JP4990195B2 - Carbon fiber precursor acrylic fiber bundle and method for producing the same - Google Patents
Carbon fiber precursor acrylic fiber bundle and method for producing the same Download PDFInfo
- Publication number
- JP4990195B2 JP4990195B2 JP2008058140A JP2008058140A JP4990195B2 JP 4990195 B2 JP4990195 B2 JP 4990195B2 JP 2008058140 A JP2008058140 A JP 2008058140A JP 2008058140 A JP2008058140 A JP 2008058140A JP 4990195 B2 JP4990195 B2 JP 4990195B2
- Authority
- JP
- Japan
- Prior art keywords
- fiber bundle
- oil
- acrylic fiber
- carbon fiber
- oil agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Artificial Filaments (AREA)
Description
本発明は、炭素繊維束の製造過程において、炭素繊維前駆体アクリル繊維束(以下、単に前駆体繊維束とも表記する)を耐炎化繊維束に転換する耐炎化工程で、単繊維間に融着が発生することを防止する目的で用いられる炭素繊維前駆体アクリル繊維用油剤(以下、単に油剤とも表記する)を繊維表面に均一に付与する工程を有する炭素繊維前駆体アクリル繊維束の製造方法に関する。加えて、本発明の製造方法により、繊維表面に均一に油剤が付与され、それを焼成した際に高品位な均質である炭素繊維束を得ることができる炭素繊維前駆体アクリル繊維束に関する。 The present invention is a flameproofing process in which a carbon fiber precursor acrylic fiber bundle (hereinafter also simply referred to as a precursor fiber bundle) is converted into a flameproof fiber bundle in the process of producing a carbon fiber bundle, and is fused between single fibers. TECHNICAL FIELD The present invention relates to a method for producing a carbon fiber precursor acrylic fiber bundle having a step of uniformly imparting an oil agent for carbon fiber precursor acrylic fibers (hereinafter also simply referred to as an oil agent) used for the purpose of preventing the occurrence of water to the fiber surface. . In addition, the present invention relates to a carbon fiber precursor acrylic fiber bundle in which an oil agent is uniformly applied to the fiber surface by the production method of the present invention, and a high-quality homogeneous carbon fiber bundle can be obtained when it is fired.
従来、炭素繊維束の製造方法として、アクリル繊維束を200〜400℃の酸素存在雰囲気下で加熱処理することにより耐炎化繊維束に転換し、引き続いて1000℃以上の不活性雰囲気下で炭素化して炭素繊維束を得る方法が知られている。この方法で得られた炭素繊維束は、優れた機械的物性により、特に複合材料用の強化繊維として工業的に広く利用されている。 Conventionally, as a method for producing a carbon fiber bundle, the acrylic fiber bundle is converted into a flame-resistant fiber bundle by heat treatment in an atmosphere containing 200 to 400 ° C. and subsequently carbonized in an inert atmosphere of 1000 ° C. or more. Thus, a method for obtaining a carbon fiber bundle is known. Carbon fiber bundles obtained by this method are widely used industrially as reinforcing fibers for composite materials because of their excellent mechanical properties.
しかし、炭素繊維束の製造方法において、前駆体繊維束を耐炎化繊維束に転換する耐炎化工程で、単繊維間に融着が発生し、耐炎化工程およびそれに続く炭素化工程(以下、耐炎化工程と炭素化工程を総合して焼成工程とも表記する)において、毛羽や束切れといった工程障害が発生する場合がある。この融着を回避するためには、アクリル繊維束に付着させる油剤の選択が重要であることが知られており、多くの油剤組成物が検討されてきた。 However, in the method for producing a carbon fiber bundle, in the flameproofing step of converting the precursor fiber bundle into a flameproofed fiber bundle, fusion occurs between single fibers, and the flameproofing step and the subsequent carbonization step (hereinafter referred to as flameproofing) In the synthesis process and the carbonization process, which is also referred to as a firing process), process failures such as fluff and bundle breakage may occur. In order to avoid this fusion, it is known that selection of the oil agent to be attached to the acrylic fiber bundle is important, and many oil agent compositions have been studied.
その中で、耐炎化工程における融着を防止する効果が良好であるシリコーンを含有するシリコーン系油剤が最も一般的に用いられている。しかしながら、シリコーン系油剤は、加熱により架橋反応が進行して高粘度化し、その粘着物が前駆体繊維束の製造工程や、耐炎化工程の繊維搬送ローラーやガイドなどの表面に堆積して、繊維束が巻き付いたり引っかかったりして断糸するなどの操業性低下を引き起こす原因になることがある。また、シリコーンを含有する油剤組成物は、焼成工程において、酸化ケイ素や炭化ケイ素、窒化ケイ素などのケイ素化合物を生成し、これらのスケールが工程安定性、製品の品質を低下させるという問題を有している。 Among them, silicone-based oils containing silicone that have a good effect of preventing fusion in the flameproofing step are most commonly used. However, the silicone-based oil agent is heated to undergo a cross-linking reaction to increase the viscosity, and the adhesive is deposited on the surface of the precursor fiber bundle manufacturing process or the flame-proofing process, such as a fiber transport roller or a guide, It may cause a decrease in operability such as a bundle being wound or caught to break the yarn. In addition, the oil composition containing silicone produces silicon compounds such as silicon oxide, silicon carbide, and silicon nitride in the firing process, and these scales have the problem of reducing process stability and product quality. ing.
このため、前駆体繊維束に付与する油剤のシリコーン化合物、ひいてはケイ素含有量を低減する油剤技術がいくつか提案されている。例えば、多環芳香族化合物からなる乳化剤を40〜100wt%含有させ、シリコーン含有量を低減させた油剤組成物(特許文献1参照)が提案されている。しかしながら、シリコーン含有量を低減した油剤組成物を付与した前駆体繊維束の集束性は悪く、高い生産効率で製造するには適していない上、機械的物性に優れた炭素繊維束が得られないという問題があった。 For this reason, several oil agent technologies for reducing the silicone content of the oil agent to be imparted to the precursor fiber bundle and, consequently, the silicon content have been proposed. For example, an oil agent composition (see Patent Document 1) in which an emulsifier composed of a polycyclic aromatic compound is contained in an amount of 40 to 100 wt% to reduce the silicone content has been proposed. However, the convergence property of the precursor fiber bundle to which the oil composition with a reduced silicone content is applied is poor, and is not suitable for production with high production efficiency, and a carbon fiber bundle with excellent mechanical properties cannot be obtained. There was a problem.
また、均一付着を目的として、油剤を繊維束に付与するための装置がいくつか提案されている。例えば、油剤付与ノズル(特許文献2参照)、油剤付与ガイド(特許文献3参照)、油剤付与ローラー(特許文献4参照)などが提案されている。しかし、これらの装置は繊維束中に油剤処理液を行き渡らせる思想に基づいたもので、油剤成分を繊維束中の単繊維表面に斑なく付与するには至らないため、油剤付着量を必要最低限に抑えることはできず、上述した焼成工程における操業性の低下を解決できるものではなかった。 For the purpose of uniform adhesion, several apparatuses for applying an oil agent to a fiber bundle have been proposed. For example, an oil agent application nozzle (see Patent Document 2), an oil agent application guide (see Patent Document 3), an oil agent application roller (see Patent Document 4), and the like have been proposed. However, these devices are based on the idea of spreading the oil treatment liquid in the fiber bundle, and the oil agent component cannot be applied to the surface of the single fiber in the fiber bundle without any unevenness. It was not possible to limit to the limit, and it was not possible to solve the decrease in operability in the firing step described above.
