JP2007047588A - Method of manufacturing optical element including ultraviolet curable resin - Google Patents

Method of manufacturing optical element including ultraviolet curable resin Download PDF

Info

Publication number
JP2007047588A
JP2007047588A JP2005233455A JP2005233455A JP2007047588A JP 2007047588 A JP2007047588 A JP 2007047588A JP 2005233455 A JP2005233455 A JP 2005233455A JP 2005233455 A JP2005233455 A JP 2005233455A JP 2007047588 A JP2007047588 A JP 2007047588A
Authority
JP
Japan
Prior art keywords
curable resin
ultraviolet curable
optical element
heat treatment
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005233455A
Other languages
Japanese (ja)
Inventor
Akiko Miyagawa
晶子 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2005233455A priority Critical patent/JP2007047588A/en
Publication of JP2007047588A publication Critical patent/JP2007047588A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing optical element including ultraviolet curable resin which does not degrade transmittance of ultraviolet curable resin even when a large amount of ultraviolet rays is irradiated. <P>SOLUTION: A first means comprises a process of curing ultraviolet curable resin and, thereafter, performing a heating treatment. in a first means. In the first means, the heating treatment is performed in the range of 40°C to 130°C (a second means). In the first means, the heating treatment is performed in the range of 60°C to 100°C (a third means). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、紫外線硬化型樹脂を光学要素として含む光学素子の製造方法に関するものである。   The present invention relates to a method for manufacturing an optical element including an ultraviolet curable resin as an optical element.

紫外線硬化型樹脂製の光学素子、又は、紫外線硬化型樹脂を光学要素の一部として含む光学素子は、通常よく用いられている(本明細書、及び特許請求の範囲においては、これらをまとめて「紫外線硬化型樹脂を含む光学素子」と称する。   An optical element made of an ultraviolet curable resin or an optical element containing an ultraviolet curable resin as a part of an optical element is usually used in general (in the present specification and claims, these are collectively included). This is referred to as an “optical element containing an ultraviolet curable resin”.

例えば、母材の表面に樹脂層を成形した光学素子を複合型光学素子と呼ぶ。樹脂層としては、紫外線硬化型樹脂が用いられることが多い。紫外線硬化型樹脂層は型を使い成形する。紫外線硬化型樹脂は型の形状を忠実に転写するため、容易に、また低コストで、所望の表面形状の光学素子を得ることができる。また、紫外線硬化型樹脂は短時間で硬化し、また熱源を使用しないので、より低コスト化できる。   For example, an optical element in which a resin layer is molded on the surface of a base material is called a composite optical element. As the resin layer, an ultraviolet curable resin is often used. The UV curable resin layer is molded using a mold. Since the ultraviolet curable resin faithfully transfers the shape of the mold, an optical element having a desired surface shape can be obtained easily and at low cost. Further, since the ultraviolet curable resin is cured in a short time and does not use a heat source, the cost can be further reduced.

光学素子の耐久性を上げるのためには、紫外線硬化型樹脂を十分硬化させる必要がある。紫外光を多量照射すると硬化度は上がるが、逆に紫外線硬化型樹脂の透過率が下がる(黄色味が強くなる)問題があった。   In order to increase the durability of the optical element, it is necessary to sufficiently cure the ultraviolet curable resin. When a large amount of ultraviolet light is irradiated, the degree of curing increases, but there is a problem that the transmittance of the ultraviolet curable resin decreases (yellowness becomes stronger).

本発明はこのような事情に鑑みてなされたもので、多量の紫外線を照射しても紫外線硬化型樹脂の透過率が下がらないような、紫外線硬化型樹脂を含む光学素子の製造方法を提供することを課題とする。   The present invention has been made in view of such circumstances, and provides a method for producing an optical element including an ultraviolet curable resin so that the transmittance of the ultraviolet curable resin does not decrease even when a large amount of ultraviolet rays are irradiated. This is the issue.

前記課題を解決するための第1の手段は、紫外線硬化型樹脂を硬化させた後、加熱処理を施す工程を有することを特徴とする紫外線硬化型樹脂を含む光学素子の製造方法である。   A first means for solving the above problem is a method for producing an optical element including an ultraviolet curable resin, comprising a step of performing a heat treatment after curing the ultraviolet curable resin.

前記課題を解決するための第2の手段は、前記第1の手段であって、前記加熱処理を、40℃〜130℃の範囲で行うことを特徴とするものである。   The second means for solving the problem is the first means, characterized in that the heat treatment is performed in a range of 40 ° C to 130 ° C.

