JP2014167393A - Embedding plate for section observation sample - Google Patents

Embedding plate for section observation sample Download PDF

Info

Publication number
JP2014167393A
JP2014167393A JP2013038623A JP2013038623A JP2014167393A JP 2014167393 A JP2014167393 A JP 2014167393A JP 2013038623 A JP2013038623 A JP 2013038623A JP 2013038623 A JP2013038623 A JP 2013038623A JP 2014167393 A JP2014167393 A JP 2014167393A
Authority
JP
Japan
Prior art keywords
plate
embedding
resin
sample
observation sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013038623A
Other languages
Japanese (ja)
Inventor
Machiko Morita
まち子 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2013038623A priority Critical patent/JP2014167393A/en
Publication of JP2014167393A publication Critical patent/JP2014167393A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an embedding plate and an embedding method for an observation sample in which the sample is easily embedded, there is no problem that the embedded sample is not easily peeled off, and a film thickness can be accurately measured, even if the sample is in a film shape.SOLUTION: An embedding plate for a flat plate-like section observation sample embedded with photocurable resin irradiated with light through a light transmission plate, on a mirror-like flat surface, comprises: an embedding plate body 2 having the mirror-like flat surface on which photocurable resin 7 is mounted; a spacer 5 for regulating a thickness of the photocurable resin mounted on the mirror-like flat surface of the embedding plate body; and a light transmission plate 6 mounted on the spacer, to the photocurable resin. A silicon sheet 10 is provided on the surface in contact with the photocurable resin of the embedding plate body and the light transmission plate.

Description

本発明は、光学顕微鏡、走査電子顕微鏡、および透過電子顕微鏡などで断面観察を行う断面観察用試料を樹脂で包埋(包持)するための断面観察試料用包埋板に関する。   The present invention relates to an embedding plate for a cross-sectional observation sample for embedding (embedding) a cross-sectional observation sample for cross-sectional observation with an optical microscope, a scanning electron microscope, a transmission electron microscope, or the like.

光学顕微鏡、走査電子顕微鏡、および透過電子顕微鏡などで断面観察を行う観察用試料の断面観察において、観察用試料の断面作製にウルトラミクロトーム(断面切削器)を使う方法がある。このウルトラミクロトームで観察用試料を作製するにあたり、観察用試料が切削の衝撃により歪むことを防ぐため或いは扱いを容易にするために、観察用試料を透明樹脂中に包埋する方法が知られている(特許文献1)。   There is a method of using an ultramicrotome (cross-section cutting machine) for cross-section preparation of an observation sample in cross-section observation of an observation sample that performs cross-section observation with an optical microscope, a scanning electron microscope, a transmission electron microscope, or the like. In preparing an observation sample with this ultramicrotome, a method for embedding the observation sample in a transparent resin is known in order to prevent the observation sample from being distorted by the impact of cutting or to facilitate handling. (Patent Document 1).

包埋板には、観察用試料を収納して樹脂で包持させるための凹部が形成されている。例えば、材料系試料の包埋板としては、シリコン包埋板と称される板が用いられている(非特許文献1)。   The embedding plate is formed with a recess for accommodating the observation sample and enclosing it with a resin. For example, as a material-based sample embedding plate, a plate called a silicon embedding plate is used (Non-Patent Document 1).

材料系試料の包埋に使用する包埋板として、シリコン包埋板が一般的であるが、試料を正確な水平に包埋できないという問題がある。例えば試料がフィルム状の場合、シリコン包埋板の凹状の部分に試料と樹脂を入れた後、樹脂を硬化させると樹脂中で試料が傾く或いはカールしてしまうことが多々あり、完全な水平に包埋することは困難である。また試料が底に沈んだ場合、試料が樹脂で覆われない部分、または樹脂部分が薄くなり切削に適さない部分ができてしまう。   A silicon embedding plate is generally used as an embedding plate used for embedding a material-based sample, but there is a problem that the sample cannot be embedded horizontally. For example, when the sample is in the form of a film, the sample and the resin are placed in the concave part of the silicon embedding plate, and then the resin is often cured, the sample may tilt or curl in the resin. It is difficult to embed. In addition, when the sample sinks to the bottom, a portion where the sample is not covered with resin or a portion where the resin portion becomes thin and is not suitable for cutting is formed.

