JP2014173156A - Copper alloy seamless pipe for heat transfer pipe - Google Patents

Copper alloy seamless pipe for heat transfer pipe Download PDF

Info

Publication number
JP2014173156A
JP2014173156A JP2013048038A JP2013048038A JP2014173156A JP 2014173156 A JP2014173156 A JP 2014173156A JP 2013048038 A JP2013048038 A JP 2013048038A JP 2013048038 A JP2013048038 A JP 2013048038A JP 2014173156 A JP2014173156 A JP 2014173156A
Authority
JP
Japan
Prior art keywords
copper alloy
heat transfer
seamless pipe
mass
alloy seamless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013048038A
Other languages
Japanese (ja)
Other versions
JP6244588B2 (en
Inventor
Tetsuya Ando
哲也 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UACJ Corp
Original Assignee
UACJ Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UACJ Corp filed Critical UACJ Corp
Priority to JP2013048038A priority Critical patent/JP6244588B2/en
Priority to KR1020157023350A priority patent/KR20150122664A/en
Priority to PCT/JP2014/056110 priority patent/WO2014142049A1/en
Priority to CN201480013709.3A priority patent/CN105143479B/en
Priority to MYPI2015703064A priority patent/MY181920A/en
Priority to TW103108365A priority patent/TWI608110B/en
Publication of JP2014173156A publication Critical patent/JP2014173156A/en
Application granted granted Critical
Publication of JP6244588B2 publication Critical patent/JP6244588B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum

Abstract

PROBLEM TO BE SOLVED: To provide a copper alloy seamless pipe for a heat transfer pipe high in strength, little in strength degradation by brazing, high in creep deformation resistance and in inhibitory effect of intermediate temperature brittleness.SOLUTION: There is provided a copper alloy seamless pipe for a heat transfer pipe obtained by processing a copper alloy containing Sn, 0.01 to 0.08 mass% of Zr, 0.004 to 0.04 mass% of P and the balance Cu with inevitable impurities, and the contents of Sn and Zr in the copper alloy satisfies the formula (1):(1)0.4≤A+2B≤0.85, where A represents the content of Sn (mass%) and B represents the content of Zr (mass%)), and an electric conductivity of the copper alloy seamless pipe for the heat transfer pipe satisfies the formula (2):(1)ρ2-ρ1≥0.3(%IACS), where ρ1 represents electric conductivity after a solution treatment (%IACS) and ρ2 represents electric conductivity after an aging treatment (%IACS).

Description

本発明は、空調機用熱交換器、冷凍機用熱交換器等の伝熱管又は冷媒配管に用いられる銅合金製の継目無管に関する。   The present invention relates to a seamless pipe made of a copper alloy used for a heat transfer pipe or a refrigerant pipe such as a heat exchanger for an air conditioner or a heat exchanger for a refrigerator.

従来より、ルームエアコン、パッケージエアコン等の空調機、冷凍機等に用いられる熱交換器の伝熱管には、銅合金製の継目無管が多く採用されており、強度や加工性、伝熱性等の諸物性、並びに材料及び加工コストにバランスの取れたりん脱酸銅管(JIS C1220T)が使用されてきた。   Conventionally, seamless pipes made of copper alloy have been adopted as heat transfer tubes for heat exchangers used in air conditioners such as room air conditioners and packaged air conditioners, refrigerators, etc., strength, workability, heat transfer, etc. Phosphorus-deoxidized copper tubes (JIS C1220T), which have a good balance between their physical properties, materials and processing costs, have been used.

近年、これらの熱交換器では、重量の低減又はコストダウンの要求により、継目無管の薄肉化が必要となってきており、従来のりん脱酸銅管では強度が低いため、薄肉化は難しく、これに替わる銅合金製の継目無管の開発が求められている。   In recent years, in these heat exchangers, it has become necessary to reduce the thickness of seamless pipes due to demands for weight reduction or cost reduction, and it is difficult to reduce the thickness of conventional phosphorous deoxidized copper pipes because the strength is low. Therefore, there is a demand for the development of a copper alloy seamless pipe that replaces this.

そこで、固溶強化型の銅合金としては、特許文献1には、Snを添加した銅合金が提案されている。また、固溶強化及び析出強化型銅合金としては、特許文献2及び特許文献3には、Sn及びZrを添加した銅合金が提案されている。   Therefore, as a solid solution strengthened copper alloy, Patent Document 1 proposes a copper alloy to which Sn is added. Moreover, as a solid solution strengthening and precipitation strengthening type copper alloy, the patent document 2 and the patent document 3 have proposed the copper alloy which added Sn and Zr.

特開2003−268467号公報(特許請求の範囲)JP 2003-268467 A (Claims) WO2008/041777号公報(特許請求の範囲)WO2008 / 041777 (Claims) 特開2011−94174号公報(特許請求の範囲)JP2011-94174A (Claims)

空調機用熱交換器、冷凍機用熱交換器等の伝熱管又は冷媒配管に用いられる銅合金継目無管は、熱膨張及び熱収縮の繰り返しに伴う熱疲労によって、疲労亀裂が発生する危険性がある。また、熱膨張に伴い継目無管に張力が発生し、使用温度によってはクリープ変形が発生する危険性がある。   Copper alloy seamless pipes used for heat transfer pipes and refrigerant pipes such as heat exchangers for air conditioners and heat exchangers for refrigerators may cause fatigue cracks due to thermal fatigue due to repeated thermal expansion and contraction. There is. In addition, tension is generated in the seamless pipe with thermal expansion, and there is a risk of creep deformation depending on the operating temperature.

そのため、空調機用熱交換器、冷凍機用熱交換器等の伝熱管又は冷媒配管に用いられる銅合金継目無管には、「強度が高い」及び「ろう付けによる強度低下が少ない」に加え、耐熱疲労亀裂発生特性及び耐クリープ変形特性が備わっていることが求められる。   Therefore, in addition to “high strength” and “low strength loss due to brazing”, copper alloy seamless tubes used for heat transfer tubes or refrigerant pipes for heat exchangers for air conditioners, heat exchangers for refrigerators, etc. It is required to have heat-resistant fatigue crack generation characteristics and creep deformation resistance characteristics.

ところが、引用文献1のような、Snを添加した固溶強化型の銅合金製の継目無管には、中間温度脆性があり、脆性温度域において熱疲労、クリープ破壊を生じさせ易い。熱交換器の製造時、継目無管に張力がはたらいた状態でろう付け等の加熱をすることにより、中間温度脆性が発生し、脆化割れを生じ易い。   However, a solid solution strengthened copper alloy seamless pipe to which Sn is added as in Cited Document 1 is brittle at an intermediate temperature and easily causes thermal fatigue and creep fracture in a brittle temperature range. At the time of manufacturing the heat exchanger, heating such as brazing is performed in a state where tension is applied to the seamless pipe, so that intermediate temperature brittleness is generated and brittle cracking is likely to occur.

中間温度脆性を増進させる因子として、S及びHがあり、S及びHの含有量を極限まで下げることで、ある程度の中間温度脆性は抑制できるが、十分ではない。また、Sの含有量を極限まで下げるためには高純度の地金を使用する必要があり、コスト面で好ましくない。また、Hの含有量を極限まで下げるためには長時間の溶湯処理が必要、雰囲気コントロールを行った溶解鋳造が必要等、コスト面で好ましくない。   There are S and H as factors for promoting the intermediate temperature brittleness. Although the intermediate temperature brittleness can be suppressed to some extent by reducing the S and H contents to the limit, it is not sufficient. In addition, in order to reduce the S content to the limit, it is necessary to use a high-purity metal, which is not preferable in terms of cost. Further, in order to reduce the H content to the limit, it is not preferable in terms of cost, for example, a long-time molten metal treatment is required and a melt casting with controlled atmosphere is required.

そのため、通常のレベル(極限まで下げることのないレベル)のS及びHの含有量であっても、中間温度脆性を効果的に抑制させることが望ましい。なお、通常のレベル(極限まで下げることのないレベル)のS及びHの含有量とは、Sが0.0005〜0.0008質量%程度であり、Hが0.0002〜0.0010質量%程度である。   Therefore, it is desirable to effectively suppress the intermediate temperature brittleness even if the contents of S and H are at a normal level (a level that does not decrease to the limit). Note that the S and H contents at a normal level (a level that does not decrease to the limit) are such that S is about 0.0005 to 0.0008 mass% and H is 0.0002 to 0.0010 mass%. Degree.

一方、特許文献2及び特許文献3のような、Sn及びZrを添加した固溶強化及び析出強化型の銅合金製の継目無管では、Zrの添加により、強度が高いこと及びろう付けによる強度低下が少ないことに加え、中間温度脆性の発現をある程度抑制することができる。   On the other hand, in the solid solution strengthened and precipitation strengthened type copper alloy seamless pipes to which Sn and Zr are added as in Patent Document 2 and Patent Document 3, the addition of Zr increases the strength and the strength by brazing. In addition to a small decrease, the occurrence of intermediate temperature brittleness can be suppressed to some extent.

しかしながら、更なる耐熱疲労亀裂発生特性の向上及び耐クリープ変形特性の向上が求められている。   However, there is a demand for further improvement in heat-resistant fatigue crack generation characteristics and creep deformation resistance characteristics.