前記課題を解決するための第3の手段は、前記第1の手段であって、前記加熱処理を、60℃〜100℃の範囲で行うことを特徴とするものである。
The 3rd means for solving the subject is the 1st means, and performs the heat treatment in the range of 60 ° C-100 ° C.

本発明によれば、多量の紫外線を照射しても紫外線硬化型樹脂の透過率が下がらないような、紫外線硬化型樹脂を含む光学素子の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the optical element containing an ultraviolet curable resin that the transmittance | permeability of an ultraviolet curable resin does not fall even if it irradiates a lot of ultraviolet rays can be provided.

以下、本発明の実施の形態の例を、図を用いて説明する。図1は、本発明の実施の形態の1例である紫外線硬化型樹脂を含む光学素子の製造方法を説明するための図である。   Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram for explaining a method for manufacturing an optical element including an ultraviolet curable resin, which is an example of an embodiment of the present invention.

まず、ガラスからなる基板1を用意する。基板1は、平面形状を有するものであっても、光学的パワーを有するものであってもよい。そして、紫外線硬化型樹脂を塗布する面にシランカップリング処理を施して、接着性を高めるようにする(a)。   First, a substrate 1 made of glass is prepared. The substrate 1 may have a planar shape or may have optical power. Then, a silane coupling treatment is applied to the surface to which the ultraviolet curable resin is applied so as to enhance the adhesiveness (a).

次に、この基板1の上に、紫外線硬化型樹脂2を載置して、金型3との間に挟んで押圧し、基板1を通して紫外線を照射して、紫外線硬化型樹脂2を硬化させる(b)。そして、紫外線硬化型樹脂2の硬化後、金型3を紫外線硬化型樹脂2から剥離する(c)。この状態で、紫外線硬化型樹脂2は、紫外線照射の影響で黄色みを帯びた状態となり、透過率が下がっている。   Next, the ultraviolet curable resin 2 is placed on the substrate 1, pressed between the mold 3 and pressed, and irradiated with ultraviolet rays through the substrate 1 to cure the ultraviolet curable resin 2. (B). Then, after the ultraviolet curable resin 2 is cured, the mold 3 is peeled from the ultraviolet curable resin 2 (c). In this state, the ultraviolet curable resin 2 is in a yellowish state under the influence of ultraviolet irradiation, and the transmittance is lowered.

続いて紫外線硬化型樹脂2の上に別の紫外線硬化型樹脂4を載置して、金型5との間に挟んで押圧し、基板1、及び紫外線硬化型樹脂2を通して紫外線を照射して、紫外線硬化型樹脂2の上に別の紫外線硬化型樹脂4を硬化させる(d)。そして、紫外線硬化型樹脂4の硬化後、金型5を紫外線硬化型樹脂4から剥離する(e)。この状態で、紫外線硬化型樹脂4は、紫外線照射の影響で黄色みを帯びた状態となり、透過率が下がっている。   Subsequently, another ultraviolet curable resin 4 is placed on the ultraviolet curable resin 2 and pressed between the mold 5 and irradiated with ultraviolet rays through the substrate 1 and the ultraviolet curable resin 2. Then, another ultraviolet curable resin 4 is cured on the ultraviolet curable resin 2 (d). Then, after the ultraviolet curable resin 4 is cured, the mold 5 is peeled from the ultraviolet curable resin 4 (e). In this state, the ultraviolet curable resin 4 becomes yellowish under the influence of ultraviolet irradiation, and the transmittance is lowered.

続いて、このようにして形成された光学素子を、加熱処理用チャンバ6の中に入れて加熱処理を行う(f)。この際、加熱処理に加えて加湿処理を同時に行っても、透過率を向上させることができる。加熱処理の温度は40〜130℃が適当である。40℃未満では効果が小さくなり、130℃を超えると樹脂が劣化し易くなる。60〜100℃が特に好ましい。加湿処理を併せて行う場合の湿度は、60%以上が適当であり、80%以上であることが特に好ましい。湿度が60%未満では効果が小さい。このように、加熱処理(更にこれに加えた加湿処理)により、紫外線硬化型樹脂2と紫外線硬化型樹脂4の黄色みがなくなり、透過率が向上する。光学素子を加熱処理用チャンバ6から取り出して、基板1と紫外線硬化型樹脂2と紫外線硬化型樹脂4からなる複合光学素子が完成する(g)。   Subsequently, the optical element thus formed is placed in the heat treatment chamber 6 and heat treatment is performed (f). At this time, the transmittance can be improved even if the humidification treatment is performed simultaneously with the heat treatment. The temperature for the heat treatment is suitably 40 to 130 ° C. If it is less than 40 ° C., the effect is small, and if it exceeds 130 ° C., the resin is likely to deteriorate. 60-100 degreeC is especially preferable. 60% or more is appropriate as the humidity when the humidification treatment is performed together, and 80% or more is particularly preferable. If the humidity is less than 60%, the effect is small. Thus, the heat treatment (further humidification treatment added thereto) eliminates yellowing of the ultraviolet curable resin 2 and the ultraviolet curable resin 4 and improves the transmittance. The optical element is taken out from the heat treatment chamber 6 to complete a composite optical element composed of the substrate 1, the ultraviolet curable resin 2, and the ultraviolet curable resin 4 (g).