さらに、油剤を付与乾燥後の前駆体繊維束を界面活性剤が含有する洗浄液に通すことで、付与した油剤の一部を除去する方法(特許文献5参照)が提案されている。しかし、この方法では、乾燥定着した余分な油剤成分のみを除去することはできず、全体的に油剤付与量が低下するのみで、均一な油剤付与状態の前駆体繊維束を得ることはできなかった。
以上のように従来技術によるシリコーン含有量を低減した油剤組成物、あるいは装置や前駆体繊維束の製造方法では、単繊維視点での均一な油剤付与はできず、工程安定性、炭素繊維束の機械的物性の発現において、その両者を満足できるものを得ることはできない。 As described above, the oil composition with reduced silicone content according to the prior art, or the production method of the apparatus and the precursor fiber bundle cannot provide a uniform oil agent from a single fiber viewpoint, and the process stability, the carbon fiber bundle In the expression of mechanical properties, it is not possible to obtain a material satisfying both of them.
つまり、得られる炭素繊維の機械的物性を低下させず、シリコーンを主成分とした油剤組成物に端を発する焼成工程でのケイ素化合物生成による操業性低下の問題を解決するためには、油剤を前駆体繊維束に、均一に必要最低限付与する技術が必要不可欠である。 In other words, in order to solve the problem of reduced operability due to the generation of silicon compounds in the firing process starting from the oil composition containing silicone as a main component without reducing the mechanical properties of the obtained carbon fiber, A technique for uniformly applying the minimum necessary amount to the precursor fiber bundle is indispensable.
本発明の目的は、耐炎化工程における単繊維間の融着を抑制でき、かつシリコーン由来の紡糸工程、焼成工程でのスケールの堆積を抑制し、工程通過性を改善することができる炭素繊維前駆体アクリル繊維束の製造方法を提供することを目的とする。また、該製造方法によって製造した、均一に油剤が付着した高生産性、高品質炭素繊維用の前駆体繊維束を提供することにある。 The object of the present invention is to provide a carbon fiber precursor that can suppress fusion between single fibers in the flameproofing process, and can suppress the deposition of scale in the spinning process and firing process derived from silicone and improve process passability. It aims at providing the manufacturing method of a body acrylic fiber bundle. Another object of the present invention is to provide a precursor fiber bundle for high-quality, high-quality carbon fibers produced by the production method and having an oil agent uniformly attached thereto.
本発明は上記の問題を解決する手段として、次のような手法により、前駆体繊維束に均一に油剤成分を付与することにより、余分な油剤成分が低減されることによって、紡糸工程、焼成工程の工程通過性を向上し、かつ斑の低い高品質な炭素繊維を得ることができる炭素繊維前駆体アクリル繊維束の製造方法、並びにその製造方法により得られた高生産性、高品質炭素繊維製造用の前駆体繊維束を提供するものである。 In the present invention, as a means for solving the above-mentioned problems, the oil agent component is uniformly applied to the precursor fiber bundle by the following method, and the excess oil agent component is reduced, whereby the spinning step and the firing step. Process for producing a carbon fiber precursor acrylic fiber bundle capable of improving the process passability and obtaining high-quality carbon fibers with low spots, and high-productivity, high-quality carbon fiber production obtained by the production method The precursor fiber bundle for use is provided.
本発明の炭素繊維前駆体アクリル繊維束の製造方法は、アクリル繊維束を、油剤成分が水に分散している油剤処理液に接触させる工程と、
その後、前記アクリル繊維束を乾燥緻密化する工程と
を有する炭素繊維前駆体アクリル繊維束の製造方法であって、
アクリル繊維束に前記油剤処理液を接触させてから乾燥ロールに触れるまでの時間が5〜60秒である炭素繊維前駆体アクリル繊維束の製造方法である。
The method for producing a carbon fiber precursor acrylic fiber bundle of the present invention includes a step of bringing an acrylic fiber bundle into contact with an oil treatment liquid in which an oil component is dispersed in water;
Thereafter, a method of producing a carbon fiber precursor acrylic fiber bundle having a step of drying and densifying the acrylic fiber bundle,
It is a manufacturing method of the carbon fiber precursor acrylic fiber bundle whose time from making the said oil agent treatment liquid contact an acrylic fiber bundle and touching a drying roll is 5 to 60 second.
前記油剤処理液において、平均粒子径0.01μm以上0.5μm以下のミセルが形成されていることが好ましい。 In the oil treatment liquid, it is preferable that micelles having an average particle diameter of 0.01 μm or more and 0.5 μm or less are formed.
本発明の炭素繊維前駆体アクリル繊維束は、上述の製造方法により製造された前駆体繊維束である。 The carbon fiber precursor acrylic fiber bundle of the present invention is a precursor fiber bundle manufactured by the above-described manufacturing method.
本発明によれば、シリコーン系油剤を前駆体繊維束に均一に付与できるため、耐炎化工程での単繊維間融着を抑制でき、高品質かつ高性能な炭素繊維を製造することができる。 According to the present invention, since the silicone-based oil agent can be uniformly applied to the precursor fiber bundle, fusion between single fibers in the flameproofing process can be suppressed, and high-quality and high-performance carbon fibers can be produced.
本発明者は、生産性に優れた高品位な炭素繊維製造用の前駆体繊維束、およびその製造方法を鋭意探索した結果、油剤成分と繊維の相互作用を利用することにより、必要十分な量のシリコーン系油剤を、均一に前駆体繊維束に付与できることを見出すに至った。すなわち、本発明の炭素繊維前駆体アクリル繊維束の製造方法は、焼成工程の操業性と得られる炭素繊維の品質を同時に向上することを可能にしたものである。 As a result of earnest search for a precursor fiber bundle for producing high-quality carbon fibers excellent in productivity, and a method for producing the same, the present inventor has obtained a necessary and sufficient amount by utilizing the interaction between the oil component and the fibers. It has been found that the silicone-based oil agent can be uniformly applied to the precursor fiber bundle. That is, the method for producing a carbon fiber precursor acrylic fiber bundle of the present invention makes it possible to simultaneously improve the operability of the firing process and the quality of the obtained carbon fiber.
本発明では、まず、アクリル繊維束を、油剤成分が水に分散している油剤処理液に接触させる。アクリル繊維束としては、公知技術により紡糸されたアクリル繊維束を用いることができる。水膨潤状態のアクリル繊維束が好ましい。 In the present invention, first, the acrylic fiber bundle is brought into contact with an oil agent treatment liquid in which an oil agent component is dispersed in water. As the acrylic fiber bundle, an acrylic fiber bundle spun by a known technique can be used. A water-swelled acrylic fiber bundle is preferred.
より好ましいアクリル繊維束の例として、アクリロニトリル系重合体を紡糸して得られるアクリル繊維束が挙げられる。 A more preferable example of the acrylic fiber bundle is an acrylic fiber bundle obtained by spinning an acrylonitrile polymer.
アクリロニトリル系重合体は、アクリロニトリルを主な単量体とし、これを重合して得られる重合体である。アクリロニトリル系重合体は、アクリロニトリルのみから得られるホモポリマーだけでなく、主成分であるアクリロニトリルに加えて他の単量体をも用いることで得られるアクリロニトリル系共重合体であっても差し支えない。 The acrylonitrile-based polymer is a polymer obtained by polymerizing acrylonitrile as a main monomer. The acrylonitrile-based polymer is not limited to a homopolymer obtained only from acrylonitrile, but may be an acrylonitrile-based copolymer obtained by using other monomers in addition to the main component acrylonitrile.