上記問題を解決するため、鏡面の上に未露光の光硬化性樹脂を載置する工程と、光硬化性樹脂の厚さを規定した後、光を照射して光硬化性樹脂を硬化させて樹脂チップを作製する工程と、樹脂チップを前記鏡面上に載置した状態で、前記樹脂チップ上に観察用試料を載置し、未露光の光硬化性樹脂で前記観察用試料を覆った後、他の樹脂チップを載置する工程と、樹脂チップで挟まれた光硬化性樹脂に光を照射して光硬化性樹脂を硬化させて前記観察用試料が挟まれた試料保持体を作製する工程と、試料保持体を目的に応じて切削する工程とを備える方法が提案がなされている。しかしながら硬化した後の樹脂が剥がしにくいという問題がある。   In order to solve the above-mentioned problem, after the step of placing an unexposed photocurable resin on the mirror surface and the thickness of the photocurable resin are prescribed, light is irradiated to cure the photocurable resin. After the step of producing the resin chip and placing the observation sample on the resin chip in a state where the resin chip is placed on the mirror surface, the observation sample is covered with an unexposed photocurable resin. And a step of placing another resin chip, and irradiating light to the photocurable resin sandwiched between the resin chips to cure the photocurable resin to produce a sample holder in which the observation sample is sandwiched. There has been proposed a method including a process and a process of cutting the sample holder according to the purpose. However, there is a problem that the cured resin is difficult to peel off.

特開2004−108303号公報JP 2004-108303 A

日新EM株式会社 NEM Catalogue 2012年 第58頁Nissin EM Co., Ltd. NEM Catalog 2012, page 58

試料がフィルム状の場合でも、試料の包埋が容易で、包埋させた試料が、剥がし辛いといった問題が無く、正確な膜厚の計測が可能な、断面観察試料用包埋板を提供することにある。   To provide an embedding plate for a cross-sectional observation sample that enables easy measurement even when the sample is in the form of a film, and the embedded sample does not have a problem that it is difficult to peel off, and enables accurate film thickness measurement. There is.

上記の課題を解決するための手段として、請求項1に記載の発明は、光硬化性樹脂を載
置する鏡状の平面を有する包埋板本体と、前記包埋板本体の前記鏡状の平面上に載置される光硬化性樹脂の厚さを規定するスペーサと、前記スペーサ上に載置され、前記光硬化性樹脂に、光透過板と、を備え、
前記鏡状の平面上において、前記光透過板を介して光照射された光硬化性樹脂により包埋された平板状の断面観察試料用包埋板であって、
前記包埋板本体と光透過板の、光硬化性樹脂と接する表面にシリコン層を設けたことを特徴とする断面観察試料用包埋板である。
As means for solving the above-mentioned problems, the invention according to claim 1 includes an embedding plate body having a mirror-like plane on which a photocurable resin is placed, and the mirror-like shape of the embedding plate body. A spacer for defining a thickness of a photocurable resin placed on a plane; and a light transmissive plate placed on the spacer, the light curable resin,
On the mirror-shaped plane, a flat plate-shaped cross-section observation sample embedding plate embedded with a photocurable resin irradiated with light through the light transmission plate,
An embedding plate for a cross-sectional observation sample, wherein a silicon layer is provided on the surface of the embedding plate main body and the light transmission plate in contact with the photocurable resin.

また、請求項2に記載の発明は、前記スペーサが、厚さ寸法の異なる複数種が備えられ、平板状の観察用試料の厚みが、1〜4mmであることを特徴とする請求項1に記載の断面観察試料用包埋板である。   The invention according to claim 2 is characterized in that the spacer is provided with a plurality of types having different thickness dimensions, and the thickness of the flat observation sample is 1 to 4 mm. It is an embedding board for cross-sectional observation samples of description.

また、請求項3に記載の発明は、前記シリコン層が、シリコン樹脂シートであることを特徴とする請求項1または請求項2に記載の断面観察試料用包埋板である。   The invention according to claim 3 is the embedded plate for a cross-sectional observation sample according to claim 1 or 2, wherein the silicon layer is a silicon resin sheet.

