JP2014165067A - 固体酸化物形燃料電池セル - Google Patents

固体酸化物形燃料電池セル Download PDF

Info

Publication number
JP2014165067A
JP2014165067A JP2013036037A JP2013036037A JP2014165067A JP 2014165067 A JP2014165067 A JP 2014165067A JP 2013036037 A JP2013036037 A JP 2013036037A JP 2013036037 A JP2013036037 A JP 2013036037A JP 2014165067 A JP2014165067 A JP 2014165067A
Authority
JP
Japan
Prior art keywords
fuel electrode
recess
embedded
solid electrolyte
support substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013036037A
Other languages
English (en)
Other versions
JP6039459B2 (ja
Inventor
Makoto Koi
真 兒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2013036037A priority Critical patent/JP6039459B2/ja
Publication of JP2014165067A publication Critical patent/JP2014165067A/ja
Application granted granted Critical
Publication of JP6039459B2 publication Critical patent/JP6039459B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】 発電性能を向上できるとともに、ガスシール性能を向上できる固体酸化物形燃料電池セルを提供する。
【解決手段】 支持基板10の主面における複数の箇所に設けれた第1凹部12に発電素子部Aの燃料極集電部21がそれぞれ埋設され、第1凹部12に埋設された各燃料極集電部21の外側面に形成された第2凹部21aに、発電素子部Aの燃料極活性部22および固体電解質41が埋設され、第1凹部12に埋設された燃料極集電部21に形成された第3凹部21bに、インターコネクタ30が埋設され、支持基板10の外側面に、インターコネクタ30の外側面と固体電解質41の外側面とに掛け渡すようにガスシール層40が設けられている。
【選択図】 図2

