JP2014170774A - 太陽電池セル及び太陽電池モジュール - Google Patents

太陽電池セル及び太陽電池モジュール Download PDF

Info

Publication number
JP2014170774A
JP2014170774A JP2013040469A JP2013040469A JP2014170774A JP 2014170774 A JP2014170774 A JP 2014170774A JP 2013040469 A JP2013040469 A JP 2013040469A JP 2013040469 A JP2013040469 A JP 2013040469A JP 2014170774 A JP2014170774 A JP 2014170774A
Authority
JP
Japan
Prior art keywords
electrode
solar cell
solar battery
solar
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013040469A
Other languages
English (en)
Inventor
Masaki Yoshida
将希 吉田
Toru Okazaki
亨 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2013040469A priority Critical patent/JP2014170774A/ja
Publication of JP2014170774A publication Critical patent/JP2014170774A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

【課題】複数の太陽電池セルから構成される太陽電池モジュールにおいて、太陽電池セルの電極を屈曲形状にすることにより、台風や積雪などを想定した耐荷重性を向上させることができる太陽電池セルを提供する。
【解決手段】光入射によりキャリアを発生させる光電変換層に配置された電極2を備え、電極2は、セル面内において曲率を有する複数の屈曲部を備える。
【選択図】図1

Description

本発明は、太陽電池セルの及び太陽電池モジュールに関する。
太陽電池セルに設けられた負極や正極として、様々な形状の電極が知られている。図9に、特許文献1における太陽電池セル220に形成された正極221と負極222とを示す。正極221と負極222はシリコン基板上に直線状に形成されている。図9中の点線Zは、シリコン−電極(正極221または負極222)界面が存在する直線を示す。
米国特許出願公開第2005/0022857号明細書
ところで、太陽電池セルには、所定の耐荷重性が求められている。具体的には、国際電気標準会議による規格IEC 61215:2005において、耐荷重2400Paとなる設計が太陽電池セルに必要とされる。
しかしながら、従来の電極形状では、太陽電池セルに応力の集中する箇所が生じ、当該応力集中箇所にクラックが生じ、所定の耐荷重性を確保できない場合があった。
具体的には、図9中の点線Z上で、基板に加わる応力が最も高くなるシリコン―電極界面が直線状に存在するため、点線Zに沿ったクラックが進展し易かった。
本発明はこのような課題に鑑みなされたもので、複数の屈曲形状を有する電極を採用することで、基板に加わる応力を分散し、耐荷重性に優れた太陽電池セル及び太陽電池モジュールを提供することを目的とする。
第1発明である太陽電池セルは、光入射によりキャリアを発生させる光電変換層に配置された電極を備え、前記電極は、セル面内において曲率を有する複数の屈曲部を備えることを特徴とする。
第2発明の太陽電池モジュールは、第1発明の太陽電池セルと、直線状の電極のみを有する太陽電池セルとが直列に配列された太陽電池ストリングを含むことを特徴とする。
以上のように、本発明により、複数の屈曲部を有する電極を採用することで、向上した耐荷重性を示す太陽電池セル及び太陽電池モジュールを提供できる。
実施の形態1における太陽電池セルを示す図 実施の形態1におけるシリコン−電極界面の応力分布を示す図 実施の形態1における電極形状を説明するための図 実施の形態1における太陽電池セルの変形例を示す図 実施の形態1における太陽電池セルの変形例を示す図 実施の形態1における太陽電池セルの変形例を示す図 実施の形態1における太陽電池モジュールを示す図 実施の形態1と従来との耐荷重の比較を示す図 従来の太陽電池セルを示す図
(実施の形態1)
以下、本発明の実施の形態1における太陽電池セル1について、図1〜3を用いて説明する。
図1(a)は実施の形態1における太陽電池セル1を裏面側から見た平面図である。ここでは、電極が裏面側(光が入射する側と反対側)のみに形成された、いわゆる、バックコンタクト型の太陽電池セル1を採用する。図1(b)は図1(a)中の点線A部における太陽電池セル1の断面形状であり、紙面上側が裏面である。図1(c)は、図1(a)中の点線Xに囲われた箇所とそれ以外の箇所における太陽電池セル1のシリコン3内部の応力を指数の表である。
図2(a)は太陽電池セル1の裏面に垂直な断面におけるシリコン−電極界面を示す図であり、図1(b)の一部を拡大した模式図である。図2(b)は図2(a)におけるシリコン3内部の応力を指数の表である。図3(a)に電極分離部4を拡大した模式図を示す。電極2の屈曲形状を決める主な要素としては、電極分離部幅L1と電極屈曲量L2、電極屈曲部長さL3、電極分離部間距離L4である。
図3(a)中の直線Yの方向(y軸方向)を電極2及び電極分離部4の長手方向とした時、電極分離部幅L1とは、電極2を分離する電極分離部4の短手方向(長手方向と直交する方向:x軸方向)の長さである。電極屈曲量L2とは、電極2と電極分離部4との界面が形成する連続した屈曲部の短手方向へ幅(屈曲部が形成する波形の振幅)を示す。電極屈曲部長さL3とは、隣り合う屈曲部の長手方向への間隔である。電極分離部間距離L4とは、隣り合う電極分離部4の短手方向の距離を示す。
まず、図1(a)、(b)を用いて、太陽電池セル1の基本的な構成を説明する。太陽電池セル1は、光入射によりキャリアを発生させる光電変換層の形成されたシリコン3基板の表面に、発生したキャリア(電子・正孔)を収集するための電極2が配置されている。電極2は、主に銅又は銀から構成される。電極2は、電極分離部4により、P型電極とN型電極とに分離されている。電極分離部4は、シリコン3(光電変換層)が露出している領域である。
電極2は、複数の屈曲部を有するように形成されている。電極2の形成方法の一例は次の通りである。まず、シリコン3に対して、銅をスパッタリングして裏面の全面に銅層を成膜する。次に、所定形状のマスクを介してエッチングを実施することで一部の銅層を除去して、図1(a)に示したような複数の屈曲部を有する電極2をパターニングする。除去する銅層の形状は、エッチング工程で採用するマスクの形状を適宜設計することで、自由に設計できる。このとき銅層を除去した領域が電極分離部4となる。
本実施の形態において、電極2がセル面内(シリコン3面内)において曲率を有する複数の屈曲部を備えることで、耐クラック性を向上させ、耐荷重性に優れた太陽電池セル及び太陽電池モジュールを実現することが出来る。なお、屈曲部を連続して形成するとより耐荷重性を向上できるため好適である。また、電極2に角部を設けると、その角部を起点としてクラックが発生する危険性があるため、電極2には角部を設けないことが望ましい。
ここで、電極2が複数の屈曲部を有することにより耐荷重性が向上する理由を説明する。
IECで定められた2400Pa相当の荷重を太陽電池セル1に負荷した際に発生する内部応力の分布のシミュレーション結果を図2(b)に示す。
シミュレーション結果では、図2(a)中D及びEの領域で、内部応力が最大となっている。D及びEの領域は、電極2と電極2の形成されていない領域(電極分離部4)との界面(電極2−シリコン3界面)が存在する領域である。このシミュレーション結果から、電極2―シリコン3界面に応力が集中することがわかる。
なお、図2(a)中Bの領域(シリコン3表面上に電極2が存在しない領域(電極分離部4))で内部応力が二番目に大きくなっており、A及びCの領域(電極2の形成された領域)で内部応力が最も小さい。内部応力の値を指数で表し、A及びCでの内部応力の値を1とすると、Bでは2、D及びEでは4である。これら内部応力の値を図2(b)に示す。
太陽電池セル1に荷重が加わった際に、D及びEの領域に最も強い内部応力が加わる。図9に示したように直線状の電極(正極221と負極222)からなる従来の太陽電池セル220においては、図9中の点線Z上で、図2(a)中D及びEに相当する領域が直線状に配置されており、この直線部分で内部応力が最大となる。内部応力が最大となる直線部分では、その直線に沿ってクラックが生じやすいことを発明者らは見出している。このため、図9のような直線状の電極からなる太陽電池セル220は、割れ易く、耐荷重性に劣る場合がある。
これに対して、本実施の形態のように、電極2に複数の屈曲部を設けることで、内部応力が最大となる領域を直線状に配さないようにできる。これにより、耐クラック性を向上でき、割れにくく、耐荷重性に優れた太陽電池セル1を実現できる。
ここで、電極2として好ましい形状について説明する。図3(a)中に示す様に、電極屈曲量L2を電極分離部幅L1よりも大きく設計することが望ましい。こうすることで、内部応力が高い図3(a)中のY1、Y5の領域(図2(a)中D及びEに相当)でクラックが発生しても、Y1又はY5の領域からの直線上には常に電極2が存在するため、クラックの進展を抑制できる。電極2の領域の内部応力の低さがクラックの進展を妨げるものと考えられるからである。
一方、電極屈曲量L2が電極分離部幅L1より短い場合(図3(b))は、内部応力が最大となる図3(b)のY6及びY8領域(図2(a)中D及びEに相当)でクラックが発生した場合、直線上にY6とY8とが位置するため、両者をつなぐようにクラックが伝ぱし易い。このため、内部応力の高い領域を直線上に配置させないように、電極屈曲量L2を電極分離部幅L1よりも大きくするのが望ましい。
以上をまとめると、電極2の形成される面であるシリコン3の表面と垂直な平面で切断したいずれの断面にも常に電極2が含まれることが望ましい。より詳細には、シリコン3の中央における前述のいずれの断面にも電極2が常に含まれるのがより好適である。シリコン3の中央にクラックが発生しやすいからである。このように電極2の形状を形成することで、内部応力の高い領域を直線上に配置することが無くなり、耐クラック性が向上し、結果的に耐荷重性を向上できる。
ここで、複数の屈曲部を有する電極2の形成された太陽電池セル1の耐荷重性を、従来の直線状の電極からなる太陽電池セル220との比較を用いて説明する。
図8において、図1の太陽電池セル1(実施の形態1)と図9の太陽電池セル220(従来)それぞれ10個に対して、IEC 61215:2005の耐荷重試験を行い、割れが発生した数を示す。
実施の形態1に係る太陽電池セル1では、2400Paの荷重を加えても、1枚も割れが発生しなかった。太陽電池セル1において、3600Paの荷重では10枚中1枚に割れが発生し、5400Paの荷重では10枚中2枚に割れが生じた。
これに対して、図9の従来の太陽電池セル220では、2400Paの荷重を加えると10枚のうち2枚に割れが発生し、3600Paで3枚、5400Paで6枚に割れが発生した。
この結果により、実施の形態1に係る図1の太陽電池セル1のように、複数の屈曲部を有する電極2を形成することで、耐荷重性の改善が見られる。
ここで、電極2に設ける屈曲部の曲率半径の好ましい値について説明する。シミュレーションの結果、電極2の屈曲部の曲率半径が2mm未満だと応力集中が起き、屈曲部がクラック発生の起点となり易いことが見出されている。一方、曲率半径が50mmを超えると、電極2に沿ってクラックが伝ぱしやすいことも発見されている。従って、屈曲部の曲率半径を2mm以上50mm以下とするのが好ましい。
なお、電極2の形状を、シリコン3の中心と外側とで変えてもよい。具体的には、太陽電池セル1の外側になるにつれて、電極2の電極屈曲量L2を小さくし、直線形状に近づける形状とする(図4)。図1(c)に示すように、太陽電池セル1の中心(図1(a)のX領域)の内部応力は、X領域の外側の3倍程度であることが見出されている。このため、内部応力の高いX領域内(中央部)ではその外周部よりも、電極2の屈曲部の屈曲量を大きく(電極屈曲量L2が大きい)するのが望ましい。一方、屈曲量が大きすぎると電子或いは正孔が再結合する発電無効部が増え、セルの発電効率が低下する懸念がある。図1(a)中のW部が発電無効部に相当する。このため、内部応力の小さい領域(X領域の外周部)では、電極2の屈曲量を小さく(電極屈曲量L2が小さい)するのが望ましい。これにより耐荷重性を損なわずに、発電無効部の形成を最小限に抑えることができる。
なお、X領域の幅(電極2の短手方向におけるX領域の長さ)は、太陽電池セル1の幅の約三分の一であることが見出されている。
また、内部応力の大きいX領域内でも中心部に近づくに従って、内部応力が大きくなる。よって、太陽電池セル1の中心部が最も電極屈曲量L2が大きくなり、外側になるにつれて、電極屈曲量L2が小さくなるように設計すれば、耐荷重性と発電効率の向上を両立することが出来る。
但し、電極屈曲量L2を急激に変化させるには、電極2の間隔を充分に広くする必要がある。隣り合う電極2が重ならないようにするためである。しかし、電極2の間隔が広すぎると、一枚あたりの太陽電池セル1に形成できる電極2の数が減少し、発電効率が低下してしまう。これを防止するため、電極2の形状は、徐々に変化させるのが望ましい。
なお、電極2の形状を屈曲部と直線部とから構成してもよい。具体的には、図5に示すように、電極2の形状を直線部5と屈曲部6とを組合せた構造とする。直線部5と屈曲部6を交互に組み合わせることで、電極形状の自由度が広がる。自由度が広がることで発電無効部の形成を効率的に抑制できる。
ただし、直線部5の延在方向とシリコン単結晶の劈開方位を揃えないことが重要である。電極2−シリコン3界面に応力が集中しやすくクラックが進展しやすいので、直線部5の延在方向をシリコンの劈開方向と一致させると、クラックの進展を加速させることとなる。シリコン3基板にシリコン単結晶基板を採用した場合、一般的にシリコン単結晶基板は(100)面が表面となるように作成される。(100)面においてシリコンは<110>方向に最も劈開し易い。このため、シリコン3の<110>方向と電極2の直線部5の延在方向を異なる向きにすること重要である。
なお、電極2の形状を図6に示すように、中心部で屈曲量を大きく、外周部で屈曲量を小さくしても良い。異なる曲率の屈曲部を組み合わせることで電極形状の設計自由度を広げることが出来る。
上述した太陽電池セル1同士を電気的に直列に結合すると、太陽電池セルストリング8を得られる。太陽電池セル1同士は、はんだや導電性樹脂を用いて接続部材7で結合される。太陽電池セルストリング8の形状の一例を図7に示す。ここでは一例として12個の太陽電池セル1を示す。この太陽電池セルストリング8を更に複数個直列に結合することで、太陽電池モジュールが得られる。複数の太陽電池セルストリング8は、充填剤によって封止され、表面側に保護部材のガラス板が取り付けられ、背面側に保護部材として樹脂製フィルムが取り付けられて太陽電池モジュールを形成する。
このような太陽電池モジュールにおいても耐荷重性を従来よりも高めることが可能である。なお、太陽電池モジュールにおいて、内部応力が高くなるのは、その中心部である。このため、中心部に位置する太陽電池セルを本実施の形態の太陽電池セル1とし、外周部に位置するものを従来の太陽電池セル220(直線状の電極のみからなる太陽電池セル)として構成することが望ましい。より詳細には、太陽電池セルストリング8の中心に太陽電池セル1を、両端に太陽電池セル220を配置する。これより、耐荷重性を高めつつ、発電効率の高い太陽電池モジュールを提供できる。
なお、本実施の形態では、バックコンタクト型の太陽電池セル1を採用している。この場合、複数形成された電極2のうち隣り合う電極2間の間隔は、1つの電極2の幅よりも狭い。これにより、電極2の形成面を大きくできるため、キャリアの収集効率が向上し、太陽電池セル1のエネルギ変換効率を向上できる。更に、電極2がシリコン3の裏面の大部分を覆うため、クラックの発生及び伝ぱを抑制でき、耐荷重性を改善することができる。
なお、太陽電池セル1のとして、バックコンタクト型以外にも、両面受光型として構成しても良い。但し、エネルギ変換効率及び耐クラック性の観点から、バックコンタクト型を採用するのがより好適である。
以上のように本発明は、バックコンタクト型結晶シリコン太陽電池セルを用いたモジュールにおいて高い耐荷重性を有するが、薄膜シリコン太陽電池等の耐荷重性の向上においても有用な発明である。
1・・・太陽電池セル
2・・・電極
3・・・シリコン
4・・・電極分離部
5・・・直線部
6・・・屈曲部
7・・・接続部材
8・・・太陽電池セルストリング

Claims (10)

  1. 光入射によりキャリアを発生させる光電変換層に配置された電極を備える太陽電池セルにおいて、
    前記電極は、セル面内において曲率を有する複数の屈曲部を備えることを特徴とする太陽電池セル。
  2. 前記電極は、前記光電変換層に光が入射する面と反対側の面に形成される請求項1に記載の太陽電池セル。
  3. 前記屈曲部は連続して形成される請求項1又は2に記載の太陽電池セル。
  4. 前記電極は複数個形成され、
    前記複数の電極のうち、前記光電変換層の中央部における電極よりも外周部における電極の方が屈曲部の屈曲量が小である請求項1〜3のいずれかに記載の太陽電池セル。
  5. 前記光電変換層は単結晶シリコンの(100)面に設けられ、
    前記電極は、直線部を更に有し、該直線部の延在する方向は、前記単結晶シリコンの<110>方向とは異なる方向である請求項1〜4のいずれかに記載の太陽電池セル。
  6. 前記屈曲部の曲率半径が2mm以上かつ50mm以下である請求項1〜5のいずれかに記載の太陽電池セル。
  7. 前記電極の形成される面と垂直ないずれの断面にも常に前記電極が含まれる請求項1〜6のいずれかに記載の太陽電池セル。
  8. 請求項1〜7のいずれかに記載の太陽電池セルと、直線状の電極のみを有する太陽電池セルとが直列に配列された太陽電池セルストリングを含むことを特徴とする太陽電池モジュール。
  9. 前記太陽電池セルストリングの中央部に請求項1〜7のいずれかに記載の太陽電池セルが位置する請求項8に記載の太陽電池モジュール。
  10. 前記太陽電池セルストリングの端部に直線状の電極のみを有する太陽電池セルが位置する請求項8又は9に記載の太陽電池モジュール。
JP2013040469A 2013-03-01 2013-03-01 太陽電池セル及び太陽電池モジュール Pending JP2014170774A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013040469A JP2014170774A (ja) 2013-03-01 2013-03-01 太陽電池セル及び太陽電池モジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013040469A JP2014170774A (ja) 2013-03-01 2013-03-01 太陽電池セル及び太陽電池モジュール

Publications (1)

Publication Number Publication Date
JP2014170774A true JP2014170774A (ja) 2014-09-18

Family

ID=51692976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013040469A Pending JP2014170774A (ja) 2013-03-01 2013-03-01 太陽電池セル及び太陽電池モジュール

Country Status (1)

Country Link
JP (1) JP2014170774A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115579407A (zh) * 2022-12-12 2023-01-06 浙江爱旭太阳能科技有限公司 电极结构、背接触太阳能电池片、电池组件和光伏系统
CN117276378A (zh) * 2023-09-19 2023-12-22 隆基绿能科技股份有限公司 一种太阳能电池阵列

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115579407A (zh) * 2022-12-12 2023-01-06 浙江爱旭太阳能科技有限公司 电极结构、背接触太阳能电池片、电池组件和光伏系统
CN115579407B (zh) * 2022-12-12 2023-03-14 浙江爱旭太阳能科技有限公司 电极结构、背接触太阳能电池片、电池组件和光伏系统
CN117276378A (zh) * 2023-09-19 2023-12-22 隆基绿能科技股份有限公司 一种太阳能电池阵列
CN117276378B (zh) * 2023-09-19 2024-04-30 隆基绿能科技股份有限公司 一种太阳能电池阵列及其拼接方法

Similar Documents

Publication Publication Date Title
JP5142980B2 (ja) 太陽電池セル、及び、この太陽電池セルを用いた太陽電池モジュール
US20220020888A1 (en) Method for fabricating a solar module of rear contact solar cells using linear ribbon-type connector strips and respective solar module
JP5874011B2 (ja) 太陽電池及び太陽電池モジュール
JP2012156459A (ja) 太陽電池及び太陽電池モジュール
JP6337352B2 (ja) 太陽電池
JP2009081205A (ja) 太陽電池モジュール
WO2012057243A1 (ja) 太陽電池及び太陽電池モジュール
JP2013098548A (ja) 太陽電池及び太陽電池モジュール
JP7146805B2 (ja) 太陽電池およびその太陽電池を備えた電子機器
WO2015008610A1 (ja) 太陽電池モジュール
JP2015230985A (ja) 太陽電池セルおよびその製造方法、太陽電池パネル
JP2012138545A (ja) 太陽電池セル及び太陽電池モジュール
JP2014170774A (ja) 太陽電池セル及び太陽電池モジュール
TWI502756B (zh) 具有粗細匯流排電極之太陽能電池
JP6172461B2 (ja) 太陽電池モジュール及び太陽電池
CN210120147U (zh) 背接触叠片太阳电池串及背接触叠片太阳电池组件
JP6590165B2 (ja) 太陽電池セルの製造方法
JP5906422B2 (ja) 太陽電池及び太陽電池モジュール
JP2013219143A (ja) 薄膜太陽電池モジュールおよび薄膜太陽電池モジュールの製造方法
TWI734077B (zh) 太陽光電模組
KR20120034308A (ko) 박막형 태양전지 및 박막형 태양전지의 제조방법
JP6681607B2 (ja) 太陽電池セルおよび太陽電池セルの製造方法
JPWO2016147565A1 (ja) 太陽電池セル
JP6242480B2 (ja) 太陽電池および太陽電池モジュール
WO2018051659A1 (ja) 太陽電池モジュールおよび太陽電池セル