樹脂の中心部に試料を水平に存在させることができ、包埋させた試料が、鏡状の平面を有する包埋板本体や光透過板から、容易に剥がすことのでき、試料の断面出し後、正確な膜厚で計測が可能な断面観察試料用包埋板を提供することができる。   The sample can exist horizontally in the center of the resin, and the embedded sample can be easily peeled off from the embedding plate body or light transmission plate having a mirror-like flat surface. An embedding plate for a cross-sectional observation sample that can be measured with an accurate film thickness can be provided.

本発明の断面観察試料用包埋板の構成を示した断面概念図である。It is a section conceptual diagram showing composition of an embedding board for section observation samples of the present invention. 本発明の包埋板本体を説明する全体斜視概念図である。It is a whole perspective conceptual diagram explaining the embedding board main body of this invention. 本発明の包埋板本体に、スペーサを取り付けた状態を説明する全体斜視概念図である。It is a whole perspective conceptual diagram explaining the state which attached the spacer to the embedding board main body of this invention. 本発明の包埋板本体を説明する平面概念図である。It is a plane conceptual diagram explaining the embedding board main body of this invention. 本発明の包埋板本体に、スペーサを取り付けた状態を説明する平面概念図である。It is a plane conceptual diagram explaining the state which attached the spacer to the embedding board main body of this invention. 本発明の包埋板本体を説明する断面概念図である。It is a cross-sectional conceptual diagram explaining the embedding board main body of this invention. 本発明の包埋板本体に、スペーサを取り付けた状態を説明する断面概念図である。It is a cross-sectional conceptual diagram explaining the state which attached the spacer to the embedding board main body of this invention. 金属板からなるスペーサであって、互いに厚さの異なる複数のスペーサを示す側面概念図である。It is a side surface conceptual diagram which shows the several spacer which is a spacer which consists of a metal plate, and differs in thickness mutually. 光透過板を示す側面概念図である。It is a side surface conceptual diagram which shows a light transmissive board.

以下本発明を実施するための形態を、図面を用いて詳細に説明する。図1は本発明の断面観察試料用包埋板を示しており、包埋板本体2は鏡面3と成っており、その表面はシリコン層10が設けられている。一部にスペーサ5を固定する磁石4が埋め込まれている。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. FIG. 1 shows an embedding plate for a cross-sectional observation sample according to the present invention. An embedding plate main body 2 has a mirror surface 3, and a silicon layer 10 is provided on the surface thereof. A magnet 4 for fixing the spacer 5 is embedded in a part.

観察用試料8を光硬化性樹脂7にて、包埋し、上部から、表面にシリコンシート10を設けた光透過板6を押し付けた後に、可視光を照射して光硬化性樹脂7を硬化させる。   The observation sample 8 is embedded with a photocurable resin 7, and after pressing the light transmitting plate 6 provided with a silicon sheet 10 on the surface from above, the photocurable resin 7 is cured by irradiation with visible light. Let

図2は、本発明の包埋板本体2を説明する全体斜視概念図であり、シリコンシート10を、鏡面に取り付けた構造である。シリコンシートは磁石が表面に出るように切り込みが入ったものであり、シリコンシートと磁石面は同じ高さである。   FIG. 2 is an overall perspective conceptual diagram for explaining the embedding board main body 2 of the present invention, in which a silicon sheet 10 is attached to a mirror surface. The silicon sheet is notched so that the magnet comes out on the surface, and the silicon sheet and the magnet surface are the same height.

図3に示すように磁石4に金属製の板からなるスペーサ5を取り付ける。図8に示すようにスペーサ5となる金属製の板の厚さは、異なった厚みが用意され、試料の厚さや用途によって取り替えることができる。スペーサ5は磁石につくものであり、例えば400系
ステンレスを用いても良く、磁石でも良い。
As shown in FIG. 3, a spacer 5 made of a metal plate is attached to the magnet 4. As shown in FIG. 8, different thicknesses of the metal plate serving as the spacer 5 are prepared and can be changed depending on the thickness of the sample and the application. The spacer 5 is attached to a magnet. For example, 400 series stainless steel may be used, or a magnet may be used.

図4は、本発明の包埋板本体を説明する平面図であり、スペーサ5を固定する磁石3の位置関係を示しており、図5はスペーサ5を固定した状態を示している。   FIG. 4 is a plan view for explaining the embedding board main body of the present invention, showing the positional relationship of the magnets 3 for fixing the spacer 5, and FIG. 5 showing the state in which the spacer 5 is fixed.