Description

本発明は、固体酸化物形燃料電池セルに関するものである。
従来、ガス流路が内部に形成された平板状の多孔質の支持基板と、この平板状の支持基板の主面における互いに離れた複数の箇所にそれぞれ設けられた複数の発電素子部と、隣り合う発電素子部の一方の燃料極と他方の空気極とを電気的に接続する電気的接続部と、平板状の支持基板の主面における複数の箇所に、底壁と周方向に閉じた側壁とを有する第1凹部がそれぞれ形成され、該各第1凹部に、対応する発電素子部の燃料極集電部がそれぞれ埋設された固体酸化物形燃料電池セルが知られている(例えば、特許文献1参照)。
この特許文献1では、燃料極集電部の外側面に第2凹部が形成され、この第2凹部に電気的接続部が埋設され、さらに燃料極集電部の外側面に形成された第3凹部に燃料極活性部が埋設されており、燃料極活性部の表面に形成された固体電解質が電気的接続部の表面まで延設され、固体電解質と電気的接続部とで、燃料極側に供給された燃料ガスと、空気極側に供給された空気との混合を防止していた。
特開2012−38718号公報
しかしながら、上記した特許文献1では、燃料極活性部の表面に形成された固体電解質を電気的接続部の表面まで延設して接続し、ガスシールしていたため、固体電解質を薄くして発電素子部の発電性能を向上させようとすると、薄い固体電解質にクラック等が入りやすく、ガスシール性能が低下し、逆にガスシール性能を向上すべく、固体電解質の厚みを厚くすると、発電素子部の発電性能が低下するという問題があった。
本発明は、発電性能を向上できるとともに、ガスシール性能を向上できる固体酸化物形燃料電池セルを提供することを目的とする。
本発明の固体酸化物形燃料電池セルは、ガス流路が内部に形成された平板状の多孔質の支持基板と、該平板状の支持基板の主面における互いに離れた複数の箇所にそれぞれ設けられ、少なくとも燃料極、固体電解質および空気極が積層されてなる複数の発電素子部と、隣り合う前記発電素子部の間にそれぞれ設けられ、一方の前記発電素子部の燃料極と他方の前記発電素子部の空気極とを電気的に接続する電気的接続部とを備えるとともに、前記支持基板の主面における前記複数の箇所に、底壁と周方向に閉じた側壁とを有する第1凹部がそれぞれ設けられ、該各第1凹部に、対応する前記発電素子部の燃料極の集電部がそれぞれ埋設され、該第1凹部に埋設された燃料極集電部の外側面に形成された第2凹部に、前記燃料極集電部に対してイオン伝導性を有する物質の含有割合が多い燃料極活性部および前記固体電解質がそれぞれ埋設され、前記第1凹部に埋設された燃料極集電部の前記第2凹部が形成された位置と異なる位置の外側面に形成された第3凹部に、前記電気的接続部が埋設され、前記支持基板の外側面に、前記電気的接続部の外側面と前記固体電解質の外側面とに掛け渡すようにガスシール層が設けられていることを特徴とする。
また、本発明の固体酸化物形燃料電池セルは、ガス流路が内部に形成された平板状の多孔質の支持基板と、該平板状の支持基板の主面における互いに離れた複数の箇所にそれぞれ設けられ、少なくとも燃料極、固体電解質および空気極が積層されてなる複数の発電素子部と、隣り合う前記発電素子部の間にそれぞれ設けられ、一方の前記発電素子部の燃料極と他方の前記発電素子部の空気極とを電気的に接続する電気的接続部とを備えるとともに、前記支持基板の主面における前記複数の箇所に、底壁と周方向に閉じた側壁とを有する第1凹部がそれぞれ設けられ、該各第1凹部に、対応する前記発電素子部の燃料極の集電部がそれぞれ埋設され、該第1凹部に埋設された燃料極集電部の外側面に形成された第2凹部に、前記燃料極集電部に対してイオン伝導性を有する物質の含有割合が多い燃料極活性部が埋設され、前記第1凹部に埋設された燃料極集電部の前記第2凹部が形成された位置と異なる位置の外側面に形成された第3凹部に、前記電気的接続部が埋設され、前記第2凹部に埋設された燃料極活性部の外側面に形成された第4凹部に前記固体電解質が埋設され、前記支持基板の外側面に、前記電気的接続部の外側面と前記固体電解質の外側面とに掛け渡すようにガスシール層が設けられていることを特徴とする。
本発明の固体酸化物形燃料電池セルは、固体電解質を燃料極集電部の第2凹部、または燃料極活性部の第4凹部に埋設したので、固体電解質を薄く形成することができ、発電素子部の発電性能を向上できるとともに、支持基板の外側面と、固体電解質の外側面と、燃料極集電部に埋設された電気的接続部の外側面とを、段差の殆どない面とすることが可能となり、支持基板の外側面に、電気的接続部の外側面と固体電解質の外側面とに掛け渡すように設けられたガスシール層によるガスシール性能を向上できる。
(a)は固体酸化物形燃料電池セルを示す斜視図、(b)は凹部内に燃料極、インターコネクタが埋設された状態を示す平面図である。 (a)は図1(a)に示す固体酸化物形燃料電池セルの2−2線に対応する断面図、(b)は第1凹部およびその近傍を示す断面図である。 図1に示す固体酸化物形燃料電池セルの作動状態を説明するための図である。 図1に示す支持基板を示す斜視図である。 (a)は図4の7−7線に対応する断面図、(b)は凹部内に各層を形成した状態を示す断面図である。 (a)は燃料極活性部の第4凹部に固体電解質を埋設した状態を示す断面図、(b)は、固体電解質の外周部が燃料極の活性部の外周からはみ出るように、固体電解質が燃料極の活性部に積層されている状態を示す断面図である。
