JP2014163012A - Production method of acrylic precursor fiber for carbon fiber, and production method of carbon fiber - Google Patents

Production method of acrylic precursor fiber for carbon fiber, and production method of carbon fiber Download PDF

Info

Publication number
JP2014163012A
JP2014163012A JP2013035429A JP2013035429A JP2014163012A JP 2014163012 A JP2014163012 A JP 2014163012A JP 2013035429 A JP2013035429 A JP 2013035429A JP 2013035429 A JP2013035429 A JP 2013035429A JP 2014163012 A JP2014163012 A JP 2014163012A
Authority
JP
Japan
Prior art keywords
fiber
oil agent
oil
carbon fiber
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013035429A
Other languages
Japanese (ja)
Other versions
JP6107222B2 (en
Inventor
Masashi Tokuda
政志 徳田
Toru Hayano
徹 早野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2013035429A priority Critical patent/JP6107222B2/en
Publication of JP2014163012A publication Critical patent/JP2014163012A/en
Application granted granted Critical
Publication of JP6107222B2 publication Critical patent/JP6107222B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Artificial Filaments (AREA)
  • Inorganic Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high quality carbon fiber by which an acryl precursor fiber in which appearance quality is favorable under the high-speed spinning is obtained by a production method in which an oil solution is uniformly imparted to a bundle inside without breaking a fiber in an oil solution process in a production process of the acrylic precursor fiber for the carbon fiber.SOLUTION: A production method of an acrylic precursor fiber for a carbon fiber is characterized in that in a method for producing an acrylic precursor fiber, when a fiber obtained by which an acrylic polymer is performed by spinning twist by a dry wet type spinning or wet type spinning method, is performed by water washing and bath drawing, then imparted by an oil solution by an oil solution process, a fiber swelling degree just before being introduced in the oil solution process is in a range of 90 to 230%, an average fiber density in the oil solution process is 80 to 220 tex/mm, and an average fiber tensile force is in a range of 0.6 to 1.3 g/tex, imparting of the oil solution to the fiber is performed by using a water dispersion liquid in which the oil solution is performed by water dispersion.

Description

本発明は、アクリル系前駆体繊維の製造工程(製糸工程)において高い生産性を保ちながら、品位・操業性に優れ、かつ高品質の炭素繊維用アクリル系前駆体繊維を製造する方法、および炭素繊維の製造方法に関するものである。   The present invention relates to a method for producing a high-quality acrylic precursor fiber for carbon fiber, which is excellent in quality and operability while maintaining high productivity in the production process (spinning process) of acrylic precursor fiber, and carbon. The present invention relates to a fiber manufacturing method.

炭素繊維は、その比強度、比弾性率が高い特徴を生かして航空・宇宙用途をはじめとしたあらゆる用途に展開されている。特にポリアクリロニトリル系前駆体繊維を出発原料とした炭素繊維は、比強度が高く加工性も優れているため広く利用される。近年、炭素繊維の需要拡大に伴い低コスト化の要望が高く、製造プロセスのさらなる高速化が求められてきている。一般的にポリアクリロニトリル系炭素繊維は、前駆体繊維を酸化性雰囲気中で220〜300℃に加熱(耐炎化処理)して耐炎化繊維に転換後、不活性雰囲気中で1000℃以上に加熱(炭素化処理)して得られるが、製造過程で単繊維同士の接着が発生すると毛羽が発生し、操業性が悪化するとともに強度低下が著しくなる。この問題を解決するため、前駆体繊維の製造工程においては、主に耐熱性・離型性に優れた各種変性シリコーンを主成分とする油剤を前駆体繊維に付与することで接着抑制を図る多数の提案がなされている。油剤は、出来るだけ少ない量で単繊維に均一に付与され油剤皮膜を形成することが理想的であり、油剤付与の際には走行する繊維を一定張力で拡幅し、繊維の束内まで油剤を速やかに浸透させることが重要であり、適切な範囲のオイル粘度から選択された油剤を繊維に付与することにより均一付与の相乗効果を高めることができる。   Carbon fiber has been developed for a variety of applications including aerospace applications, taking advantage of its high strength and specific modulus. In particular, carbon fibers using polyacrylonitrile-based precursor fibers as starting materials are widely used because of their high specific strength and excellent processability. In recent years, as demand for carbon fibers has increased, there has been a high demand for cost reduction, and a further increase in production process has been demanded. Generally, polyacrylonitrile-based carbon fibers are heated to 220-300 ° C. in a oxidizing atmosphere (flame-proofing treatment) to convert the precursor fibers into flame-resistant fibers, and then heated to 1000 ° C. or more in an inert atmosphere ( It can be obtained by carbonization treatment, but if adhesion of single fibers occurs in the production process, fluff is generated, the operability is deteriorated and the strength is significantly reduced. In order to solve this problem, in the precursor fiber manufacturing process, a large number of adhesive agents are mainly controlled by applying an oil agent mainly composed of various modified silicones having excellent heat resistance and releasability to the precursor fiber. Proposals have been made. Ideally, the oil agent should be uniformly applied to a single fiber in as little amount as possible to form an oil agent film, and when applying the oil agent, the traveling fiber is widened with a constant tension, and the oil agent is spread into the fiber bundle. It is important to quickly infiltrate, and the synergistic effect of uniform application can be enhanced by applying to the fiber an oil agent selected from an appropriate range of oil viscosity.

さらに、油剤工程に導入する直前の繊維膨潤度を特定の範囲に保つことは製糸工程ならびに焼成工程での品質・操業性を高めるための重要なファクターの一つであり、膨潤度が高すぎる(糸の緻密性が低い)と油剤が単繊維内部まで浸透し、単繊維表面に付与する油剤が少なくなるため、接着が発生し操業性の悪化および炭素繊維の品質低下の懸念が生じる。また、膨潤度が低すぎる(糸の緻密性が高い)と繊維の集束性が高すぎて油剤が繊維の束内まで浸透しにくくなるため、均一に油剤を付与することが困難になる。   Furthermore, keeping the fiber swelling degree just before introduction into the oil agent process within a specific range is one of the important factors for improving the quality and operability in the yarn production process and the firing process, and the swelling degree is too high ( And the oil agent penetrates into the inside of the single fiber and the amount of the oil agent applied to the surface of the single fiber is reduced. Therefore, adhesion occurs and the operability deteriorates and the quality of the carbon fiber deteriorates. Further, if the degree of swelling is too low (yarn denseness is too high), the fiber converging property is too high to make it difficult for the oil agent to penetrate into the fiber bundle, making it difficult to uniformly apply the oil agent.

以下に説明する従来の技術において、これら繊維への油剤均一付与に関わる要素である繊維の糸幅、張力、油剤のオイル粘度、繊維膨潤度の観点からアプローチした技術は存在しなかった。具体的には、油剤浴中を走行するトウの間隔を、ガイドを用いて一定幅に保つことで単糸の損傷を防止し、品位・操業性向上を図ったアクリル系繊維トウの製造方法(特許文献1)、複数の繊維からなるトウに油剤を付与する際、走行するトウの幅を堰により規制する油剤付与方法(特許文献2)、または油浴中に備えた超音波発信器で油浴に振動を与えながら油剤処理する方法(特許文献3) 、多孔バスケットローラーを有するバイブロ処理機などを用いてトウ及び処理液に振動を与えながら油剤処理する方法(特許文献4)、油浴中に糸条を浸漬して油剤を付与するに際し、振動するガイドバーを糸条に接触させる方法(特許文献5)などが提案されている。   In the conventional techniques described below, there has been no technique approached from the viewpoints of the fiber width, tension, oil viscosity of the oil agent, and fiber swelling degree, which are factors involved in uniformly applying the oil agent to these fibers. Specifically, a method for producing an acrylic fiber tow that prevents damage to single yarn by maintaining a constant width of the tow traveling in the oil bath by using a guide and improving the quality and operability ( Patent Document 1), an oil application method (Patent Document 2) that regulates the width of a traveling tow by a weir when applying an oil to a tow made of a plurality of fibers, or an ultrasonic transmitter provided in an oil bath A method of treating an oil agent while applying vibration to the bath (Patent Document 3), a method of treating an oil agent while applying vibration to the tow and processing liquid using a vibro processor having a perforated basket roller (Patent Document 4), in an oil bath For example, a method of bringing a vibrating guide bar into contact with the yarn when the yarn is immersed in the oil and applying the oil agent (Patent Document 5) has been proposed.