図6は、発明の包埋板本体2の断面図であり、シリコンシート10と磁石4面は同じ高さであることを示している。図7は、金属製の板からなるスペーサ5が取り付けれた状態を示している。図9はシリコンシート10を示しており、シリコンシートと磁石面は同じ高さとするための磁石用窓11が設けられている。   FIG. 6 is a cross-sectional view of the embedding board main body 2 of the invention, and shows that the silicon sheet 10 and the magnet 4 surface have the same height. FIG. 7 shows a state in which the spacer 5 made of a metal plate is attached. FIG. 9 shows a silicon sheet 10, and a magnet window 11 is provided so that the silicon sheet and the magnet surface have the same height.

シリコン包埋板で作った硬化樹脂の場合、剃刀等でトリミング(余分な樹脂の削り取り)をしなければならず、時間と手間がかかっていたが、本発明で作製した硬化樹脂の場合、薄い板状のため、ハサミ等で簡単に切り取ることができる。   In the case of a cured resin made of a silicon-embedded plate, trimming with a razor or the like (scraping off the excess resin) took time and effort. Because it is plate-shaped, it can be easily cut off with scissors.

鏡面3又はガラスが直接光硬化性樹脂7に接する包埋板の場合、硬化樹脂が包埋板1から剥がしにくく、硬化樹脂が割れてしまうことがあったが、本発明はシリコンシート10が表面になるため、硬化した包埋樹脂は簡単に剥がすことができる。   In the case of an embedding plate in which the mirror surface 3 or glass is in direct contact with the photocurable resin 7, the cured resin is difficult to peel off from the embedding plate 1, and the cured resin may be cracked. Therefore, the cured embedding resin can be easily peeled off.

超高分解能走査電子顕微鏡の試料ホルダはサイドエントリー方式であり、試料サイズが縦横5mm、厚さ2mmまでという制限があり、従来の包埋板では大き過ぎて入らなかったが、本発明で作製した硬化樹脂であれば、樹脂の厚さをコントロールできるため、試料ホルダに対応可能である。   The sample holder of the ultra-high resolution scanning electron microscope is a side entry method, and the sample size is limited to 5 mm in length and width, and the thickness is 2 mm. Since the thickness of the resin can be controlled if it is a cured resin, it can be used as a sample holder.

本発明の包埋板1鏡面3と成っているため、光を反射し、光照射器で樹脂を硬化させる時に、試料を通過した光および試料周辺にあたった光が反射し、効率よく樹脂を硬化させることができる。   Since the embedding plate 1 of the present invention is composed of the mirror surface 3, when the resin is reflected and the resin is cured by the light irradiator, the light that has passed through the sample and the light that has hit the periphery of the sample is reflected, and the resin is efficiently applied. It can be cured.

電子顕微鏡観察用の包埋樹脂にはエポキシ樹脂、メタクリレート樹脂、スチレン樹脂等が多く使用されている。これらの樹脂は薄切が容易、電子線に強い等の利点はあるが、熱重合性のエポキシ樹脂、メタクリレート樹脂では完全硬化に60℃で10〜24時間を要する。UV重合のスチレン樹脂でも硬化に紫外線照射のもとで3時間を要する。可視光硬化性のアクリル樹脂を用いれば、光照射器のもと1〜3分で硬化できるため、本発明の包埋には可視光硬化性アクリル樹脂を用いる。   An epoxy resin, a methacrylate resin, a styrene resin or the like is often used as an embedding resin for electron microscope observation. These resins have advantages such as easy slicing and resistance to electron beams, but thermosetting epoxy resins and methacrylate resins require 10 to 24 hours at 60 ° C. for complete curing. Even UV-polymerized styrene resins require 3 hours to cure under ultraviolet irradiation. If a visible light curable acrylic resin is used, the visible light curable acrylic resin is used for embedding in the present invention because it can be cured in 1 to 3 minutes under a light irradiator.