図1(a)は、本発明の実施形態に係る固体酸化物形燃料電池セル(以下、セルということがある)を示すもので、このセルは、長手方向(x軸方向)を有する平板状の支持基板10の上下面(互いに平行な両側の主面(平面))のそれぞれに、電気的に直列に接続された複数(本形態では、4つ)の同形の発電素子部Aが長手方向において所定の間隔をおいて配置された、所謂「横縞型」と呼ばれる構造を有している。
このセルを上方からみた形状は、例えば、長手方向の辺の長さが5〜50cmで、長手方向に直交する幅方向(y軸方向)の長さが1〜10cmの長方形である。このセルの厚さは、1〜5mmである。このセルは、厚さ方向の中心を通り且つ支持基板10の主面に平行な面に対して上下対称の形状を有する。以下、図1(a)に加えて、このセルの図1(a)に示す2−2線に対応する部分断面図である図2(a)を参照しながら、このセルの詳細について説明する。図2(a)は、代表的な1組の隣り合う発電素子部A、Aのそ
れぞれの構成(の一部)、並びに、発電素子部A、A間の構成を示す部分断面図である。その他の組の隣り合う発電素子部A、A間の構成も、図2(a)に示す構成と同様である。
支持基板10は、電子伝導性を有さない(絶縁性)多孔質の材料からなる平板状の焼成体である。支持基板10の内部には、長手方向に延びる複数(本形態では、6本)の燃料ガス流路11(貫通孔)が幅方向において所定の間隔をおいて形成されている。本形態では、支持基板10の主面における複数の箇所に、それぞれ第1凹部12が形成されており、各第1凹部12は、支持基板10の材料からなる底壁と、全周に亘って支持基板10の材料からなる周方向に閉じた側壁(長手方向に沿う2つの側壁と幅方向に沿う2つの側壁)と、で画定された直方体状の窪みである。
支持基板10は、「遷移金属酸化物又は遷移金属」と、絶縁性セラミックスとを含んで構成され得る。「遷移金属酸化物又は遷移金属」としては、NiO(酸化ニッケル)又はNi(ニッケル)が好適である。遷移金属は、燃料ガスの改質反応を促す触媒(炭化水素系のガスの改質触媒)として機能し得る。
また、絶縁性セラミックスとしては、MgO(酸化マグネシウム)、又は、「MgAl(マグネシアアルミナスピネル)とMgO(酸化マグネシウム)の混合物」が好適である。また、絶縁性セラミックスとして、CSZ(カルシア安定化ジルコニア)、YSZ(8YSZ)(イットリア安定化ジルコニア)、Y(イットリア)が使用されてもよい。
このように、支持基板10が「遷移金属酸化物又は遷移金属」を含むことによって、改質前の残存ガス成分を含んだガスが多孔質の支持基板10の内部の多数の気孔を介して燃料ガス流路11から燃料極に供給される過程において、上記触媒作用によって改質前の残存ガス成分の改質を促すことができる。加えて、支持基板10が絶縁性セラミックスを含むことによって、支持基板10の絶縁性を確保することができる。この結果、隣り合う燃料極間における絶縁性が確保され得る。
支持基板10の厚さは、1〜5mmである。以下、この構造体の形状が上下対称となっていることを考慮し、説明の簡便化のため、支持基板10の上面側の構成についてのみ説明していく。支持基板10の下面側の構成についても同様である。
図2に示すように、支持基板10の上面(上側の主面)に形成された各第1凹部12内には、燃料極集電部21の全体が埋設(充填)されている。従って、各燃料極集電部21は直方体状を呈している。各燃料極集電部21の上面(外側面)には、第2凹部21aが形成されている。各第2凹部21aは、図1(b)に示すように、燃料極集電部21の材料からなる底壁と、周方向に閉じた側壁(長手方向に沿う2つの側壁と幅方向に沿う2つの側壁)と、で画定された直方体状の窪みである。周方向に閉じた側壁のうち、長手方向に沿う2つの側壁は支持基板10の材料からなり、幅方向に沿う2つの側壁は燃料極集電部21の材料からなる。
各第2凹部21aには、燃料極活性部22の全体が埋設(充填)され、さらに固体電解質41の全体が埋設(充填)され、燃料極活性部22の上面に固体電解質41が積層されている。従って、各燃料極活性部22、固体電解質41は直方体状を呈している。燃料極集電部21と燃料極活性部22とにより燃料極20が構成される。燃料極20(燃料極集電部21+燃料極活性部22)は、電子伝導性を有する多孔質の材料からなる焼成体である。各燃料極活性部22、固体電解質41の幅方向に沿う2つの側面は、第2凹部21a内で燃料極集電部21と接触している。
各燃料極集電部21の上面(外側面)における第2凹部21aを除いた部分には、第3凹部21bが形成されている。各第3凹部21bは、燃料極集電部21の材料からなる底壁と、周方向に閉じた側壁(長手方向に沿う2つの側壁と幅方向に沿う2つの側壁)と、で画定された直方体状の窪みである。周方向に閉じた側壁のうち、長手方向に沿う2つの側壁は、支持基板10の材料からなり、幅方向に沿う2つの側壁は燃料極集電部21の材料からなる。なお、図1(b)では、第2凹部21a内の燃料極活性部22に固体電解質41が積層されることになる。
各第3凹部21bには、インターコネクタ30が埋設(充填)されている。従って、各インターコネクタ30は直方体状を呈している。インターコネクタ30は、電子伝導性を有する緻密な材料からなる焼成体である。各インターコネクタ30の幅方向に沿う2つの側面と底面とは、凹部21b内で燃料極集電部21と接触している。
固体電解質41の上面(外側面)と、インターコネクタ30の上面(外側面)と、支持基板10の主面とにより、1つの平面(凹部12が形成されていない場合の支持基板10の主面と同じ平面)が構成されている。すなわち、固体電解質41の上面とインターコネクタ30の上面と支持基板10の主面との間で、段差が形成されていない。
