phosphor material.

本実施例においては、蛍光体層3の放熱板4との接合面側には複数の凹部6を形成し、凹部6の少なくとも一部には接着剤7を充填して蛍光体層3と放熱板4を接着したことを特徴とする。蛍光体層3の接合面において、凹部6を除く平面部分の少なくとも一部は放熱板4と直接接触している。すなわち、蛍光体層3と放熱板4を直接接触させることで、蛍光体層3に励起光20が入射し、蛍光体層3から蛍光30および拡散励起光20’を出射する際に発生する熱を効率良く放熱板4に伝達させ、放熱特性を向上させることができる。   In the present embodiment, a plurality of recesses 6 are formed on the side of the phosphor layer 3 where the heat sink 4 is bonded, and at least a part of the recess 6 is filled with an adhesive 7 to dissipate the phosphor layer 3 and heat. The board 4 is bonded. On the bonding surface of the phosphor layer 3, at least a part of the flat portion excluding the recess 6 is in direct contact with the heat sink 4. That is, by directly bringing the phosphor layer 3 and the heat sink 4 into contact, the excitation light 20 enters the phosphor layer 3 and the heat generated when the fluorescence 30 and the diffuse excitation light 20 ′ are emitted from the phosphor layer 3. Can be efficiently transmitted to the heat radiating plate 4 to improve the heat radiation characteristics.

本実施例において、接合面に対する凹部6の占める割合(凹部面積比)に応じて接着力と放熱特性が変化する。すなわち、凹部面積比が大きい場合は接着力は増大するが放熱特性は低下し、逆に凹部面積比が小さい場合は放熱特性は向上するが接着力は低下する。よって、接着力と放熱特性の両方を満足するように凹部面積比を決定する。さらに、凹部形成によって放熱板4による反射率が変化し、結果として蛍光体層3の発光効率に影響する場合も考えられるので、これらを総合して実用特性を満足するよう凹部面積比を決定する。   In the present embodiment, the adhesive force and the heat radiation characteristics change according to the ratio (recess area ratio) of the recess 6 to the joint surface. That is, when the recess area ratio is large, the adhesive force is increased, but the heat dissipation characteristic is decreased. Conversely, when the recess area ratio is small, the heat dissipation characteristic is improved but the adhesive force is decreased. Therefore, the recess area ratio is determined so as to satisfy both the adhesive force and the heat dissipation characteristics. Furthermore, since the reflectivity of the heat radiating plate 4 may change due to the formation of the recesses, and as a result, the luminous efficiency of the phosphor layer 3 may be affected. .

図3は、蛍光体層3に形成する凹部6の配置の一例を示す図で、放熱板4との接合面側から見た図である。凹部6はドット状(半球状)とし、その形成位置は、蛍光体層3の励起光照射面において、励起光の照射位置と熱拡散を考慮して決定する。まず、蛍光体層3のサイズ(図面の縦横方向サイズ)は、励起光20の照射範囲8に蛍光体層3の層厚値tを加算した領域(熱拡散の目安となる領域)9と同程度かそれより広くする。この例では、領域9より広くしている。そして凹部6の形成領域は、励起光照射範囲8を略中心としてその外側まで含むように設ける。具体的には、領域9と同程度か、領域9より広く設けることが望ましい。これにより、励起光照射範囲8で発生した熱を放熱板4に伝達する十分な経路を確保することができる。また、凹部6は、上記範囲8または領域9の外側のみに形成してもよい。   FIG. 3 is a diagram illustrating an example of the arrangement of the recesses 6 formed in the phosphor layer 3, as viewed from the side of the joint surface with the heat sink 4. The concave portion 6 is formed in a dot shape (hemisphere), and the formation position thereof is determined on the excitation light irradiation surface of the phosphor layer 3 in consideration of the irradiation position of the excitation light and thermal diffusion. First, the size of the phosphor layer 3 (the size in the vertical and horizontal directions in the drawing) is the same as the region 9 (the region serving as a guide for thermal diffusion) in which the layer thickness value t of the phosphor layer 3 is added to the irradiation range 8 of the excitation light 20. Make it a degree or wider. In this example, it is wider than the region 9. And the formation area of the recessed part 6 is provided so that the excitation light irradiation range 8 may be included to the outer side centering on the approximate center. Specifically, it is desirable to provide the same size as the region 9 or wider than the region 9. Thereby, a sufficient path for transferring the heat generated in the excitation light irradiation range 8 to the heat radiating plate 4 can be secured. Further, the recess 6 may be formed only outside the range 8 or the region 9.

また、凹部6の少なくとも一部は、その幅(ドットの直径)wを、温度変化時に蛍光体層3と放熱板4との熱膨張係数の違いによって生じる相対ズレ量より大きくする。なぜなら、もし凹部6の幅wが相対ズレ量よりより小さい場合には、蛍光体層3と放熱板4とのズレによって接着剤7の剥離や凝集破壊を起こす可能性があるからである。   Further, at least a part of the recess 6 has a width (dot diameter) w larger than a relative shift amount caused by a difference in thermal expansion coefficient between the phosphor layer 3 and the heat sink 4 when the temperature changes. This is because if the width w of the recess 6 is smaller than the relative displacement amount, the adhesive 7 may be peeled off or cohesively broken due to the displacement between the phosphor layer 3 and the heat sink 4.

ここで想定される温度範囲は、本実施例の光源装置100が適用される製品の使用時、および保管時の温度範囲であり、例えば、車両用ヘッドライトであれば、−40℃〜100℃が想定される。   The temperature range assumed here is a temperature range during use and storage of a product to which the light source device 100 of this embodiment is applied. For example, in the case of a vehicle headlight, −40 ° C. to 100 ° C. Is assumed.

凹部6の形成方法としては、例えば、サンドブラスト、エッチング、凹部6の幅と同程度の粒度の砥粒による研磨、切削加工、レーザー加工が利用できる。あるいは、蛍光体層3の形成工程において、プレス時に使用する金型に凸部を形成する方法も可能である。さらに、上記形成法で凹部6を形成した後、凹部形成面に平面研磨を施して平面部を形成することが望ましい。これにより蛍光体層3と放熱板4との接触面積を増やして、放熱特性を向上させることができる。   As a method for forming the recess 6, for example, sandblasting, etching, polishing with abrasive grains having a particle size similar to the width of the recess 6, cutting, or laser processing can be used. Or in the formation process of the fluorescent substance layer 3, the method of forming a convex part in the metal mold | die used at the time of a press is also possible. Furthermore, it is desirable to form the flat portion by forming the concave portion 6 by the above forming method and then subjecting the concave portion forming surface to planar polishing. Thereby, the contact area of the fluorescent substance layer 3 and the heat sink 4 can be increased, and a heat dissipation characteristic can be improved.

接着剤7には、接合時には液体状態で凹部6に進入でき、硬化後は温度変化時の蛍光体層3と放熱板4とのズレによって剥離や凝集破壊を起こさない接着力および弾性を有する材料を用いる。例えば、シリコーン系、エポキシ系、アクリル系などの有機接着剤、半田、金属ろう材などの低融点金属接合材、低融点ガラスなどが挙げられる。   The adhesive 7 is a material that can enter the recess 6 in a liquid state at the time of bonding, and has an adhesive force and elasticity that does not cause separation or cohesive failure due to a deviation between the phosphor layer 3 and the heat radiating plate 4 when the temperature changes after curing. Is used. Examples thereof include organic adhesives such as silicone, epoxy and acrylic, low melting point metal bonding materials such as solder and metal brazing material, and low melting point glass.

特に有機接着剤は比較的低温で接着可能であり、製造コストや、接着時の蛍光体材料などの劣化抑制の面で望ましい。また、有機接着剤の中でも弾性率が100MPa以下の弾性接着剤は、上記ズレを柔軟に吸収することが可能であるので望ましい。   In particular, the organic adhesive can be bonded at a relatively low temperature, and is desirable in terms of manufacturing cost and suppression of deterioration of the phosphor material during bonding. Among organic adhesives, an elastic adhesive having an elastic modulus of 100 MPa or less is desirable because it can flexibly absorb the above deviation.