このように、加熱処理、加湿処理で透明度が回復する理由は明らかではないが、透過率が自然に復帰しようとする性質を加速する効果があるものと推定される。なお、この実施の形態では、母材としてガラスを使用したが、母材は、射出成形樹脂等のプラスチックであってもよい。樹脂層は1層であってもよいし、2層以上積層してもよい。また母材の両面に設けられていてもよい。また樹脂層が成形される母材の表面形状は、球面、非球面、回折光学面など特に制限はない。樹脂層の形状を非球面にすると、複合型非球面光学素子となる。また回折光学面にすると複合型回折光学素子となる。更に2層以上の樹脂層が積層され、その界面が回折光学面となるようにされていてもよい。   As described above, the reason why the transparency is restored by the heat treatment and the humidification treatment is not clear, but it is presumed that there is an effect of accelerating the property that the transmittance naturally returns. In this embodiment, glass is used as the base material, but the base material may be a plastic such as an injection molding resin. The resin layer may be one layer, or two or more layers may be laminated. Further, it may be provided on both surfaces of the base material. The surface shape of the base material on which the resin layer is molded is not particularly limited, such as a spherical surface, an aspherical surface, or a diffractive optical surface. When the shape of the resin layer is aspherical, a composite aspherical optical element is obtained. When a diffractive optical surface is used, a composite diffractive optical element is obtained. Further, two or more resin layers may be laminated so that the interface is a diffractive optical surface.

(実施例1)
母材の上に屈折率及び分散の異なる光学材料を積層し、その界面が回折光学面である密着複層型回折光学素子を作製した。密着複層型回折光学素子の光学材料として使用するには、相対的に高屈折率低分散、低屈折率高分散であることが必要である。
(1)低屈折率高分散の樹脂前駆体として、下記のような組成で調合した。
フッ素含有2官能アクリレート53wt%、フルオレン骨格を有する2官能アクリレート42wt%、単官能アクリレート5wt%。
Example 1
An optical material having a different refractive index and dispersion was laminated on a base material, and a close-contact multilayer diffractive optical element having a diffractive optical surface at its interface was produced. In order to use it as an optical material for a close-contact multilayer diffractive optical element, it is necessary to have a relatively high refractive index and low dispersion and a low refractive index and high dispersion.
(1) A resin precursor having a low refractive index and a high dispersion was prepared with the following composition.
53 wt% of fluorine-containing bifunctional acrylate, 42 wt% of bifunctional acrylate having a fluorene skeleton, and 5 wt% of monofunctional acrylate.

光重合開始剤として、イルガキュア184(チバスペシャルティーケミカルズ)を0.5wt%添加した。
硬化後の物性は下記のとおりであった。
As a photopolymerization initiator, 0.5 wt% of Irgacure 184 (Ciba Specialty Chemicals) was added.
The physical properties after curing were as follows.

Figure 2007047588
Figure 2007047588

(2)高屈折率低分散の樹脂前駆体として、2官能チオールに過剰の2官能アクリレートを反応させて得られる末端アクリレートオリゴマーを調合した。
2官能チオールと2官能アクリレートのモル比は1:2.5である。
光重合開始剤として、イルガキュア184(チバスペシャルティーケミカルズ)を0.5wt%添加した。
硬化物の特性は下記の通りであった。
(2) A terminal acrylate oligomer obtained by reacting a bifunctional thiol with an excess of a bifunctional acrylate as a high refractive index and low dispersion resin precursor was prepared.
The molar ratio of bifunctional thiol to difunctional acrylate is 1: 2.5.
As a photopolymerization initiator, 0.5 wt% of Irgacure 184 (Ciba Specialty Chemicals) was added.
The characteristics of the cured product were as follows.