しかしながら、特許文献1、2では油剤工程に導入する繊維密度を比較的一定に保ち、隣接する繊維との混繊を防止することで繊維の損傷を防止することが可能だが、繊維張力、油剤のオイル粘度、ならびに油剤付与直前の繊維膨潤度については考慮されていないため、繊維への油剤の均一付与効果が小さく、得られる炭素繊維の品質が不十分な結果であった。また、特許文献3,4では、繊維を機械的に拡幅することで繊維の束内まで油剤が浸透しやすくなり均一付与の観点から好ましいが、油剤浴中で積極的に振動を与えるのはかえって油剤自体の安定性が低下し、油剤の粒径が大きくなるため繊維への油剤付与状態が均一でなく、油剤が過剰に付与された箇所は焼成工程での表面欠陥を生成し、炭素繊維の強度低下につながる問題が生じる。   However, in Patent Documents 1 and 2, it is possible to prevent fiber damage by keeping the fiber density introduced into the oil process relatively constant and preventing mixing with adjacent fibers. Since the oil viscosity and the degree of fiber swelling immediately before application of the oil agent are not considered, the effect of uniformly applying the oil agent to the fiber is small, and the quality of the obtained carbon fiber is insufficient. Further, in Patent Documents 3 and 4, it is preferable from the viewpoint of uniform application because the oil agent easily penetrates into the fiber bundle by mechanically widening the fiber, but it is not preferable to actively vibrate in the oil agent bath. The stability of the oil agent itself decreases and the particle size of the oil agent increases, so the state of oil agent application to the fibers is not uniform, and the location where the oil agent is applied excessively generates surface defects in the firing process, There is a problem that leads to a decrease in strength.

そのほかにも、油剤槽中にネジポンプを用いて油剤圧送し、繊維束全幅に油剤を噴射する油剤付与方法(特許文献6)も提案されているが、油剤噴射の影響で隣接して走行する繊維の混繊が発生して繊維が損傷し、巻き付きや糸切れトラブルを誘発するので操業性の維持が困難である。
また、特許文献7では、アクリル繊維束に油剤処理液を接触させてから乾燥するまでの時間を規定することによって、油剤の均一付与を図る提案がなされているが、製糸速度のさらなる高速化の観点からは油剤付与後の時間を確保することは達成しがたい課題となる。
In addition to this, an oil agent application method (Patent Document 6) in which an oil agent is pumped into the oil agent tank using a screw pump and the oil agent is injected over the entire width of the fiber bundle has been proposed. It is difficult to maintain the operability because the fiber is damaged and the fiber is damaged, causing winding and thread breakage troubles.
Further, in Patent Document 7, there is a proposal for uniformly applying the oil agent by defining the time from the contact of the oil agent treatment liquid to the acrylic fiber bundle to the drying, but it is possible to further increase the yarn-making speed. From the viewpoint, securing the time after the application of the oil becomes a problem that is difficult to achieve.

さらには、油剤を付与する直前の繊維の膨潤度が高すぎると油剤が単繊維内部まで浸透しやすく表面に付与する油剤が少なくなるため、続く乾燥工程で単繊維同士が接着し、後延伸工程で単繊維切れが発生し品位・操業性の低下を招くことになり、ひいては得られる炭素繊維の強度低下に繋がる。また逆に低すぎると、繊維の収束性が高すぎて油剤が繊維の束内に浸透しにくい問題がある。たとえば、特許文献8では、延伸後の糸条の膨潤度を一定の範囲に調整してから、水溶性シリコーン油剤を付与する提案がなされているが、繊維密度、繊維張力、油剤のオイル粘度との関係が考慮されていないため、油剤工程で隣接する糸条との混繊に伴う単糸切れが発生し、品位・操業性の維持は困難な結果であり、且つ得られる炭素繊維の品質も不十分な結果であった。   Furthermore, if the degree of swelling of the fiber immediately before applying the oil agent is too high, the oil agent easily penetrates into the inside of the single fiber and the amount of oil agent applied to the surface decreases, so that the single fibers adhere to each other in the subsequent drying step, and the post-stretching step As a result, the single fiber breakage occurs, leading to a decrease in quality and operability, leading to a decrease in the strength of the resulting carbon fiber. On the other hand, if it is too low, there is a problem that the convergence property of the fiber is too high and the oil agent hardly penetrates into the fiber bundle. For example, in Patent Document 8, there is a proposal to provide a water-soluble silicone oil agent after adjusting the degree of swelling of the stretched yarn to a certain range, but the fiber density, fiber tension, oil viscosity of the oil agent and Is not taken into consideration, so single yarn breakage due to blending with adjacent yarns occurs in the oil agent process, maintaining the quality and operability is difficult, and the quality of the obtained carbon fiber is also The result was insufficient.

特許3891025号公報Japanese Patent No. 3891025 特開2009−263817号公報JP 2009-263817 A 特開昭59−204914号公報JP 59-204914 A 特公昭55−17132号公報Japanese Patent Publication No.55-17132 特開平1−266214号公報JP-A-1-266214 特開2002−249920号公報JP 2002-249920 A 特開2009−215664号公報JP 2009-215664 A 特開昭58−214517号公報JP 58-214517 A

本発明はかかる従来技術の背景に鑑み、アクリル系前駆体繊維の製造工程における油剤工程において、高い生産性を保ちながら繊維を損傷させることなく速やかに繊維の束内まで均一に油剤を付与する製造方法により、品位・操業性が良好なアクリル前駆体繊維を得て、高品質の炭素繊維を提供せんとするものである。   In view of the background of such prior art, the present invention provides an oil agent process in an acrylic precursor fiber manufacturing process that quickly and uniformly imparts an oil agent into a fiber bundle without damaging the fiber while maintaining high productivity. According to this method, acrylic precursor fibers having good quality and operability are obtained, and high-quality carbon fibers are provided.

すなわち、本発明の目的は、繊維の損傷を抑制しながら繊維の束内まで均一に油剤付与するアクリル系前駆体繊維の製造方法を提供すること、および、高い生産性を保ちながら品位ならびに操業性に優れたアクリル系前駆体繊維、ないし高品質の炭素繊維の製造方法を提供することにある。   That is, an object of the present invention is to provide a method for producing an acrylic precursor fiber that uniformly imparts an oil agent into a fiber bundle while suppressing fiber damage, and to maintain high productivity and operability. Another object of the present invention is to provide a method for producing an excellent acrylic precursor fiber or high-quality carbon fiber.

かかる課題を解決するため本発明は、アクリル系重合体を、乾湿式紡糸もしくは湿式紡糸法により紡出して得た繊維を、水洗・浴延伸後に油剤工程で油剤を付与するに際して、油剤工程に導入する直前の繊維膨潤度が90〜230%の範囲であり、油剤工程での平均繊維密度が80〜220tex/mm、ならびに平均繊維張力が0.6〜1.3g/texの範囲であり、繊維への油剤の付与を、油剤を水分散させた水分散液を用いて行うことを特徴とする炭素繊維用アクリル系前駆体繊維の製造方法である。   In order to solve such problems, the present invention introduces a fiber obtained by spinning an acrylic polymer by dry-wet spinning or wet spinning method into an oil agent process when applying an oil agent in an oil agent process after washing with water and drawing in a bath. The fiber swelling degree immediately before performing is in the range of 90 to 230%, the average fiber density in the oil agent process is in the range of 80 to 220 tex / mm, and the average fiber tension is in the range of 0.6 to 1.3 g / tex, It is a method for producing an acrylic precursor fiber for carbon fiber, characterized in that the oil agent is applied to the fiber using an aqueous dispersion in which the oil agent is dispersed in water.

また、本発明の好ましい炭素繊維用アクリル系前駆体繊維の製造方法は、前記油剤の25℃におけるオイル粘度が500〜10000cStの範囲内にあり、前記水分散液が少なくとも1種のアミノ変性シリコーンを含む水分散液である。   Moreover, the preferable method for producing an acrylic precursor fiber for carbon fiber of the present invention is such that the oil viscosity at 25 ° C. of the oil agent is in the range of 500 to 10,000 cSt, and the aqueous dispersion contains at least one amino-modified silicone. It is an aqueous dispersion containing.

また、本発明の炭素繊維の製造方法は、このようにして製造された炭素繊維用アクリル系前駆体繊維を、酸化性雰囲気中220〜300℃で焼成おこなった後、不活性雰囲気中1000℃以上で焼成して得られる、炭素繊維の製造方法である。   Further, the carbon fiber production method of the present invention is such that the acrylic precursor fiber for carbon fiber thus produced is fired at 220 to 300 ° C. in an oxidizing atmosphere, and then 1000 ° C. or more in an inert atmosphere. It is the manufacturing method of carbon fiber obtained by baking with.