アクリロニトリル系共重合体におけるアクリロニトリル単位の含有量は、96.0〜98.5wt%であることが、焼成工程での繊維の熱融着防止、共重合体の耐熱性、紡糸原液の安定性および炭素繊維にした時の品質の観点でより好ましい。アクリロニトリル単位が96wt%以上の場合は、炭素繊維に転換する際の焼成工程で繊維の熱融着を招くことなく、炭素繊維の優れた品質および性能を維持できるので好ましい。また、共重合体自体の耐熱性が低くなることもなく、前駆体繊維を紡糸する際、繊維の乾燥あるいは加熱ローラーや加圧水蒸気による延伸のような工程において、単繊維間の接着を回避できる。一方、アクリロニトリル単位が98.5wt%以下の場合には、溶剤への溶解性が低下することもなく、紡糸原液の安定性を維持できると共に共重合体の析出凝固性が高くならず、前駆体繊維の安定した製造が可能となるので好ましい。 The content of the acrylonitrile unit in the acrylonitrile-based copolymer is 96.0 to 98.5 wt%, preventing heat fusion of the fiber in the firing step, heat resistance of the copolymer, stability of the spinning dope and It is more preferable from the viewpoint of quality when the carbon fiber is used. When the acrylonitrile unit is 96 wt% or more, it is preferable because the excellent quality and performance of the carbon fiber can be maintained without inducing the thermal fusion of the fiber in the firing step when converting to the carbon fiber. In addition, the heat resistance of the copolymer itself is not lowered, and adhesion between single fibers can be avoided in spinning the precursor fiber or in a process such as fiber drying or drawing with a heating roller or pressurized steam. On the other hand, when the acrylonitrile unit is 98.5 wt% or less, the solubility in the solvent does not decrease, the stability of the spinning stock solution can be maintained, and the precipitation and solidification properties of the copolymer are not increased. This is preferable because stable production of fibers is possible.
共重合体を得る際に用いるアクリロニトリル以外の単量体としては、アクリロニトリルと共重合可能なビニル系単量体から適宣選択することができ、耐炎化反応を促進する作用を有するアクリル酸、メタクリル酸、イタコン酸、または、これらのアルカリ金属塩もしくはアンモニウム塩、アクリルアミド等の単量体から選択すると、耐炎化を促進できるので好ましい。アクリロニトリルと共重合可能なビニル系単量体としては、アクリル酸、メタクリル酸、イタコン酸等のカルボキシル基含有ビニル系単量体がより好ましい。アクリロニトリル系共重合体における他の単量体単位の含有量は0.5〜2.0wt%が好ましい。用いる他の単量体は、1種でも2種以上でもよい。 The monomer other than acrylonitrile used for obtaining the copolymer can be appropriately selected from vinyl monomers copolymerizable with acrylonitrile, and has acrylic acid, methacrylic acid having an action of promoting flameproofing reaction. An acid, itaconic acid, or an alkali metal salt or ammonium salt thereof, or a monomer such as acrylamide is preferable because flame resistance can be promoted. As the vinyl monomer copolymerizable with acrylonitrile, carboxyl group-containing vinyl monomers such as acrylic acid, methacrylic acid and itaconic acid are more preferable. The content of other monomer units in the acrylonitrile copolymer is preferably 0.5 to 2.0 wt%. One kind or two or more kinds of other monomers may be used.
アクリロニトリル系重合体の紡糸の際には、アクリロニトリル系重合体を、溶剤に溶解し紡糸原液とする。このときの溶剤には、ジメチルアセトアミド、ジメチルスルホキシド、ジメチルホルムアミド等の有機溶剤、または塩化亜鉛やチオシアン酸ナトリウム等の無機化合物水溶液等、公知のものから適宜選択して使用することができる。生産性向上の観点から、凝固速度が早いジメチルアセトアミド、ジメチルスルホキシドまたはジメチルホルムアミドが好ましく、ジメチルアセトアミドがより好ましい。 When spinning the acrylonitrile polymer, the acrylonitrile polymer is dissolved in a solvent to form a spinning dope. The solvent used at this time can be appropriately selected from known solvents such as organic solvents such as dimethylacetamide, dimethylsulfoxide, dimethylformamide, and aqueous inorganic compounds such as zinc chloride and sodium thiocyanate. From the viewpoint of improving productivity, dimethylacetamide, dimethylsulfoxide or dimethylformamide having a high coagulation rate is preferable, and dimethylacetamide is more preferable.
またこの際、緻密な凝固糸を得るためには、紡糸原液の重合体濃度がある程度以上になるように紡糸原液を調製することが好ましい。具体的には、紡糸原液中のアクリロニトリル系重合体の濃度が、好ましくは17wt%以上、より好ましくは19wt%以上である。さらに、紡糸原液は適正な粘度・流動性を必要とし、アクリロニトリル系重合体の濃度は25wt%を超えない範囲が好ましい。 At this time, in order to obtain a dense coagulated yarn, it is preferable to prepare the spinning dope so that the polymer concentration of the spinning dope becomes a certain level or more. Specifically, the concentration of the acrylonitrile polymer in the spinning dope is preferably 17 wt% or more, more preferably 19 wt% or more. Furthermore, the spinning dope requires an appropriate viscosity and fluidity, and the concentration of the acrylonitrile polymer is preferably within a range not exceeding 25 wt%.
紡糸方法は、上記の紡糸原液を直接凝固浴中に紡出する湿式紡糸法、空気中で凝固する乾式紡糸法、および一旦空気中に紡出した後に浴中凝固させる乾湿式紡糸法など公知の紡糸方法を適宜採用できるが、より高い性能を有する炭素繊維束を得るには湿式紡糸法または乾湿式紡糸法が好ましい。 Spinning methods are known, such as a wet spinning method in which the above-mentioned spinning solution is directly spun into a coagulation bath, a dry spinning method in which the solution is coagulated in air, and a dry and wet spinning method in which the solution is once coagulated in the air and then coagulated in the bath. A spinning method can be appropriately employed, but a wet spinning method or a dry-wet spinning method is preferable for obtaining a carbon fiber bundle having higher performance.
湿式紡糸法または乾湿式紡糸法による紡糸賦形は、上記の紡糸原液を円形断面の孔を有するノズルより凝固浴中に紡出することで行うことができる。凝固浴としては、上記の紡糸原液に用いられる溶剤を含む水溶液を用いるのが溶剤回収の容易さの観点から好ましい。 The spinning shaping by the wet spinning method or the dry-wet spinning method can be performed by spinning the above spinning solution into a coagulation bath from a nozzle having a circular cross-sectional hole. As the coagulation bath, it is preferable to use an aqueous solution containing a solvent used in the above-mentioned spinning dope from the viewpoint of easy solvent recovery.
凝固浴として溶剤を含む水溶液を用いる場合、水溶液中の溶剤の濃度は、ボイドがなく緻密な構造を形成させ高性能な炭素繊維束を得られ、かつ延伸性が確保でき生産性に優れる等の理由から、50〜85wt%、凝固浴の温度は10〜60℃が好ましい。 When using an aqueous solution containing a solvent as the coagulation bath, the concentration of the solvent in the aqueous solution is such that a dense structure without voids can be obtained, a high-performance carbon fiber bundle can be obtained, stretchability can be ensured, and productivity is excellent. For the reason, 50 to 85 wt%, and the temperature of the coagulation bath is preferably 10 to 60 ° C.