Figure 2007047588
Figure 2007047588

(3)透過率測定用のサンプルとして、ガラス(BK7)の上に、上記樹脂を0.2mm厚で成形したものを、樹脂ごとにそれぞれ作製した。UV照射量は硬化度の評価により、低屈折率高分散樹脂は10000mJ/cm、高屈折率低分散樹脂は6000mJ/cmとした。
硬化後に、70℃で20時間加熱処理した。加熱処理せず20時間放置したものも含め、透過率は下記のようになった。(測定波長380nm)
(3) As a sample for measuring transmittance, each of the resins (molded with a thickness of 0.2 mm) on glass (BK7) was produced. UV irradiation dose by the evaluation of the curing degree, low refractive index and high dispersion resin is 10000 mJ / cm 2, a high refractive index and low dispersion resin was 6000 mJ / cm 2.
After curing, heat treatment was performed at 70 ° C. for 20 hours. The transmittance was as follows including those left for 20 hours without heat treatment. (Measurement wavelength 380nm)

Figure 2007047588
Figure 2007047588

(4)密着複層型回折光学素子を作製した。格子形状は、直径20mm、格子高20μm、格子ピッチは中心付近で1.2mm、外周付近で0.02mmで周辺に行くほどピッチが小さいものである。母材のガラスの、樹脂層を成形する面にシランカップリング処理をした。処理面と上記格子形状の金型を対向させ、その間に低屈折率高分散樹脂を充填した。紫外線照射により硬化後、離型した。更に今度は回折格子の無い連続面の形状の金型を対向させ、その間に高屈折率低分散樹脂を充填した。紫外線により硬化後、離型し密着複層型回折光学素子を得た。樹脂厚及び紫外線照射量は(3)と同じである。
(5)上記素子を70℃で20時間加熱処理した。加熱処理せず20時間放置した素子に比べ、透過率は5%高かった。
(実施例2)
実施例1(3)の加熱処理の代わりに、60℃で湿度80%、96時間の加湿処理をした。その他の工程は実施例1と同じである。両樹脂とも実施例1と同様に透過率は上昇した。更に(5)の加熱処理の代わりに同様の加湿処理をした。処理した素子は処理せず96時間放置した素子に比べ透過率は4%高かった。
(4) A close-contact multilayer diffractive optical element was produced. The lattice shape has a diameter of 20 mm, a lattice height of 20 μm, a lattice pitch of 1.2 mm near the center, and 0.02 mm near the outer periphery, with the pitch becoming smaller toward the periphery. Silane coupling treatment was applied to the surface of the base material glass on which the resin layer was molded. The treated surface and the lattice-shaped mold were opposed to each other, and a low refractive index and high dispersion resin was filled therebetween. After curing by ultraviolet irradiation, the mold was released. Further, a continuous surface mold having no diffraction grating was made to face this time, and a high refractive index and low dispersion resin was filled therebetween. After curing with ultraviolet rays, the mold was released to obtain a contact multilayer diffractive optical element. The resin thickness and the UV irradiation amount are the same as in (3).
(5) The element was heat-treated at 70 ° C. for 20 hours. The transmittance was 5% higher than that of the element left for 20 hours without heat treatment.
(Example 2)
Instead of the heat treatment in Example 1 (3), a humidification treatment was performed at 60 ° C. and a humidity of 80% for 96 hours. Other steps are the same as those in the first embodiment. The transmittance of both resins increased as in Example 1. Further, the same humidification treatment was performed instead of the heat treatment of (5). The treated device was 4% higher in transmittance than the device that was left untreated for 96 hours.

本発明の実施の形態の1例である紫外線硬化型樹脂を含む光学素子の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the optical element containing the ultraviolet curable resin which is an example of embodiment of this invention.