本発明において、アクリル系前駆体繊維の製造工程における油剤工程に導入する直前の繊維膨潤度を制御することで単繊維内部への油剤浸透を抑制し、油剤工程での平均繊維密度、平均繊維張力を一定の範囲に制御し、繊維への油剤の付与を、油剤を水分散させた水分散液を用いて行うことにより、好ましくは、前記油剤が一定のオイル粘度の範囲内にあり、前記水分散液が少なくとも1種のアミノ変性シリコーンを含むものであることにより、繊維を損傷させることなく繊維の束内まで均一に油剤を付与することが可能となり、高い生産性を保ちながら品位・操業性に優れたアクリル系前駆体繊維を得ることができる。また、本発明のアクリル系前駆体繊維を焼成することにより、高品質の炭素繊維を得ることが可能となる。   In the present invention, by controlling the degree of fiber swelling immediately before being introduced into the oil agent process in the production process of acrylic precursor fibers, the oil agent penetration into the single fiber is suppressed, and the average fiber density and average fiber tension in the oil agent process are controlled. Is controlled within a certain range, and the oil agent is applied to the fiber using an aqueous dispersion in which the oil agent is dispersed in water, preferably, the oil agent is within a certain oil viscosity range, Since the dispersion contains at least one amino-modified silicone, it is possible to uniformly apply the oil to the fiber bundle without damaging the fiber, and it is excellent in quality and operability while maintaining high productivity. Acrylic precursor fiber can be obtained. Moreover, it becomes possible to obtain a high-quality carbon fiber by baking the acrylic precursor fiber of the present invention.

本発明者らは、高い生産性を保ちながら繊維を損傷させることなく、繊維の束内まで均一に油剤を付与する炭素繊維用アクリル系前駆体繊維の製造方法について鋭意検討し、以下の着想に至った。すなわち、油剤工程に導入する直前の繊維膨潤度、油剤工程を走行する繊維の繊維密度・繊維張力ならびに油剤のオイル粘度が繊維への油剤均一付与の観点から重要な要素であることを見出し、高い生産を保ちながら品位・操業性に優れた高品位のアクリル系前駆体繊維を得ることを可能としたのである。   The present inventors diligently studied about a method for producing an acrylic precursor fiber for carbon fiber that uniformly imparts an oil agent into the fiber bundle without damaging the fiber while maintaining high productivity, and the following idea It came. In other words, the degree of fiber swelling just before introduction into the oil agent process, the fiber density and fiber tension of the fiber running through the oil agent process, and the oil viscosity of the oil agent are important factors from the viewpoint of imparting the oil agent uniformly to the fiber. It was possible to obtain high-quality acrylic precursor fibers with excellent quality and operability while maintaining production.

ここで、本発明の炭素繊維用アクリル系前駆体繊維の製造に用いられるアクリル系重合体は、アクリロニトリルを主成分とする重合体であり、アクリロニトリルを90質量%以上99.9質量%以下と、アクリロニトリルと共重合可能な単量体とを共重合したアクリル系共重合体が好ましく用いられる。アクリロニトリルと共重合可能な単量体のうち好ましいものとしては、アクリル酸、メタクリル酸、イタコン酸、アリルスルホン酸、メタリルスルホン酸、およびそれらのアルカリ塩やアンモニウム塩、ヒドロキシエチルアクリロニトリル等があげられ、さらにアクリル酸メチルなどの第3成分を含むことも可能である。アクリル系重合体におけるアクリロニトリル共重合比率を90質量%以上とすることによって、焼成工程での繊維の減量率が大きくなりすぎたり、耐熱性が低下したりすることによる、生産性低下を防ぐことが出来る。また、99.9質量%以下とすることによって、アクリル系前駆体繊維の延伸性の低下を防止し良好なプロセス性を確保することが出来る。   Here, the acrylic polymer used for the production of the acrylic precursor fiber for carbon fiber of the present invention is a polymer mainly composed of acrylonitrile, and acrylonitrile is 90% by mass or more and 99.9% by mass or less, An acrylic copolymer obtained by copolymerizing a monomer copolymerizable with acrylonitrile is preferably used. Preferable monomers that can be copolymerized with acrylonitrile include acrylic acid, methacrylic acid, itaconic acid, allyl sulfonic acid, methallyl sulfonic acid, and alkali salts and ammonium salts thereof, hydroxyethyl acrylonitrile, and the like. Further, a third component such as methyl acrylate may be included. By setting the acrylonitrile copolymerization ratio in the acrylic polymer to 90% by mass or more, it is possible to prevent a decrease in productivity due to an excessive increase in the weight loss rate of the fiber in the firing step or a decrease in heat resistance. I can do it. Moreover, by setting it as 99.9 mass% or less, the fall of the drawability of acrylic type precursor fiber can be prevented, and favorable processability can be ensured.

かかるアクリル系重合体は、有機や無機の溶媒に溶解した状態で紡糸原液として調製される。紡糸原液の安定性の観点から、溶媒としてはジメチルアセトアミド(DMAc)やジメチルスルホキシド(DMSO)等の有機溶媒が好ましく使用される。かかる紡糸原液を用いて紡糸する方法として、本発明では、湿式または乾湿式紡糸により凝固浴に導入し繊維化する方法を用いる。凝固浴から引き出された繊維は、凝固溶媒を水洗した後に温水または熱水中で所望の倍率で延伸するか、温水または熱水中で所望の倍率で延伸した後に水洗され、油剤工程へと導入される。   Such an acrylic polymer is prepared as a spinning dope in a state dissolved in an organic or inorganic solvent. From the viewpoint of the stability of the spinning solution, an organic solvent such as dimethylacetamide (DMAc) or dimethylsulfoxide (DMSO) is preferably used as the solvent. As a method of spinning using such a spinning dope, in the present invention, a method of introducing a fiber into a coagulation bath by wet or dry wet spinning is used. The fiber drawn from the coagulation bath is washed with the coagulation solvent and then stretched at a desired magnification in warm water or hot water, or is stretched at a desired magnification in warm water or hot water and then washed with water and introduced into the oil agent process. Is done.

本発明においては、油剤工程に導入する直前の繊維膨潤度は90〜230%の範囲にあることが、繊維の束内まで均一に油剤を付与し、高品質の炭素繊維を得るために必要であり、さらに好ましい範囲としては120〜200%の範囲である。繊維膨潤度を230%以下とすることによって、油剤を付与した際に油剤が単繊維中に浸透し単繊維表面に付与する油剤が少なくなることで派生する乾燥工程での単繊維接着を防ぎ、品質・品位・操業安定化の効果が高い。また、膨潤度を90%以上とすることによって、付与される油剤との親和性を確保し、かつ繊維膨潤度を低下させすぎることで発生する浴延伸工程での単繊維間接着を抑制することが出来る。これらは、重合体の共重合組成、分子量、溶媒種類、重合体粘度、油剤付与時の単繊維繊度を設定して、延伸温度、倍率を調整することによって設定が可能である。ここにおいて、油剤工程に導入する直前の繊維膨潤度は90〜230%の範囲であって、紡糸直後から延伸するに従い、一旦繊維膨潤度を増加させた後、減少に応じた時点にあることが好ましい。繊維膨潤度を延伸の進行によって、一旦増加させたのち230%以下にすることによって、繊維の束内に含まれる水と油剤の置換がスムーズにおこなわれるので、良好な油剤の均一付与性を確保することが出来る。つまり、繊維膨潤度が一旦増加する前、230%になった時点で油剤付与をおこなっても、単繊維間接着などの問題によって得られる前駆体繊維の品位や操業性がやや低下する傾向がある。なお、本発明における繊維膨潤度とは、以下の測定方法で求められる。   In the present invention, the degree of fiber swelling immediately before introduction into the oil agent process is in the range of 90 to 230%, which is necessary for uniformly applying the oil agent into the fiber bundle and obtaining high-quality carbon fibers. There is a more preferable range of 120 to 200%. By making the fiber swelling degree 230% or less, when the oil agent is applied, the oil agent penetrates into the single fiber and prevents the single agent adhesion in the drying process derived from less oil agent applied to the surface of the single fiber, Effective in stabilizing quality, quality, and operation. Moreover, by setting the degree of swelling to 90% or more, the compatibility with the applied oil agent is ensured, and the inter-single fiber adhesion in the bath stretching step that occurs when the degree of fiber swelling is excessively reduced is suppressed. I can do it. These can be set by adjusting the stretching temperature and the magnification by setting the copolymer composition of the polymer, the molecular weight, the solvent type, the polymer viscosity, and the single fiber fineness when the oil is applied. Here, the degree of fiber swelling immediately before being introduced into the oil agent process is in the range of 90 to 230%, and as the fiber swelling degree is once increased as it is stretched immediately after spinning, it may be at a time corresponding to the decrease. preferable. By increasing the fiber swelling degree to 230% or less once it is increased due to the progress of drawing, the water and oil agent contained in the fiber bundle can be replaced smoothly, ensuring a good uniform application of oil agent. I can do it. In other words, even when the oil agent is applied when the fiber swelling degree once reaches 230% before the fiber swelling degree increases, the quality and operability of the precursor fiber obtained due to problems such as adhesion between single fibers tend to be slightly lowered. . In addition, the fiber swelling degree in this invention is calculated | required with the following measuring methods.

油剤工程に導入する直前の繊維を約10gサンプリングし、12〜16hr水洗する。次に遠心脱水機(たとえばコクサン株式会社製 H−110A)にて3000rpmで3分間脱水し脱水後の繊維重量を求める。その後、脱水後のサンプルを105℃で温調された乾燥機で2.5hr乾燥し、乾燥後の繊維重量を求め下記式により繊維膨潤度を算出する。   About 10 g of fibers immediately before being introduced into the oil agent process are sampled and washed with water for 12 to 16 hours. Next, the fiber weight after dehydration is determined by dewatering at 3000 rpm for 3 minutes using a centrifugal dehydrator (for example, H-110A manufactured by Kokusan Co., Ltd.). Thereafter, the dehydrated sample is dried for 2.5 hours with a dryer controlled at 105 ° C., the fiber weight after drying is determined, and the fiber swelling degree is calculated by the following formula.

式:繊維膨潤度(%)=((脱水後の繊維重量―乾燥後の繊維重量)/乾燥後の繊維重量))×100。   Formula: degree of fiber swelling (%) = ((fiber weight after dehydration−fiber weight after drying) / fiber weight after drying)) × 100.

また、本発明において油剤工程に導入される繊維は、先の浴延伸工程や水洗工程で一定量の水分を含んだ膨潤状態にあり、油剤が付与された際に繊維の束内に含まれる水から油剤への置換がスムーズにおこなわなければ油剤の均一付与を図ることは困難であり、高速化してさらに速度が上がれば油剤工程での処理時間は減少し、より繊維の束内への油剤の浸透が難しくなる。この問題を解消するために、繊維密度を下げる、つまり糸幅を極力広げると繊維の束内まで油剤が浸透しやすくなるが、単に油剤工程での繊維の延伸比を弛緩サイドに下げて糸幅を広げようとすると、走行する繊維が蛇行したり、繊維張力が低くなりすぎたりして、集束性が損なわれ、毛羽などが生じやすくなり品位が低下する問題がある。これらを防ぐために、隣接する繊維との間にガイド等を挿入する方法もあるが、機幅が長くなり装置の大型化が避けられない等の課題を生じることもある。逆に擦過効果を高めようと張力を高く設定しすぎれば、ガイド等との擦過力が過多となり、やはり毛羽などを生じることで品位が低下する問題があった。   Further, in the present invention, the fiber introduced into the oil agent process is in a swollen state containing a certain amount of water in the previous bath stretching process or water washing process, and the water contained in the fiber bundle when the oil agent is applied. If the oil is not smoothly replaced with the oil, it is difficult to uniformly apply the oil, and if the speed is further increased and the speed is further increased, the processing time in the oil process is reduced, and the oil is more into the fiber bundle. Penetration becomes difficult. In order to solve this problem, if the fiber density is lowered, that is, the yarn width is increased as much as possible, the oil agent can easily penetrate into the fiber bundle, but the fiber stretch ratio in the oil agent process is simply lowered to the loose side to reduce the yarn width. When trying to spread, there is a problem that the traveling fiber meanders or the fiber tension becomes too low, the focusing property is impaired, fluff is likely to occur, and the quality is lowered. In order to prevent these, there is a method of inserting a guide or the like between adjacent fibers. However, there are cases where the machine width becomes long and the size of the apparatus cannot be avoided. On the other hand, if the tension is set too high so as to enhance the rubbing effect, the rubbing force with the guide or the like becomes excessive, and there is a problem that the quality is lowered due to fluffing.

そこで本発明においては、油剤工程を走行する繊維の平均繊維密度を80〜220tex/mmの範囲に設定し、走行する繊維の平均繊維張力を0.6〜1.3g/texとすることが必要である。より好ましい範囲としては、平均繊維密度が90〜210tex/mmであり、かつ平均繊維張力が0.8〜1.1g/texの範囲である。平均繊維密度を80tex/mm以上とすることにより、少ないスペースで同時に高密度の繊維を処理することができ、220tex/mm以下とすることにより、繊維の束内への油剤浸透性を確保することが出来る。また、平均繊維張力は0.6g/tex以上とすることにより、油剤工程を走行する繊維の糸道を安定させ、隣接する繊維との混繊を防ぐことで、品位・操業性を保つことが可能になり、1.3g/tex以下とすることにより、繊維の束内への浸透性を確保するとともに、繊維の擦過傷や、毛羽の発生を防ぐことが可能となる。   Therefore, in the present invention, it is necessary to set the average fiber density of the fibers traveling in the oil agent process in the range of 80 to 220 tex / mm and the average fiber tension of the traveling fibers to be 0.6 to 1.3 g / tex. It is. A more preferable range is an average fiber density of 90 to 210 tex / mm and an average fiber tension of 0.8 to 1.1 g / tex. By setting the average fiber density to 80 tex / mm or more, high-density fibers can be processed at the same time in a small space, and by setting the average fiber density to 220 tex / mm or less, oil agent permeability into the fiber bundle is ensured. I can do it. Also, by setting the average fiber tension to 0.6 g / tex or more, it is possible to stabilize the yarn path of the fiber running through the oil agent process and prevent blending with adjacent fibers, thereby maintaining the quality and operability. It becomes possible, and by setting it as 1.3 g / tex or less, while being able to ensure the permeability to the bundle of fibers, it becomes possible to prevent the fiber from being scratched or fluffed.

ここで、平均繊維密度とは、油剤工程の入りと出における糸幅を繊度で割り返した単純平均値で測定されるものであり、平均繊維張力とは油剤工程の入りと出における張力の単純平均値で測定されるものである。   Here, the average fiber density is measured by a simple average value obtained by dividing the yarn width at the entry and exit of the oil process by the fineness, and the average fiber tension is the simple tension at the entry and exit of the oil process. It is measured by an average value.

本発明における油剤工程において、油剤成分を水に分散させた水溶性エマルジョン、乳化剤を用いたエマルジョン、ならびにシリコーン油剤と非シリコーン油剤を混合したエマルジョンなどを走行する繊維に付与する。油剤を付与する方法としては特に限定されないが、例えば前記した特許文献で述べた多孔バスケットローラーを有するバイブロ処理機などを用いてトウ及び処理液に振動を与えながら油剤処理する方法や、油浴中に糸条を浸漬して油剤付与する方法が挙げられる。この中でも繊維の束内部まで均一に油剤を速やかに行き渡らせる効果があるので、油浴中に糸条を浸漬して油剤付与する方法(ディップ方式)が好ましい。ディップ方式としては、油剤槽内にジグザグに配置されたガイドバーを介して繊維を走行させながら付与させることで、安定した糸道で繊維同士の混繊による毛羽などの発生を防ぎ、繊維内部まで油剤の浸透を図ることができるのでさらに好ましい。このときガイドバーの本数は特に限定されないが、好ましくは等間隔に3本以上、さらに好ましくは5〜7本の奇数本あるのがさらに好ましい。材質も特に限定されないが、ステンレスのクロムメッキしたものを鏡面や梨地に仕上げたものや、平滑に仕上げたセラミックス、繊維に傷が付かないよう“テフロン(登録商標)”などでコートされたものが使用できる。また、多孔バスケットローラーを有するバイブロ処理機などを用いて繊維を振動させ、束内部への油剤浸透を機械的におこなっても良い。   In the oil agent process of the present invention, a water-soluble emulsion in which an oil agent component is dispersed in water, an emulsion using an emulsifier, an emulsion in which a silicone oil agent and a non-silicone oil agent are mixed, and the like are applied to a traveling fiber. The method for applying the oil agent is not particularly limited. For example, in the oil bath, the oil agent is treated while vibrating the tow and the treatment liquid using a vibro processor having a perforated basket roller described in the above-mentioned patent document. And a method of immersing the yarn in the oil agent. Among these, since there is an effect that the oil agent is quickly and uniformly distributed inside the fiber bundle, a method (dip method) in which the yarn is immersed in an oil bath to apply the oil agent is preferable. As a dip method, by applying the fibers while running through the guide bar arranged in a zigzag in the oil tank, it prevents the generation of fuzz due to the mixing of fibers with a stable yarn path, up to the inside of the fibers It is more preferable because the oil agent can be permeated. At this time, the number of the guide bars is not particularly limited, but it is more preferable that there are 3 or more, more preferably 5 to 7 odd numbers at regular intervals. The material is not particularly limited, but a stainless steel chrome-plated finish on a mirror surface or satin finish, a smooth finish ceramic, or a coating with "Teflon (registered trademark)" to prevent the fibers from being damaged. Can be used. Alternatively, the fiber may be vibrated using a vibro processor having a perforated basket roller or the like, and the oil agent may be mechanically penetrated into the bundle.

本発明で使用する油剤は、炭素繊維製造プロセスにおける熱処理によって単繊維同士が接着し、強度低下の支配因子となる表面欠陥の発生を抑制する効果を達成できるのであれば特に限定されない。本発明の油剤工程で用いる油剤としては、例えばアルキル変性シリコーン、ポリエーテル変性シリコーン、アルコール変性シリコーン、アミノ変性シリコーン、エポキシ変性シリコーンなどのシリコーン油剤や、例えばステアリン酸メチル、オレイン酸メチルなどの脂肪酸エステル、さらに例えばラウリルアルコール、セチルアルコールなどの高級アルコール、例えばパルミチン酸、ステアリン酸などの高級脂肪酸、例えば高級アルコール硫酸エステル、ポリオキシエチレンアルキル硫酸エステルなどの硫酸エステル、例えばスルホン化炭化水素、アルキルベンゼンスルホン酸などのスルホン酸、例えばアルキルリン酸エステル、ポリオキシエチレンアルキルリン酸エステルなどのリン酸エステル、例えばポリオキシエチレンアルキルエーテルなどのエーテル誘導体、例えばポリエチレングリコールアルキルエステル、ゾルビタンアルキルエステル、グリセリンアルキルエステルなどのエステル誘導体、例えばアルキルアミン酸中和物、アルキルアシドアミン酸中和物などの第三級カチオン、さらには第四級カチオン系界面活性剤、パラフィン、鉱物油等を使用することができ、これらは単独または組み合わせて使用することができる。   The oil used in the present invention is not particularly limited as long as the single fibers are bonded to each other by the heat treatment in the carbon fiber production process, and the effect of suppressing the occurrence of surface defects that become the controlling factor of strength reduction can be achieved. Examples of the oil agent used in the oil agent process of the present invention include silicone oil agents such as alkyl-modified silicone, polyether-modified silicone, alcohol-modified silicone, amino-modified silicone, and epoxy-modified silicone, and fatty acid esters such as methyl stearate and methyl oleate. In addition, higher alcohols such as lauryl alcohol and cetyl alcohol, higher fatty acids such as palmitic acid and stearic acid, sulfate esters such as higher alcohol sulfates and polyoxyethylene alkyl sulfates, such as sulfonated hydrocarbons and alkylbenzene sulfonic acids. Sulfonic acids such as alkyl phosphate esters, polyoxyethylene alkyl phosphate esters such as polyoxyethylene alkyl ether Ether derivatives such as polyethylene glycol alkyl esters, sorbitan alkyl esters, ester derivatives such as glycerin alkyl esters, tertiary cations such as alkylamine acid neutralized products, alkyl acidamine acid neutralized products, and the like. A class cationic surfactant, paraffin, mineral oil or the like can be used, and these can be used alone or in combination.

この中でもより好ましくは、基本骨格にシロキサン結合(−SiO−)を有するシリコーン系油剤が好ましく、このケイ素原子に結合する基は、水素原子および/または炭素数1〜3のアルキル基やフェニル基、またはこれらのアルコキシ基などが挙げられる。これらの中で特にジメチルシロキサンが基本骨格として好ましい。また、繊維への均一付与という観点からは、繊維への油剤の付与を、油剤を水に分散させた水分散液で行うことが好ましく、この中でも水分散液としての長期安定性の観点から、ポリオキシエチレンアルキルエーテルなどの乳化剤を用いた水系エマルションがより好ましい。   Among these, more preferably, a silicone-based oil agent having a siloxane bond (—SiO—) in the basic skeleton is preferable, and the group bonded to the silicon atom is a hydrogen atom and / or an alkyl group having 1 to 3 carbon atoms or a phenyl group, Or these alkoxy groups etc. are mentioned. Of these, dimethylsiloxane is particularly preferred as the basic skeleton. In addition, from the viewpoint of uniform application to the fiber, it is preferable to apply the oil agent to the fiber with an aqueous dispersion in which the oil agent is dispersed in water. Among these, from the viewpoint of long-term stability as an aqueous dispersion, An aqueous emulsion using an emulsifier such as polyoxyethylene alkyl ether is more preferable.

また、本発明において、繊維に付与する油剤は、25℃におけるオイル粘度が500〜10000cStの範囲内であることが好ましく、また、用いられる水分散液が、少なくとも1種のアミノ変性シリコーンを含むものであることが好ましい。さらに好ましくは、油剤にエポキシ変性シリコーンやポリエーテル変性シリコーンを混合しても良く、その場合は混合したときのオイル粘度が上記の範囲内であることが好ましい。本発明ではオイル粘度を10000cSt以下とすることによって、繊維の束内まで油剤が入りやすくなり、均一な油剤皮膜を形成させる観点から好ましい。さらに粘度を500cSt以上とすることによって、油剤が単繊維の内部まで浸透し、繊維表面に付与する油剤が少なくなることで派生する乾燥工程での単繊維間接着を抑制し、品位・操業性の低下を抑制することが可能となる。さらに好ましい範囲としては、1000〜7000cStである。   In the present invention, the oil agent to be applied to the fiber preferably has an oil viscosity at 25 ° C. in the range of 500 to 10,000 cSt, and the aqueous dispersion used contains at least one amino-modified silicone. It is preferable. More preferably, an epoxy-modified silicone or a polyether-modified silicone may be mixed with the oil agent, and in that case, the oil viscosity when mixed is preferably within the above range. In the present invention, by setting the oil viscosity to 10000 cSt or less, the oil agent can easily enter the fiber bundle, which is preferable from the viewpoint of forming a uniform oil agent film. Furthermore, by setting the viscosity to 500 cSt or more, the oil agent penetrates into the inside of the single fiber, and the adhesion between the single fibers in the drying process derived from the decrease in the oil agent applied to the fiber surface is suppressed. It is possible to suppress the decrease. A more preferable range is 1000 to 7000 cSt.

なお、本発明に用いる油剤の25℃におけるオイル粘度とは、オイル単成分、または単成分を混合させた粘度のことであり、オイル温度が25℃の試料をキャノンフェンスケ粘度計に入れてガラス管中の落下速度から粘度を算出する。   The oil viscosity at 25 ° C. of the oil used in the present invention is the viscosity of a single oil component or a mixture of single components. A sample with an oil temperature of 25 ° C. is placed in a Canon Fenske viscometer. The viscosity is calculated from the falling speed in the tube.

また、油剤工程における繊維走行速度は30m以上であることが好ましい。ここで定義する繊維走行速度とは、アクリル系前駆体繊維の製造過程で油剤を付与する工程での平均速度であり、最終の巻取速度とは直接の関係はない。糸の繊度や配向度を所望の範囲とするために、延伸倍率を決定したとき、その範囲では油剤工程における繊維走行速度は、全体の繊維の生産性に直接関係してくる。例えば繊維走行速度が49m/分のときの生産性は、25m/分のときの生産性と比べほぼ速度比に比例した1.9倍程度の生産性を有する。繊維走行速度を30m/分以上とすることによって、高い生産性を確保しながら良好な品位と強度ポテンシャルの高い前駆体繊維を得ることができ、それを焼成することによって高品質な炭素繊維を製造することができる。より好ましい範囲は40m/分以上である。
以上の製造方法により油剤付与した繊維は、続く乾燥工程にて速やかに乾燥されるのが良い。乾燥の方法は特に限定されないが、複数のサクションドラムドライヤーや加熱ローラーに直接接触させる方法が好ましく用いられる。乾燥温度は、単繊維同士が接着しない範囲で高く設定できる。具体的には、130〜200℃が好ましく、さらに好ましくは160〜200℃である。乾燥温度を200℃以下に抑えることにより、単繊維同士の接着を抑制し、続く後延伸工程での単繊維切れやローラー巻き付きを低減することができる。また、乾燥温度を130℃以上でおこなうことにより、サクションドラムドライヤーや加熱ローラーの数を少なくすることが可能でコスト的に好ましい。
Moreover, it is preferable that the fiber running speed in an oil agent process is 30 m or more. The fiber running speed defined here is an average speed in the step of applying the oil agent in the process of producing the acrylic precursor fiber, and is not directly related to the final winding speed. When the draw ratio is determined in order to set the fineness and orientation of the yarn within a desired range, the fiber running speed in the oil agent process is directly related to the productivity of the entire fiber in that range. For example, the productivity when the fiber traveling speed is 49 m / min has a productivity of about 1.9 times proportional to the speed ratio compared to the productivity when the fiber traveling speed is 25 m / min. By setting the fiber running speed to 30 m / min or more, it is possible to obtain a precursor fiber with good quality and high strength potential while ensuring high productivity, and producing high-quality carbon fiber by firing it. can do. A more preferable range is 40 m / min or more.
The fiber to which the oil agent is applied by the above production method is preferably dried quickly in the subsequent drying step. The drying method is not particularly limited, but a method of directly contacting a plurality of suction drum dryers or heating rollers is preferably used. The drying temperature can be set high as long as the single fibers do not adhere to each other. Specifically, 130-200 degreeC is preferable, More preferably, it is 160-200 degreeC. By suppressing the drying temperature to 200 ° C. or less, adhesion between single fibers can be suppressed, and single fiber breakage and roller winding in the subsequent post-drawing step can be reduced. In addition, by performing the drying temperature at 130 ° C. or higher, it is possible to reduce the number of suction drum dryers and heating rollers, which is preferable in terms of cost.