重合体または共重合体を溶剤に溶解し紡糸原液として凝固浴中に吐出して繊維化した後に、凝固糸を凝固浴中または延伸浴中で延伸する浴中延伸を行うことができる。あるいは、一部空中延伸した後に、浴中延伸してもよく、延伸の前後あるいは延伸と同時に水洗を行って、水膨潤状態にあるアクリル繊維束を得ることができる。浴中延伸は通常50〜98℃の水浴中で1回あるいは2回以上の多段に分割するなどして行い、空中延伸と浴中延伸の合計倍率が2〜10倍になるように延伸することが、得られる炭素繊維束の性能の点から好ましい。 After the polymer or copolymer is dissolved in a solvent and discharged into a coagulation bath as a spinning solution to be fiberized, stretching in a bath in which the coagulated yarn is stretched in a coagulation bath or in a stretching bath can be performed. Alternatively, it may be partially stretched in the air and then stretched in a bath. The acrylic fiber bundle in a water-swollen state can be obtained by washing with water before or after stretching or simultaneously with stretching. Stretching in the bath is usually carried out in a water bath at 50 to 98 ° C. by dividing it into multiple stages of one or more times, and stretching so that the total ratio of in-air stretching and stretching in the bath is 2 to 10 times. Is preferable from the viewpoint of the performance of the obtained carbon fiber bundle.
本発明において、アクリル繊維束に油剤成分を付与する方法としては、前述のアクリル繊維束を、油剤成分が水に分散した油剤処理液(以下、エマルションとも表記する)に接触させることにより行うことができる。浴中延伸の後に洗浄を行う場合は、浴中延伸および洗浄を行ったアクリル繊維束を、油剤成分のエマルションに接触させることもできる。エマルションはイオン交換水を加えて所定の濃度に希釈して用いる。 In the present invention, as a method for imparting the oil component to the acrylic fiber bundle, the above-mentioned acrylic fiber bundle is brought into contact with an oil treatment liquid (hereinafter also referred to as an emulsion) in which the oil component is dispersed in water. it can. When washing is performed after stretching in the bath, the acrylic fiber bundle that has been stretched and washed in the bath can be brought into contact with the emulsion of the oil component. The emulsion is used after being diluted to a predetermined concentration by adding ion exchange water.
油剤処理液をアクリル繊維束に接触させる方法としては、ローラーの下部を油剤処理液に浸漬させ、そのローラーの上部にアクリル繊維束を接触させるローラー付着法、ポンプで一定量の油剤処理液をガイドから吐出し、そのガイド表面にアクリル繊維束を接触させるガイド付着法、ノズルから一定量の油剤処理液をアクリル繊維束に噴射するスプレー付着法、油剤処理液の中にアクリル繊維束を浸漬するディップ付着法等の公知の方法を用いることができる。 As a method of bringing the oil treatment liquid into contact with the acrylic fiber bundle, the roller lowering method in which the lower part of the roller is immersed in the oil treatment liquid and the acrylic fiber bundle is brought into contact with the upper part of the roller, a certain amount of oil treatment liquid is guided by the pump. A guide adhesion method in which the acrylic fiber bundle is discharged from the guide surface and the acrylic fiber bundle is brought into contact with the guide surface, a spray adhesion method in which a predetermined amount of the oil treatment liquid is sprayed from the nozzle onto the acrylic fiber bundle, and a dip in which the acrylic fiber bundle is immersed in the oil treatment liquid A known method such as an adhesion method can be used.
均一付着の観点から、アクリル繊維束内に十分に油剤処理液を行き渡らせることに好適なディップ付着法である。より好ましくは油剤処理液槽内で、ノズルから油剤処理液をアクリル繊維束に当て、アクリル繊維束内に油剤処理液を入れ込むディップ−噴射付着方法である。 From the viewpoint of uniform adhesion, this is a dip adhesion method suitable for sufficiently spreading the oil treatment liquid into the acrylic fiber bundle. More preferably, it is a dip-jet attachment method in which the oil treatment liquid is applied to the acrylic fiber bundle from the nozzle in the oil treatment liquid tank, and the oil treatment liquid is put into the acrylic fiber bundle.
単繊維表面に均一に油剤成分を付与するためには、油剤処理液とアクリル繊維束が接触した状態で、油剤成分相互作用によりアクリル繊維束に定着する機構が好ましく、このためには、アクリル繊維束に前記油剤処理液を接触させてから乾燥ロールに触れるまでの時間が5〜60秒であることが好ましく、より好ましくは20〜60秒である。5秒以上であれば、油剤成分が単繊維表面に定着する前に乾燥し、油剤成分が単繊維表面に偏在する状態で析出し、部分的に付着が不十分である部位が存在することが発生しにくい。60秒以下であれば、単繊維表面に相互作用により定着した油剤成分の上に、さらにミセルが壊れて析出する油剤成分の層が厚くなり、ひいては単繊維間の隙間にも油剤成分が析出し、付着斑が発生することがない。また、必要量以上に油剤成分が付与されているため、シリコーン系油剤においては焼成工程におけるSi飛散量が多く操業性を低下させることがない。
In order to uniformly apply the oil agent component to the surface of the single fiber, a mechanism for fixing the acrylic fiber bundle by the oil agent component interaction in a state where the oil agent treatment solution and the acrylic fiber bundle are in contact with each other is preferable. It is preferable that the time from the contact of the oil treatment liquid with the bundle to the contact with the drying roll is 5 to 60 seconds, and more preferably 20 to 60 seconds. If it is 5 seconds or more, the oil component is dried before fixing on the surface of the single fiber, the oil agent component is deposited in a state of being unevenly distributed on the surface of the single fiber, and there may be a part where the adhesion is partially insufficient. Hard to occur. If it is 60 seconds or less, the layer of the oil component that precipitates by breaking the micelles on the oil component fixed by the interaction on the surface of the single fiber becomes thick, and the oil component also precipitates in the gap between the single fibers. , No adhesion spots occur. Moreover, since the oil agent component is provided more than the necessary amount, the silicone oil agent has a large amount of Si scattering in the firing step and does not deteriorate the operability.
この間、油剤処理液にアクリル繊維束が浸かった状態であっても、室温のロールを用いて空中を搬送する工程であっても構わない。 During this time, even if the acrylic fiber bundle is immersed in the oil treatment liquid, it may be a step of transporting in the air using a roll at room temperature.
上記の油剤成分を相互作用によってアクリル繊維束に定着させる工程においては、温度が低いとエマルションが安定化する一方で、ミセルのアクリル繊維束への吸着性は高くなる。また、温度が高いとエマルションの安定性は低下するが、油剤成分とアクリル繊維束の相互作用が化学反応である場合においては定着性が良くなる場合がある。したがって、この工程を行う温度は、好ましくは0〜50℃で、より好ましくは10〜40℃である。 In the step of fixing the oil component to the acrylic fiber bundle by interaction, the emulsion is stabilized when the temperature is low, while the adsorptivity of the micelle to the acrylic fiber bundle is high. Further, when the temperature is high, the stability of the emulsion is lowered, but when the interaction between the oil component and the acrylic fiber bundle is a chemical reaction, the fixability may be improved. Therefore, the temperature at which this step is performed is preferably 0 to 50 ° C, more preferably 10 to 40 ° C.
0℃以下では油剤成分の拡散が制限される場合があり、50℃を超えると乳化が不安定になる場合がある。一般的な工程においては、特に温度調整をする必要はなく、室温の処理液、装置で差し支えない。 If it is 0 ° C. or lower, the diffusion of the oil component may be restricted, and if it exceeds 50 ° C., emulsification may become unstable. In a general process, it is not necessary to adjust the temperature in particular, and a room temperature processing solution and apparatus may be used.