符号の説明Explanation of symbols

1…基板、2…紫外線硬化型樹脂、3…金型、4…紫外線硬化型樹脂、5…金型、6…加熱処理用チャンバ
DESCRIPTION OF SYMBOLS 1 ... Substrate, 2 ... Ultraviolet curable resin, 3 ... Mold, 4 ... Ultraviolet curable resin, 5 ... Mold, 6 ... Heat treatment chamber

Claims (3)

紫外線硬化型樹脂を硬化させた後、加熱処理を施す工程を有することを特徴とする紫外線硬化型樹脂を含む光学素子の製造方法。 A method for producing an optical element including an ultraviolet curable resin, comprising a step of performing a heat treatment after curing the ultraviolet curable resin. 前記加熱処理を、40℃〜130℃の範囲で行うことを特徴とする請求項1に記載の紫外線硬化型樹脂を含む光学素子の製造方法。 The method for producing an optical element containing an ultraviolet curable resin according to claim 1, wherein the heat treatment is performed in a range of 40 ° C to 130 ° C. 前記加熱処理を、60℃〜100℃の範囲で行うことを特徴とする請求項1に記載の紫外線硬化型樹脂を含む光学素子の製造方法。


The method for producing an optical element containing an ultraviolet curable resin according to claim 1, wherein the heat treatment is performed in a range of 60 ° C. to 100 ° C.


JP2005233455A 2005-08-11 2005-08-11 Method of manufacturing optical element including ultraviolet curable resin Pending JP2007047588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005233455A JP2007047588A (en) 2005-08-11 2005-08-11 Method of manufacturing optical element including ultraviolet curable resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005233455A JP2007047588A (en) 2005-08-11 2005-08-11 Method of manufacturing optical element including ultraviolet curable resin

Publications (1)

Publication Number Publication Date
JP2007047588A true JP2007047588A (en) 2007-02-22

Family

ID=37850445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005233455A Pending JP2007047588A (en) 2005-08-11 2005-08-11 Method of manufacturing optical element including ultraviolet curable resin

Country Status (1)

Country Link
JP (1) JP2007047588A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009081831A1 (en) * 2007-12-20 2009-07-02 Nikon Corporation Eyepiece system and optical device
WO2011010633A1 (en) * 2009-07-22 2011-01-27 株式会社ニコン Resin precursor composition and resin obtained by photocuring same
JP2011022319A (en) * 2009-07-15 2011-02-03 Nikon Corp Diffraction optical element, optical system and optical apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009081831A1 (en) * 2007-12-20 2009-07-02 Nikon Corporation Eyepiece system and optical device
US7885005B2 (en) 2007-12-20 2011-02-08 Nikon Corporation Eyepiece system and optical device
CN101896848B (en) * 2007-12-20 2012-04-25 株式会社尼康 Eyepiece system and optical device
JP5382531B2 (en) * 2007-12-20 2014-01-08 株式会社ニコン Eyepiece system, optical device
JP2011022319A (en) * 2009-07-15 2011-02-03 Nikon Corp Diffraction optical element, optical system and optical apparatus
WO2011010633A1 (en) * 2009-07-22 2011-01-27 株式会社ニコン Resin precursor composition and resin obtained by photocuring same
JP5696663B2 (en) * 2009-07-22 2015-04-08 株式会社ニコン Resin precursor composition and resin obtained by photocuring the same

Similar Documents

Publication Publication Date Title
JP4655043B2 (en) Mold, and method for producing substrate having transfer fine pattern
JP6486042B2 (en) Laminated diffractive optical element
KR102411110B1 (en) High refractive index nanocomposite
JP4467388B2 (en) COMPOUND LENS, COMPOSITE LENS MANUFACTURING METHOD, AND LENS MODULE
TWI394660B (en) Thin film laminate and method for fabricating the same
KR20070086554A (en) Resin-bond type optical element, production method therefor and optical article
JP2006076026A5 (en)
JP2020517496A (en) Transparent composite film having hard coat, method for forming the same, and flexible display device including the same
JP2007045951A5 (en) Transparent substrate manufacturing method and transparent substrate
JP2007047588A (en) Method of manufacturing optical element including ultraviolet curable resin
JP2006106229A (en) Method for manufacturing transmission type optical element and transmission type optical element
JP2001249208A (en) Diffraction optical device and method of manufacturing the same
JP2012204429A (en) Template for imprint, manufacturing method of the template, and pattern formation method of the template
JP2006263975A (en) Manufacturing method of optical element
JP2012018309A (en) Method for forming optical element
JP5349777B2 (en) Optical element manufacturing method
JP2002372603A (en) Optical part for optical communication and method for manufacturing the same
KR20150035158A (en) Flexible Display Device and Method of manufacturing the same
TWI540151B (en) Photopolymerizable composition and optical sheet
JP2021085948A5 (en)
KR101219891B1 (en) Optical sheet
JP2008273092A (en) Optical element manufacturing method
JP2004317755A (en) Optical element and method for manufacturing optical element
JP2001232729A (en) Plastic base material sheet for conductive laminate
JP2012135914A (en) Molding method of resin lens