また、繊維への加熱状態が均一になるよう、繊維はできるだけ拡幅した状態でローラーに接触させるのが良い。乾燥された繊維は、好ましくは続く後延伸工程にて毛羽が発生しない程度に駆動ロールの延伸倍率を調整し、加圧蒸気中で2倍以上に延伸をおこない、アクリル系前駆体繊維を得る。   Moreover, it is good to make a fiber contact a roller in the state expanded as much as possible so that the heating state to a fiber may become uniform. The dried fiber is preferably adjusted to a draw ratio of the drive roll to such an extent that no fuzz is generated in the subsequent post-drawing step, and is stretched twice or more in pressurized steam to obtain an acrylic precursor fiber.

本発明で製造されるアクリル系前駆体繊維は、単繊維本数が1000〜100000のものであることが好ましく、油剤工程における単繊維本数は500〜60000であることがより好ましい。必要に応じて油剤付与後から巻取の間に合糸して最終のアクリル系前駆体繊維を得る。アクリル系前駆体繊維の単繊維の繊度は、0.4〜1.5dtexであることが好ましく、0.6〜1.3dtexであることがさらに好ましい。   The acrylic precursor fiber produced in the present invention preferably has 1000 to 100,000 single fibers, and more preferably 500 to 60,000 in the oil agent process. If necessary, the final acrylic precursor fiber is obtained by applying yarn during winding after applying the oil. The fineness of the single fiber of the acrylic precursor fiber is preferably 0.4 to 1.5 dtex, and more preferably 0.6 to 1.3 dtex.

このようにして得られたアクリル系前駆体繊維を焼成することにより、炭素繊維を製造することができる。具体的には、前駆体繊維を空気などの酸化性雰囲気中で220〜300℃に加熱して耐炎化処理をおこなう。処理温度は低温から高温に向けて複数段階に分けて昇温するのが耐炎化繊維を得る上で好ましく、さらに毛羽の発生を伴わない範囲で高い延伸比で繊維を延伸するのが、炭素繊維の性能を十分に発現させる上で好ましい。次いで得られた耐炎化繊維を窒素などの不活性雰囲気中で1000℃以上に加熱することにより、炭素繊維を製造する。その後、電解質水溶液中で陽極酸化おこなうことにより、炭素繊維表面に官能基を付与し樹脂との接着性を高めることが可能となる。また、エポキシ樹脂等のサイジング剤を付与し耐擦過性に優れた炭素繊維を得ることが好ましい。   Carbon fibers can be produced by firing the acrylic precursor fibers thus obtained. Specifically, the precursor fiber is heated to 220 to 300 ° C. in an oxidizing atmosphere such as air to perform a flame resistance treatment. The treatment temperature is preferably increased in multiple stages from low temperature to high temperature in order to obtain flame-resistant fibers, and further, the fibers are stretched at a high stretch ratio within a range not accompanied by fluff generation. It is preferable for sufficiently exhibiting the performance. Next, the obtained flame-resistant fiber is heated to 1000 ° C. or higher in an inert atmosphere such as nitrogen to produce a carbon fiber. Thereafter, by anodizing in an aqueous electrolyte solution, it is possible to impart a functional group to the surface of the carbon fiber and enhance the adhesion to the resin. Moreover, it is preferable to obtain a carbon fiber excellent in scratch resistance by applying a sizing agent such as an epoxy resin.

以下、本発明を実施例により、さらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

<繊維膨潤度>
油剤工程に導入する直前の繊維を約10gサンプリングし、12〜16hr水洗する。次に遠心脱水機(たとえばコクサン株式会社製 H−110A)にて3000rpmで3分間脱水し脱水後の繊維重量を求める。その後、脱水後のサンプルを105℃で温調された乾燥機で2.5hr乾燥し、乾燥後の繊維重量を求め下記式により繊維膨潤度を算出する。
<Fiber swelling>
About 10 g of fibers immediately before being introduced into the oil agent process are sampled and washed with water for 12 to 16 hours. Next, the fiber weight after dehydration is determined by dewatering at 3000 rpm for 3 minutes using a centrifugal dehydrator (for example, H-110A manufactured by Kokusan Co., Ltd.). Thereafter, the dehydrated sample is dried for 2.5 hours with a dryer controlled at 105 ° C., the fiber weight after drying is determined, and the fiber swelling degree is calculated by the following formula.

式:繊維膨潤度(%)=((脱水後の繊維重量―乾燥後の繊維重量)/乾燥後の繊維重量))×100
<品位判定>
アクリル系前駆体繊維を巻き上げた製品パッケージの外観(製品端面を5cm厚み、製品表面を20cm幅に換算した毛羽・毛玉個数の合計)の目視判定。判定基準は下記の通り。
◎判定=毛羽もしくは毛玉個数が0〜1個
○判定=毛羽もしくは毛玉個数が2〜5個
△判定=毛羽もしくは毛玉個数が6〜10個
×判定=毛羽もしくは毛玉個数が11個以上。
Formula: Fiber swelling degree (%) = ((fiber weight after dehydration−fiber weight after drying) / fiber weight after drying)) × 100
<Quality judgment>
Visual determination of the appearance of the product package in which the acrylic precursor fiber is wound up (the total number of fluff and fluff converted to a product end face of 5 cm thickness and product surface converted to 20 cm width). Judgment criteria are as follows.
◎ Judgment = 0 to 1 fluff or fluff number ○ Judgment = 2 to 5 fluff or △ judgment = 6 to 10 fluff or fluff x Judgment = 11 fluff or fluff number that's all.

<炭素繊維ストランド強度>
炭素繊維のストランド強度は、炭素繊維に下記組成の樹脂を含浸させ130℃に温調した熱風循環式オーブン中で35分間硬化させて得られるストランドをJIS R 7601:1986に準じて引張試験することにより求めた。
・CELLOXIDE 2012P:100質量部
(株)ダイセル
・3フッ化ホウ素モノエチルアミン(BF3・MEA):3質量部
・アセトン:4質量部。
<Carbon fiber strand strength>
The strand strength of the carbon fiber is determined by subjecting the strand obtained by impregnating a resin of the following composition to the carbon fiber and curing for 35 minutes in a hot air circulating oven adjusted to 130 ° C., and performing a tensile test according to JIS R 7601: 1986. Determined by
CELLOXIDE 2012P: 100 parts by mass Daicel Corp. Boron trifluoride monoethylamine (BF3 / MEA): 3 parts by mass Acetone: 4 parts by mass.

<品質判定>
上記の測定方法により、得られたストランド引張強度の最大値を100とし相対的に指数評価おこなった判定基準は下記の通りである。
◎判定=90を超える
○判定=80を超え、90以下
△判定=70を超え、80以下
×判定=70以下。
<Quality judgment>
The criteria for the relative index evaluation with the maximum value of the strand tensile strength obtained by the above measuring method as 100 are as follows.
Judgment = over 90. Judgment = over 80, 90 or less.DELTA.determination = 70 over, 80 or less × determination = 70 or less.

<総合判定>
品位、およびCF物性における総合判定結果は下記の通りである。
◎判定=合格(品位・CF物性の両方が満足できるレベル)
○判定=合格(品位もしくはCF物性が満足できるレベル)
△判定=不合格(品位もしくはCF物性いずれかが不満足なレベル)
×判定=不合格(品位・CF物性の両方が不満足なレベル)。
<Comprehensive judgment>
The overall judgment results for quality and CF physical properties are as follows.
◎ Judgment = Pass (level that satisfies both quality and CF physical properties)
○ Judgment = Pass (level that satisfies the quality or CF physical properties)
△ Judgment = Fail (Level that either quality or CF physical properties are unsatisfactory)
X Judgment = Fail (level in which both quality and CF physical properties are unsatisfactory).

(実施例1〜8)
ジメチルスルホキシドを溶媒とする溶液重合法により、アクリロニトリル99.5質量%とイタコン酸0.5質量%からなるポリアクリロニトリルを得た後、乾湿式紡糸法により40質量%ジメチルスホキシド水溶液からなる凝固浴中へ紡出し、続く水洗工程にて繊維を水洗後、浴延伸工程にて延伸をおこなった。このとき、繊維膨潤度は、延伸するに従い一旦増加後減少に転じ、油剤工程に導入する直前の繊維膨潤度は130%であった。続く油剤工程では25℃におけるオイル粘度が5000cStのアミノ変性シリコーン油剤を濃度が3.0質量%となるように純水で希釈して調整をおこなった。油剤工程へ導入する繊維走行速度を49m/分と設定し、走行する平均繊維密度ならびに平均繊維張力は、表1の通り設定し油剤浴中に繊維を浸漬した。その後、油剤浴から出た繊維をニップロールにて余剰油水分を絞り乾燥工程へと導入した。続く乾燥工程では、160℃に温調した加熱ローラーを用いて乾燥処理をおこなった。続く後延伸工程にて加圧スチーム中で2倍に延伸し、単繊維繊度0.1tex、単繊維本数3000本のアクリル前駆体繊維を得た。その後、焼成工程にてアクリル前駆体繊維を空気中240〜280℃の耐炎化炉内を駆動ロールで搬送しながら焼成し耐炎化繊維に転換した。さらに不活性雰囲気中300〜800℃の前炭化炉内を駆動ロールで搬送して予備炭化した後、不活性雰囲気中の最高温度1500℃の炭化炉内を駆動ロールで搬送しながら焼成をおこない炭素繊維を得た。実施例1で得られた前駆体繊維の品位は良好であり、かつ炭素繊維のストランド強度に優れる良好なものであった。また実施例2〜8についても、表1に示す条件を適用して、高品位の前駆体繊維を得ることが可能となり、かつストランド強度に優れた高品位の炭素繊維を得た。
(Examples 1-8)
A polyacrylonitrile composed of 99.5% by mass of acrylonitrile and 0.5% by mass of itaconic acid was obtained by a solution polymerization method using dimethyl sulfoxide as a solvent, and then a coagulation bath comprising a 40% by mass dimethyl sulfoxide aqueous solution by a dry-wet spinning method. The fiber was spun in, and the fiber was washed in the subsequent washing step, followed by drawing in the bath drawing step. At this time, the degree of fiber swelling temporarily increased and then decreased as it was drawn, and the degree of fiber swelling just before introduction into the oil agent process was 130%. In the subsequent oil agent process, adjustment was made by diluting an amino-modified silicone oil agent having an oil viscosity of 5000 cSt at 25 ° C. with pure water to a concentration of 3.0% by mass. The fiber running speed to be introduced into the oil agent process was set to 49 m / min, and the average fiber density and average fiber tension to run were set as shown in Table 1, and the fibers were immersed in the oil agent bath. Thereafter, excess oil moisture was introduced into the drying process by squeezing the fiber from the oil bath with a nip roll. In the subsequent drying process, a drying process was performed using a heating roller adjusted to 160 ° C. In the subsequent post-drawing step, the polymer was stretched twice in pressurized steam to obtain acrylic precursor fibers having a single fiber fineness of 0.1 tex and a single fiber count of 3000. Thereafter, the acrylic precursor fiber was baked while being conveyed in a flame resistant furnace at 240 to 280 ° C. in the air with a driving roll in the baking process, and converted into flame resistant fiber. Furthermore, after carrying out preliminary carbonization in a pre-carbonization furnace at 300 to 800 ° C. in an inert atmosphere with a driving roll, firing is carried out while conveying in a carbonization furnace in an inert atmosphere at a maximum temperature of 1500 ° C. with a driving roll. Fiber was obtained. The quality of the precursor fiber obtained in Example 1 was good, and the strand strength of the carbon fiber was excellent. Also, in Examples 2 to 8, by applying the conditions shown in Table 1, high-quality precursor fibers can be obtained, and high-quality carbon fibers excellent in strand strength were obtained.

(実施例9、10)
油剤工程に導入する直前の繊維膨潤度を浴延伸工程の浴温度、延伸倍率により調整し表1のとおりとした以外は実施例1と同様の製造方法により繊維を油剤工程へ導入した。その結果、表1に示すように高品位の前駆体繊維を得ることが可能となり、かつストランド強度に優れた高品位の炭素繊維を得た。
(Examples 9 and 10)
Fibers were introduced into the oil agent process by the same production method as in Example 1 except that the fiber swelling degree immediately before introduction into the oil agent process was adjusted according to the bath temperature and draw ratio in the bath drawing process and as shown in Table 1. As a result, as shown in Table 1, high-quality precursor fibers can be obtained, and high-quality carbon fibers excellent in strand strength were obtained.

(実施例11、12)
油剤の25℃におけるオイル粘度を表1のとおり変更した以外は、実施例1と同様の製造方法により繊維を油剤工程へ導入した。その結果、表1に示すように高品位の前駆体繊維を得ることが可能となり、かつストランド強度に優れた高品位の炭素繊維を得た。
(Examples 11 and 12)
Except having changed the oil viscosity at 25 degreeC of an oil agent as Table 1, the fiber was introduce | transduced into the oil agent process with the manufacturing method similar to Example 1. FIG. As a result, as shown in Table 1, high-quality precursor fibers can be obtained, and high-quality carbon fibers excellent in strand strength were obtained.

(実施例13〜15)
油剤工程での繊維走行速度を変えて油剤浴に導入する以外は、実施例1と同様の製造方法により繊維を油剤工程へ導入した。その結果、表1に示すように高品位の前駆体繊維を得ることが可能となり、かつストランド強度に優れた高品位の炭素繊維を得た。
(Examples 13 to 15)
The fibers were introduced into the oil agent process by the same production method as in Example 1 except that the fiber running speed in the oil agent process was changed and introduced into the oil agent bath. As a result, as shown in Table 1, high-quality precursor fibers can be obtained, and high-quality carbon fibers excellent in strand strength were obtained.

(比較例1〜6)
油剤工程を通過させる際の平均繊維密度ならび平均繊維張力以外は実施例1〜8と同様の製造方法にて前駆体繊維ならびに炭素繊維を得た。その結果、表1に示すように前駆体繊維の品位が悪化。得られた炭素繊維のストランド強度も不満足な結果であった。
(Comparative Examples 1-6)
Precursor fibers and carbon fibers were obtained by the same production method as in Examples 1 to 8, except for the average fiber density and average fiber tension when passing through the oil agent process. As a result, as shown in Table 1, the quality of the precursor fibers deteriorated. The strand strength of the obtained carbon fiber was also unsatisfactory.

(比較例7、8)
油剤の25℃におけるオイル粘度を表1の通り変更した以外は、実施例1と同様の製造方法にて油剤工程へ繊維を導入した。その結果、表1に示すように前駆体繊維の品位が悪化し、得られた炭素繊維のストランド強度も不満足な結果であった。
(Comparative Examples 7 and 8)
Except having changed the oil viscosity at 25 degreeC of an oil agent as Table 1, the fiber was introduce | transduced into the oil agent process with the manufacturing method similar to Example 1. FIG. As a result, as shown in Table 1, the quality of the precursor fiber deteriorated, and the strand strength of the obtained carbon fiber was also unsatisfactory.

(比較例9、10)
油剤工程に導入する直前の繊維膨潤度を浴延伸温度・延伸倍率により調整し表1のとおりとした以外は、実施例1と同様の製造方法により繊維を油剤工程へ導入した。その結果、表1に示すように前駆体繊維の品位が悪化し、得られた炭素繊維のストランド強度も不満足な結果であった。
(Comparative Examples 9 and 10)
Fibers were introduced into the oil agent process by the same production method as in Example 1 except that the fiber swelling degree immediately before introduction into the oil agent process was adjusted according to the bath drawing temperature and draw ratio as shown in Table 1. As a result, as shown in Table 1, the quality of the precursor fiber deteriorated, and the strand strength of the obtained carbon fiber was also unsatisfactory.

(比較例11)
油剤工程での繊維走行速度を変えて油剤浴に導入する以外は、比較例4と同様の製造方法により繊維を油剤工程へ導入した。その結果、表1に示すように前駆体繊維の品位が悪化し、得られた炭素繊維のストランド強度も不満足な結果であった。
(Comparative Example 11)
The fibers were introduced into the oil agent process by the same production method as in Comparative Example 4 except that the fiber running speed in the oil agent process was changed and introduced into the oil agent bath. As a result, as shown in Table 1, the quality of the precursor fiber deteriorated, and the strand strength of the obtained carbon fiber was also unsatisfactory.

Figure 2014163012
Figure 2014163012

Claims (3)

アクリル系前駆体繊維を製造する方法において、アクリル系重合体を、乾湿式紡糸もしくは湿式紡糸法により紡出して得た繊維を、水洗・浴延伸後に油剤工程で油剤を付与するに際して、油剤工程に導入する直前の繊維膨潤度が90〜230%の範囲であり、油剤工程での平均繊維密度が80〜220tex/mm、ならびに平均繊維張力が0.6〜1.3g/texの範囲であり、繊維への油剤の付与を、油剤を水分散させた水分散液を用いて行うことを特徴とする炭素繊維用アクリル系前駆体繊維の製造方法。
なお、繊維膨潤度は下記式で算出される。
式:繊維膨潤度(%)=((脱水後の繊維重量―乾燥後の繊維重量)/乾燥後の繊維重量))×100
In the method of producing an acrylic precursor fiber, when the oil obtained by spinning the acrylic polymer by dry-wet spinning or wet spinning method is applied to the oil agent process after washing with water and drawing with a bath, the oil agent process is performed. The fiber swelling degree immediately before introduction is in the range of 90 to 230%, the average fiber density in the oil agent process is in the range of 80 to 220 tex / mm, and the average fiber tension is in the range of 0.6 to 1.3 g / tex, A method for producing an acrylic precursor fiber for carbon fiber, wherein the oil agent is imparted to the fiber using an aqueous dispersion in which the oil agent is dispersed in water.
The fiber swelling degree is calculated by the following formula.
Formula: Fiber swelling degree (%) = ((fiber weight after dehydration−fiber weight after drying) / fiber weight after drying)) × 100
前記油剤の25℃におけるオイル粘度が500〜10000cStの範囲内にあり、前記水分散液が少なくとも1種のアミノ変性シリコーンを含む水分散液である、請求項1記載の炭素繊維用アクリル系前駆体繊維の製造方法。 The acrylic precursor for carbon fiber according to claim 1, wherein the oil agent has an oil viscosity at 25 ° C in a range of 500 to 10,000 cSt, and the aqueous dispersion is an aqueous dispersion containing at least one amino-modified silicone. A method for producing fibers. 請求項1または2に記載の製造方法で得られる炭素繊維用アクリル系前駆体繊維を、酸化性雰囲気中220〜300℃で焼成おこなった後、不活性雰囲気中1000℃以上で焼成して得られる、炭素繊維の製造方法。 It is obtained by firing the acrylic precursor fiber for carbon fiber obtained by the production method according to claim 1 or 2 at 220 to 300 ° C. in an oxidizing atmosphere and then firing at 1000 ° C. or more in an inert atmosphere. And carbon fiber manufacturing method.
JP2013035429A 2013-02-26 2013-02-26 A method for producing an acrylic precursor fiber for carbon fiber, and a method for producing carbon fiber. Active JP6107222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013035429A JP6107222B2 (en) 2013-02-26 2013-02-26 A method for producing an acrylic precursor fiber for carbon fiber, and a method for producing carbon fiber.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013035429A JP6107222B2 (en) 2013-02-26 2013-02-26 A method for producing an acrylic precursor fiber for carbon fiber, and a method for producing carbon fiber.

Publications (2)

Publication Number Publication Date
JP2014163012A true JP2014163012A (en) 2014-09-08
JP6107222B2 JP6107222B2 (en) 2017-04-05

Family

ID=51613902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013035429A Active JP6107222B2 (en) 2013-02-26 2013-02-26 A method for producing an acrylic precursor fiber for carbon fiber, and a method for producing carbon fiber.

Country Status (1)

Country Link
JP (1) JP6107222B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108251898A (en) * 2018-04-12 2018-07-06 江苏恒神股份有限公司 Polyacrylonitrile-based carbon fibre oil feeding system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0274622A (en) * 1988-09-06 1990-03-14 Toray Ind Inc Lubricant treatment of precursor fiber for production of carbon fiber
JPH0457925A (en) * 1990-06-26 1992-02-25 Toray Ind Inc Production of acrylonitrile-based precursor for manufacturing carbon yarn
JP2000136485A (en) * 1998-08-28 2000-05-16 Toray Ind Inc Silicone straight oil finishing agent, precursor fiber for carbon fiber, carbon fiber and their production
JP2004292987A (en) * 2003-03-27 2004-10-21 Toray Ind Inc Method for producing precursor fiber bundle of acrylic carbon fiber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0274622A (en) * 1988-09-06 1990-03-14 Toray Ind Inc Lubricant treatment of precursor fiber for production of carbon fiber
JPH0457925A (en) * 1990-06-26 1992-02-25 Toray Ind Inc Production of acrylonitrile-based precursor for manufacturing carbon yarn
JP2000136485A (en) * 1998-08-28 2000-05-16 Toray Ind Inc Silicone straight oil finishing agent, precursor fiber for carbon fiber, carbon fiber and their production
JP2004292987A (en) * 2003-03-27 2004-10-21 Toray Ind Inc Method for producing precursor fiber bundle of acrylic carbon fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108251898A (en) * 2018-04-12 2018-07-06 江苏恒神股份有限公司 Polyacrylonitrile-based carbon fibre oil feeding system

Also Published As

Publication number Publication date
JP6107222B2 (en) 2017-04-05

Similar Documents

Publication Publication Date Title
EP1837424B1 (en) Oil agent for carbon fiber precursor fiber, carbon fiber and method for producing carbon fiber
WO2013015210A1 (en) Polyacrylonitrile-based copolymer, polyacrylonitrile-based precursor fiber for carbon fiber, carbon fiber bundles, process for producing flameproofed fiber bundles, and process for producing carbon fiber bundles
JP2006299439A (en) Carbon fiber, method for producing the same, acrylonitrile precursor fiber and method for producing the same
JP2012188781A (en) Carbon fiber and method for manufacturing the same
JP5741815B2 (en) Carbon fiber precursor acrylic fiber bundle and carbon fiber bundle
TWI769513B (en) Carbon fiber manufacturing method and carbon fiber using the same
JP6107222B2 (en) A method for producing an acrylic precursor fiber for carbon fiber, and a method for producing carbon fiber.
JPS6052206B2 (en) Method for manufacturing acrylic carbon fiber
JP5473468B2 (en) Carbon fiber precursor fiber bundle, method for producing the same, and carbon fiber bundle
JP4862226B2 (en) Precursor fiber for carbon fiber and method for producing carbon fiber
JP2004149937A (en) Precursor fiber strand for carbon fiber and method for producing the same
JP2009263817A (en) Oil agent applying apparatus and oil agent applying method
JP4787663B2 (en) Carbon fiber precursor acrylic yarn, manufacturing method and manufacturing apparatus thereof
JP2004169198A (en) Precursor fiber strand for carbon fiber and method for producing the same
JP2017137602A (en) Manufacturing method of polyacrylonitrile fiber bundle
KR101364788B1 (en) Process for treating oil on the precursor fiber for preparing a carbon fiber
JP6217342B2 (en) Method for producing carbon fiber precursor acrylonitrile fiber
JP6729665B2 (en) Acrylonitrile precursor fiber bundle for carbon fiber and method for producing the same
JP2006188795A (en) Silicone oil solution for carbon fiber precursor fiber, carbon fiber precursor fiber, flameproof fiber, carbon fiber and method for producing the same
JP7491673B2 (en) Manufacturing method of carbon fiber bundle
JP7408406B2 (en) Method for manufacturing flame-resistant fiber bundle, method for manufacturing carbon fiber bundle, and connection device
WO2023140212A1 (en) Carbon fiber bundle
JP4715386B2 (en) Carbon fiber bundle manufacturing method
JP2007332518A (en) Oil agent composition, carbon fiber precursor acrylic fiber bundle and its production method, and carbon fiber bundle
JP4990195B2 (en) Carbon fiber precursor acrylic fiber bundle and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170220

R151 Written notification of patent or utility model registration

Ref document number: 6107222

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151