本発明においては、油剤処理液が、アミノ変性シリコーンを含有していることが好ましい。アミノ変性シリコーンは、アミノ基を有することにより、アクリル繊維との親和性が良く、相互作用定着を用いてアクリル繊維束に油剤成分を均一に付与する方法において好ましい。より好ましくは、側鎖一級アミノ変性シリコーンである。 In the present invention, the oil agent treatment liquid preferably contains an amino-modified silicone. Amino-modified silicone has an amino group and thus has good affinity with acrylic fibers, and is preferable in a method of uniformly applying an oil agent component to an acrylic fiber bundle using interaction fixing. More preferably, it is a side chain primary amino-modified silicone.
本発明においては、油剤処理液が、非イオン系乳化剤を含有していることが好ましく、プロピレンオキサイド(PO)ユニットとエチレンオキサイド(EO)ユニットからなる共重合型ポリエーテルを含有していることがより好ましい。この乳化剤を用いたエマルションの場合、繊維への油剤成分の定着性が向上し、より均一な付与ができる。 In the present invention, the oil treatment liquid preferably contains a nonionic emulsifier, and preferably contains a copolymerized polyether composed of propylene oxide (PO) units and ethylene oxide (EO) units. More preferred. In the case of an emulsion using this emulsifier, the fixability of the oil component to the fibers is improved and more uniform application can be achieved.
本発明においては、油剤成分の付着量は、後述する乾燥緻密化された後の前駆体繊維束において、その乾燥繊維質量に対して0.1〜2.0wt%であることが好ましく、0.1〜1.0wt%であることがさらに好ましい。油剤成分の付着量が0.1wt%より低い場合、油剤成分の本来の機能を十分に発現させることが困難になる。一方、油剤成分の付着量が2.0wt%より高い場合、余分に付着した油剤成分が、焼成工程において高分子化して単繊維間の接着の誘因となるほか、搬送ロールに堆積するなどして操業性を低下させる場合がある。 In the present invention, the adhesion amount of the oil component is preferably 0.1 to 2.0 wt% with respect to the dry fiber mass in the precursor fiber bundle after being dried and densified, which will be described later. More preferably, it is 1-1.0 wt%. When the adhesion amount of the oil component is lower than 0.1 wt%, it becomes difficult to sufficiently express the original function of the oil component. On the other hand, when the adhesion amount of the oil agent component is higher than 2.0 wt%, the excess oil agent component is polymerized in the firing process to cause adhesion between single fibers, and is deposited on the conveyance roll. The operability may be reduced.
また、油剤処理液において、平均粒子径0.01μm以上0.5μm以下のミセルが形成されていることが好ましい。こうすることで、アクリル繊維素束中に均一にミセルを分散させることが可能となる。なお、上記の水系エマルションに存在するミセルの平均粒子径は、レーザ回折/散乱式粒度分布測定装置(商品名:LA−910、株式会社堀場製作所製)を用いて測定することができる。 Moreover, it is preferable that the micelle with an average particle diameter of 0.01 micrometer or more and 0.5 micrometer or less is formed in the oil agent processing liquid. By carrying out like this, it becomes possible to disperse | distribute a micelle uniformly in an acrylic fiber elementary bundle. In addition, the average particle diameter of the micelle which exists in said aqueous emulsion can be measured using a laser diffraction / scattering type particle size distribution measuring apparatus (trade name: LA-910, manufactured by Horiba, Ltd.).
本発明において、上記の油剤付与方法によって油剤成分が付着されたアクリル繊維束は、続く乾燥工程で乾燥緻密化される。乾燥緻密化の温度は、繊維のガラス転移温度を超えた温度で行う必要があるが、実質的には含水状態から乾燥状態によって異なることもあり、温度は100〜200℃程度の加熱ローラーによる方法が好ましい。このとき加熱ローラーの個数は、1個でも複数個でもよい。 In the present invention, the acrylic fiber bundle to which the oil agent component is adhered by the oil agent application method is dried and densified in the subsequent drying step. The temperature for drying and densification needs to be performed at a temperature exceeding the glass transition temperature of the fiber, but the temperature may vary depending on the drying state from the water-containing state, and the temperature is a method using a heating roller of about 100 to 200 ° C. Is preferred. At this time, the number of heating rollers may be one or more.
乾燥後、続いて加圧水蒸気延伸を行うことが、得られる炭素繊維束の緻密性や配向度をさらに高めることができ好ましい。加圧水蒸気延伸とは、加圧水蒸気雰囲気中で延伸を行う方法であって、高倍率の延伸が可能であることから、より高速で安定な紡糸が行えると同時に、得られる炭素繊維束の緻密性や配向度向上にも寄与する。 It is preferable to perform pressurized steam stretching after drying, since the denseness and the degree of orientation of the resulting carbon fiber bundle can be further increased. Pressurized steam stretching is a method of stretching in a pressurized steam atmosphere, and since it can be stretched at a high magnification, it is possible to perform stable spinning at a higher speed, and at the same time, the denseness of the obtained carbon fiber bundle and It also contributes to improving the degree of orientation.
本発明では、この加圧水蒸気延伸において、加圧水蒸気延伸装置直前の加熱ローラーの温度を120〜190℃、加圧水蒸気延伸における水蒸気圧力の変動率を0.5%以下に制御することが好ましい。このようにすることにより、前駆体繊維束になされる延伸倍率の変動およびそれによって発生するトウ繊度の変動を抑制することができる。加熱ローラーの温度が120℃未満では前駆体繊維束の温度が十分に上がらず延伸性が低下する。 In the present invention, in this pressurized steam stretching, it is preferable to control the temperature of the heating roller immediately before the pressurized steam stretching apparatus to 120 to 190 ° C., and the variation rate of the steam pressure in the pressurized steam stretching to 0.5% or less. By doing in this way, the fluctuation | variation of the draw ratio made | formed to a precursor fiber bundle and the fluctuation | variation of the tow | fineness degree to be generated by it can be suppressed. When the temperature of the heating roller is less than 120 ° C., the temperature of the precursor fiber bundle is not sufficiently increased and the drawability is lowered.
加圧水蒸気延伸における水蒸気の圧力は、加熱ローラーによる延伸の抑制や加圧水蒸気延伸法の特徴が明確に現れるようにするため、200kPa・g(ゲージ圧、以下同じ。)以上が好ましい。この水蒸気圧は、処理時間との兼ね合いで適宜調節することが好ましいが、高圧にすると水蒸気の漏れが増大したりする場合があるので、工業的には600kPa・g程度以下が好ましい。 The pressure of water vapor in the pressurized steam stretching is preferably 200 kPa · g (gauge pressure, the same shall apply hereinafter) or more so that the stretching by the heating roller and the characteristics of the pressurized steam stretching method appear clearly. The water vapor pressure is preferably adjusted as appropriate in consideration of the treatment time, but if the pressure is high, leakage of water vapor may increase. Therefore, it is preferably about 600 kPa · g or less industrially.
乾燥緻密化を経て得られた前駆体繊維束は、室温のロールを通し、常温の状態まで冷却した後にワインダーでボビンに巻き取られる。あるいは、ケンスに振込まれて収納され、焼成工程に移される。そして、前駆体繊維束を焼成することで、炭素繊維束を得ることができる。 The precursor fiber bundle obtained through drying and densification is passed through a roll at room temperature, cooled to a normal temperature state, and then wound around a bobbin with a winder. Alternatively, it is transferred to a can and stored, and transferred to a firing step. And a carbon fiber bundle can be obtained by baking a precursor fiber bundle.