燃料極活性部22は、例えば、NiO(酸化ニッケル)とYSZ(イットリア安定化ジルコニア)とから構成され得る。あるいは、NiO(酸化ニッケル)とGDC(ガドリニウムドープセリア)とから構成されてもよい。燃料極集電部21は、例えば、NiO(酸化ニッケル)とYSZ(イットリア安定化ジルコニア)とから構成され得る。あるいは、NiO(酸化ニッケル)とY(イットリア)とから構成されてもよいし、NiO(酸化ニッケル)とCSZ(カルシア安定化ジルコニア)とから構成されてもよい。燃料極活性部22の厚さは、5〜30μmであり、燃料極集電部21の厚さ(すなわち、第1凹部12の深さ)は、50〜500μmである。
このように、燃料極集電部21は、電子伝導性を有する物質を含んで構成される。燃料極活性部22は、電子伝導性を有する物質と酸化性イオン(酸素イオン)伝導性を有する物質とを含んで構成される。燃料極活性部22における「気孔部分を除いた全体積に対する酸化性イオン伝導性を有する物質の体積割合」は、燃料極集電部21における「気孔部分を除いた全体積に対する酸化性イオン伝導性を有する物質の体積割合」よりも大きい。
インターコネクタ30は、例えば、LaCrO(ランタンクロマイト)から構成され得る。あるいは、(Sr,La)TiO(ストロンチウムチタネート)から構成されてもよい。インターコネクタ30の厚さは、10〜100μmである。
燃料極20がそれぞれの第1凹部12に埋設された状態の支持基板10における長手方向に延びる外周面において、複数のインターコネクタ30が形成されたそれぞれの部分の長手方向中央部と、固体電解質41の長手方向中央部とを除いた全面は、ガスシール層40により覆われている。固体電解質41は、イオン伝導性を有し且つ電子伝導性を有さない緻密な材料からなる焼成体である。固体電解質41は、例えば、YSZ(イットリア安定化ジルコニア)から構成され得る。あるいは、LSGM(ランタンガレート)から構成されてもよい。固体電解質41の厚さは、3〜50μmである。
ガスシール層40は、電気絶縁性の緻密な材料からなる焼成体である。ガスシール層40は、例えば、絶縁性セラミックスを主体としておりMgO(酸化マグネシウム)、MgAl(マグネシアスピネル)が好適である。またCSZ、3YSZ、Y(イ
ットリア)、TiOなどが使用されてもよい。厚さは、20〜100μmが望ましく、
固体電解質41の厚さよりも厚く形成されている。
すなわち、燃料極20がそれぞれの凹部に埋設された状態の支持基板10における長手方向に延びる外周面の全面は、インターコネクタ30と、固体電解質41と、ガスシール層40とからなる緻密層により覆われている。この緻密層は、緻密層の内側の空間を流れる燃料ガスと緻密層の外側の空間を流れる空気との混合を防止するガスシール機能を発揮する。
なお、図2に示すように、本形態では、ガスシール層40が、固体電解質41の上面における長手方向の両側端部、インターコネクタ30の上面における長手方向の両側端部、および支持基板10の主面を覆っている。ここで、上述したように、固体電解質41の上面とインターコネクタ30の上面と支持基板10の主面との間で段差が形成されていない。従って、ガスシール層40が平坦化されている。この結果、ガスシール層40に段差が形成される場合に比して、応力集中に起因するガスシール層40でのクラックの発生が抑制され得、ガスシール層40が有するガスシール機能の低下が抑制され得る。
また、固体電解質41とは別個にガスシール層40を設けたので、固体電解質41、ガスシール層40の厚みをそれぞれ別個に制御することができ、固体電解質41の厚みを薄く、ガスシール層40の厚みを厚くでき、発電性能を向上できるとともに、ガスシール層40によるガスシール性を向上できる。
固体電解質41の上面には、反応防止膜50を介して空気極60が形成されている。反応防止膜50は、緻密な材料からなる焼成体であり、空気極60は、電子伝導性を有する多孔質の材料からなる焼成体である。反応防止膜50および空気極60を上方からみた形状は、燃料極活性部22と略同一の長方形である。
反応防止膜50は、例えば、GDC=(Ce,Gd)O(ガドリニウムドープセリア)から構成され得る。反応防止膜50の厚さは、3〜50μmである。空気極60は、例えば、LSCF=(La,Sr)(Co,Fe)O(ランタンストロンチウムコバルトフェライト)から構成され得る。あるいは、LSF=(La,Sr)FeO(ランタンストロンチウムフェライト)、LNF=La(Ni,Fe)O(ランタンニッケルフェライト)、LSC=(La,Sr)CoO(ランタンストロンチウムコバルタイト)等から構成されてもよい。また、空気極60は、LSCFからなる第1層(内側層)とLSCからなる第2層(外側層)との2層によって構成されてもよい。空気極60の厚さは、10〜100μmである。
なお、反応防止膜50が介装されるのは、セル作製時又は作動中のセル内において固体電解質41内のYSZと空気極60内のSrとが反応して固体電解質41と空気極60との界面に電気抵抗が大きい反応層が形成される現象の発生を抑制するためである。
ここで、燃料極20と、固体電解質41と、反応防止膜50と、空気極60とが積層されてなる積層体が、「発電素子部A」に対応する(図2を参照)。すなわち、支持基板10の上面には、複数(本形態では、4つ)の発電素子部Aが、長手方向において所定の間隔をおいて配置されている。
隣り合う発電素子部A、Aについて、他方の(図2(a)では、左側の)発電素子部Aの空気極60と、一方の(図2(a)では、右側の)発電素子部Aのインターコネクタ30とを跨ぐように、空気極60、ガスシール層40およびインターコネクタ30の上面に、空気極集電膜70が形成されている。空気極集電膜70は、電子伝導性を有する多孔質の材料からなる焼成体である。空気極集電膜70を上方からみた形状は、長方形である。
空気極集電膜70は、例えば、LSCF=(La,Sr)(Co,Fe)O(ランタンストロンチウムコバルトフェライト)から構成され得る。あるいは、LSC=(La,Sr)CoO(ランタンストロンチウムコバルタイト)から構成されてもよい。あるいは、Ag(銀)、Ag−Pd(銀パラジウム合金)から構成されてもよい。空気極集電膜70の厚さは、50〜500μmである。
このように各空気極集電膜70が形成されることにより、隣り合う発電素子部A、Aについて、他方の(図2(a)では、左側の)発電素子部Aの空気極60と、一方の(図2(a)では、右側の)発電素子部Aの燃料極20(特に、燃料極集電部21)とが、電子伝導性を有する「空気極集電膜70およびインターコネクタ30」を介して電気的に接続される。
この結果、支持基板10の上面に配置されている複数(本形態では、4つ)の発電素子部Aが電気的に直列に接続される。ここで、電子伝導性を有する「空気極集電膜70およびインターコネクタ30」が、「電気的接続部」に対応する。
なお、インターコネクタ30は、「電気的接続部」における「緻密な材料で構成された第1部分」に対応し、気孔率は10%以下である。空気極集電膜70は、「電気的接続部」における「多孔質の材料で構成された第2部分」に対応し、気孔率は20〜60%である。
以上、説明した「横縞型」のセルに対して、図3に示すように、支持基板10の燃料ガス流路11内に燃料ガス(水素ガス等)を流すとともに、支持基板10の上下面(特に、各空気極集電膜70)を「酸素を含むガス」(空気等)に曝す(あるいは、支持基板10の上下面に沿って酸素を含むガスを流す)ことにより、固体電解質41の両側面間に生じる酸素分圧差によって起電力が発生する。更に、この構造体を外部の負荷に接続すると、下記(1)、(2)式に示す化学反応が起こり、電流が流れる(発電状態)。
(1/2)・O+2e→O2−(於:空気極60) …(1)
+O2−→HO+2e
(於:燃料極20) …(2)
発電状態においては、図2(a)に示すように、隣り合う発電素子部A、Aについて、電流が、矢印で示すように流れる。この結果、セル全体から(具体的には、図3において最も手前側の発電素子部Aのインターコネクタ30と最も奥側の発電素子部Aの空気極60とを介して)電力が取り出される。
(製造方法)
次に、図1に示した「横縞型」のセルの製造方法の一例について図4〜図5を参照しながら簡単に説明する。図4〜図5において、各部材の符号の末尾の「g」は、その部材が「焼成前」であることを表す。
先ず、図4に示す形状を有する支持基板の成形体10gを作製する。この支持基板の成形体10gは、例えば、支持基板10の材料(例えば、NiO+MgO+MgAl)の粉末にバインダー等が添加されて得られるスラリーを用いて、押し出し成形、切削等の手法を利用して作製する。
次に、図5に示すように、各第1凹部内に、燃料極集電部の成形体21gをそれぞれ埋設・形成する。次いで、各燃料極集電部の成形体21gの外側面に形成された各第2凹部に、燃料極活性部の成形体22g、固体電解質41の成形膜41gをそれぞれ埋設・形成
する。また、各燃料極集電部の成形体21g、および各燃料極活性部の成形体22gは、例えば、燃料極20の材料(例えば、NiとYSZ)の粉末にバインダー等が添加されて得られるスラリーを用いて、印刷法等を利用して埋設・形成する。
固体電解質の成形膜41gは、例えば、固体電解質41の材料(例えば、YSZ)の粉末にバインダー等が添加されて得られるスラリーを用いて、印刷法、ディッピング法等を利用して形成する。
続いて、各燃料極集電部の成形体21gの外側面における「燃料極活性部の成形体22g、固体電解質の成形膜41gが埋設された部分を除いた部分」に形成された各第3凹部に、インターコネクタの成形体30gをそれぞれ埋設・形成する。各インターコネクタの成形体30gは、例えば、インターコネクタ30の材料(例えば、LaCrO)の粉末にバインダー等が添加されて得られるスラリーを用いて、印刷法等を利用して埋設・形成する。
次に、複数の燃料極の成形体(21g+22g)、固体電解質の成形膜41gおよび複数のインターコネクタの成形体30gがそれぞれ埋設・形成された状態の支持基板の成形体10gにおける長手方向に延びる外周面において複数のインターコネクタの成形体30gが形成されたそれぞれの部分の長手方向中央部、および固体電解質の成形体41gの長手方向中央部を除いた全面に、ガスシール層の成形膜を形成する。
ガスシール層の成形膜は、例えば、ガスシール層40の材料(例えば、NiO+MgO+MgAl)の粉末にバインダー等が添加されて得られるスラリーを用いて、印刷法、ディッピング法等を利用して形成する。
次に、固体電解質の成形体41gの外側面に、反応防止膜の成形膜を形成する。各反応防止膜の成形膜は、例えば、反応防止膜50の材料(例えば、GDC)の粉末にバインダー等が添加されて得られるスラリーを用いて、印刷法等を利用して形成する。
そして、このように種々の成形膜が形成された状態の支持基板の成形体10gを、例えば、空気中にて1500℃で3時間焼成する。これにより、図1に示したセルにおいて空気極60および空気極集電膜70が形成されていない状態の構造体を得る。
次に、各反応防止膜50の外側面に、空気極の成形膜を形成する。各空気極の成形膜は、例えば、空気極60の材料(例えば、LSCF)の粉末にバインダー等が添加されて得られるスラリーを用いて、印刷法等を利用して形成する。
次に、隣り合う発電素子部Aについて、他方の発電素子部Aの空気極60の成形膜と、一方の発電素子部Aのインターコネクタ30とを跨ぐように、空気極集電膜の成形膜を形成する。各空気極集電膜の成形膜は、例えば、空気極集電膜70の材料(例えば、LSCF)の粉末にバインダー等が添加されて得られるスラリーを用いて、印刷法等を利用して形成する。
そして、このように成形膜が形成された状態の支持基板10を、例えば、空気中にて1050℃で3時間焼成する。これにより、図1に示したセルを得る。
(作用・効果)
上記形態のセルでは、ガスシール層40が、固体電解質41の外側面における長手方向の両側端部、インターコネクタ30の外側面における長手方向の両側端部、および支持基板10の主面を覆っている。ここで、固体電解質41の外側面とインターコネクタ30の
外側面と支持基板10の主面との間で段差が形成されていない。従って、ガスシール層40が平坦化されている。この結果、ガスシール層40に段差が形成される場合に比して、応力集中に起因するガスシール層40でのクラックの発生が抑制され得、ガスシール層40が有するガスシール機能の低下が抑制され得る。さらに、固体電解質41とは別個にガスシール層40を設けたため、固体電解質41の厚みを薄くすると同時に、ガスシール層40の厚みを厚くすることができ、発電性能を向上できるとともに、ガスシール性能を向上できる。
また、支持基板10の上下面に形成されている、燃料極20(燃料極集電部21)を埋設するための複数の第1凹部12のそれぞれが、全周に亘って支持基板10の材料からなる周方向に閉じた側壁を有している。換言すれば、支持基板10において各第1凹部12を囲む枠体がそれぞれ形成されている。従って、この構造体は、支持基板10が外力を受けた場合に変形し難い。
また、支持基板10の各凹部内に燃料極20(燃料極集電部21+燃料極活性部22)およびインターコネクタ30等の部材が隙間なく充填・埋設された状態で、支持基板10と前記埋設された部材とが共焼結される。従って、部材間の接合性が高く且つ信頼性の高い焼結体が得られる。
また、上記実施形態では、平板状の支持基板10の上下面のそれぞれに、複数の発電素子部Aが設けられている。これにより、支持基板の片側面のみに複数の発電素子部が設けられる場合に比して、構造体中における発電素子部の数を多くでき、燃料電池の発電出力を高めることができる。
なお、本発明は上記実施形態に限定されることはなく、本発明の範囲内において種々の変形例を採用することができる。例えば、上記実施形態では、図4等に示すように、支持基板10に形成された第1凹部12の平面形状(支持基板10の主面に垂直の方向からみた場合の形状)が、長方形になっているが、例えば、正方形、円形、楕円形、長穴形状等であってもよい。
また、上記実施形態においては、平板状の支持基板10の上下面のそれぞれに複数の第1凹部12が形成され且つ複数の発電素子部Aが設けられているが、支持基板10の片側面のみに複数の第1凹部12が形成され且つ複数の発電素子部Aが設けられていてもよい。
さらに、上記形態では、第2凹部21a内に燃料極集電部21と固体電解質41を埋設したが、第2凹部21a内に燃料極集電部21、固体電解質41および反応防止層50を埋設しても良い。この場合には、さらにガスシール層40が平坦化され、ガスシール層40が有するガスシール性能を向上できる。
図6(a)は、他の形態を示すもので、この形態では、第2凹部21aに埋設された燃料極活性部22の外側面に形成された第4凹部45に、固体電解質41が埋設され、支持基板10の外側面に、インターコネクタ30の一部外側面と固体電解質41の一部外側面とに掛け渡すようにガスシール層40が設けられている。
このようなセルでは、固体電解質41の下面および側面を燃料極活性部22が覆うため、発電面積が増加し、発電性能を向上できる。なお、この場合についても、第4凹部45に固体電解質41と反応防止層50を埋設しても良いことは勿論である。
図6(b)は、さらに他の形態を示すもので、この形態では、第2凹部21aが、燃料
極活性部用の凹部21a1と、固体電解質用の凹部21a2とから構成されており、平面視した時に、固体電解質用の凹部21a2は、燃料極活性部用の凹部21a1の面積よりも広く形成され、それぞれの凹部21a1、21a2に、燃料極活性部22、固体電解質41が埋設された場合には、固体電解質41の外周部が燃料極活性部22の外周からはみ出るように、固体電解質41が燃料極活性部22に積層されている。
このようなセルでは、燃料極活性部22−燃料極集電部21界面と、固体電解質41−燃料極集電部21界面とが重ならないため、焼成収縮等による界面剥離を生じることを防ぐことができ、かつ、ガスシール層40が封止する界面は増加しないため、ガスシール性を向上でき、燃料利用率等を向上させることができる。
10・・・支持基板
11・・・燃料ガス流路
12・・・第1凹部
20・・・燃料極
21・・・燃料極集電部
21a・・・第2凹部
21b・・・第3凹部
22・・・燃料極活性部
30・・・インターコネクタ
40・・・ガスシール層
41・・・固体電解質
45・・・第4凹部
A・・・発電素子

Claims (4)

  1. ガス流路が内部に形成された平板状の多孔質の支持基板と、
    該平板状の支持基板の主面における互いに離れた複数の箇所にそれぞれ設けられ、少なくとも燃料極、固体電解質および空気極が積層されてなる複数の発電素子部と、
    隣り合う前記発電素子部の間にそれぞれ設けられ、一方の前記発電素子部の燃料極と他方の前記発電素子部の空気極とを電気的に接続する電気的接続部とを備えるとともに、
    前記支持基板の主面における前記複数の箇所に、底壁と周方向に閉じた側壁とを有する第1凹部がそれぞれ設けられ、該各第1凹部に、対応する前記発電素子部の燃料極の集電部がそれぞれ埋設され、該第1凹部に埋設された燃料極集電部の外側面に形成された第2凹部に、前記燃料極集電部に対してイオン伝導性を有する物質の含有割合が多い燃料極活性部および前記固体電解質がそれぞれ埋設され、前記第1凹部に埋設された燃料極集電部の前記第2凹部が形成された位置と異なる位置の外側面に形成された第3凹部に、前記電気的接続部が埋設され、前記支持基板の外側面に、前記電気的接続部の外側面と前記固体電解質の外側面とに掛け渡すようにガスシール層が設けられていることを特徴とする固体酸化物形燃料電池セル。
  2. 前記固体電解質の外周部が前記燃料極活性部の外周からはみ出るように、前記固体電解質が前記燃料極活性部に積層されていることを特徴とする請求項1に記載の固体酸化物形燃料電池セル。
  3. ガス流路が内部に形成された平板状の多孔質の支持基板と、
    該平板状の支持基板の主面における互いに離れた複数の箇所にそれぞれ設けられ、少なくとも燃料極、固体電解質および空気極が積層されてなる複数の発電素子部と、
    隣り合う前記発電素子部の間にそれぞれ設けられ、一方の前記発電素子部の燃料極と他方の前記発電素子部の空気極とを電気的に接続する電気的接続部とを備えるとともに、
    前記支持基板の主面における前記複数の箇所に、底壁と周方向に閉じた側壁とを有する第1凹部がそれぞれ設けられ、該各第1凹部に、対応する前記発電素子部の燃料極の集電部がそれぞれ埋設され、該第1凹部に埋設された燃料極集電部の外側面に形成された第2凹部に、前記燃料極集電部に対してイオン伝導性を有する物質の含有割合が多い燃料極活性部が埋設され、前記第1凹部に埋設された燃料極集電部の前記第2凹部が形成された位置と異なる位置の外側面に形成された第3凹部に、前記電気的接続部が埋設され、前記第2凹部に埋設された燃料極活性部の外側面に形成された第4凹部に前記固体電解質が埋設され、前記支持基板の外側面に、前記電気的接続部の外側面と前記固体電解質の外側面とに掛け渡すようにガスシール層が設けられていることを特徴とする固体酸化物形燃料電池セル。
  4. 前記ガスシール層は、前記固体電解質の厚みよりも厚いことを特徴とする請求項1乃至3のうち何れかに記載の固体酸化物形燃料電池セル。
JP2013036037A 2013-02-26 2013-02-26 固体酸化物形燃料電池セル Active JP6039459B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013036037A JP6039459B2 (ja) 2013-02-26 2013-02-26 固体酸化物形燃料電池セル

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013036037A JP6039459B2 (ja) 2013-02-26 2013-02-26 固体酸化物形燃料電池セル

Publications (2)

Publication Number Publication Date
JP2014165067A true JP2014165067A (ja) 2014-09-08
JP6039459B2 JP6039459B2 (ja) 2016-12-07

Family

ID=51615494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013036037A Active JP6039459B2 (ja) 2013-02-26 2013-02-26 固体酸化物形燃料電池セル

Country Status (1)

Country Link
JP (1) JP6039459B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015069701A (ja) * 2013-09-26 2015-04-13 京セラ株式会社 固体酸化物形燃料電池セル
JP2016058359A (ja) * 2014-09-12 2016-04-21 京セラ株式会社 横縞型固体酸化物形燃料電池セル
JP6244052B1 (ja) * 2016-08-26 2017-12-06 日本碍子株式会社 燃料電池スタック
JP2018041557A (ja) * 2016-09-05 2018-03-15 日本碍子株式会社 燃料電池セル

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005174722A (ja) * 2003-12-10 2005-06-30 Mitsubishi Heavy Ind Ltd 固体酸化物型燃料電池、水電解セル、及び固体酸化物型燃料電池の製造方法
JP2012038718A (ja) * 2010-07-15 2012-02-23 Ngk Insulators Ltd 燃料電池の構造体
JP2012114074A (ja) * 2010-11-01 2012-06-14 Ngk Insulators Ltd 固体酸化物型燃料電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005174722A (ja) * 2003-12-10 2005-06-30 Mitsubishi Heavy Ind Ltd 固体酸化物型燃料電池、水電解セル、及び固体酸化物型燃料電池の製造方法
JP2012038718A (ja) * 2010-07-15 2012-02-23 Ngk Insulators Ltd 燃料電池の構造体
JP2012038717A (ja) * 2010-07-15 2012-02-23 Ngk Insulators Ltd 燃料電池の構造体
JP2012114074A (ja) * 2010-11-01 2012-06-14 Ngk Insulators Ltd 固体酸化物型燃料電池

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015069701A (ja) * 2013-09-26 2015-04-13 京セラ株式会社 固体酸化物形燃料電池セル
JP2016058359A (ja) * 2014-09-12 2016-04-21 京セラ株式会社 横縞型固体酸化物形燃料電池セル
JP6244052B1 (ja) * 2016-08-26 2017-12-06 日本碍子株式会社 燃料電池スタック
JP2018037400A (ja) * 2016-08-26 2018-03-08 日本碍子株式会社 燃料電池スタック
JP2018041557A (ja) * 2016-09-05 2018-03-15 日本碍子株式会社 燃料電池セル

Also Published As

Publication number Publication date
JP6039459B2 (ja) 2016-12-07

Similar Documents

Publication Publication Date Title
JP4850980B1 (ja) 燃料電池の構造体
JP6169930B2 (ja) 固体酸化物形燃料電池セル
JP5117600B2 (ja) 燃料電池の構造体
JP2013110092A (ja) 燃料電池の構造体
JP5646779B2 (ja) 燃料電池
JP4883733B1 (ja) 燃料電池の構造体
JP6039459B2 (ja) 固体酸化物形燃料電池セル
JP6158659B2 (ja) 固体酸化物形燃料電池セル
JP5443648B1 (ja) 燃料電池の構造体
JP4846061B1 (ja) 燃料電池の構造体
JP5116182B1 (ja) 燃料電池の構造体
JP2012138338A (ja) 燃料電池セル
JP5075268B1 (ja) 燃料電池の構造体
JP6169932B2 (ja) 固体酸化物形燃料電池セル
JP2014165000A (ja) 固体酸化物形燃料電池セル
JP6301790B2 (ja) 横縞型固体酸化物形燃料電池セル
JP5050124B1 (ja) 燃料電池の構造体
JP5417548B2 (ja) 燃料電池の構造体
JP5062786B1 (ja) 燃料電池の構造体
JP6972307B2 (ja) 固体酸化物形燃料電池セル
JP6039461B2 (ja) 固体酸化物形燃料電池セル
JP6039463B2 (ja) 固体酸化物形燃料電池セル
JP2013093180A (ja) 燃料電池の構造体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161104

R150 Certificate of patent or registration of utility model

Ref document number: 6039459

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150