従って、本発明の目的は、強度が高く、ろう付けによる強度低下が少なく、耐クリープ変形特性が高く、且つ、中間温度脆性の抑制効果が高い伝熱管用の銅合金継目無管を提供することにある。   Accordingly, an object of the present invention is to provide a copper alloy seamless pipe for a heat transfer tube that has high strength, little strength reduction due to brazing, high creep deformation resistance, and high intermediate temperature brittleness suppressing effect. It is in.

本発明者らは、上記従来技術における課題を解決すべく、鋭意研究を重ねた結果、銅合金にSn及びZrを特定の含有量で含有させ、更に、Zrを銅合金中に適切な状態で存在させることにより、強度が高く、ろう付けによる強度低下が少なく、耐クリープ変形特性が高く、且つ、中間温度脆性の抑制効果が高い伝熱管用の銅合金継目無管が得られることを見出し、本発明を完成させるに至った。   As a result of intensive studies to solve the above-described problems in the prior art, the present inventors have included a copper alloy with a specific content of Sn and Zr, and in addition, Zr in an appropriate state in the copper alloy. By making it exist, it has been found that a copper alloy seamless pipe for a heat transfer tube having high strength, less strength decrease due to brazing, high creep deformation resistance, and high suppression effect of intermediate temperature brittleness can be obtained, The present invention has been completed.

すなわち、本発明(1)は、銅合金を加工して得られる伝熱管用銅合金継目無管であり、
該銅合金は、Snと、0.01〜0.08質量%のZrと、0.004〜0.04質量%のPと、を含有し、残部Cu及び不可避不純物からなり、該銅合金中のSn及びZrの含有量が、下記式(1):
(1)0.4≦A+2B≦0.85
(式中、AはSnの含有量(質量%)を示し、BはZrの含有量(質量%)を示す。)
を満たし、
該伝熱管用銅合金継目無管の電気伝導度が、下記式(2):
(2)ρ2−ρ1≧0.3(%IACS)
(式中、ρ1は溶体化処理後の電気伝導度(%IACS)を指し、ρ2は時効処理後の電気伝導度(%IACS)を指す。)
を満たすこと、
を特徴とする伝熱管用銅合金継目無管を提供するものである。
That is, the present invention (1) is a copper alloy seamless pipe for a heat transfer tube obtained by processing a copper alloy,
This copper alloy contains Sn, 0.01-0.08 mass% Zr, and 0.004-0.04 mass% P, and consists of the remainder Cu and inevitable impurities, The content of Sn and Zr of the following formula (1):
(1) 0.4 ≦ A + 2B ≦ 0.85
(In the formula, A represents the Sn content (mass%), and B represents the Zr content (mass%).)
The filling,
The electrical conductivity of the copper alloy seamless pipe for heat transfer tube is represented by the following formula (2):
(2) ρ2−ρ1 ≧ 0.3 (% IACS)
(In the formula, ρ1 indicates the electric conductivity after solution treatment (% IACS), and ρ2 indicates the electric conductivity after aging treatment (% IACS).)
Meeting,
A copper alloy seamless pipe for heat transfer tubes is provided.

また、本発明(2)は、銅合金を加工して得られる伝熱管用銅合金継目無管であり、
該銅合金は、Snと、0.01〜0.08質量%のZrと、0.004〜0.04質量%のPと、を含有し、残部Cu及び不可避不純物からなり、該銅合金中のSn及びZrの含有量が、下記式(1):
(1)0.4≦A+2B≦0.85
(式中、AはSnの含有量(質量%)を示し、BはZrの含有量(質量%)を示す。)
を満たし、
該伝熱管用銅合金継目無管の電気伝導度が、下記式(3):
(3)ρ4−ρ3≧0.3(%IACS)
(式中、ρ3は950℃で10分間の加熱−水冷試験後の電気伝導度(%IACS)を指し、ρ4は550℃で60分間の加熱−水冷試験後の電気伝導度(%IACS)を指す。)
を満たすこと、
を特徴とする伝熱管用銅合金継目無管を提供するものである。
Further, the present invention (2) is a copper alloy seamless pipe for heat transfer tubes obtained by processing a copper alloy,
This copper alloy contains Sn, 0.01-0.08 mass% Zr, and 0.004-0.04 mass% P, and consists of the remainder Cu and inevitable impurities, The content of Sn and Zr of the following formula (1):
(1) 0.4 ≦ A + 2B ≦ 0.85
(In the formula, A represents the Sn content (mass%), and B represents the Zr content (mass%).)
The filling,
The electrical conductivity of the copper alloy seamless pipe for heat transfer tube is represented by the following formula (3):
(3) ρ4-ρ3 ≧ 0.3 (% IACS)
(In the formula, ρ3 indicates the electric conductivity after heating-water cooling test at 950 ° C. for 10 minutes (% IACS), and ρ4 indicates the electric conductivity after heating-water cooling test at 550 ° C. for 60 minutes (% IACS). Point to.)
Meeting,
A copper alloy seamless pipe for heat transfer tubes is provided.

本発明によれば、強度が高く、ろう付けによる強度低下が少なく、耐クリープ変形特性が高く、且つ、中間温度脆性の抑制効果が高い伝熱管用の銅合金継目無管を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the copper alloy seamless pipe for heat exchanger tubes with high intensity | strength, there is little intensity | strength fall by brazing, the creep deformation-proof characteristic is high, and the suppression effect of intermediate temperature brittleness can be provided. .

本発明の第一の形態の伝熱管用銅合金継目無管(以下、本発明の伝熱管用銅合金継目無管(1)とも記載する。)は、銅合金を加工して得られる伝熱管用銅合金継目無管であり、
該銅合金は、Snと、0.01〜0.08質量%のZrと、0.004〜0.04質量%のPと、を含有し、残部Cu及び不可避不純物からなり、該銅合金中のSn及びZrの含有量が、下記式(1):
(1)0.4≦A+2B≦0.85
(式中、AはSnの含有量(質量%)を示し、BはZrの含有量(質量%)を示す。)
を満たし、
該伝熱管用銅合金継目無管の電気伝導度が、下記式(2):
(2)ρ2−ρ1≧0.3(%IACS)
(式中、ρ1は溶体化処理後の電気伝導度(%IACS)を指し、ρ2は時効処理後の電気伝導度(%IACS)を指す。)
を満たすこと、
を特徴とする伝熱管用銅合金継目無管である。
The copper alloy seamless pipe for heat transfer tubes of the first embodiment of the present invention (hereinafter also referred to as the copper alloy seamless pipe for heat transfer tubes of the present invention (1)) is a heat transfer tube obtained by processing a copper alloy. Copper alloy seamless pipe for
This copper alloy contains Sn, 0.01-0.08 mass% Zr, and 0.004-0.04 mass% P, and consists of the remainder Cu and inevitable impurities, The content of Sn and Zr of the following formula (1):
(1) 0.4 ≦ A + 2B ≦ 0.85
(In the formula, A represents the Sn content (mass%), and B represents the Zr content (mass%).)
The filling,
The electrical conductivity of the copper alloy seamless pipe for heat transfer tube is represented by the following formula (2):
(2) ρ2−ρ1 ≧ 0.3 (% IACS)
(In the formula, ρ1 indicates the electric conductivity after solution treatment (% IACS), and ρ2 indicates the electric conductivity after aging treatment (% IACS).)
Meeting,
It is a copper alloy seamless pipe for heat transfer tubes.

本発明の第二の形態の伝熱管用銅合金継目無管(以下、本発明の伝熱管用銅合金継目無管(2)とも記載する。)は、銅合金を加工して得られる伝熱管用銅合金継目無管であり、
該銅合金は、Snと、0.01〜0.08質量%のZrと、0.004〜0.04質量%のPと、を含有し、残部Cu及び不可避不純物からなり、該銅合金中のSn及びZrの含有量が、下記式(1):
(1)0.4≦A+2B≦0.85
(式中、AはSnの含有量(質量%)を示し、BはZrの含有量(質量%)を示す。)
を満たし、
該伝熱管用銅合金継目無管の電気伝導度が、下記式(3):
(3)ρ4−ρ3≧0.3(%IACS)
(式中、ρ3は950℃で10分間の加熱−水冷試験後の電気伝導度(%IACS)を指し、ρ4は550℃で60分間の加熱−水冷試験後の電気伝導度(%IACS)を指す。)
を満たすこと、
を特徴とする伝熱管用銅合金継目無管である。
The copper alloy seamless pipe for heat transfer tubes of the second aspect of the present invention (hereinafter also referred to as the copper alloy seamless pipe for heat transfer tubes of the present invention (2)) is a heat transfer tube obtained by processing a copper alloy. Copper alloy seamless pipe for
This copper alloy contains Sn, 0.01-0.08 mass% Zr, and 0.004-0.04 mass% P, and consists of the remainder Cu and inevitable impurities, The content of Sn and Zr of the following formula (1):
(1) 0.4 ≦ A + 2B ≦ 0.85
(In the formula, A represents the Sn content (mass%), and B represents the Zr content (mass%).)
The filling,
The electrical conductivity of the copper alloy seamless pipe for heat transfer tube is represented by the following formula (3):
(3) ρ4-ρ3 ≧ 0.3 (% IACS)
(In the formula, ρ3 indicates the electric conductivity after heating-water cooling test at 950 ° C. for 10 minutes (% IACS), and ρ4 indicates the electric conductivity after heating-water cooling test at 550 ° C. for 60 minutes (% IACS). Point to.)
Meeting,
It is a copper alloy seamless pipe for heat transfer tubes.

本発明の伝熱管用銅合金継目無管(1)と本発明の伝熱管用銅合金継目無管(2)とは、本発明の伝熱管用銅合金継目無管(1)の電気伝導度が、式(2)を満たすのに対し、本発明の伝熱管用銅合金継目無管(2)の電気伝導度が、式(3)を満たす点が異なること以外は、同様である。   The copper alloy seamless pipe (1) for heat transfer tubes of the present invention and the copper alloy seamless tube (2) for heat transfer tubes of the present invention are the electrical conductivity of the copper alloy seamless tube (1) for heat transfer tubes of the present invention. However, while satisfy | filling Formula (2), it is the same except that the electrical conductivity of the copper alloy seamless pipe for heat-transfer tubes (2) of this invention differs in the point which satisfy | fills Formula (3).

本発明の伝熱管用銅合金継目無管(1)及び本発明の伝熱管用銅合金継目無管(2)は、空調機用熱交換器、冷凍機用熱交換器、自然ガス冷媒ヒートポンプ式熱交換器等の伝熱管又は冷媒配管として用いられる継目無管であり、銅合金からなる銅合金製の継目無管、つまり、伝熱管用の銅合金製の継目無管である。   The copper alloy seamless pipe (1) for heat transfer tubes of the present invention and the copper alloy seamless tube (2) for heat transfer tubes of the present invention are a heat exchanger for an air conditioner, a heat exchanger for a refrigerator, and a natural gas refrigerant heat pump type. It is a seamless pipe used as a heat transfer pipe or refrigerant pipe for a heat exchanger or the like, and is a copper alloy seamless pipe made of a copper alloy, that is, a copper alloy seamless pipe for a heat transfer pipe.

本発明の伝熱管用銅合金継目無管(1)又は本発明の伝熱管用銅合金継目無管(2)に係る銅合金は、Sn、Zr及びPを必須元素として含有し、残部Cu及び不可避不純物からなる銅合金である。   The copper alloy seamless pipe (1) for heat transfer tubes of the present invention (1) or the copper alloy seamless pipe (2) for heat transfer tubes of the present invention contains Sn, Zr and P as essential elements, with the remainder Cu and It is a copper alloy composed of inevitable impurities.

本発明の伝熱管用銅合金継目無管(1)又は本発明の伝熱管用銅合金継目無管(2)において、Snには、固溶強化により銅合金の強度を向上させる効果及び常温での延性を向上させる効果がある。また、これらの元素の場合、比較的低温で合金化できるので、製造上有利である。   In the copper alloy seamless pipe for heat transfer tubes of the present invention (1) or the copper alloy seamless pipe for heat transfer tubes of the present invention (2), Sn has an effect of improving the strength of the copper alloy by solid solution strengthening and at room temperature. Has the effect of improving the ductility of the steel. In addition, these elements are advantageous in production because they can be alloyed at a relatively low temperature.

本発明の伝熱管用銅合金継目無管(1)又は本発明の伝熱管用銅合金継目無管(2)において、Zrには、析出強化により銅合金の強度を向上させる効果がある。また、Zrには、ろう付け温度が過剰に高くならない前提では、Zr析出物が残存し、結晶粒の粗大化を抑制することにより、強度低下を小さくする効果がある。   In the copper alloy seamless pipe for heat transfer tubes of the present invention (1) or the copper alloy seamless pipe for heat transfer tubes of the present invention (2), Zr has an effect of improving the strength of the copper alloy by precipitation strengthening. In addition, Zr has the effect of reducing the decrease in strength by suppressing the coarsening of crystal grains because Zr precipitates remain on the premise that the brazing temperature does not become excessively high.

本発明の伝熱管用銅合金継目無管(1)又は本発明の伝熱管用銅合金継目無管(2)に係る銅合金中、Zrの含有量は、0.01〜0.08質量%である。銅合金中のZrの含有量が、0.01質量%未満だと、結晶粒粗大化を抑制する効果が小さく、ろう付けによる強度低下が大きくなり、また、Snによる固溶強化とZrによる析出強化を合わせても銅合金の強化が不十分となる。一方、銅合金中のZrの含有量が、0.08質量%を超えると、過剰な析出硬化が起こり、加工性を低下させる原因となる。特に、冷間での転造加工性が悪くなる。その結果、管内面のらせん溝形状の転写が不十分となり、C1220で得られたような伝熱性能が得られ難くなる。   In the copper alloy according to the copper alloy seamless pipe (1) for heat transfer tubes of the present invention or the copper alloy seamless pipe (2) for heat transfer tubes of the present invention, the content of Zr is 0.01 to 0.08 mass%. It is. When the content of Zr in the copper alloy is less than 0.01% by mass, the effect of suppressing the coarsening of the crystal grains is small, the strength is decreased by brazing, and the solid solution strengthening by Sn and precipitation by Zr are performed. Even if strengthening is combined, the strengthening of the copper alloy becomes insufficient. On the other hand, when the content of Zr in the copper alloy exceeds 0.08% by mass, excessive precipitation hardening occurs, which causes a decrease in workability. In particular, the rolling processability in the cold is deteriorated. As a result, the transfer of the spiral groove shape on the inner surface of the tube becomes insufficient, making it difficult to obtain the heat transfer performance obtained with C1220.

本発明の伝熱管用銅合金継目無管(1)又は本発明の伝熱管用銅合金継目無管(2)に係る銅合金中のSnの含有量をA(質量%)、Zrの含有量をB(質量%)とすると、本発明の伝熱管用銅合金継目無管に係る銅合金では、A+2Bは0.4以上0.85以下であること、すなわち、下記式(1):
(1)0.4≦A+2B≦0.85
を満たし、
好ましくはA+2Bは0.42以上0.83以下であること、すなわち、下記式(1a):
(1a)0.42≦A+2B≦0.83
を満たす。A+2Bを上記範囲内とし、且つ、Zrの含有量を0.01〜0.08質量%とすることにより、厳しい加工性が必要となる場合でも、継目無管の強度を最低限維持することができる。一方、A+2Bが、上記範囲未満だと、継目無管の強度が不足し、また、上記範囲を超えると、冷間加工性が著しく低くなる。
The content of Sn in the copper alloy according to the present invention for the copper alloy seamless pipe for heat transfer tubes (1) or the copper alloy for the heat transfer tubes according to the present invention (2) is defined as A (mass%) and the content of Zr. Is B (mass%), in the copper alloy according to the copper alloy seamless pipe for heat transfer tubes of the present invention, A + 2B is 0.4 or more and 0.85 or less, that is, the following formula (1):
(1) 0.4 ≦ A + 2B ≦ 0.85
The filling,
A + 2B is preferably 0.42 or more and 0.83 or less, that is, the following formula (1a):
(1a) 0.42 ≦ A + 2B ≦ 0.83
Meet. By keeping A + 2B within the above range and the Zr content of 0.01 to 0.08 mass%, even when severe workability is required, the strength of the seamless pipe can be kept to a minimum. it can. On the other hand, when A + 2B is less than the above range, the strength of the seamless pipe is insufficient, and when it exceeds the above range, cold workability is remarkably lowered.

本発明の伝熱管用銅合金継目無管(1)又は本発明の伝熱管用銅合金継目無管(2)に係る銅合金中のPの含有量は、0.004〜0.04質量%であり、好ましくは0.015〜0.030質量%である。銅合金が、P元素を0.004質量%以上含有することにより、材料中の脱酸が十分であることが示される。そして、銅合金中のPの含有量が、多すぎると、銅合金の熱伝導性が低くなるので、銅合金中のPの含有量は、0.040質量%以下である。   The P content in the copper alloy seamless pipe (1) for heat transfer tubes of the present invention or the copper alloy seamless tube (2) for heat transfer tubes of the present invention is 0.004 to 0.04 mass%. Preferably, it is 0.015-0.030 mass%. It is shown that the deoxidation in the material is sufficient when the copper alloy contains 0.004% by mass or more of the P element. And when there is too much content of P in a copper alloy, since the heat conductivity of a copper alloy will become low, content of P in a copper alloy is 0.040 mass% or less.

本発明の伝熱管用銅合金継目無管(1)の電気伝導度については、ρ2−ρ1が0.3以上であること、すなわち、下記式(2):
(2)ρ2−ρ1≧0.3(%IACS)
(式中、ρ1は溶体化処理後の電気伝導度(%IACS)を指し、ρ2は時効処理後の電気伝導度(%IACS)を指す。)
を満たし、
好ましくはρ2−ρ1は0.5以上20以下であること、すなわち、下記式(2a):
(2a)0.5≦ρ2−ρ1≦20
を満たす。また、本発明の伝熱管用銅合金継目無管(2)の電気伝導度については、ρ4−ρ3が0.3以上であること、すなわち、下記式(3):
(3)ρ4−ρ3≧0.3(%IACS)
(式中、ρ3は950℃で10分間の加熱−水冷試験後の電気伝導度(%IACS)を指し、ρ4は550℃で60分間の加熱−水冷試験後の電気伝導度(%IACS)を指す。)
を満たし、
好ましくはρ4−ρ3は0.5以上20以下であること、すなわち、下記式(3a):
(3a)0.5≦ρ4−ρ3≦20
を満たす。
About the electrical conductivity of the copper alloy seamless pipe (1) for heat transfer tubes of the present invention, ρ2-ρ1 is 0.3 or more, that is, the following formula (2):
(2) ρ2−ρ1 ≧ 0.3 (% IACS)
(In the formula, ρ1 indicates the electric conductivity after solution treatment (% IACS), and ρ2 indicates the electric conductivity after aging treatment (% IACS).)
The filling,
Preferably ρ2-ρ1 is 0.5 or more and 20 or less, that is, the following formula (2a):
(2a) 0.5 ≦ ρ2−ρ1 ≦ 20
Meet. Moreover, about the electrical conductivity of the copper alloy seamless pipe (2) for heat-transfer tubes of this invention, (rho) 4- (rho) 3 is 0.3 or more, ie, following formula (3):
(3) ρ4-ρ3 ≧ 0.3 (% IACS)
(In the formula, ρ3 indicates the electric conductivity after heating-water cooling test at 950 ° C. for 10 minutes (% IACS), and ρ4 indicates the electric conductivity after heating-water cooling test at 550 ° C. for 60 minutes (% IACS). Point to.)
The filling,
Preferably ρ4-ρ3 is 0.5 or more and 20 or less, that is, the following formula (3a):
(3a) 0.5 ≦ ρ4-ρ3 ≦ 20
Meet.

本発明において、溶体化処理とは、溶解及び鋳造工程での鋳塊の冷却過程で晶出したZr系金属間化合物を十分に固溶させる処理を指し、また、時効処理とは、Zr系金属間化合物を析出させる処理を指す。本発明の伝熱管用銅合金継目無管は、「溶解及び鋳造工程→熱間押出工程→冷間加工工程→必要に応じて中間焼鈍処理及び転造工程→時効処理」の順に行い製造される。そして、このような製造工程では、熱間押出工程における加熱が、溶解及び鋳造工程での鋳塊の冷却過程で晶出したZr系金属間化合物を十分に固溶させる溶体化処理となる。   In the present invention, the solution treatment refers to a treatment for sufficiently dissolving the Zr-based intermetallic compound crystallized in the ingot cooling process in the melting and casting process, and the aging treatment is a Zr-based metal. It refers to a treatment for precipitating intermetallic compounds. The copper alloy seamless pipe for heat transfer tubes of the present invention is manufactured by performing the steps of “melting and casting process → hot extrusion process → cold working process → intermediate annealing process and rolling process → aging process if necessary”. . And in such a manufacturing process, the heating in a hot extrusion process turns into the solution treatment which fully dissolves the Zr type | system | group intermetallic compound crystallized in the cooling process of the ingot in a melt | dissolution and a casting process.

銅合金製継目無管においては、溶解及び鋳造工程での鋳塊の冷却過程で晶出したZrが、溶体化処理で十分に固溶しないと、Zrの含有量に見合った強度を得るための、時効処理で析出する微細な析出物の量及び分布が適正とはならない。また、溶体化処理で固溶しきれなかったZr系晶出物は、強度向上に寄与しないばかりでなく、後の冷間加工工程、転造工程、熱交換器製作時の曲げ加工工程での加工性を阻害することになる。更に、固溶したZrは、鋳造時の凝固過程又は溶体化処理において、Sと化合物を生成することによってSをトラップし、また、熱間押出時に粒界ボイドを形成させるHをトラップすることにより、耐クリープ変形特性を向上させ、中間温度脆性を抑制する。このように、溶体化処理後に固溶しているZrは、後工程である時効処理による析出強化に寄与するばかりでなく、耐クリープ変形特性の向上、中間温度脆性の抑制に寄与する。また、時効処理でのZrの析出状態を適切なものとすることによって、中間温度脆性の抑制効果が高くなる。   In copper alloy seamless pipes, if the Zr crystallized during the ingot cooling process in the melting and casting process does not sufficiently dissolve in the solution treatment, it is necessary to obtain the strength corresponding to the Zr content. The amount and distribution of fine precipitates precipitated by aging treatment are not appropriate. In addition, the Zr-based crystallized material that could not be completely dissolved by the solution treatment not only contributes to the improvement of strength, but also in the subsequent cold working process, rolling process, bending process during heat exchanger production. Workability will be hindered. Furthermore, the solid solution Zr traps S by forming S and a compound in the solidification process or solution treatment during casting, and traps H that forms grain boundary voids during hot extrusion. Improves creep deformation resistance and suppresses intermediate temperature brittleness. Thus, Zr dissolved in solution after the solution treatment not only contributes to precipitation strengthening by aging treatment, which is a subsequent process, but also contributes to improvement in creep deformation resistance and suppression of intermediate temperature brittleness. Further, by making the Zr precipitation state appropriate in the aging treatment, the intermediate temperature brittleness suppressing effect is enhanced.

ところが、溶体化処理でのZrの固溶状態及び時効処理でのZrの析出状態を、定量的にすることは難しい。そこで、本発明者らは、鋭意検討を重ねた結果、溶体化処理後の電気伝導度と時効処理後の電気伝導度の差(ρ2−ρ1)により、溶体化処理でのZrの固溶状態及び時効処理でのZrの析出状態の把握ができ、ρ2−ρ1を特定の範囲に規定することにより、耐クリープ変形特性を向上させ、中間温度脆性を抑制することができることを見出した。つまり、本発明の伝熱管用銅合金継目無管(1)の電気伝導度については、ρ2−ρ1が0.3以上であること、すなわち、下記式(2):
(2)ρ2−ρ1≧0.3(%IACS)
を満たし、
好ましくはρ2−ρ1が0.5以上20以下であること、すなわち、下記式(2a):
(2a)0.5≦ρ2−ρ1≦20
を満たす。ρ2−ρ1が上記範囲内であることにより、耐クリープ変形特性を向上させ、中間温度脆性を抑制することができる。
However, it is difficult to quantitatively determine the solid solution state of Zr in the solution treatment and the precipitation state of Zr in the aging treatment. Accordingly, as a result of intensive studies, the inventors have determined that the solid solution state of Zr in the solution treatment is based on the difference between the electrical conductivity after the solution treatment and the electrical conductivity after the aging treatment (ρ2−ρ1). It was also found that the precipitation state of Zr in the aging treatment can be grasped, and by defining ρ2-ρ1 in a specific range, the creep deformation resistance can be improved and the intermediate temperature brittleness can be suppressed. That is, about the electrical conductivity of the copper alloy seamless pipe (1) for heat transfer tubes of the present invention, ρ2-ρ1 is 0.3 or more, that is, the following formula (2):
(2) ρ2−ρ1 ≧ 0.3 (% IACS)
The filling,
Preferably ρ2-ρ1 is 0.5 or more and 20 or less, that is, the following formula (2a):
(2a) 0.5 ≦ ρ2−ρ1 ≦ 20
Meet. When ρ2-ρ1 is within the above range, the creep deformation resistance can be improved and the intermediate temperature brittleness can be suppressed.

また、本発明者らは、950℃で10分間の加熱−水冷試験後の電気伝導度と550℃で60分間の加熱−水冷試験後の電気伝導度の差(ρ4−ρ3)により、溶体化処理でのZrの固溶状態及び時効処理でのZrの析出状態の把握ができ、ρ4−ρ3を、特定の範囲に規定することにより、耐クリープ特性変形を向上させ、中間温度脆性を抑制することができることを見出した。つまり、本発明の伝熱管用銅合金継目無管(2)の電気伝導度については、ρ4−ρ3が0.3以上であること、すなわち、下記式(3):
(3)ρ4−ρ3≧0.3(%IACS)
を満たし、
好ましくはρ4−ρ3は0.5以上20以下であること、すなわち、下記式(3a):
(3a)0.5≦ρ4−ρ3≦20
を満たす。ρ4−ρ3が上記範囲内であることにより、耐クリープ変形特性を向上させ、中間温度脆性を抑制することができる。
In addition, the inventors of the present invention have a solution solution by a difference (ρ 4 −ρ 3) between the electrical conductivity after a heating-water cooling test at 950 ° C. for 10 minutes and the electrical conductivity after a heating-water cooling test at 550 ° C. for 60 minutes. The solid solution state of Zr in the treatment and the precipitation state of Zr in the aging treatment can be grasped, and by defining ρ4-ρ3 in a specific range, the creep resistance characteristic deformation is improved and the intermediate temperature brittleness is suppressed. I found that I can do it. That is, about the electrical conductivity of the copper alloy seamless pipe (2) for heat exchanger tubes of the present invention, ρ4-ρ3 is 0.3 or more, that is, the following formula (3):
(3) ρ4-ρ3 ≧ 0.3 (% IACS)
The filling,
Preferably ρ4-ρ3 is 0.5 or more and 20 or less, that is, the following formula (3a):
(3a) 0.5 ≦ ρ4-ρ3 ≦ 20
Meet. When ρ4-ρ3 is within the above range, the creep deformation resistance can be improved and the intermediate temperature brittleness can be suppressed.

なお、本発明において、950℃で10分間の加熱−水冷試験とは、試験対象となる銅合金継目無管を950℃±25℃で10分間の加熱をした後水冷するという試験であり、先ず、窒素ガス雰囲気、950±25℃に設定された電気炉内に、試験対象を装入し、炉内温度が950℃に復帰した後、950℃±25℃で10分間保持し、次いで、950℃から直ちに水冷することにより行われる。そして、950℃で10分間加熱−水冷試験後の試験対象の電気伝導度(%IACS)を測定して、ρ3を求める。   In the present invention, the heating-water cooling test at 950 ° C. for 10 minutes is a test in which the copper alloy seamless tube to be tested is heated at 950 ° C. ± 25 ° C. for 10 minutes and then water-cooled. The test object was placed in an electric furnace set at 950 ± 25 ° C. in a nitrogen gas atmosphere, and after the furnace temperature returned to 950 ° C., it was held at 950 ° C. ± 25 ° C. for 10 minutes, and then 950 It is carried out by immediately cooling with water from ℃. Then, the electrical conductivity (% IACS) of the test object after the heating-water cooling test at 950 ° C. for 10 minutes is measured to obtain ρ3.

また、本発明において、550℃で60分間の加熱−水冷試験とは、試験対象となる銅合金継目無管を、950℃で10分間の加熱と水冷を行った後、次いで、550℃±10℃で60分間の加熱をした後水冷するという試験であり、先ず、試験対象を、950℃で10分間の加熱−水冷試験と同様にして、950℃±25℃で10分間加熱した後950℃から直ちに水冷し、次いで、950℃で10分間の加熱と水冷を行った試験対象を、塩浴炉内に装入し、550℃±10℃で60分間保持し、次いで、直ちに水冷することにより行われる。そして、550℃±10℃で60分間加熱−水冷試験後の試験対象の電気伝導度(%IACS)を測定して、ρ4を求める。   Further, in the present invention, the heating-water cooling test at 550 ° C. for 60 minutes means that the copper alloy seamless tube to be tested is heated and cooled at 950 ° C. for 10 minutes and then 550 ° C. ± 10 In this test, the test object is heated at 60 ° C. for 60 minutes and then cooled with water. First, the test object is heated at 950 ° C. ± 25 ° C. for 10 minutes in the same manner as the 950 ° C. heating-water cooling test at 950 ° C. The test object that was immediately cooled with water and then heated at 950 ° C. for 10 minutes and cooled with water was placed in a salt bath furnace, held at 550 ° C. ± 10 ° C. for 60 minutes, and then immediately cooled with water. Done. Then, the electrical conductivity (% IACS) of the test object after the heating-water cooling test at 550 ° C. ± 10 ° C. for 60 minutes is measured to obtain ρ4.

本発明の伝熱管用銅合金継目無管(1)又は本発明の伝熱管用銅合金継目無管(2)に係る銅合金は、更に、S原子を含有してもよい。本発明の伝熱管用銅合金継目無管(1)又は本発明の伝熱管用銅合金継目無管(2)に係る銅合金が、更に、Sを含有する場合、銅合金中のSの含有量は、0.0005〜0.0010質量%である。また、本発明の伝熱管用銅合金継目無管(1)又は本発明の伝熱管用銅合金継目無管(2)に係る銅合金は、更に、Hを含有してもよい。本発明の伝熱管用銅合金継目無管(1)又は本発明の伝熱管用銅合金継目無管(2)に係る銅合金が、更に、Hを含有する場合、銅合金中のHの含有量は、0.0002〜0.0020質量%である。銅合金中のSの含有量又はHの含有量が、上記範囲を超えると、固溶しているZrによりS又はHを十分に補足することができず、耐クリープ変形特性の向上、中間温度脆性の抑制の効果が得られない。一方、銅合金中のSの含有量又はHの含有量が、上記範囲未満の場合、耐クリープ変形特性の向上、中間温度脆性の抑制の効果は得られるが、コストアップになり易い。   The copper alloy according to the copper alloy seamless pipe (1) for heat transfer tubes of the present invention or the copper alloy seamless pipe (2) for heat transfer tubes of the present invention may further contain S atoms. When the copper alloy according to the copper alloy seamless pipe (1) for heat transfer tubes of the present invention or the copper alloy seamless pipe (2) for heat transfer tubes of the present invention further contains S, the inclusion of S in the copper alloy The amount is 0.0005 to 0.0010% by mass. Moreover, the copper alloy which concerns on the copper alloy seamless pipe (1) for heat-transfer tubes of this invention or the copper alloy seamless pipe (2) for heat-transfer tubes of this invention may contain H further. When the copper alloy according to the copper alloy seamless pipe (1) for heat transfer tubes of the present invention or the copper alloy seamless pipe (2) for heat transfer tubes of the present invention further contains H, the inclusion of H in the copper alloy The amount is 0.0002 to 0.0020% by mass. If the content of S or H in the copper alloy exceeds the above range, S or H cannot be sufficiently supplemented by the dissolved Zr, and the creep deformation resistance is improved, the intermediate temperature The effect of suppressing brittleness cannot be obtained. On the other hand, when the S content or the H content in the copper alloy is less than the above range, effects of improving creep deformation resistance and suppressing intermediate temperature brittleness can be obtained, but the cost tends to increase.

本発明の伝熱管用銅合金継目無管は、溶解、鋳造及び冷却→熱間押出及び冷却→冷間加工→必要に応じて中間焼鈍処理及び転造→時効処理の順に行い製造される。   The copper alloy seamless pipe for heat transfer tubes of the present invention is produced by melting, casting and cooling → hot extrusion and cooling → cold working → if necessary, intermediate annealing treatment and rolling → aging treatment.

先ず、溶解、鋳造及び冷却を行う。溶解及び鋳造では、常法に従って、溶解及び鋳造して、所定の元素が所定の含有量で配合されているビレットを得る。例えば、銅の地金及び本発明の伝熱管用銅合金継目無管の含有元素の地金又は該含有元素と銅の合金を、本発明の伝熱管用銅合金継目無管中の含有量が、所定の含有量となるように配合して、成分調整を行い、次いで、高周波溶解炉等を用いて、ビレットを鋳造する。次いで、鋳造後、ビレットを冷却する。   First, melting, casting and cooling are performed. In melting and casting, a billet containing a predetermined element in a predetermined content is obtained by melting and casting according to a conventional method. For example, the content of the bullion of the copper ingot and the copper alloy seamless tube for the heat transfer tube of the present invention in the element contained in the copper alloy seamless tube for the heat transfer tube of the present invention The ingredients are adjusted so as to have a predetermined content, the components are adjusted, and then the billet is cast using a high-frequency melting furnace or the like. The billet is then cooled after casting.

次いで、熱間押出及び冷却を行う。熱間押出では、鋳造により得られたビレットを、所定の温度で加熱して、熱間押出する。熱間押出は、マンドレル押出によって行われる。すなわち、加熱前に、冷間で予め穿孔したビレット、あるいは、押出前に熱間で穿孔したビレットに、マンドレルを挿入した状態で、熱間押出を行う。そして、熱間押出を行った後、速やかに冷却して、熱間押出素管を得る。   Subsequently, hot extrusion and cooling are performed. In hot extrusion, a billet obtained by casting is heated at a predetermined temperature and hot extruded. Hot extrusion is performed by mandrel extrusion. That is, hot extrusion is performed with a mandrel inserted into a billet previously perforated cold before heating, or a billet perforated hot before extrusion. And after performing hot extrusion, it cools rapidly and obtains a hot extrusion element pipe.

次いで、冷間加工を行う。冷間加工では、熱間押出により得られた熱間押出素管を、冷間圧延や冷間引き抜き等の冷間加工し、管の外径及び肉厚を減じていき、継目無素管を得る。   Next, cold working is performed. In cold working, the hot extruded element tube obtained by hot extrusion is cold processed, such as cold rolling or cold drawing, to reduce the outer diameter and wall thickness of the tube, obtain.

内面溝が形成されていない内面平滑管(ベアー管)を得る場合は、冷間加工に次いで、冷間加工により得られた継目無素管を、400〜600℃で加熱し、次いで、冷却する時効処理を行う。そして、時効処理を行うことにより、本発明の伝熱管用銅合金継目無管(1)又は本発明の伝熱管用銅合金継目無管(2)を得る。   In the case of obtaining an inner smooth tube (bearing tube) in which no inner groove is formed, the cold-worked seamless tube obtained by cold working is heated at 400 to 600 ° C. and then cooled. Perform aging treatment. And the copper alloy seamless pipe (1) for heat transfer tubes of this invention or the copper alloy seamless pipe (2) for heat transfer tubes of this invention is obtained by performing an aging treatment.

内面溝が形成されている内面溝付管を得る場合、冷間加工に次いで、冷間加工により得られた継目無素管を、400〜600℃で加熱する中間焼鈍を行い、次いで、転造を行う。転造は、継目無素管内に、外面にらせん状の溝加工を施した転造プラグを配置して、高速回転する複数の転造ボールによって、管の外側から押圧して、管の内面に転造プラグの溝を転写することにより行われる。次いで、転造を施した継目無管を時効処理する。時効処理は、転造を施した継目無管を、400〜600℃で加熱し、冷却することにより行なわれる。そして、時効処理を行うことにより、本発明の伝熱管用銅合金継目無管(1)又は本発明の伝熱管用銅合金継目無管(2)を得る。   When obtaining an internally grooved pipe in which an internal groove is formed, after cold working, a seamless elementary pipe obtained by cold working is subjected to intermediate annealing by heating at 400 to 600 ° C., and then rolled. I do. Rolling is done by placing a rolling plug with a spiral groove on the outer surface in a seamless tube, pressing it from the outside of the tube with multiple rolling balls that rotate at high speed, This is done by transferring the groove of the rolling plug. Next, the rolled seamless pipe is subjected to an aging treatment. The aging treatment is performed by heating and cooling the rolled seamless pipe at 400 to 600 ° C. And the copper alloy seamless pipe (1) for heat transfer tubes of this invention or the copper alloy seamless pipe (2) for heat transfer tubes of this invention is obtained by performing an aging treatment.

そして、本発明の伝熱管用銅合金継目無管(1)において、電気伝導度を、式(2):ρ2−ρ1≧0.3(%IACS)、好ましくは式(2a):0.5≦ρ2−ρ1≦20とする方法、また、本発明の伝熱管用銅合金継目無管(2)において、電気伝導度を、式(3):ρ4−ρ3≧0.3(%IACS)、好ましくは式(3a):0.5≦ρ4−ρ3≦20とする方法としては、例えば、溶解及び鋳造後の冷却において、ビレットの冷却速度を調節する方法が挙げられる。本発明者らは、溶解及び鋳造後の冷却におけるビレットの冷却速度の違いにより、銅合金中のZrの存在状態が異なり、溶解及び鋳造後のZrの存在状態の違いが、「ρ2−ρ1」及び「ρ4−ρ3」の値に影響を与えることを見出した。なお、ビレットの径、鋳造後の冷却条件、溶体化処理条件、時効処理条件等により、電気伝導度を、式(2)、好ましくは式(2a)に調節するために適切な冷却速度、あるいは、式(3)、好ましくは式(3a)に調節するために適切な冷却速度は、異なるため、溶解及び鋳造後の冷却におけるビレットの冷却速度は、ビレットの径、鋳造後の冷却条件、溶体化処理条件、時効処理条件等により、適宜選択される。また、ビレットの径、鋳造後の冷却条件、溶体化処理条件、時効処理条件等を適宜調節することにより、本発明の伝熱管用銅合金継目無管(1)の電気伝導度が、式(2)、好ましくは式(2a)を満たすように調節し、また、本発明の伝熱管用銅合金継目無管(2)の電気伝導度が、式(3)、好ましくは式(3a)を満たすように調節する。   And in the copper alloy seamless pipe (1) for heat transfer tubes of the present invention, the electrical conductivity is expressed by the formula (2): ρ2-ρ1 ≧ 0.3 (% IACS), preferably the formula (2a): 0.5. In the method of ≦ ρ2−ρ1 ≦ 20, and the copper alloy seamless pipe (2) for heat transfer tubes of the present invention, the electrical conductivity is expressed by the formula (3): ρ4-ρ3 ≧ 0.3 (% IACS), Preferably, the method of formula (3a): 0.5 ≦ ρ4-ρ3 ≦ 20 includes, for example, a method of adjusting the cooling rate of the billet in the cooling after melting and casting. The inventors of the present invention differed in the presence state of Zr in the copper alloy due to the difference in the billet cooling rate in the cooling after melting and casting, and the difference in the existence state of Zr after melting and casting was “ρ2-ρ1”. And the value of “ρ4-ρ3” was found to be affected. Depending on the diameter of the billet, the cooling conditions after casting, the solution treatment conditions, the aging conditions, etc., an appropriate cooling rate for adjusting the electrical conductivity to the formula (2), preferably the formula (2a), or Since the cooling rate suitable for adjusting to the formula (3), preferably the formula (3a) is different, the cooling rate of the billet in the melting and cooling after casting is the diameter of the billet, the cooling condition after casting, the solution It is appropriately selected depending on the aging treatment conditions, the aging treatment conditions and the like. Further, by appropriately adjusting the billet diameter, the cooling condition after casting, the solution treatment condition, the aging treatment condition, etc., the electrical conductivity of the copper alloy seamless pipe (1) for the heat transfer pipe of the present invention can be expressed by the formula ( 2), preferably adjusted to satisfy the formula (2a), and the electrical conductivity of the copper alloy seamless pipe (2) for heat transfer tubes of the present invention is the formula (3), preferably the formula (3a) Adjust to meet.

本発明の伝熱管用銅合金継目無管は、熱交換器用の伝熱管としてコイル形状に巻き取られ、熱交換器(クロスフィンチューブ型熱交換器)の作製に供される。クロスフィンチューブ型熱交換器は、空気側のアルミニウムフィンと冷媒側の伝熱管が一体に組付けられて構成されているものである。   The copper alloy seamless pipe for a heat transfer tube of the present invention is wound into a coil shape as a heat transfer tube for a heat exchanger, and used for production of a heat exchanger (cross fin tube type heat exchanger). The cross fin tube heat exchanger is configured by integrally assembling an air-side aluminum fin and a refrigerant-side heat transfer tube.

クロスフィンチューブ型熱交換器は、先ず、プレス加工等により、所定の組付け孔が複数形成されたアルミニウムプレートフィンを作製し、次いで、得られたアルミニウムプレートフィンを積層した後、組付け孔の内部に、定尺切断及びヘアピン曲げ加工した本発明の伝熱管用銅合金継目無管(1)又は本発明の伝熱管用銅合金継目無管(2)を挿通し、次いで、継目無管を、アルミニウムプレートフィンに拡管固着し、ヘアピン曲げ加工を施した側とは反対側の継目無管端部に、Uベンド管をロウ付けすることにより、作製される。   The cross fin tube type heat exchanger first produces aluminum plate fins in which a plurality of predetermined assembly holes are formed by pressing or the like, and then stacks the obtained aluminum plate fins, Insert the copper alloy seamless pipe (1) for heat transfer pipe of the present invention or the copper alloy seamless pipe (2) for heat transfer pipe of the present invention into which the regular cut and hairpin are bent, and then connect the seamless pipe It is manufactured by brazing a U-bend tube to the end of the seamless tube opposite to the side where the hairpin is bent and fixed to the aluminum plate fin.

次に、実施例を挙げて本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated more concretely, this is only an illustration and does not restrict | limit this invention.

(実施例及び比較例)
<伝熱管用銅合金継目無管>
(溶解、鋳造及び冷却)
半連続鋳造により、表1に示す化学成分を含有する外径254mmのビレットを鋳造し、次いで、冷却した。このときのビレットの冷却水の水量を、以下の通りとした。なお、表1中、残部はCu及び不可避不純物である。
冷却条件A:冷却水量1,000L/分
冷却条件B:冷却水量600L/分
(熱間押出及び冷却)
上記のようにして得たビレットを、連続加熱炉内で、950℃(±25℃)で10分間以上保持することにより加熱し、次いで、押出温度950℃で、外径81mm×肉厚8mmの管を押出し、押出後ただちに水中へ投入して冷却して、熱間押出素管を得た。このとき、溶体化処理を兼ねて行った。
得られた熱間押出素管の頭部及び尾部から、電気伝導度の測定用サンプル(サンプル1)をサンプリングした。
(冷間加工)
上記のようにして得た熱間押出無素管を、冷間圧延及び冷間抽伸し、外径9.52mm×肉厚0.8mmの継目無素管を得た。
(時効処理)
上記のようにして得た継目無素管を、バッチ炉内で、非酸化性雰囲気中、550℃で60分間加熱し、伝熱管用銅合金継目無管を得た。
得られた伝熱管用銅合金継目無管から、電気伝導度測定用に、サンプル2をサンプリングした。また、加熱−水冷試験用に、サンプル3及びサンプル4をサンプリングした。
(Examples and Comparative Examples)
<Copper alloy seamless pipe for heat transfer tubes>
(Melting, casting and cooling)
Billets having an outer diameter of 254 mm containing the chemical components shown in Table 1 were cast by semi-continuous casting, and then cooled. The amount of billet cooling water at this time was as follows. In Table 1, the balance is Cu and inevitable impurities.
Cooling condition A: Cooling water amount 1,000 L / min Cooling condition B: Cooling water amount 600 L / min (hot extrusion and cooling)
The billet obtained as described above was heated by holding at 950 ° C. (± 25 ° C.) for 10 minutes or more in a continuous heating furnace, and then at an extrusion temperature of 950 ° C., an outer diameter of 81 mm × wall thickness of 8 mm. The tube was extruded, and immediately after extrusion, it was poured into water and cooled to obtain a hot extruded tube. At this time, the solution treatment was also performed.
A sample for measuring electrical conductivity (sample 1) was sampled from the head and tail of the obtained hot extruded tube.
(Cold processing)
The hot extruded elementless tube obtained as described above was cold-rolled and cold drawn to obtain a seamless elementless tube having an outer diameter of 9.52 mm and a wall thickness of 0.8 mm.
(Aging treatment)
The seamless element tube obtained as described above was heated in a non-oxidizing atmosphere at 550 ° C. for 60 minutes in a batch furnace to obtain a copper alloy seamless tube for a heat transfer tube.
Sample 2 was sampled from the obtained copper alloy seamless pipe for heat transfer tubes for electrical conductivity measurement. Samples 3 and 4 were sampled for the heating-water cooling test.

<加熱−水冷試験>
950℃で10分間の加熱−水冷試験とは、試験対象となる銅合金継目無管を950℃±25℃で10分間の加熱をした後水冷するという試験であり、先ず、窒素ガス雰囲気、950±25℃に設定された電気炉内に、試験対象を装入し、炉内温度が950℃に復帰した後、950℃±25℃で10分間保持し、次いで、950℃から直ちに水冷することにより行われる。そして、950℃で10分間加熱−水冷試験後の試験対象の電気伝導度(%IACS)を測定して、ρ3を求める。
また、550℃で60分間の加熱−水冷試験とは、試験対象となる銅合金継目無管を、950℃で10分間の加熱と水冷を行った後、次いで、550℃±10℃で60分間の加熱をした後水冷するという試験であり、先ず、試験対象を、950℃で10分間の加熱−水冷試験と同様にして、950℃±25℃で10分間加熱した後950℃から直ちに水冷し、次いで、950℃で10分間の加熱と水冷を行った試験対象を、塩浴炉内に装入し、550℃±10℃で60分間保持し、次いで、直ちに水冷することにより行われる。そして、550℃±10℃で60分間加熱−水冷試験後の試験対象の電気伝導度(%IACS)を測定して、ρ4を求める。
<Heating-water cooling test>
The heating-water cooling test at 950 ° C. for 10 minutes is a test in which a copper alloy seamless tube to be tested is heated at 950 ° C. ± 25 ° C. for 10 minutes and then water-cooled. The test object is charged into an electric furnace set at ± 25 ° C, and after the furnace temperature returns to 950 ° C, it is held at 950 ° C ± 25 ° C for 10 minutes, and then immediately cooled with water from 950 ° C. Is done. Then, the electrical conductivity (% IACS) of the test object after the heating-water cooling test at 950 ° C. for 10 minutes is measured to obtain ρ3.
The heating-water cooling test at 550 ° C. for 60 minutes means that the copper alloy seamless tube to be tested is heated at 950 ° C. for 10 minutes and then water-cooled, and then at 550 ° C. ± 10 ° C. for 60 minutes. First, the test object was heated at 950 ° C. ± 25 ° C. for 10 minutes and then immediately cooled with water from 950 ° C. in the same manner as the heating-water cooling test at 950 ° C. for 10 minutes. Then, the test object subjected to heating and water cooling at 950 ° C. for 10 minutes is placed in a salt bath furnace, held at 550 ° C. ± 10 ° C. for 60 minutes, and then immediately cooled with water. Then, the electrical conductivity (% IACS) of the test object after the heating-water cooling test at 550 ° C. ± 10 ° C. for 60 minutes is measured to obtain ρ4.

(加熱−水冷試験1)950℃±25℃×10分
先ず、サンプル3を、窒素ガス雰囲気、950±25℃に設定された電気炉内に装入し、炉内の温度が950℃に復帰した後、950±25℃で10分間保持し、次いで、950℃から直ちに水冷して、加熱−水冷試験1を行った。
(Heating-water cooling test 1) 950 ° C. ± 25 ° C. × 10 minutes First, sample 3 was charged into an electric furnace set at 950 ± 25 ° C. in a nitrogen gas atmosphere, and the temperature in the furnace returned to 950 ° C. After that, it was kept at 950 ± 25 ° C. for 10 minutes, and then immediately cooled with water from 950 ° C. to perform a heating-water cooling test 1.

(加熱−水冷試験2)550℃±10℃×60分
先ず、サンプル4を、加熱−水冷試験1と同様にして、950±25℃で10分間の加熱と水冷を行い、次いで、加熱−水冷試験1と同様の加熱と水冷を行ったサンプル4を、塩浴炉内に装入し、550℃±10℃で60分間保持し、次いで、直ちに水冷して、加熱−水冷試験2を行った。
(Heating-water cooling test 2) 550 ° C. ± 10 ° C. × 60 minutes First, sample 4 was heated and cooled in water at 950 ± 25 ° C. for 10 minutes in the same manner as in heating-water cooling test 1, and then heated-water cooling. Sample 4 that had been heated and cooled in the same manner as in Test 1 was placed in a salt bath furnace, held at 550 ° C. ± 10 ° C. for 60 minutes, and then immediately cooled with water to perform a heating-water cooling test 2. .

<評価>
(機械的性質)
トーチろう付けを、ろう材(JIS Z3264 BCuP−2)及び酸素−プロパン混合ガスを用いて実施して、ろう付け後の耐圧強度測定用試料を作製した。このとき、ろう材が継ぎ手部に流れ込むまでろう付けを実施した。冷却は空冷とし、冷却後、水圧による破裂試験を行い、破壊強度から次式*1を用い、引張り強さを推定し、ろう付け前後の機械的性質(引張強さと伸び)を評価した。
ろう付け前の機械的性質を、引張試験により評価し、JIS Z2241に準じ、引張強さと伸びを測定した。その結果を、表3に示す。
<式*1>KHK式:破裂圧力=2×引張強さ×肉厚/(外径−0.8×肉厚)
(電気伝導度)
電気伝導度測定を、JIS H0505に準拠した方法、すなわち四端子法により電気抵抗を測定し、0.15328で除した値を百分率で表した。
(中間温度脆性試験)
銅合金継目無管を、350℃で、ひずみ速度10−4の引張速度で引張試験した。伸び(δ)が30%以上であったものを合格とした。
(熱疲労試験)
100℃の恒温槽内で、銅合金継目無管に、0から15MPaの繰り返し内圧を10万回負荷し、熱疲労試験を行った。試験中に亀裂が生じなかったものを合格とした。
<Evaluation>
(mechanical nature)
Torch brazing was carried out using a brazing material (JIS Z3264 BCuP-2) and an oxygen-propane mixed gas to prepare a sample for measuring pressure resistance after brazing. At this time, brazing was performed until the brazing material flowed into the joint. Cooling was performed by air cooling, and after cooling, a burst test was performed by water pressure, the tensile strength was estimated from the fracture strength using the following formula * 1, and the mechanical properties (tensile strength and elongation) before and after brazing were evaluated.
Mechanical properties before brazing were evaluated by a tensile test, and tensile strength and elongation were measured according to JIS Z2241. The results are shown in Table 3.
<Formula * 1> KHK formula: bursting pressure = 2 × tensile strength × wall thickness / (outer diameter−0.8 × wall thickness)
(Electrical conductivity)
The electrical conductivity was measured by a method based on JIS H0505, that is, a four-terminal method, and the electric resistance was measured and expressed as a percentage by dividing by 0.15328.
(Intermediate temperature brittleness test)
The copper alloy seamless tube was subjected to a tensile test at 350 ° C. at a strain rate of 10 −4 . A sample having an elongation (δ) of 30% or more was regarded as acceptable.
(Thermal fatigue test)
In a constant temperature bath at 100 ° C., a copper alloy seamless pipe was subjected to a repeated internal pressure of 0 to 15 MPa 100,000 times to conduct a thermal fatigue test. Those in which no cracks occurred during the test were considered acceptable.

Figure 2014173156
Figure 2014173156

Figure 2014173156
Figure 2014173156

Figure 2014173156
Figure 2014173156

Claims (3)

銅合金を加工して得られる伝熱管用銅合金継目無管であり、
該銅合金は、Snと、0.01〜0.08質量%のZrと、0.004〜0.04質量%のPと、を含有し、残部Cu及び不可避不純物からなり、該銅合金中のSn及びZrの含有量が、下記式(1):
(1)0.4≦A+2B≦0.85
(式中、AはSnの含有量(質量%)を示し、BはZrの含有量(質量%)を示す。)
を満たし、
該伝熱管用銅合金継目無管の電気伝導度が、下記式(2):
(2)ρ2−ρ1≧0.3(%IACS)
(式中、ρ1は溶体化処理後の電気伝導度(%IACS)を指し、ρ2は時効処理後の電気伝導度(%IACS)を指す。)
を満たすこと、
を特徴とする伝熱管用銅合金継目無管。
It is a copper alloy seamless pipe for heat transfer tubes obtained by processing a copper alloy,
This copper alloy contains Sn, 0.01-0.08 mass% Zr, and 0.004-0.04 mass% P, and consists of the remainder Cu and inevitable impurities, The content of Sn and Zr of the following formula (1):
(1) 0.4 ≦ A + 2B ≦ 0.85
(In the formula, A represents the Sn content (mass%), and B represents the Zr content (mass%).)
The filling,
The electrical conductivity of the copper alloy seamless pipe for heat transfer tube is represented by the following formula (2):
(2) ρ2−ρ1 ≧ 0.3 (% IACS)
(In the formula, ρ1 indicates the electric conductivity after solution treatment (% IACS), and ρ2 indicates the electric conductivity after aging treatment (% IACS).)
Meeting,
Copper alloy seamless pipe for heat transfer tubes.
銅合金を加工して得られる伝熱管用銅合金継目無管であり、
該銅合金は、Snと、0.01〜0.08質量%のZrと、0.004〜0.04質量%のPと、を含有し、残部Cu及び不可避不純物からなり、該銅合金中のSn及びZrの含有量が、下記式(1):
(1)0.4≦A+2B≦0.85
(式中、AはSnの含有量(質量%)を示し、BはZrの含有量(質量%)を示す。)
を満たし、
該伝熱管用銅合金継目無管の電気伝導度が、下記式(3):
(3)ρ4−ρ3≧0.3(%IACS)
(式中、ρ3は950℃で10分間の加熱−水冷試験後の電気伝導度(%IACS)を指し、ρ4は550℃で60分間の加熱−水冷試験後の電気伝導度(%IACS)を指す。)
を満たすこと、
を特徴とする伝熱管用銅合金継目無管。
It is a copper alloy seamless pipe for heat transfer tubes obtained by processing a copper alloy,
This copper alloy contains Sn, 0.01-0.08 mass% Zr, and 0.004-0.04 mass% P, and consists of the remainder Cu and inevitable impurities, The content of Sn and Zr of the following formula (1):
(1) 0.4 ≦ A + 2B ≦ 0.85
(In the formula, A represents the Sn content (mass%), and B represents the Zr content (mass%).)
The filling,
The electrical conductivity of the copper alloy seamless pipe for heat transfer tube is represented by the following formula (3):
(3) ρ4-ρ3 ≧ 0.3 (% IACS)
(In the formula, ρ3 indicates the electric conductivity after heating-water cooling test at 950 ° C. for 10 minutes (% IACS), and ρ4 indicates the electric conductivity after heating-water cooling test at 550 ° C. for 60 minutes (% IACS). Point to.)
Meeting,
Copper alloy seamless pipe for heat transfer tubes.
前記銅合金が、更に、0.0005〜0.0010質量%のSと、0.0002〜0.0020質量%のHと、を含有することを特徴とする請求項1又は2いずれか1項記載の伝熱管用銅合金継目無管。   The said copper alloy contains 0.0005-0.0010 mass% S and 0.0002-0.0020 mass% H further, The any one of Claim 1 or 2 characterized by the above-mentioned. Copper alloy seamless pipe for heat transfer tubes as described.
JP2013048038A 2013-03-11 2013-03-11 Copper alloy seamless pipe for heat transfer tubes Active JP6244588B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2013048038A JP6244588B2 (en) 2013-03-11 2013-03-11 Copper alloy seamless pipe for heat transfer tubes
KR1020157023350A KR20150122664A (en) 2013-03-11 2014-03-10 Copper alloy seamless tube for heat transfer tube
PCT/JP2014/056110 WO2014142049A1 (en) 2013-03-11 2014-03-10 Copper alloy seamless tube for heat transfer tube
CN201480013709.3A CN105143479B (en) 2013-03-11 2014-03-10 Copper alloy seamless tube for heat transfer tube
MYPI2015703064A MY181920A (en) 2013-03-11 2014-03-10 Copper alloy seamless tube for heat transfer tube
TW103108365A TWI608110B (en) 2013-03-11 2014-03-11 Copper alloy seamless tube for heat exchanger tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013048038A JP6244588B2 (en) 2013-03-11 2013-03-11 Copper alloy seamless pipe for heat transfer tubes

Publications (2)

Publication Number Publication Date
JP2014173156A true JP2014173156A (en) 2014-09-22
JP6244588B2 JP6244588B2 (en) 2017-12-13

Family

ID=51536706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013048038A Active JP6244588B2 (en) 2013-03-11 2013-03-11 Copper alloy seamless pipe for heat transfer tubes

Country Status (6)

Country Link
JP (1) JP6244588B2 (en)
KR (1) KR20150122664A (en)
CN (1) CN105143479B (en)
MY (1) MY181920A (en)
TW (1) TWI608110B (en)
WO (1) WO2014142049A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180115608A (en) 2017-04-13 2018-10-23 가부시키가이샤 에스에이치 카퍼프로덕츠 Copper alloy material, manufacturing method of copper alloy material, and cage type rotor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6388398B2 (en) * 2014-11-05 2018-09-12 株式会社Uacj Internal grooved tube for heat exchanger and its manufacturing method
KR101698718B1 (en) 2016-04-29 2017-01-20 엘지디스플레이 주식회사 Organic light emitting display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255381A (en) * 2007-03-30 2008-10-23 Kobelco & Materials Copper Tube Inc Heat resistant and high strength copper alloy tube for heat exchanger
JP2010222692A (en) * 2009-03-25 2010-10-07 Sumitomo Light Metal Ind Ltd Copper alloy seamless pipe for supplying water and hot water
JP2011094174A (en) * 2009-10-28 2011-05-12 Sumitomo Light Metal Ind Ltd Copper alloy seamless tube
JP2011184775A (en) * 2010-03-10 2011-09-22 Kobe Steel Ltd High strength and high heat resistant copper alloy material
JP2011246802A (en) * 2010-04-28 2011-12-08 Sumitomo Electric Ind Ltd Cu-Ag ALLOY WIRE AND METHOD FOR PRODUCING Cu-Ag ALLOY WIRE

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3303778B2 (en) * 1998-06-16 2002-07-22 三菱マテリアル株式会社 Seamless copper alloy tube for heat exchanger with excellent 0.2% proof stress and fatigue strength
JP4130593B2 (en) * 2003-01-23 2008-08-06 日鉱金属株式会社 High strength and high conductivity copper alloy with excellent fatigue and intermediate temperature characteristics

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255381A (en) * 2007-03-30 2008-10-23 Kobelco & Materials Copper Tube Inc Heat resistant and high strength copper alloy tube for heat exchanger
JP2010222692A (en) * 2009-03-25 2010-10-07 Sumitomo Light Metal Ind Ltd Copper alloy seamless pipe for supplying water and hot water
JP2011094174A (en) * 2009-10-28 2011-05-12 Sumitomo Light Metal Ind Ltd Copper alloy seamless tube
JP2011184775A (en) * 2010-03-10 2011-09-22 Kobe Steel Ltd High strength and high heat resistant copper alloy material
JP2011246802A (en) * 2010-04-28 2011-12-08 Sumitomo Electric Ind Ltd Cu-Ag ALLOY WIRE AND METHOD FOR PRODUCING Cu-Ag ALLOY WIRE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180115608A (en) 2017-04-13 2018-10-23 가부시키가이샤 에스에이치 카퍼프로덕츠 Copper alloy material, manufacturing method of copper alloy material, and cage type rotor

Also Published As

Publication number Publication date
TW201446982A (en) 2014-12-16
WO2014142049A1 (en) 2014-09-18
TWI608110B (en) 2017-12-11
JP6244588B2 (en) 2017-12-13
CN105143479A (en) 2015-12-09
CN105143479B (en) 2017-05-17
MY181920A (en) 2021-01-14
KR20150122664A (en) 2015-11-02

Similar Documents

Publication Publication Date Title
JP4629080B2 (en) Copper alloy tube for heat exchanger
JP4349640B2 (en) Seamless pipe
JP3794971B2 (en) Copper alloy tube for heat exchanger
JP5534777B2 (en) Copper alloy seamless pipe
JP6244588B2 (en) Copper alloy seamless pipe for heat transfer tubes
JP2017082301A (en) Manufacturing method of copper alloy tube and heat exchanger
JP5078368B2 (en) Method for producing copper alloy tube for heat exchanger
JP6238274B2 (en) Copper alloy seamless pipe for hot and cold water supply
JP5451217B2 (en) Manufacturing method of internally grooved tube
JP6034727B2 (en) High strength copper alloy tube
JP5792696B2 (en) High strength copper alloy tube
JP5639025B2 (en) Copper alloy tube
JP5638999B2 (en) Copper alloy tube
JP5602707B2 (en) High strength copper tube with excellent strength after brazing
JP2017036468A (en) Copper alloy tube
WO2015122423A1 (en) Copper alloy material and copper alloy pipe
JP5208562B2 (en) Seamless pipe
JP6402043B2 (en) High strength copper alloy tube
JP2011094176A (en) Copper alloy seamless tube
JP2011094175A (en) Copper alloy seamless tube
JP6360363B2 (en) Copper alloy tube
JP2013189664A (en) Copper alloy tube
JP2016180169A (en) Copper alloy tube
JP2016180170A (en) Copper alloy tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170308

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171004

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171120

R150 Certificate of patent or registration of utility model

Ref document number: 6244588

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

ABAN Cancellation due to abandonment
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350