以上で説明した本発明の炭素繊維前駆体アクリル繊維束の製造方法により製造された前駆体繊維束は、紡糸工程、焼成工程での融着を抑制でき、かつ均質および物性の優れた炭素繊維束を製造するために有用である。また、油剤付与の工程においてアクリル繊維束に随伴する余分な油剤成分を水洗除去することにより、前駆体繊維束へのシリコーンの付着量を抑えることができる。その結果、焼成工程でのシリコーン分解物の飛散および、ケイ素化合物の生成量を抑制でき、操業性、工程通過性が著しく改善される。このような炭素繊維前駆体アクリル繊維束により得られる炭素繊維束は、様々な構造材料に用いられる繊維強化樹脂複合材料に用いる強化繊維として好適である。 The precursor fiber bundle produced by the method for producing the carbon fiber precursor acrylic fiber bundle of the present invention described above can suppress the fusion in the spinning process and the firing process, and has a uniform and excellent physical property. Is useful for manufacturing. Moreover, the amount of silicone adhering to the precursor fiber bundle can be suppressed by removing the excess oil agent component accompanying the acrylic fiber bundle with water in the oil agent application step. As a result, it is possible to suppress the scattering of the silicone degradation product and the amount of silicon compound produced in the firing process, and the operability and processability are remarkably improved. A carbon fiber bundle obtained by such a carbon fiber precursor acrylic fiber bundle is suitable as a reinforcing fiber used for a fiber reinforced resin composite material used for various structural materials.
以下に本発明を実施例によりさらに具体的に説明するが、本発明の前駆体繊維束の製造方法、およびそれにより得られた前駆体繊維束は、実施例により限定されるものではない。なお、前駆体繊維束の油剤付着量、油剤付着状態評価、および前駆体繊維束を焼成して得られた炭素繊維束の単繊維間融着数、ストランド強度、また焼成工程のシリコーン由来ケイ素化合物飛散評価は、以下の方法により実施した。 The present invention will be described more specifically with reference to the following examples. However, the method for producing a precursor fiber bundle of the present invention and the precursor fiber bundle obtained thereby are not limited to the examples. In addition, the amount of oil agent adhesion of the precursor fiber bundle, the evaluation of the oil agent adhesion state, the number of single-fiber fusions of the carbon fiber bundle obtained by firing the precursor fiber bundle, the strand strength, and the silicon-derived silicon compound in the firing step The scattering evaluation was carried out by the following method.
[油剤付着量]
前駆体繊維束を105℃で1時間乾燥させた後、90℃のメチルエチルケトンに8時間浸漬して付着した油剤成分を溶媒抽出した。油剤付着量は、この抽出前後の前駆体繊維束の質量を精秤し、この差から求めた。
[Oil agent adhesion amount]
The precursor fiber bundle was dried at 105 ° C. for 1 hour and then immersed in methyl ethyl ketone at 90 ° C. for 8 hours to extract the oil agent component adhering thereto. The oil agent adhesion amount was obtained from this difference by precisely weighing the mass of the precursor fiber bundle before and after this extraction.
[油剤付着状態評価]
前駆体繊維束の単繊維表面に付着した油剤成分をルテニウム酸で蒸着、染色した後、光学顕微鏡で表面観察し、次の基準で評価した。
○:表面に均一に油剤成分が付着しており良好。
△:多量に付着している部位があるなど、付着斑が多少あり。
×:付着不足の部位や、付着斑が多数あり不良。
[Evaluation of oil adhesion]
The oil agent component adhering to the surface of the single fiber of the precursor fiber bundle was vapor-deposited and dyed with ruthenic acid, and then the surface was observed with an optical microscope and evaluated according to the following criteria.
○: The oil component is uniformly adhered to the surface, which is good.
Δ: There are some adhesion spots such as a part adhering in large quantities.
X: There are a lot of sites with insufficient adhesion and adhesion spots, which are defective
[単繊維間融着数(融着数)]
炭素化した炭素繊維束を3mm長に切断し、アセトン中に分散させ、10分間攪拌した後の全単繊維数と融着数を計数し、単繊維100本当たりの融着数を算出して評価した。評価基準は下記の通りである。
○:融着数(個/100本)≦1
×:融着数(個/100本)>1
[Number of fusions between single fibers (number of fusions)]
The carbonized carbon fiber bundle is cut into 3 mm lengths, dispersed in acetone, and after stirring for 10 minutes, the total number of single fibers and the number of fusions are counted, and the number of fusions per 100 single fibers is calculated. evaluated. The evaluation criteria are as follows.
○: Number of fusions (pieces / 100 pieces) ≦ 1
×: Number of fusions (pieces / 100 pieces)> 1
[ストランド強度(CF強度)]
JIS−R−7608に規定されているエポキシ樹脂含浸ストランド法に準じて測定した。なお、測定回数は30回とし、その平均値を評価の対象とした。30回分の測定の変動係数を均質性の指標として用いた。
[Strand strength (CF strength)]
It measured according to the epoxy resin impregnation strand method prescribed | regulated to JIS-R-7608. The number of measurements was 30 times, and the average value was used for evaluation. The coefficient of variation of 30 measurements was used as an index of homogeneity.
[シリコーン由来ケイ素化合物飛散評価]
耐炎化工程におけるシリコーン由来のケイ素化合物飛散量は、前駆体繊維束と、それを耐炎化した耐炎化繊維束のSi元素含有量を蛍光X線分析装置にて測定し、それらの差異により耐炎化工程で飛散したSi量を算出し、評価の指標とした。
(Si飛散量)=
(前駆体繊維束のSi含有量)−(耐炎化繊維束のSi含有量) [mg/kg]
蛍光X線分析装置には、理学電機工業株式会社製ZSX100e(商品名)を用いた。測定サンプルは、縦20mm、横40mm、幅5mmのアクリル樹脂製板に繊維束を隙間のないように均一に巻いて装置にセットした。このとき、測定に付す繊維束の巻き長は同一とすることが重要である。その後、通常の蛍光X線分析方法によりSiの蛍光X線強度を測定した。得られた前駆体繊維束および耐炎化繊維束のSiの蛍光X線強度から、検量線を用い、それぞれの繊維束のSi含有量を求めた。測定数はn=10とし、評価にはそれらの平均値を用いた。
[Silicon-derived silicon compound scattering evaluation]
The amount of silicon-derived silicon compound scattered in the flameproofing process is determined by measuring the Si element content of the precursor fiber bundle and the flameproofed fiber bundle obtained by flameproofing it with a fluorescent X-ray analyzer. The amount of Si scattered in the process was calculated and used as an evaluation index.
(Si scattering amount) =
(Si content of precursor fiber bundle)-(Si content of flameproof fiber bundle) [mg / kg]
For the X-ray fluorescence analyzer, ZSX100e (trade name) manufactured by Rigaku Denki Kogyo Co., Ltd. was used. The measurement sample was set in the apparatus by uniformly winding a fiber bundle on an acrylic resin plate having a length of 20 mm, a width of 40 mm, and a width of 5 mm so that there was no gap. At this time, it is important that the winding length of the fiber bundle attached to the measurement is the same. Thereafter, the fluorescent X-ray intensity of Si was measured by a normal fluorescent X-ray analysis method. The Si content of each fiber bundle was determined from the X-ray fluorescence X-ray intensity of the obtained precursor fiber bundle and flame-resistant fiber bundle using a calibration curve. The number of measurements was n = 10, and the average value was used for evaluation.