また、接着剤7は硬化収縮性を有する材料で、さらに、その硬化収縮量は使用が想定される最高温度における熱膨張量より大きいことが望ましい。接着剤7の収縮応力により常に蛍光体層3を放熱板4に押し付ける力が発生するので、蛍光体層3と放熱板4との接触を維持することができ、高い放熱特性を維持することができる。   The adhesive 7 is a material having curing shrinkage, and the amount of curing shrinkage is preferably larger than the amount of thermal expansion at the highest temperature expected to be used. Since the force that always presses the phosphor layer 3 against the heat radiating plate 4 is generated by the shrinkage stress of the adhesive 7, the contact between the phosphor layer 3 and the heat radiating plate 4 can be maintained, and high heat dissipation characteristics can be maintained. it can.

また、接着剤7にはフィラーなどの固形成分を含まないことが望ましい。固形成分を含むと、蛍光体層3と放熱板4との接触を妨げる可能性がある。さらに、接着剤7は蛍光体の蛍光や励起光に対して透明な材料であることが望ましい。透明な材料を用いることで、接着剤による蛍光や励起光の吸収を抑制して発光効率の低下を抑制できる。   Further, it is desirable that the adhesive 7 does not contain a solid component such as a filler. If a solid component is included, contact between the phosphor layer 3 and the heat sink 4 may be hindered. Furthermore, it is desirable that the adhesive 7 be a material that is transparent with respect to fluorescence and excitation light of the phosphor. By using a transparent material, absorption of fluorescence and excitation light by the adhesive can be suppressed, and a decrease in light emission efficiency can be suppressed.

以上の観点から上記した接着材料を評価すると、弾性と透光性を有し、かつ耐環境性にも優れたシリコーンゴムが特に望ましい。   When the adhesive material described above is evaluated from the above viewpoint, a silicone rubber having elasticity and translucency and excellent in environmental resistance is particularly desirable.

放熱板4は、蛍光体層3で発生した熱を受け取って外部へ拡散・放熱する役目があり、金属材料や、酸化物または窒化物の焼結体や単結晶が用いられる。この中で、金属材料としてアルミニウムは、熱伝導率が高いのに加えて可視光に対する反射率が高く、放熱板による蛍光や励起光の吸収を抑制して発光効率の低下を抑制できるので、特に望ましい。また、放熱板表面の反射率を上げるために、銀や亜鉛などの金属材料をコーティングしてもよい。あるいは、熱膨張係数が小さく、かつ熱伝導率の高いAlNなどの窒化物を用いる場合には、その表面に反射率を上げるために銀や亜鉛などの金属材料をコーティングした構成としてもよい。   The heat radiating plate 4 has a role of receiving heat generated in the phosphor layer 3 and diffusing and radiating the heat to the outside, and a metal material, an oxide or nitride sintered body, or a single crystal is used. Among these, aluminum as a metal material has a high thermal conductivity and a high reflectance to visible light, and since it can suppress a decrease in luminous efficiency by suppressing the absorption of fluorescence and excitation light by the heat sink, desirable. Moreover, in order to raise the reflectance of the surface of a heat sink, you may coat metal materials, such as silver and zinc. Alternatively, when a nitride such as AlN having a low thermal expansion coefficient and high thermal conductivity is used, the surface thereof may be coated with a metal material such as silver or zinc in order to increase the reflectance.

蛍光体層3と放熱板4との接合方法の一例を説明する。ここでは、接着剤7として熱硬化型の有機接着剤を用いた例を説明する。
(1)まず、接着剤7を放熱板4の接合面に塗布する。
(2)接着剤が塗布された接合面に、あらかじめ凹部6が形成された蛍光体層3を貼り合わせる。
(3)貼り合わせた蛍光体層3を放熱板4に押し付けて、余分な接着剤7を押し出し、蛍光体層3の凹部6以外の平面部と放熱板4とを直接接触させる。
(4)最後に、蛍光体層3を放熱板4に押し付けたまま加熱炉に投入し、接着剤7を硬化させる。
なお、(3)の工程で、蛍光体層3の平面部と放熱板4との間に少量の接着剤7が残っていても、熱伝導性すなわち放熱特性が悪化することはないので許容される。
An example of a method for joining the phosphor layer 3 and the heat sink 4 will be described. Here, an example in which a thermosetting organic adhesive is used as the adhesive 7 will be described.
(1) First, the adhesive 7 is applied to the joint surface of the heat sink 4.
(2) The phosphor layer 3 in which the concave portions 6 are formed in advance is bonded to the joint surface to which the adhesive is applied.
(3) The bonded phosphor layer 3 is pressed against the heat radiating plate 4 to push out an extra adhesive 7 so that the flat portion other than the recess 6 of the phosphor layer 3 and the heat radiating plate 4 are brought into direct contact.
(4) Finally, the phosphor layer 3 is put into the heating furnace while being pressed against the heat sink 4 to cure the adhesive 7.
In the step (3), even if a small amount of the adhesive 7 remains between the flat portion of the phosphor layer 3 and the heat radiating plate 4, the thermal conductivity, that is, the heat radiating characteristic is not deteriorated. The

上記構成により、凹部に充填された接着剤によって蛍光体層と放熱板との剥離を抑制し、さらに蛍光体層と放熱板と熱膨張係数差に起因する応力を吸収して蛍光体層の破壊を抑制できる。接合面において凹部以外の部分では蛍光体層と放熱板とを直接接触できるので、高い放熱性を得ることができる。   With the above configuration, the adhesive layer filled with the concave portion suppresses the peeling between the phosphor layer and the heat sink, and further absorbs the stress caused by the difference in thermal expansion coefficient between the phosphor layer and the heat sink, thereby destroying the phosphor layer. Can be suppressed. Since the phosphor layer and the heat radiating plate can be in direct contact with each other at the joint surface other than the recesses, high heat dissipation can be obtained.

上記記載の光源装置において、凹部は励起光照射範囲の中心を略中心として分布していることを特徴とする。また、凹部が分布する領域の最外周で囲まれた領域の内側において、蛍光体層は放熱板に少なくとも一部が接触していることを特徴とする。   In the light source device described above, the recesses are distributed with the center of the excitation light irradiation range as a substantial center. Further, at least a part of the phosphor layer is in contact with the heat sink inside the region surrounded by the outermost periphery of the region where the recesses are distributed.

また、上記記載の光源装置において、接着剤は弾性接着剤であり硬化収縮性を有することを特徴とする。そして接着剤の硬化収縮量は、保管時および使用時に想定される最高温度における熱膨張量より大きいことを特徴とする。このような接着剤として、シリコーンゴムが好ましい。   In the light source device described above, the adhesive is an elastic adhesive and has curing shrinkage. The curing shrinkage amount of the adhesive is characterized by being larger than the thermal expansion amount at the maximum temperature assumed during storage and use. As such an adhesive, silicone rubber is preferable.

また、上記記載の光源装置において、放熱板における蛍光体層との接合面が、蛍光体層から発せられる蛍光に対して反射性を有することを特徴とする。このような放熱板として、アルミニウムが好ましい。   In the light source device described above, the bonding surface of the heat radiating plate to the phosphor layer is reflective to the fluorescence emitted from the phosphor layer. As such a heat sink, aluminum is preferable.

このように実施例1の光源装置によれば、温度上昇による蛍光体層と放熱板の接合部の剥離や蛍光体層の破壊を抑制し、かつ高い放熱性を有する光源装置を実現できる。   As described above, according to the light source device of Example 1, it is possible to realize a light source device that suppresses peeling of the bonding portion between the phosphor layer and the heat sink and destruction of the phosphor layer due to a temperature rise and has high heat dissipation.

なお、本実施例では蛍光体層3側に凹部6を形成した例を示したが、放熱板4側に凹部を形成してもよい。あるいは、蛍光体層3と放熱板4の両方に凹部を形成してもよい。   In addition, although the example which formed the recessed part 6 in the fluorescent substance layer 3 side in the present Example was shown, you may form a recessed part in the heat sink 4 side. Or you may form a recessed part in both the fluorescent substance layer 3 and the heat sink 4. FIG.

実施例2では、実施例1の光源装置において蛍光体層3内に通気路を形成し、蛍光体層3と放熱板4との接着力を向上させた構成としている。なお、実施例2における光源装置の全体構成と、蛍光体層3に形成する凹部6については、実施例1(図1〜図3)と同様であり、重複する説明を省略する。   In Example 2, the light source device of Example 1 has a configuration in which an air passage is formed in the phosphor layer 3 to improve the adhesive force between the phosphor layer 3 and the heat sink 4. In addition, about the whole structure of the light source device in Example 2, and the recessed part 6 formed in the fluorescent substance layer 3, it is the same as that of Example 1 (FIGS. 1-3), The overlapping description is abbreviate | omitted.

図4は、実施例2における蛍光体層3および放熱板4の断面図であり、蛍光体層3の内部を拡大して示す。蛍光体層3は、蛍光体粒子10と分散媒体粒子11の焼結体で構成され、その内部には、上記粒子間の隙間(空孔)が連結して空気を通過させる通気路12を有する。   FIG. 4 is a cross-sectional view of the phosphor layer 3 and the heat dissipation plate 4 in Example 2, and shows the inside of the phosphor layer 3 in an enlarged manner. The phosphor layer 3 is composed of a sintered body of phosphor particles 10 and dispersion medium particles 11, and has an air passage 12 in which gaps (holes) between the particles are connected to allow air to pass therethrough. .

蛍光体粒子10は、青色光の励起によって蛍光を発する蛍光材料であり、実施例1で述べた材料(例えばYAl12:Ce等)を用いる。また分散媒体粒子11は、蛍光体粒子の熱を拡散させる材料であり、実施例1で述べた材料(例えばAl等)を用いる。なお、蛍光体層3は、蛍光体粒子10のみで構成してもよい。 The phosphor particles 10 are fluorescent materials that emit fluorescence when excited with blue light, and the materials described in Example 1 (for example, Y 3 Al 5 O 12 : Ce) are used. The dispersion medium particles 11 are materials that diffuse the heat of the phosphor particles, and the materials described in the first embodiment (for example, Al 2 O 3 or the like) are used. The phosphor layer 3 may be composed of only the phosphor particles 10.

通気路12は粒子間の隙間が連結して蛍光体層3内を貫通した状態のものであり、蛍光体層3の焼結条件を変えること形成し、またその大きさや数を制御することができる。具体的には、焼結時の温度、または蛍光体粒子10と分散媒体粒子11の粒子径を調整することによって制御できる。焼結時の温度を低く設定するほど、または、粒子径を大きく設定するほど、粒子間の隙間が増加し、多くの通気路12を形成できる。   The air passage 12 is in a state where the gaps between the particles are connected and penetrated through the phosphor layer 3, and can be formed by changing the sintering conditions of the phosphor layer 3, and the size and number thereof can be controlled. it can. Specifically, it can be controlled by adjusting the temperature during sintering or the particle diameters of the phosphor particles 10 and the dispersion medium particles 11. As the temperature during sintering is set lower or the particle diameter is set larger, the gaps between the particles increase, and more air passages 12 can be formed.

このような通気路12を有する蛍光体層3と放熱板4との接合は、実施例1と同様に行うが、通気路12を有することで次の効果がある。蛍光体層3の内部に通気路12を有することで、蛍光体層3と放熱板4との接着時に、凹部6の内部の空気を通気路12を経由して外部へ排出しながら接着剤7を充填することができる。その結果、凹部6内における接着剤7の充填される割合(充填率)が向上し、蛍光体層3と放熱板4との接着力がより向上する。さらに硬化収縮性の接着剤を使用した場合、蛍光体層3を放熱板4に押し付ける収縮応力が増加し、蛍光体層3と放熱板4との接触面積が増加して、放熱特性をより向上させることができる。   The phosphor layer 3 having the air passage 12 and the heat radiating plate 4 are joined in the same manner as in the first embodiment. However, having the air passage 12 has the following effects. By having the air passage 12 inside the phosphor layer 3, the adhesive 7 is discharged while discharging the air inside the recess 6 to the outside via the air passage 12 when the phosphor layer 3 and the heat sink 4 are bonded. Can be filled. As a result, the filling ratio (filling rate) of the adhesive 7 in the recess 6 is improved, and the adhesive force between the phosphor layer 3 and the heat sink 4 is further improved. Furthermore, when a curing shrinkable adhesive is used, the shrinkage stress that presses the phosphor layer 3 against the heat sink 4 increases, and the contact area between the phosphor layer 3 and the heat sink 4 increases, further improving the heat dissipation characteristics. Can be made.

このように実施例2によれば、蛍光体層に通気路を形成することで、蛍光体層と放熱板との接着力をより向上させ、温度変化に対する信頼性と放熱特性を向上させることができる。   As described above, according to Example 2, by forming a ventilation path in the phosphor layer, the adhesive force between the phosphor layer and the heat radiating plate can be further improved, and reliability with respect to temperature change and heat radiation characteristics can be improved. it can.

なお、本実施例においては、蛍光体層3の焼結条件を制御して形成される空隙の一部を放熱板との接合に用いる凹部6として利用することも可能である。これによれば、凹部6を別途機械加工等により形成する工程を省くことができる。   In this embodiment, a part of the gap formed by controlling the sintering condition of the phosphor layer 3 can be used as the recess 6 used for joining with the heat sink. According to this, the process of forming the recessed part 6 separately by machining etc. can be omitted.

実施例3では、実施例1の光源装置において蛍光体層3に形成する凹部の形状をライン状溝とし、蛍光体層3と放熱板4との接着力を向上させた構成としている。なお、実施例3における光源装置の全体構成と、蛍光体層3と放熱板4の構造は実施例1(図1、図2)と同様であり、重複する説明を省略する。   In Example 3, the shape of the recess formed in the phosphor layer 3 in the light source device of Example 1 is a line-shaped groove, and the adhesive force between the phosphor layer 3 and the heat radiating plate 4 is improved. In addition, the whole structure of the light source device in Example 3, and the structure of the fluorescent substance layer 3 and the heat sink 4 are the same as that of Example 1 (FIG. 1, FIG. 2), and the overlapping description is abbreviate | omitted.

図5は、実施例3における蛍光体層3に形成する凹部の配置の一例を示す図で、放熱板4との接合面側から見た図である。蛍光体層3の接合面には、接合面の端部に貫通するライン状の凹部(凹溝)13を形成している。凹部13は格子状パターンとし、凹部13の少なくとも一部には接着剤7を充填して放熱板4と接着する。その際、蛍光体層3の接合面において凹部を除く平面部分は放熱板4と直接接触させて、放熱特性を向上させる。   FIG. 5 is a diagram showing an example of the arrangement of the concave portions formed in the phosphor layer 3 in Example 3, and is a view seen from the side of the joint surface with the heat sink 4. On the bonding surface of the phosphor layer 3, a line-shaped concave portion (concave groove) 13 penetrating the end portion of the bonding surface is formed. The recesses 13 have a lattice pattern, and at least a part of the recesses 13 is filled with the adhesive 7 and bonded to the heat sink 4. At that time, the flat portion excluding the concave portion on the bonding surface of the phosphor layer 3 is brought into direct contact with the heat radiating plate 4 to improve the heat radiation characteristics.

凹部(凹溝)13の形成位置(励起光照射範囲8、熱拡散領域9との関係)や凹部13の幅wについては、実施例1における凹部6の条件と同様である。なお、図5では凹部13の形状を格子状パターンとしたが、1方向のみのライン状パターンや、3方向以上のラインの組み合わせパターンや、励起光照射範囲8を略中心とした放射線状パターンであってもよい。   The formation position of the concave portion (concave groove) 13 (relationship with the excitation light irradiation range 8 and the thermal diffusion region 9) and the width w of the concave portion 13 are the same as the conditions of the concave portion 6 in the first embodiment. In FIG. 5, the shape of the concave portion 13 is a lattice pattern, but it is a line pattern in only one direction, a combination pattern of lines in three or more directions, or a radial pattern with the excitation light irradiation range 8 approximately in the center. There may be.

凹部13の形成方法としては、例えば、凹部の幅と同程度の粒度の砥粒を用いて凹部の貫通方向のみに研磨を施す方法が挙げられる。これ以外にも、サンドブラスト、エッチングのパターン形成、切削加工、レーザー加工、蛍光体層形成工程においてプレス時に使用する金型に凸部を形成する方法が挙げられる。さらに、上記形成法で凹部を形成した後、凹部形成面に平面研磨を施すことが望ましい。これにより放熱板4との接触面積を増やして放熱性を向上させることができる。   As a method for forming the recess 13, for example, there is a method in which polishing is performed only in the penetration direction of the recess by using abrasive grains having the same particle size as the width of the recess. In addition to this, there is a method of forming a convex portion on a mold used at the time of pressing in sandblasting, etching pattern formation, cutting processing, laser processing, and phosphor layer forming step. Furthermore, it is desirable that after forming the recess by the above forming method, the recess forming surface is subjected to planar polishing. Thereby, a contact area with the heat sink 4 can be increased and heat dissipation can be improved.

実施例3におけるライン状の凹部13の効果について説明する。蛍光体層3の端部に貫通する凹部を有することで、蛍光体層3と放熱板4との接着時に、凹部6の内部の空気を蛍光体層3の端部に向けて排出しながら接着剤7を充填することができる。その結果、凹部13に接着剤7が充填される割合(充填率)が向上し、放熱板4に対する蛍光体層3の接着力が向上する。さらに硬化収縮性の接着剤を使用した場合、蛍光体層3を放熱板に押し付ける収縮応力が増加し、蛍光体層3と放熱板4との接触面積を向上させて、高い放熱性を得ることができる。   The effect of the line-shaped recessed part 13 in Example 3 is demonstrated. By having a recess penetrating at the end of the phosphor layer 3, adhesion is performed while discharging the air inside the recess 6 toward the end of the phosphor layer 3 when the phosphor layer 3 and the heat sink 4 are bonded. Agent 7 can be filled. As a result, the ratio (filling rate) at which the concave portion 13 is filled with the adhesive 7 is improved, and the adhesive strength of the phosphor layer 3 to the heat sink 4 is improved. Further, when a curing shrinkable adhesive is used, the shrinkage stress that presses the phosphor layer 3 against the heat sink increases, and the contact area between the phosphor layer 3 and the heat sink 4 is improved to obtain high heat dissipation. Can do.

次に、実施例3の変形例について説明する。
図6は、蛍光体層3に形成する凹部の配置の一変形例を示す図である。凹部13の幅wは、中心から外側に位置するものほど大きく設定している。これは、蛍光体層3と放熱板4との熱膨張係数の違いによって温度変化時に発生する相対ズレ量が、外側に位置するものほど大きくなることを考慮したからである。
Next, a modification of the third embodiment will be described.
FIG. 6 is a view showing a modification of the arrangement of the recesses formed in the phosphor layer 3. The width w of the recess 13 is set to be larger as it is located outward from the center. This is because it is considered that the amount of relative deviation generated at the time of temperature change due to the difference in thermal expansion coefficient between the phosphor layer 3 and the heat radiating plate 4 becomes larger as it is located on the outer side.

図6の場合、励起光照射範囲8の中心付近は凹部13の幅が狭く、蛍光体層3と放熱板4との接触面積が広いので、高い放熱性が得られる。一方、励起光照射範囲8の中心から離れた位置では、凹部13の幅を広く設定されているので、十分な接着力が確保される。   In the case of FIG. 6, since the width of the recess 13 is narrow near the center of the excitation light irradiation range 8 and the contact area between the phosphor layer 3 and the heat radiating plate 4 is wide, high heat dissipation is obtained. On the other hand, since the width of the concave portion 13 is set wide at a position away from the center of the excitation light irradiation range 8, a sufficient adhesive force is ensured.

なお、図6に示したように凹部13の幅wを接合面の位置に応じて変化させる方法は、前記実施例1にも適用できる。すなわち、図3におけるドット状の凹部6の幅(直径)wを励起光照射範囲8の中心からの距離に応じて拡大すればよい。さらには、凹部を励起光照射範囲8を中心とする複数の円環状とし、中心からの距離に応じてその幅を拡大したものでもよい。   Note that the method of changing the width w of the recess 13 according to the position of the joint surface as shown in FIG. 6 can also be applied to the first embodiment. That is, the width (diameter) w of the dot-like recess 6 in FIG. 3 may be enlarged according to the distance from the center of the excitation light irradiation range 8. Furthermore, the concave portion may be formed into a plurality of annular shapes with the excitation light irradiation range 8 as the center, and the width thereof may be enlarged according to the distance from the center.

図7は、蛍光体層3に形成する凹部の配置の他の変形例を示す図である。蛍光体層3に形成する凹部(凹溝)13は、励起光照射範囲8においては、励起光照射範囲8の短辺方向に平行に形成している。これは、凹部に起因して生じる蛍光体層3からの発光ムラを低減するためである。これについて説明すると、蛍光体層3の膜厚が薄い場合や光透過率が高い場合は、蛍光体層3の発光領域から放射される光が、凹部に起因してムラを有する場合がある。これに対し図7のように凹部13を形成すると、発光領域全体に対する凹部の溝数が増加し、凹部に起因する明暗が発光領域内で細かく分散され、光放射パターンのムラとして視認されにくくできる効果がある。   FIG. 7 is a view showing another modified example of the arrangement of the concave portions formed in the phosphor layer 3. In the excitation light irradiation range 8, the concave portion (concave groove) 13 formed in the phosphor layer 3 is formed in parallel with the short side direction of the excitation light irradiation range 8. This is to reduce unevenness in light emission from the phosphor layer 3 caused by the recess. This will be described. When the phosphor layer 3 is thin or has a high light transmittance, the light emitted from the light emitting region of the phosphor layer 3 may have unevenness due to the recesses. On the other hand, when the concave portion 13 is formed as shown in FIG. 7, the number of the concave portions with respect to the entire light emitting region is increased, and the light and darkness caused by the concave portion is finely dispersed in the light emitting region, so that it is difficult to be visually recognized as unevenness of the light emission pattern. effective.

なお、図7では、励起光照射範囲8の外側の領域においては、励起光照射範囲8の短辺方向に垂直な方向(図面横方向)にも凹部13を形成しているが、励起光照射範囲8の短辺方向に平行な方向(図面縦方向)のみに形成してもよい。   In FIG. 7, in the region outside the excitation light irradiation range 8, the recess 13 is also formed in the direction (lateral direction in the drawing) perpendicular to the short side direction of the excitation light irradiation range 8. You may form only in the direction (drawing longitudinal direction) parallel to the short side direction of the range 8.

さらに、凹部に起因した光放射パターンのムラの方向が、光源装置の光放射方向に平行になるように励起光照射範囲8の方向を設定することが望ましい。もし光源装置の光放射方向に垂直にムラが存在する場合、ムラに起因した明暗パターンによる錯覚で遠近感に影響を与える可能性があるからである。   Furthermore, it is desirable to set the direction of the excitation light irradiation range 8 so that the direction of unevenness of the light emission pattern caused by the recess is parallel to the light emission direction of the light source device. This is because if there is unevenness perpendicular to the light emission direction of the light source device, the sense of perspective may be affected by the illusion of the light / dark pattern caused by the unevenness.

上記記載の光源装置においては、励起光照射範囲に対向する領域の内部において、凹部が、励起光照射範囲の短辺方向に平行に長辺を有することを特徴とする。また、励起光照射範囲に対向する領域の内部において、凹部が、励起光照射範囲の短辺方向に平行に連なるように分布することを特徴とする。   In the light source device described above, the concave portion has a long side parallel to the short side direction of the excitation light irradiation range inside the region facing the excitation light irradiation range. In addition, the concave portions are distributed inside the region facing the excitation light irradiation range so as to be continuous in parallel with the short side direction of the excitation light irradiation range.

また、上記記載の光源装置において、光源装置から放射されるパターンにおいて、光放射方向に平行な方向が、蛍光体層表面における励起光照射範囲の短辺方向に対応するように放射光学系が配置されていることを特徴とする。   In the light source device described above, the radiation optical system is arranged so that the direction parallel to the light emission direction corresponds to the short side direction of the excitation light irradiation range on the phosphor layer surface in the pattern emitted from the light source device. It is characterized by being.

実施例4では、凹部に起因した光放射パターンのムラを光散乱材料等を用いて低減する構成について説明する。なお、実施例4における光源装置の全体構成と、蛍光体層3に形成する凹部6については、実施例1と同様であり、重複する説明を省略する。   In the fourth embodiment, a configuration for reducing the unevenness of the light radiation pattern caused by the recess using a light scattering material or the like will be described. In addition, about the whole structure of the light source device in Example 4, and the recessed part 6 formed in the fluorescent substance layer 3, it is the same as that of Example 1, and the overlapping description is abbreviate | omitted.

図8は、実施例4における蛍光体層3および放熱板4の断面図であり、凹部6の内部を拡大して示す。凹部6の内部には光散乱粒子14を設置し、接着剤7を充填する構成とする。光散乱粒子14によって光散乱量が増加するので、凹部6を形成したことによって低下した光散乱量を補うことができる。凹部6の内側に設置された光散乱粒子14は、蛍光体層3と放熱板4との接合面には突出さないことが望ましい。これは、光拡散粒子14が突出した場合、蛍光体層3と放熱板4との接触を妨げ、放熱性の低下をもたらすからである。   FIG. 8 is a cross-sectional view of the phosphor layer 3 and the heat radiating plate 4 in Example 4, and shows the inside of the recess 6 in an enlarged manner. The light scattering particles 14 are installed inside the recess 6 and the adhesive 7 is filled. Since the light scattering amount is increased by the light scattering particles 14, it is possible to compensate for the light scattering amount that has decreased due to the formation of the recess 6. It is desirable that the light scattering particles 14 installed inside the recess 6 do not protrude from the bonding surface between the phosphor layer 3 and the heat sink 4. This is because when the light diffusion particles 14 protrude, the contact between the phosphor layer 3 and the heat radiating plate 4 is hindered, resulting in a decrease in heat dissipation.

光散乱粒子14は、蛍光体から発せられた光を拡散反射する材料であり、実施例1で述べた分散媒体(例えばAlなど)からなる粒子を用いることができる。または、蛍光体層3の励起光に対する透過率が高く、励起光が凹部6まで到達する場合は、光散乱粒子14に蛍光体粒子を含有してもよい。これにより、蛍光体層3で蛍光に変換されなかった励起光を吸収して蛍光に変換することができる。 The light scattering particle 14 is a material that diffuses and reflects light emitted from the phosphor, and particles made of the dispersion medium (for example, Al 2 O 3 ) described in the first embodiment can be used. Alternatively, when the transmittance of the phosphor layer 3 with respect to the excitation light is high and the excitation light reaches the recess 6, the light scattering particles 14 may contain phosphor particles. Thereby, the excitation light that has not been converted into fluorescence by the phosphor layer 3 can be absorbed and converted into fluorescence.

凹部6への光散乱粒子14の設置方法の一例を説明する。
(1)まず、光拡散粒子14の粉末と硬化前の接着剤7を混合してペーストを作製する。
(2)作製したペーストを、蛍光体層3の凹部6が形成された面に塗布し、凹部の内部にペーストを充填する。
(3)スキージ等を用いて蛍光体層3における放熱板4との接合面上のペーストを除去する。
(4)その後、実施例1での説明と同様に接合面に接着剤7を塗布して蛍光体層3と放熱板4と接合する。
An example of a method for installing the light scattering particles 14 in the recess 6 will be described.
(1) First, a powder is prepared by mixing the powder of the light diffusing particles 14 and the adhesive 7 before curing.
(2) The prepared paste is applied to the surface of the phosphor layer 3 where the recesses 6 are formed, and the paste is filled in the recesses.
(3) The paste on the bonding surface of the phosphor layer 3 with the heat sink 4 is removed using a squeegee or the like.
(4) After that, the adhesive 7 is applied to the joint surface in the same manner as described in the first embodiment, and the phosphor layer 3 and the heat sink 4 are joined.

このように実施例4の光源装置によれば、凹部に起因した光放射パターンのムラを低減することができる。なお、図8では蛍光体層3に凹部6を形成した例を示したが、放熱板4に凹部を形成してもよい。   As described above, according to the light source device of the fourth embodiment, it is possible to reduce the unevenness of the light emission pattern due to the concave portion. In addition, although the example which formed the recessed part 6 in the fluorescent substance layer 3 was shown in FIG. 8, you may form a recessed part in the heat sink 4. FIG.

以下、図8と同様に凹部に起因した光放射パターンのムラを低減する変形例を説明する。
図9は、蛍光体層3および放熱板4の変形例を示す断面図である。蛍光体層3の放熱板4との接合面側には光散乱層15を形成し、凹部6は光散乱層15に形成している。凹部6の深さは、光散乱層15を貫通しない大きさとする。光散乱層15は、蛍光体層3の励起光入射面で発した蛍光を散乱反射することで、凹部6へ到達する蛍光を低減し、蛍光体層3から放射される光のムラを低減する。
Hereinafter, similarly to FIG. 8, a modified example that reduces unevenness of the light emission pattern caused by the concave portion will be described.
FIG. 9 is a cross-sectional view showing a modification of the phosphor layer 3 and the heat sink 4. A light scattering layer 15 is formed on the bonding surface side of the phosphor layer 3 with the heat radiating plate 4, and the recess 6 is formed in the light scattering layer 15. The depth of the recess 6 is set so as not to penetrate the light scattering layer 15. The light scattering layer 15 scatters and reflects the fluorescence emitted from the excitation light incident surface of the phosphor layer 3, thereby reducing the fluorescence reaching the recess 6 and reducing unevenness of light emitted from the phosphor layer 3. .

光散乱層15は、蛍光体層3を構成する材料に近い熱膨張係数を有する材料で構成され、蛍光体から発せられる蛍光に対して蛍光体層3より高い光散乱性を有する。光散乱層15の構成としては、例えば、蛍光体層3を構成する材料と同じ材料からなる粒子の焼結体とし、粒子の粒度分布が蛍光体層3に用いられているものと異なるものを用いることができる。また、蛍光体層3に用いられている蛍光体材料と同じ母体材料で、発光中心元素を含まない材料を用いてもよい。   The light scattering layer 15 is made of a material having a thermal expansion coefficient close to that of the material constituting the phosphor layer 3, and has a light scattering property higher than that of the phosphor layer 3 with respect to fluorescence emitted from the phosphor. As the configuration of the light scattering layer 15, for example, a sintered body of particles made of the same material as that of the phosphor layer 3 and a particle size distribution different from that used for the phosphor layer 3 is used. Can be used. Further, a material which is the same base material as the phosphor material used for the phosphor layer 3 and does not include the luminescent center element may be used.

光散乱層15が形成された蛍光体層3の作成方法の一例を説明する。
(1)まず、蛍光体層3の粉末を成型するプレス用の金型に、光散乱層15を構成する材料粉末を投入する。
(2)次に、投入した粉末の上に、光散乱層15以外の部分を構成する材料粉末を投入する。
(3)これをプレス機で圧粉してペレット状にし、その後、加熱炉で加熱して焼結させる。これにより、光散乱層15が形成された蛍光体層3を得ることができる。
An example of a method for producing the phosphor layer 3 on which the light scattering layer 15 is formed will be described.
(1) First, the material powder constituting the light scattering layer 15 is put into a pressing mold for molding the powder of the phosphor layer 3.
(2) Next, the material powder constituting the portion other than the light scattering layer 15 is charged on the charged powder.
(3) This is pressed into a pellet by a press machine, and then heated and sintered in a heating furnace. Thereby, the fluorescent substance layer 3 in which the light-scattering layer 15 was formed can be obtained.

なお、図9では光散乱層15に凹部6を形成した例を示したが、放熱板4に凹部を形成してもよい。   Although FIG. 9 shows an example in which the concave portion 6 is formed in the light scattering layer 15, the concave portion may be formed in the heat radiating plate 4.

上記記載の光源装置においては、蛍光体層の放熱板に面する側に、蛍光体層から発せられる蛍光に対して光散乱性を有する光散乱層を備え、光散乱層は蛍光体層より光散乱性が高いことを特徴とする。   In the light source device described above, a light scattering layer having a light scattering property with respect to fluorescence emitted from the phosphor layer is provided on the phosphor layer facing the heat dissipation plate, and the light scattering layer is lighter than the phosphor layer. It is characterized by high scattering.

図10は、蛍光体層3および放熱板4の他の変形例を示す断面図である。蛍光体層3の放熱板4との接合面側には光透過層16を形成し、凹部6は光透過層16に形成している。凹部6の深さは、光透過層16を貫通しない大きさとする。さらに、凹部6には、蛍光体から発せられる蛍光に対して透光性を有する透光性接着剤17を充填している。このような構成とすることで、光透過層16および凹部6は同程度に蛍光を透過するので、凹部6に起因する光放射パターンのムラを低減できる。   FIG. 10 is a cross-sectional view showing another modification of the phosphor layer 3 and the heat sink 4. A light transmission layer 16 is formed on the side of the phosphor layer 3 where the heat dissipation plate 4 is bonded, and the recess 6 is formed in the light transmission layer 16. The depth of the recess 6 is set so as not to penetrate the light transmission layer 16. Further, the concave portion 6 is filled with a translucent adhesive 17 having translucency with respect to the fluorescence emitted from the phosphor. By adopting such a configuration, the light transmission layer 16 and the recess 6 transmit the fluorescence to the same extent, so that unevenness of the light radiation pattern caused by the recess 6 can be reduced.

光透過層16は、蛍光体層3を構成する材料に近い熱膨張係数を有する材料で構成され、蛍光体から発せられる蛍光に対して蛍光体層3より高い光透過性を有する。光透過層16の構成としては、例えば、蛍光体層3を構成する材料と同じ材料からなる粒子の焼結体とし、緻密性が蛍光体層3より高くなるように粒度分布が小さい粒子を用いることができる。また、蛍光体層3に用いられている蛍光体材料と同じ母体材料で、発光中心を除いた材料を用いてもよい。さらに、緻密性を向上させるために融点を低下させるフラックスを添加してもよい。   The light transmission layer 16 is made of a material having a thermal expansion coefficient close to that of the material constituting the phosphor layer 3, and has a light transmittance higher than that of the phosphor layer 3 with respect to the fluorescence emitted from the phosphor. As the configuration of the light transmission layer 16, for example, a sintered body of particles made of the same material as that of the phosphor layer 3 is used, and particles having a small particle size distribution are used so that the denseness is higher than that of the phosphor layer 3. be able to. Alternatively, a material that is the same base material as the phosphor material used for the phosphor layer 3 and that excludes the emission center may be used. Further, a flux that lowers the melting point may be added to improve the denseness.

光透過層16の他の構成として、蛍光体層3はその内部に空隙を有する焼結体として、光透過層16は上記空隙内を空気より屈折率が高く蛍光に対して透過性を有する透明材料で充填した構成とすることができる。空隙を上記透明材料で充填することで、蛍光に対する透過性を得ることができる。上記透明材料としては、充填時に液体状態となり上記空隙に侵入できる材料であり、例えば、シリコーン系、エポキシ系、アクリル系などの有機接着剤、低融点ガラスなどが挙げられる。   As another configuration of the light transmission layer 16, the phosphor layer 3 is a sintered body having voids therein, and the light transmission layer 16 is transparent and has a refractive index higher than that of air and is transparent to fluorescence. It can be set as the structure filled with the material. By filling the gap with the transparent material, it is possible to obtain transparency to fluorescence. The transparent material is a material that is in a liquid state when filled and can enter the void. Examples thereof include organic adhesives such as silicone, epoxy, and acrylic, and low-melting glass.

透光性接着剤17は、接合時に液体状態となり凹部6に進入できる材料であり、硬化後は温度変化時の蛍光体層3と放熱板4とのズレによって剥離や凝集破壊を起こさない接着力および弾性を有し、かつ、励起光に対して透光性を有する材料である。例えば、シリコーン系、エポキシ系、アクリル系などの有機接着剤、低融点ガラスなどが挙げられる。   The translucent adhesive 17 is a material that can be in a liquid state at the time of joining and can enter the recess 6. After curing, the adhesive strength that does not cause peeling or cohesive failure due to deviation between the phosphor layer 3 and the heat sink 4 when the temperature changes. And a material having elasticity and translucency to excitation light. For example, silicone-based, epoxy-based, acrylic-based organic adhesives, low-melting glass, and the like can be given.

特に有機接着剤は比較的低温で接着可能であり、製造コストや接着時の蛍光体材料などの劣化抑制の面で望ましい。また、有機接着剤の中でもシリコーンゴムなどの弾性率が100MPa以下の弾性接着剤は、上記ズレを柔軟に吸収することが可能であるので望ましい。   In particular, the organic adhesive can be bonded at a relatively low temperature, and is desirable in terms of manufacturing cost and suppression of deterioration of the phosphor material during bonding. Among organic adhesives, an elastic adhesive having an elastic modulus of 100 MPa or less, such as silicone rubber, is desirable because it can absorb the above-mentioned displacement flexibly.

また、透光性接着剤17は硬化収縮性を有する材料で、さらに、その硬化収縮量は使用が想定される最高温度における熱膨張量より大きいことが望ましい。透光性接着剤17の収縮応力により常に蛍光体層3を放熱板4に押し付ける力が発生するので、蛍光体層3と放熱板4との接触を維持することができ、高い放熱性を維持することができる。   Further, the translucent adhesive 17 is a material having curing shrinkage, and it is desirable that the amount of curing shrinkage is larger than the amount of thermal expansion at the highest temperature assumed to be used. Since the force that always presses the phosphor layer 3 against the heat radiating plate 4 is generated by the shrinkage stress of the translucent adhesive 17, the contact between the phosphor layer 3 and the heat radiating plate 4 can be maintained, and high heat dissipation is maintained. can do.

また、透光性接着剤17にはフィラーなどの固形成分を含まないことが望ましい。固形成分を含むと、蛍光体層3と放熱板4との接触を妨げる可能性があるからである。   Moreover, it is desirable that the translucent adhesive 17 does not contain a solid component such as a filler. This is because if a solid component is included, contact between the phosphor layer 3 and the heat sink 4 may be hindered.

以上の観点から透光性接着剤17として、弾性、透光性を有し、かつ、耐環境性にも優れたシリコーンゴムが望ましい。   In view of the above, the translucent adhesive 17 is preferably a silicone rubber having elasticity and translucency and excellent environmental resistance.

上記記載の光源装置においては、蛍光体層の放熱板に面する側に、蛍光体層から発せられる蛍光に対して光透過性を有する光透過層を備え、光透過層は蛍光体層より光透過性が高いことを特徴とする。   In the above-described light source device, the phosphor layer is provided with a light transmissive layer having light permeability with respect to the fluorescence emitted from the phosphor layer on the side facing the heat dissipation plate, and the light transmissive layer is lighter than the phosphor layer. It is characterized by high permeability.

上記記載の光源装置においては、接着剤が蛍光体層から発せられる蛍光に対して透光性を有することを特徴とする。   In the light source device described above, the adhesive has a light-transmitting property with respect to the fluorescence emitted from the phosphor layer.

以上のように実施例4の光源装置によれば、光散乱粒子、光散乱層、あるいは光透過層を設けることで、凹部に起因した光放射パターンのムラを低減することができる。   As described above, according to the light source device of Example 4, by providing the light scattering particles, the light scattering layer, or the light transmission layer, it is possible to reduce the unevenness of the light radiation pattern due to the recesses.

実施例5では、励起光を放熱板側から入射させ蛍光体層から透過光を取り出す透過型の光源装置の構成を説明する。   In the fifth embodiment, a configuration of a transmission type light source device in which excitation light is incident from the heat radiation plate side and transmitted light is extracted from the phosphor layer will be described.

図11は、実施例5における光源装置の構成を示す斜視図である。実施例1(図1)と同一の要素には同一の符号を付し、その説明は簡単に行う。光源装置100’は、半導体発光素子1と、集光レンズ2と、蛍光体層3と、透光性放熱板18と、リフレクタ(反射器)5とを備えている。半導体発光素子1は蛍光体層3の励起光としての青色レーザー光を出射する。集光レンズ2は、半導体発光素子1から出射された励起光20を、下方に配置された透光性放熱板18と蛍光体層3との接合面に集光させる。リフレクタ5は、蛍光体層3の下方を臨むように配設され、反射面5aにより、蛍光体層3から出射された蛍光30および拡散透過された励起光20’を前方へ反射させる構成となっている。   FIG. 11 is a perspective view illustrating the configuration of the light source device according to the fifth embodiment. The same elements as those in the first embodiment (FIG. 1) are denoted by the same reference numerals, and the description thereof will be simply given. The light source device 100 ′ includes a semiconductor light emitting element 1, a condenser lens 2, a phosphor layer 3, a translucent heat radiating plate 18, and a reflector (reflector) 5. The semiconductor light emitting device 1 emits blue laser light as excitation light for the phosphor layer 3. The condensing lens 2 condenses the excitation light 20 emitted from the semiconductor light emitting element 1 on the joint surface between the translucent heat radiating plate 18 and the phosphor layer 3 disposed below. The reflector 5 is disposed so as to face the lower side of the phosphor layer 3, and is configured to reflect the fluorescence 30 emitted from the phosphor layer 3 and the excitation light 20 ′ diffused and transmitted forward by the reflecting surface 5a. ing.

図12は、実施例5における蛍光体層3および透光性放熱板18の断面図である。透光性放熱板18は、励起光20を透過し、かつ、蛍光体層3で発生した熱を受け取って外部へ拡散・放熱するものであり、透明無機材料の単結晶やガラスで構成される。特に、透明無機材料としてサファイアは、熱伝導率が高いので望ましい。   FIG. 12 is a cross-sectional view of the phosphor layer 3 and the light transmissive heat sink 18 in the fifth embodiment. The translucent heat radiating plate 18 transmits the excitation light 20, receives heat generated in the phosphor layer 3, diffuses and radiates it to the outside, and is composed of a single crystal or glass of a transparent inorganic material. . In particular, sapphire is desirable as a transparent inorganic material because of its high thermal conductivity.

透光性放熱板18の接合面側には複数の凹部19が形成されている。凹部19の少なくとも一部には透光性接着剤17が充填されて、蛍光体層3と透光性放熱板18を接着している。透光性接着剤17の構成材料については、実施例4(図10)で説明したものと同一であるので、説明を省略する。透光性放熱板18の接合面において凹部19を除く平面部分の少なくとも一部は蛍光体層3と直接接触している。蛍光体層3と透光性放熱板18が直接接触しているので、蛍光体層3の熱を効率良く透光性放熱板18に伝達させ、放熱特性を向上させることができる。   A plurality of recesses 19 are formed on the joint surface side of the light transmissive heat sink 18. At least a part of the recess 19 is filled with a translucent adhesive 17 to bond the phosphor layer 3 and the translucent heat sink 18. About the constituent material of the translucent adhesive agent 17, since it is the same as what was demonstrated in Example 4 (FIG. 10), description is abbreviate | omitted. At least a part of the planar portion excluding the concave portion 19 on the bonding surface of the light transmissive heat radiating plate 18 is in direct contact with the phosphor layer 3. Since the phosphor layer 3 and the translucent heat radiating plate 18 are in direct contact, the heat of the phosphor layer 3 can be efficiently transmitted to the translucent heat radiating plate 18 to improve the heat radiation characteristics.

本実施例においても、接合面に対する凹部19の占める割合(凹部面積比)に応じて接着力と放熱特性が変化する。よって、実施例1と同様に、接着力と放熱特性の両方を満足するように凹部面積比を決定する。   Also in the present embodiment, the adhesive force and the heat dissipation characteristics change according to the ratio (concave area ratio) of the concave portion 19 to the joint surface. Therefore, similarly to Example 1, the recess area ratio is determined so as to satisfy both the adhesive force and the heat dissipation characteristics.

図13は、透光性放熱板18に形成する凹部19の配置の一例を示す図で、蛍光体層3との接合面側から見た図である。この例では、凹部19の形状は、蛍光体層3の接合面の端部に貫通する格子状パターンとしている。パターンの中心は、蛍光体層3に対する励起光照射範囲8を略中心として形成している。蛍光体層3のサイズは励起光照射範囲8と同程度か、これより広く、かつ、凹部19は、上記範囲8と同程度か、これより広く設けられることが望ましい。これにより励起光照射範囲8で発生した熱を透光性放熱板17に放熱する十分な経路を確保することができる。また、凹部19は、上記範囲8の外側のみに形成されている。これにより、蛍光体層3を透過してリフレクタ5に放射される励起光が凹部19のパターンに起因して発生する放射分布ムラを抑制できる。   FIG. 13 is a view showing an example of the arrangement of the recesses 19 formed in the light transmissive heat radiating plate 18, as viewed from the side of the bonding surface with the phosphor layer 3. In this example, the shape of the concave portion 19 is a lattice pattern penetrating the end portion of the bonding surface of the phosphor layer 3. The center of the pattern is formed with the excitation light irradiation range 8 with respect to the phosphor layer 3 substantially as the center. It is desirable that the size of the phosphor layer 3 is approximately the same as or wider than the excitation light irradiation range 8, and the recess 19 is approximately the same as or wider than the range 8. As a result, a sufficient path for radiating the heat generated in the excitation light irradiation range 8 to the translucent heat radiating plate 17 can be secured. Further, the recess 19 is formed only outside the range 8. Thereby, the radiation distribution unevenness which the excitation light which permeate | transmits the fluorescent substance layer 3 and is radiated | emitted to the reflector 5 resulting from the pattern of the recessed part 19 can be suppressed.

凹部19の幅wは、前記実施例3(図6)と同様に、中心から外側に位置するものほど広く設定している。これは、蛍光体層3と透光性放熱板18との熱膨張係数の違いによって温度変化時に発生する相対ズレ量が、外側に位置するものほど大きくなることを考慮したからである。   The width w of the concave portion 19 is set wider as it is located outward from the center, as in the third embodiment (FIG. 6). This is because it is considered that the amount of relative deviation generated at the time of temperature change due to the difference in thermal expansion coefficient between the phosphor layer 3 and the translucent heat radiating plate 18 becomes larger as it is located on the outer side.

凹部19の形成方法としては、例えば、サンドブラスト、エッチングのパターン形成、切削加工、レーザー加工が挙げられる。さらに、上記形成法で凹部を形成した後、凹部形成面に平面研磨を施すことが望ましい。これにより蛍光体層3との接触面積を増やして放熱性を向上させることができる。   Examples of the method of forming the recess 19 include sand blasting, etching pattern formation, cutting, and laser processing. Furthermore, it is desirable that after forming the recess by the above forming method, the recess forming surface is subjected to planar polishing. Thereby, a contact area with the fluorescent substance layer 3 can be increased and heat dissipation can be improved.

このように実施例5の光源装置によれば、透過型の光源装置においても、温度変化による接合部の剥離やセラミックスの破壊を抑制し、かつ高い放熱性を得ることができる。   As described above, according to the light source device of Example 5, even in the transmission type light source device, it is possible to suppress the peeling of the joint portion and the destruction of the ceramic due to the temperature change and to obtain high heat dissipation.

なお、本実施例では透光性放熱板18に凹部19を形成した例を示したが、蛍光体層3に凹部を形成してもよい。また、本実施例では凹部を格子状に形成した例を示したが、実施例1に示したような複数のドット状の凹部で構成したり、あるいは励起光照射範囲8の中心を略中心とした複数の円環状の凹部で構成してもよい。また、本実施例では励起光照射範囲8の内部に凹部19を形成しない例を示したが、凹部19のパターンに起因して発生する放射分布ムラが製品上問題ない程度であれば、励起光照射範囲8の内部に凹部19を形成してもよい。   In addition, although the example which formed the recessed part 19 in the translucent heat sink 18 in the present Example was shown, you may form a recessed part in the fluorescent substance layer 3. FIG. Further, in this embodiment, an example in which the concave portions are formed in a lattice shape has been shown. A plurality of annular recesses may be used. Further, in this embodiment, an example in which the concave portion 19 is not formed inside the excitation light irradiation range 8 is shown. However, if the radiation distribution unevenness generated due to the pattern of the concave portion 19 is not a problem in the product, the excitation light A recess 19 may be formed inside the irradiation range 8.

本発明は、上記した各実施例に限定されるものではなく、様々な変形例が含まれる。上記した実施例は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されない。また、各実施例の構成の一部について、他の実施例の構成の追加・削除・置換をすることが可能である。   The present invention is not limited to the embodiments described above, and includes various modifications. The above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, it is possible to add, delete, and replace the configurations of other embodiments with respect to a part of the configurations of the embodiments.

1:半導体発光素子、
2:集光レンズ、
3:蛍光体層、
4:放熱板、
5:リフレクタ、
6:凹部、
7:接着剤、
8:励起光照射範囲、
9:熱拡散の目安となる領域、
10:蛍光体粒子、
11:分散媒体粒子、
12:通気路、
13:凹部、
14:光散乱粒子、
15:光散乱層、
16:光透過層、
17:透光性接着剤、
18:透光性放熱板、
19:凹部、
100:光源装置。
1: Semiconductor light emitting device,
2: Condensing lens,
3: phosphor layer,
4: Heat sink,
5: Reflector,
6: recess,
7: Adhesive,
8: Excitation light irradiation range,
9: Area that is a measure of thermal diffusion,
10: phosphor particles,
11: Dispersion medium particles,
12: Ventilation path
13: recess,
14: Light scattering particles,
15: light scattering layer,
16: light transmission layer,
17: Translucent adhesive,
18: Translucent heat sink,
19: recess,
100: Light source device.