本発明は鏡の両端に磁石4を埋め込み、鏡面3にはシリコンシート10を取り付けた仕様の包埋板で1あり、金属製の板を両端に取り付けて使用する。スペーサ5となる金属製の板の厚さは数種類それぞれ異なり、試料の厚さや用途によって取り替えることができる。スペーサ5の厚さが光硬化樹脂7の厚さとなり、通常の場合、包埋樹脂の総厚は1〜4mmが適している。スペーサ5は磁石4につくものであり、例えば400系ステンレスを用いる。   The present invention is an embedding plate 1 in which a magnet 4 is embedded at both ends of a mirror and a silicon sheet 10 is attached to a mirror surface 3, and a metal plate is attached to both ends for use. The thickness of the metal plate used as the spacer 5 is different from each other and can be changed depending on the thickness of the sample and the application. The thickness of the spacer 5 becomes the thickness of the photo-curing resin 7, and in the normal case, the total thickness of the embedding resin is suitably 1 to 4 mm. The spacer 5 is attached to the magnet 4 and, for example, 400 series stainless steel is used.

なお、包埋板1は金属光沢を有するガラス板や通常の反射層を持つガラス板でもよい。鏡表面のシリコン樹脂は光を透過する透明な樹脂を用いる。包埋板以外にフィルムを用いるが、ある程度膜厚が厚く、コシの強いフィルムがよく、例えば膜厚100μm程度のPETフィルムを用いる。   The embedding plate 1 may be a glass plate having a metallic luster or a glass plate having a normal reflection layer. As the silicon resin on the mirror surface, a transparent resin that transmits light is used. Although a film is used in addition to the embedding plate, a film that is thick to some extent and strong is good. For example, a PET film having a thickness of about 100 μm is used.

断面観察を行う試料の作製手順を図面を基づき説明する。図2に示すシリコンシート10を持つ包埋板本体2に埋め込まれた磁石4に、図3に示すように同じ厚みのスペーサ4を貼り付ける。次に包埋板本体2の中心付近にアクリル樹脂を数滴付け、上から試料となるフィルムを被せ、さらにアクリル樹脂を数滴付け、表面にシリコンシート10を被せ、
さらに光透過板6の載せて樹脂を平らにした後、光照射器において硬化させ、包埋板から剥がし、観察用8を作製した。
A procedure for preparing a sample for cross-sectional observation will be described with reference to the drawings. A spacer 4 having the same thickness as shown in FIG. 3 is attached to the magnet 4 embedded in the embedding plate body 2 having the silicon sheet 10 shown in FIG. Next, a few drops of acrylic resin is applied to the vicinity of the center of the embedding board main body 2, and a film as a sample is covered from above.
Further, after placing the light transmitting plate 6 and flattening the resin, the resin was cured in a light irradiator and peeled off from the embedding plate, thereby producing an observation 8.

尚、硬化した樹脂はシリコンシート10に接しており、包埋樹脂を簡単に剥がすことができる。   The cured resin is in contact with the silicon sheet 10 and the embedding resin can be easily peeled off.

1・・・包埋板
2・・・包埋板本体
3・・・鏡面
4・・・磁石
5・・・スペーサ
6・・・光透過板
7・・・光硬化性樹脂
8・・・観察用試料
9・・・最終サンプル
10・・・シリコンシート
11・・・磁石用窓
DESCRIPTION OF SYMBOLS 1 ... Embedded board 2 ... Embedded board main body 3 ... Mirror surface 4 ... Magnet 5 ... Spacer 6 ... Light transmission board 7 ... Photocurable resin 8 ... Observation Sample 9 ... Final sample 10 ... Silicon sheet 11 ... Magnet window

Claims (3)

光硬化性樹脂を載置する鏡状の平面を有する包埋板本体と、前記包埋板本体の前記鏡状の平面上に載置される光硬化性樹脂の厚さを規定するスペーサと、前記スペーサ上に載置され、前記光硬化性樹脂に、光透過板と、を備え、
前記鏡状の平面上において、前記光透過板を介して光照射された光硬化性樹脂により包埋された平板状の断面観察試料用包埋板であって、
前記包埋板本体と光透過板の、光硬化性樹脂と接する表面にシリコン層を設けたことを特徴とする断面観察試料用包埋板。
An embedding board body having a mirror-like plane on which the photocurable resin is placed; a spacer that defines the thickness of the photocurable resin placed on the mirror-like plane of the embedding board body; Mounted on the spacer, the light curable resin, and a light transmission plate,
On the mirror-shaped plane, a flat plate-shaped cross-section observation sample embedding plate embedded with a photocurable resin irradiated with light through the light transmission plate,
An embedded plate for a cross-sectional observation sample, wherein a silicon layer is provided on the surface of the embedded plate main body and the light transmitting plate in contact with the photocurable resin.
前記スペーサが、厚さ寸法の異なる複数種が備えられ、平板状の観察用試料の厚みが、1〜4mmであることを特徴とする請求項1に記載の断面観察試料用包埋板。   The embedded plate for a cross-sectional observation sample according to claim 1, wherein the spacer is provided with a plurality of types having different thickness dimensions, and the thickness of the flat observation sample is 1 to 4 mm. 前記シリコン層が、シリコン樹脂シートであることを特徴とする請求項1または請求項2に記載の断面観察試料用包埋板。   The embedded plate for a cross-sectional observation sample according to claim 1, wherein the silicon layer is a silicon resin sheet.
JP2013038623A 2013-02-28 2013-02-28 Embedding plate for section observation sample Pending JP2014167393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013038623A JP2014167393A (en) 2013-02-28 2013-02-28 Embedding plate for section observation sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013038623A JP2014167393A (en) 2013-02-28 2013-02-28 Embedding plate for section observation sample

Publications (1)

Publication Number Publication Date
JP2014167393A true JP2014167393A (en) 2014-09-11

Family

ID=51617164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013038623A Pending JP2014167393A (en) 2013-02-28 2013-02-28 Embedding plate for section observation sample

Country Status (1)

Country Link
JP (1) JP2014167393A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109387423A (en) * 2018-11-01 2019-02-26 中国人民解放军第五七九工厂 A kind of cold inlaying device of metallographic using photosensitive resin and its method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109387423A (en) * 2018-11-01 2019-02-26 中国人民解放军第五七九工厂 A kind of cold inlaying device of metallographic using photosensitive resin and its method
CN109387423B (en) * 2018-11-01 2023-10-27 中国人民解放军第五七一九工厂 Metallographic cold mosaic device using photosensitive resin and method thereof

Similar Documents

Publication Publication Date Title
KR101721460B1 (en) Method for fabrication of photo-control panel comprising photo-reflector parts which are positioned in parallel
JP6571148B2 (en) Method for manufacturing surface-enhanced Raman scattering element
WO2014148118A1 (en) Curved diffraction grating, production method therefor, and optical device
JP6510548B2 (en) Method of manufacturing mold of curved surface diffraction grating, method of manufacturing curved surface diffraction grating, curved surface diffraction grating, and optical device
EP3002579B1 (en) Metallographic sample preparation method and metallographic sample mould
US9030742B2 (en) Combination optical filter and diffraction grating and associated systems and methods
EP3867033A1 (en) Methods and apparatuses for casting polymer products
JP2014167393A (en) Embedding plate for section observation sample
JP2010283098A (en) Support member for plate-like member
JP5921381B2 (en) Surface-enhanced Raman scattering unit
EP3370250A1 (en) Film mold and imprinting method
WO2014025031A1 (en) Surface-enhanced raman scattering element
JP5807462B2 (en) Method for embedding cross-section observation sample
US10191211B2 (en) Display apparatus and method of manufacturing the display apparatus
JP2014215375A (en) Replica diffraction grating and manufacturing method thereof
JP6105465B2 (en) Method for manufacturing stereoscopic image forming apparatus
KR102436152B1 (en) Imprinting mold and manufacturing method for imprinting mold
JP2007047588A (en) Method of manufacturing optical element including ultraviolet curable resin
JP2012068132A (en) Method for manufacturing optical scale
Mori et al. Formation of micro lens by laser polymerization
JP5631344B2 (en) Magnetostriction measuring method and magnetostriction measuring apparatus
Szymczyk et al. An innovative approach to fabrication with photo-cured resins by shell-printed-core-casting
JP2005055266A (en) Manufacturing method of doubly-curved spectroscopic element, and doubly-curved spectroscopic element
JP2008107406A (en) Manufacturing method of hard coat processed panel and processed panel
Mikulcik Thermally Induced Stresses in Micro-Chip Mounting Devices