<実施例1>
油剤組成物のエマルションを次の方法で調製した。動粘度が1700mm2/s(25℃)、アミノ当量が3800g/molであるアミノ変性シリコ−ン(信越化学工業製、品名:KF−864)と、プロピレンオキサイド(PO)とエチレンオキサイド(EO)からなるブロック共重合型ポリエーテル(株式会社アデカ製、商品名:F−68)と、酸化防止剤(チバ・ジャパン株式会社製、商品名:IRGANOX1010)とを90:9:1(アミノ変性シリコーン:ブロック共重合型ポリエーテル:酸化防止剤)の質量比で混合したものに、油剤組成物の濃度が30wt%となるようにイオン交換水を加え、ホモミキサーで乳化した。この状態ではミセル粒子径の平均が2μm程度であるため、さらに高圧ホモジナイザーによって0.2μm以下の粒子径まで分散した。このエマルションを油剤原液として以下の工程で用いた。
<Example 1>
An emulsion of the oil composition was prepared by the following method. Amino-modified silicone (product name: KF-864, manufactured by Shin-Etsu Chemical Co., Ltd.) having a kinematic viscosity of 1700 mm 2 / s (25 ° C.) and an amino equivalent of 3800 g / mol, propylene oxide (PO) and ethylene oxide (EO) 90: 9: 1 (amino-modified silicone) comprising block copolymer polyether (trade name: F-68, manufactured by Adeka Co., Ltd.) and an antioxidant (trade name: IRGANOX 1010, manufactured by Ciba Japan Co., Ltd.). : Block copolymerized polyether: antioxidant) was mixed at a mass ratio, and ion-exchanged water was added so that the concentration of the oil composition was 30 wt%, and the mixture was emulsified with a homomixer. In this state, since the average micelle particle diameter is about 2 μm, it was further dispersed to a particle diameter of 0.2 μm or less by a high-pressure homogenizer. This emulsion was used as an oil agent stock solution in the following steps.
油剤組成物を付着させるアクリル繊維束は、次の方法で調製した。アクリロニトリル系共重合体(組成比:アクリロニトリル/アクリルアミド/メタクリル酸=96/3/1(質量比))をジメチルアセトアミドに溶解し、紡糸原液を調製し、ジメチルアセトアミド水溶液を満たした凝固浴中に孔径(直径)75μm、孔数6000の紡糸ノズルより吐出し凝固糸とした。凝固糸は水洗槽中で脱溶媒するとともに5倍に延伸して水膨潤状態のアクリル繊維束とした。 The acrylic fiber bundle to which the oil agent composition was adhered was prepared by the following method. Acrylonitrile copolymer (composition ratio: acrylonitrile / acrylamide / methacrylic acid = 96/3/1 (mass ratio)) is dissolved in dimethylacetamide, a spinning stock solution is prepared, and the pore size is set in a coagulation bath filled with a dimethylacetamide aqueous solution. (Diameter) 75 μm, discharged from a spinning nozzle having a hole number of 6000 to obtain a coagulated yarn. The coagulated yarn was desolvated in a water washing tank and stretched 5 times to obtain an acrylic fiber bundle in a water swollen state.
上記の水膨潤状態にあるアクリル繊維束を、上記油剤原液をイオン交換水で希釈した処理液が入った油剤処理槽に導き、上述の油剤組成物を付着させた後、表面温度180℃のロールにて乾燥した。繊維束に随伴した余分な油剤処理液を除去するために、乾燥ロールの直前にてガイドバーでニップした。油剤処理槽にて、水膨潤状態にあるアクリル繊維束と油剤処理液が接触してから、乾燥ロールに触れるまでの時間を5秒となるように搬送速度、油剤処理槽と乾燥ロールまでの距離を調節した。 The acrylic fiber bundle in the water swelling state is guided to an oil agent treatment tank containing a treatment liquid obtained by diluting the oil agent stock solution with ion exchange water, and after the oil agent composition is adhered, a roll having a surface temperature of 180 ° C. Dried. In order to remove the excess oil agent treatment liquid accompanying the fiber bundle, the sheet was nipped with a guide bar immediately before the drying roll. In the oil treatment tank, the conveyance speed and the distance between the oil treatment tank and the drying roll so that the time from the contact of the acrylic fiber bundle in the water swelling state with the oil treatment liquid to the touch of the drying roll is 5 seconds. Adjusted.
続いて、圧力0.2MPaの水蒸気中で3倍延伸を施した後、一旦ボビンに巻き取り、炭素繊維前駆体アクリル繊維束を採取した。 Subsequently, the film was stretched three times in water vapor at a pressure of 0.2 MPa, and then wound around a bobbin to collect a carbon fiber precursor acrylic fiber bundle.
前駆体繊維束の単繊維表面への油剤の付着状態を先述の方法で観察した結果を表1に示した。油剤付与の工程で、前駆体繊維束に随伴する余分な油剤処理液が、乾燥ロール前のニップでは完全に除去できないため、若干油剤組成物の付着量が高い部分が見られたが、概ね均一に付着していた。 Table 1 shows the results of observation of the adhesion state of the oil agent to the surface of the single fiber of the precursor fiber bundle by the method described above. In the oil agent application process, the excess oil agent treatment liquid accompanying the precursor fiber bundle cannot be completely removed at the nip before the drying roll, so a portion with a slightly high amount of the oil agent composition was seen, but it was almost uniform It was attached to.
この炭素繊維前駆体アクリル繊維束を、220〜260℃の温度勾配を有する耐炎化炉に通し、さらに窒素雰囲気中で400〜1300℃の温度勾配を有する炭素化炉で焼成して炭素繊維束とした。 This carbon fiber precursor acrylic fiber bundle is passed through a flameproofing furnace having a temperature gradient of 220 to 260 ° C., and further baked in a carbonization furnace having a temperature gradient of 400 to 1300 ° C. in a nitrogen atmosphere. did.
ここで得られた炭素繊維束の融着数および炭素繊維束ストランド強度(以下、CF強度とも記載する)、耐炎化工程におけるシリコーン由来ケイ素化合物飛散評価結果を表1に合わせて示した。融着は無く良好で、CF強度も高くバラツキも小さかった。 The number of fusion of carbon fiber bundles obtained here, the carbon fiber bundle strand strength (hereinafter also referred to as CF strength), and the silicone-derived silicon compound scattering evaluation results in the flameproofing process are shown in Table 1. It was good without fusing, high CF strength and small variation.
<実施例2〜4>
油剤処理槽にてアクリル繊維束と油剤処理液が接触してから乾燥ロールに触れるまでの時間を、それぞれ15、30、60としたこと以外は、実施例1と同じ方法
で実施例2〜4を行い、前駆体繊維束を採取した。これらの油剤付与条件を表1に纏めて示した。
<Examples 2 to 4>
Examples 2 to 4 were the same as Example 1 except that the time from the contact of the acrylic fiber bundle and the oil treatment liquid to the contact with the drying roll in the oil treatment tank was set to 15, 30, and 60, respectively. The precursor fiber bundle was collected. These oil agent application conditions are summarized in Table 1.
採取した前駆体繊維束の油剤付着状態の評価結果を表1に併せて示した。いずれの場合も単繊維表面への油剤成分の付着状態は均一で良好であった。 The evaluation results of the oil agent adhesion state of the collected precursor fiber bundle are also shown in Table 1. In any case, the adhesion state of the oil component to the surface of the single fiber was uniform and good.