Claims (3)

励起光を出射する光源と、前記励起光を受けて蛍光および拡散された励起光を出射する蛍光体層とを有し、前記蛍光および前記拡散された励起光を照射光として出射する光源装置であって、
前記蛍光体層と接合して該蛍光体層で発生した熱を放熱する放熱板を備え、
前記蛍光体層と前記放熱板との接合面において、前記蛍光体層または前記放熱板の少なくとも一方に複数の凹部を形成し、該凹部の少なくとも一部には接着剤が充填され、該接着剤によって前記蛍光体層と前記放熱板が接着されるとともに、
前記凹部の少なくとも一部は、その幅が、前記蛍光体層と前記放熱板との熱膨張係数の違いに起因して、保管時および使用時に想定される温度範囲で生じる相対ズレ量より大きく、
かつ、前記凹部の幅は、前記光源からの励起光の照射範囲の中心から外側に位置するものほど大きく形成していることを特徴とする光源装置。
A light source device that has a light source that emits excitation light and a phosphor layer that emits fluorescence and diffused excitation light in response to the excitation light, and emits the fluorescence and the diffused excitation light as irradiation light There,
A heat sink that dissipates heat generated in the phosphor layer by joining with the phosphor layer,
A plurality of recesses are formed in at least one of the phosphor layer or the heat radiating plate at a joint surface between the phosphor layer and the heat radiating plate, and at least a part of the recess is filled with an adhesive, It said radiator plate and said phosphor layer is bonded by Rutotomoni,
At least a part of the concave portion has a width larger than a relative deviation amount generated in a temperature range assumed during storage and use due to a difference in thermal expansion coefficient between the phosphor layer and the heat radiating plate,
And the width | variety of the said recessed part is formed so large that it is located outside the center of the irradiation range of the excitation light from the said light source, It is characterized by the above-mentioned .
励起光を出射する光源と、前記励起光を受けて蛍光および拡散された励起光を出射する蛍光体層とを有し、前記蛍光および前記拡散された励起光を照射光として出射する光源装置であって、A light source device that has a light source that emits excitation light and a phosphor layer that emits fluorescence and diffused excitation light in response to the excitation light, and emits the fluorescence and the diffused excitation light as irradiation light There,
前記蛍光体層と接合して該蛍光体層で発生した熱を放熱する放熱板を備え、A heat sink that dissipates heat generated in the phosphor layer by joining with the phosphor layer,
前記蛍光体層と前記放熱板との接合面において、前記蛍光体層または前記放熱板の少なくとも一方に複数の凹部を形成し、該凹部には接着剤が充填され、該接着剤によって前記蛍光体層と前記放熱板が接着されるとともに、A plurality of recesses are formed in at least one of the phosphor layer or the heat dissipation plate at a joint surface between the phosphor layer and the heat dissipation plate, and the recess is filled with an adhesive. The layer and the heat sink are bonded,
前記蛍光体層の内部には、前記蛍光体層と前記放熱板との接着時に、前記凹部の内部の空気を通過させ外部へ排出しながら前記接着剤を充填させるための通気路を有することを特徴とする光源装置。The inside of the phosphor layer has a ventilation path for filling the adhesive while allowing the air inside the recess to pass through and discharging to the outside when the phosphor layer and the heat radiating plate are bonded. A light source device.
請求項1または2に記載の光源装置において、
前記凹部の内部に、前記蛍光体層から発せられる蛍光に対して光散乱性を有するとともに、励起光を吸収して蛍光に変換する蛍光体粒子を含有させた光散乱粒子を設置したことを特徴とする光源装置。
The light source device according to claim 1 or 2,
A light scattering particle containing phosphor particles that have a light scattering property with respect to the fluorescence emitted from the phosphor layer and that absorbs excitation light and converts it into fluorescence is disposed inside the recess. A light source device.
JP2015179959A 2015-09-11 2015-09-11 Light source device Active JP6444837B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015179959A JP6444837B2 (en) 2015-09-11 2015-09-11 Light source device
PCT/JP2016/070877 WO2017043180A1 (en) 2015-09-11 2016-07-14 Light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015179959A JP6444837B2 (en) 2015-09-11 2015-09-11 Light source device

Publications (2)

Publication Number Publication Date
JP2017054785A JP2017054785A (en) 2017-03-16
JP6444837B2 true JP6444837B2 (en) 2018-12-26

Family

ID=58239661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015179959A Active JP6444837B2 (en) 2015-09-11 2015-09-11 Light source device

Country Status (2)

Country Link
JP (1) JP6444837B2 (en)
WO (1) WO2017043180A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018159742A (en) * 2017-03-22 2018-10-11 セイコーエプソン株式会社 Wavelength conversion element, light source device, and projector
JP2020095066A (en) * 2017-03-28 2020-06-18 パナソニックIpマネジメント株式会社 Color conversion element and luminaire
JP6693908B2 (en) * 2017-06-09 2020-05-13 オムロン株式会社 Light source device and distance measuring sensor including the same
JP6471772B2 (en) * 2017-06-09 2019-02-20 オムロン株式会社 Light source device and distance measuring sensor provided with the same
EP3693659B1 (en) * 2017-10-02 2022-04-06 Kyocera Corporation Light source device and illumination device
CN108443823A (en) * 2018-05-03 2018-08-24 吉林省蓝拓科技有限公司 A kind of reflective laser car light of free form surface
JP6768205B2 (en) * 2018-05-24 2020-10-14 カシオ計算機株式会社 Light source device and projection device
JP7189422B2 (en) 2018-09-27 2022-12-14 日亜化学工業株式会社 WAVELENGTH CONVERSION MEMBER COMPOSITE, LIGHT-EMITTING DEVICE, AND METHOD OF MANUFACTURING WAVELENGTH CONVERSION MEMBER COMPOSITE
WO2020110962A1 (en) * 2018-11-26 2020-06-04 京セラ株式会社 Light source device and illumination device
WO2020110963A1 (en) * 2018-11-26 2020-06-04 京セラ株式会社 Light source device and illumination device
JP6888638B2 (en) * 2019-01-22 2021-06-16 オムロン株式会社 Light source device and ranging sensor equipped with it
JP6753477B2 (en) * 2019-01-22 2020-09-09 オムロン株式会社 Light source device and ranging sensor equipped with it
JP7022355B2 (en) * 2019-11-28 2022-02-18 セイコーエプソン株式会社 Wavelength converters, light source devices and projectors
US20230038009A1 (en) * 2020-03-18 2023-02-09 Sharp Kabushiki Kaisha Wavelength conversion element and optical device
JP7100813B2 (en) * 2020-09-09 2022-07-14 カシオ計算機株式会社 Light source device and projection device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010062365A (en) * 2008-09-04 2010-03-18 Hitachi Ltd Semiconductor device and method of manufacturing the same
JP5327529B2 (en) * 2009-04-22 2013-10-30 カシオ計算機株式会社 Light source device and projector
JP2011249573A (en) * 2010-05-27 2011-12-08 三菱電機照明株式会社 Light emitting device, wavelength conversion sheet and illuminating device
JP2014093398A (en) * 2012-11-02 2014-05-19 Mitsubishi Chemicals Corp Semiconductor light-emitting device, lighting device and wavelength conversion member
JP5970661B2 (en) * 2013-06-21 2016-08-17 パナソニックIpマネジメント株式会社 Wavelength conversion member, light source, and automotive headlamp

Also Published As

Publication number Publication date
WO2017043180A1 (en) 2017-03-16
JP2017054785A (en) 2017-03-16

Similar Documents

Publication Publication Date Title
JP6444837B2 (en) Light source device
JP6332294B2 (en) Light emitting device
JP5482378B2 (en) Light emitting device
JP5113820B2 (en) Light emitting device
KR101906863B1 (en) A light emitting module, a lamp, a luminaire and a display device
JP6142902B2 (en) Light emitting device and manufacturing method thereof
KR101892593B1 (en) A light emitting device and the manufacturing method
US20160102819A1 (en) Light source device and vehicle lamp
JP6371201B2 (en) Light emitting module and light emitting device using the same
JP6399017B2 (en) Light emitting device
JP6777127B2 (en) Manufacturing method of light emitting device
JP2010272847A5 (en)
US10991859B2 (en) Light-emitting device and method of manufacturing the same
JP6481559B2 (en) Light emitting device
JP2011096740A (en) Light-emitting device
JP2019016763A (en) Light-emitting device and method for manufacturing the same
WO2017040433A1 (en) Laser-activated remote phosphor target and system
KR101917703B1 (en) Phosphor module
JP7111939B2 (en) Light emitting device and manufacturing method thereof
KR101984102B1 (en) Phosphor module
CN109751564B (en) Phosphor module
JP2012009696A (en) Light emitting device and led illuminating equipment
JP7054005B2 (en) Light emitting device
KR101917704B1 (en) Phosphor module
JP6561777B2 (en) Method for manufacturing wavelength conversion element, wavelength conversion element and light emitting device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181128

R150 Certificate of patent or registration of utility model

Ref document number: 6444837

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250