得られた前駆体繊維束を実施例1と同様の手法で焼成し、炭素繊維束とした。得られた炭素繊維束の融着数およびCF強度、耐炎化工程におけるシリコーン由来ケイ素化合物飛散評価結果を表1に合わせて示した。いずれの場合も融着はなく、CF強度が高く、バラツキも小さく良好であった。
The obtained precursor fiber bundle was fired in the same manner as in Example 1 to obtain a carbon fiber bundle. Table 1 shows the number of fusions and CF strength of the obtained carbon fiber bundle, and the evaluation results of the silicone-derived silicon compound scattering in the flameproofing process. In any case, there was no fusion, the CF strength was high, the variation was good, and it was good .
CF強度のバラツキが小さく、より均質な炭素繊維束が得られたのは、油剤処理槽にて、水膨潤状態にあるアクリル繊維束と油剤処理液が接触してから乾燥ロールに触れるまでの時間を30秒に調整した実施例3であった。
The reason why a more uniform carbon fiber bundle with small variation in CF strength was obtained was the time from the contact of the swelled acrylic fiber bundle with the oil treatment liquid to the contact with the drying roll in the oil treatment tank. Was Example 3 adjusted to 30 seconds.
<比較例1、2>
油剤処理槽にてアクリル繊維束と油剤処理液が接触してからアクリル繊維束が乾燥ロールに接触するまでの時間を、それぞれ3、90秒としたこと以外は、実施例1と同じ方法で比較例1および2を行い、前駆体繊維束を採取した。これらの油剤付与条件を表1に纏めて示した。
<Comparative Examples 1 and 2>
Comparison is made in the same manner as in Example 1 except that the time from the contact between the acrylic fiber bundle and the oil treatment liquid in the oil treatment tank to the contact of the acrylic fiber bundle with the drying roll is 3 and 90 seconds, respectively. Examples 1 and 2 were performed and precursor fiber bundles were collected. These oil agent application conditions are summarized in Table 1.
比較例1,2については、CF強度の変動係数が大きくなる傾向にあった。 In Comparative Examples 1 and 2, the coefficient of variation in CF strength tended to increase.
Claims (3)
その後、前記アクリル繊維束を乾燥緻密化する工程と
を有する炭素繊維前駆体アクリル繊維束の製造方法であって、
アクリル繊維束に前記油剤処理液を接触させてから乾燥ロールに触れるまでの時間が5〜60秒である炭素繊維前駆体アクリル繊維束の製造方法。
Contacting the acrylic fiber bundle with an oil treatment liquid in which the oil component is dispersed in water;
Thereafter, a method of producing a carbon fiber precursor acrylic fiber bundle having a step of drying and densifying the acrylic fiber bundle,
The manufacturing method of the carbon fiber precursor acrylic fiber bundle whose time from making the said oil agent process liquid contact an acrylic fiber bundle and touching a drying roll is 5 to 60 second.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008058140A JP4990195B2 (en) | 2008-03-07 | 2008-03-07 | Carbon fiber precursor acrylic fiber bundle and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008058140A JP4990195B2 (en) | 2008-03-07 | 2008-03-07 | Carbon fiber precursor acrylic fiber bundle and method for producing the same |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2009215664A JP2009215664A (en) | 2009-09-24 |
JP2009215664A5 JP2009215664A5 (en) | 2012-03-08 |
JP4990195B2 true JP4990195B2 (en) | 2012-08-01 |
Family
ID=41187797
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008058140A Expired - Fee Related JP4990195B2 (en) | 2008-03-07 | 2008-03-07 | Carbon fiber precursor acrylic fiber bundle and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4990195B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6962654B2 (en) * | 2017-05-16 | 2021-11-05 | 花王株式会社 | Method for manufacturing oil treatment liquid for carbon fiber precursor |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0711511A (en) * | 1993-06-23 | 1995-01-13 | Toray Ind Inc | Production of acrylic precursor fiber bundle for carbon fiber and apparatus therefor |
JP2004211240A (en) * | 2002-12-27 | 2004-07-29 | Mitsubishi Rayon Co Ltd | Carbon fiber, acrylonitrile-based precursor fiber for the same, and method for producing the carbon fiber and the precursor fiber |
JP4518046B2 (en) * | 2005-06-30 | 2010-08-04 | 東レ株式会社 | Oil for carbon fiber precursor and carbon fiber precursor |
JP2007113141A (en) * | 2005-10-20 | 2007-05-10 | Toray Ind Inc | Method for producing carbon fiber precursor fiber bundle |
JP4838595B2 (en) * | 2006-02-08 | 2011-12-14 | 三菱レイヨン株式会社 | Carbon fiber bundle manufacturing method |
-
2008
- 2008-03-07 JP JP2008058140A patent/JP4990195B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009215664A (en) | 2009-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4856724B2 (en) | Oil agent composition for carbon fiber precursor acrylic fiber, carbon fiber precursor acrylic fiber bundle, and method for producing the same | |
JP4543922B2 (en) | Silicone oil agent for carbon fiber precursor fiber, carbon fiber precursor fiber, flame-resistant fiber, carbon fiber and production method thereof | |
JP5112973B2 (en) | Oil composition for carbon fiber precursor acrylic fiber, carbon fiber precursor acrylic fiber bundle, and method for producing the same | |
JP4917991B2 (en) | Oil agent composition for carbon fiber precursor acrylic fiber | |
JP6510299B2 (en) | Flame-resistant fiber bundle, carbon fiber precursor fiber bundle, and method for producing carbon fiber comprising the same | |
JP4305081B2 (en) | Oil for carbon fiber production and method for producing carbon fiber | |
JP2018159138A (en) | Oil solution composition for carbon fiber precursor acrylic fiber, carbon fiber precursor acrylic fiber bundle, carbon fiber, and method for producing carbon fiber precursor acrylic fiber bundle and carbon fiber | |
JP4990195B2 (en) | Carbon fiber precursor acrylic fiber bundle and method for producing the same | |
JP4995754B2 (en) | Carbon fiber precursor acrylic fiber bundle and method for producing the same | |
JP5741841B2 (en) | Carbon fiber precursor acrylic fiber bundle | |
JP4400268B2 (en) | Oil for carbon fiber precursor | |
JP4311246B2 (en) | Synthetic fiber treatment oil | |
JP4862226B2 (en) | Precursor fiber for carbon fiber and method for producing carbon fiber | |
JP5017211B2 (en) | Oil composition for carbon fiber precursor acrylic fiber, carbon fiber precursor acrylic fiber bundle using the same, and method for producing the same | |
KR102146230B1 (en) | Oil composition used in making carbon fiber and carbon fiber manufacturing method using the same | |
JP4543931B2 (en) | Silicone oil agent for carbon fiber precursor fiber, carbon fiber precursor fiber, flame resistant fiber, carbon fiber and method for producing the same | |
JP2004169198A (en) | Precursor fiber strand for carbon fiber and method for producing the same | |
JP4942502B2 (en) | Method for producing flame-resistant fiber bundle | |
JP2014163008A (en) | Carbon fiber precursor acrylic fiber bundle, method for manufacturing the same and carbon fiber bundle | |
JP6729665B2 (en) | Acrylonitrile precursor fiber bundle for carbon fiber and method for producing the same | |
JP2004149937A (en) | Precursor fiber strand for carbon fiber and method for producing the same | |
JP2002317383A (en) | Carbon fiber bundle for filament winding | |
JP4048230B2 (en) | Precursor fiber for carbon fiber and method for producing the same | |
JP2004300606A (en) | Flameproof fiber and method for producing the same | |
JP3697793B2 (en) | Precursor for carbon fiber, method for producing the same, and method for producing carbon fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110217 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110217 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120106 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110217 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120413 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120419 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120501 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4990195 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150511 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150511 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150511 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |