JP2014160814A - 太陽電池モジュール及びその製造方法 - Google Patents

太陽電池モジュール及びその製造方法 Download PDF

Info

Publication number
JP2014160814A
JP2014160814A JP2014013787A JP2014013787A JP2014160814A JP 2014160814 A JP2014160814 A JP 2014160814A JP 2014013787 A JP2014013787 A JP 2014013787A JP 2014013787 A JP2014013787 A JP 2014013787A JP 2014160814 A JP2014160814 A JP 2014160814A
Authority
JP
Japan
Prior art keywords
solar cell
cell module
manufacturing
substrate
polycarbonate substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014013787A
Other languages
English (en)
Inventor
Masaaki Kinoshita
雅章 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2014013787A priority Critical patent/JP2014160814A/ja
Publication of JP2014160814A publication Critical patent/JP2014160814A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

【課題】 ポリカーボネート基板及び封止材間における気泡の発生を抑制して不良品の発生を防止することができる太陽電池モジュール及びその製造方法を提供するものである。
【解決手段】 太陽電池モジュール100の製造方法は、下側PC基板1b上に下側封止シート3bを積層し、下側封止シート3b上に太陽電池セル2を積層し、太陽電池セル2上に上側封止シート3aを積層し、下側PC基板1bと熱収縮特性が略同一である上側PC基板1aを上側封止シート3a上に積層する積層工程と、上側PC基板1a及び下側PC基板1bが共に飽和温度に達するまで加熱する加熱工程と、上側PC基板1a及び下側PC基板1b間に存在する気体を上側PC基板1a及び下側PC基板1bの周縁部から排出させる真空工程と、を含む。
【選択図】 図1

Description

この発明は、太陽電池セルが熱可塑性樹脂を封止材(充填材)として二枚のポリカーボネート(Polycarbonate:PC)基板で挟持される太陽電池モジュール及びその製造方法に関する。
従来の太陽電池モジュールは、耐候層と、発電部材と、ポリカーボネート基材とがこの順に積層された太陽電池モジュールにおいて、前記発電部材と前記ポリカーボネート基材との間に熱可塑性樹脂が積層されている(例えば、特許文献1参照)。
特開2012−99613号公報
特許文献1には、従来の太陽電池モジュールの課題として、裏面及び表面の被覆材としてポリカーボネートが用いられることで、ポリカーボネートの熱収縮により、被覆材と充填材との間にひずみが発生し、その界面に余分なスペースが生じることで、そのスペースに発生した気泡が溜まることを挙げている。そして、特許文献1には、発電部材とポリカーボネート基材との間に熱可塑性樹脂の層を設けることにより、この課題を解決することができることが記載されている。
しかしながら、本願発明者は、発電部材とポリカーボネート基材との間に熱可塑性樹脂の層を設けた太陽電池モジュールの試作を行った結果、発電部材とポリカーボネート基材との間に単に熱可塑性樹脂の層を設けるだけでは、この課題を解決するには不十分であることを見出した。
この発明は、前述のような課題を解決するためになされたもので、被覆材及び充填材間における気泡の発生を抑制して不良品の発生を防止することができる太陽電池モジュール及びその製造方法を提供するものである。
この発明に係る太陽電池モジュールの製造方法においては、一のポリカーボネート基板上に一の熱可塑性樹脂シートを積層し、当該一の熱可塑性樹脂シート上に太陽電池セルを積層し、当該太陽電池セル上に他の熱可塑性樹脂シートを積層し、当該一のポリカーボネート基板と熱収縮特性が略同一である他のポリカーボネート基板を当該他の熱可塑性樹脂シート上に積層する積層工程と、一のポリカーボネート基板及び他のポリカーボネート基板が共に飽和温度に達するまで加熱する加熱工程と、一のポリカーボネート基板及び他のポリカーボネート基板間に存在する気体を当該一のポリカーボネート基板及び他のポリカーボネート基板の周縁部から排出させる真空工程と、を含む。
この発明に係る太陽電池モジュールの製造方法においては、太陽電池モジュール内における気泡の発生及び残存を抑制して、太陽電池モジュールの不良品の発生を防止することができる。
(a)は第1の実施形態に係る太陽電池モジュールの概略構成を示す断面図であり、(b)は図1(a)に示す太陽電池モジュールの各部材の積層状態を示す断面図であり、(c)は図1に示す上側PC板及び下側PC板における加熱時の温度変化を説明するための説明図である。 (a)はラミネート装置に被加工物を搬入した状態を示すラミネート装置の断面図であり、(b)はラミネート装置の蓋を閉じた状態を示す断面図であり、(c)はラミネート装置によるプレス工程を説明するためのラミネート装置の断面図である。
(本発明の第1の実施形態)
太陽電池モジュール100は、図1(a)に示すように、熱収縮特性が略同一である二枚のポリカーボネート基板1と、二枚のポリカーボネート基板1間に挟持される太陽電池セル2と、二枚のポリカーボネート基板1間で太陽電池セル2を封止する熱可塑性樹脂3と、を備える。
二枚のポリカーボネート基板1は、受光面側に配置されるポリカーボネート基板1(以下、上側PC基板1aと称す)と、非受光面側に配置されるポリカーボネート基板1(以下、下側PC基板1bと称す)と、から構成され、上側PC基板1a及び下側PC基板1bの熱収縮特性を略同一にするために、略同一形状(略同一の長さ、幅及び厚みである略矩形状)の基材である。
なお、ポリカーボネートの熱収縮特性が略同一とは、図1(c)に示すように、後述する加熱終了後の上側PC基板1a及び下側PC基板1bの温度推移が略同一のことであり、例えば、上側PC基板1a及び下側PC基板1bが略同一形状(略同一の長さ、幅及び厚みである略矩形状)の基材であれば、ポリカーボネートの線膨張係数(6.5×10−5/℃)が略同一のことである。
また、本実施形態に係るポリカーボネート基板1は、耐候性試験における耐黄変性の評価として、20年劣化加速試験を行い、経時での黄色度YI値が7%以下の耐光性を有する基材である。
また、ポリカーボネート基板1は、太陽電池モジュール100の強度を確保するために、二枚のポリカーボネート基板1の合計の厚みを2mm以上とし、上側PC基板1aにおける太陽光の透過性を確保するために、上側PC基板1aの厚みを1.5mm以下とし、後述する加熱工程におけるポリカーボネート基板1の熱伝導率を考慮して、熱源に近いポリカーボネート基板1の厚みを1.5mm以下とする必要がある。
このため、本実施形態に係る上側PC基板1a及び下側PC基板1bは、厚みを略同一にする条件を満たすためにも、それぞれの厚みが1.0mm〜1.5mmである。
太陽電池セル2は、リード線2aを介して他の太陽電池セル2と直列に接続してストリングを構成し、複数のストリングを横配列にて接続してマトリクスを構成する。
なお、本実施形態における太陽電池は、可視光の吸収度が高く、薄膜にできるアモルファスを半導体材料として使用したシリコン系太陽電池のアモルファス太陽電池や、光吸収層の材料として、シリコンの代わりに、Cu、In、Ga、Al、Se、Sなどからなるカルコパイライト系のI−III−VI族化合物のうちCu(In、Ga)Seを用いる化合物系太陽電池のCIGS太陽電池を用いている。
熱可塑性樹脂3は、エチレン−酢酸ビニル共重合体(Ethylence-Vinyl Acetate:以下、EVAと称す)、シングルサイト触媒を用いて重合したエチレン・α−オレフィン共重合体、エチレン−アクリル酸メチル共重合体、エチレン−アクリル酸エチル共重合体、エチレン−アクリル酸共重合体、エチレン−メタアクリル酸共重合体、線状低密度ポリエチレン、アクリル系樹脂、シリコン系樹脂のほか、ポリスチレン系、ポリオレフィン系、ポリジエン系、ポリエステル系、ポリウレタン系、フッ素樹脂系、ポリアミド系のエラストマーなどを使用することができ、これらの中から、太陽電池セル2に当接する積層面の材質に応じて適宜選択して使用することが好ましい。
また、これらの熱可塑性樹脂3は、その耐候性を向上させるために、架橋剤、紫外線吸収剤及びカップリング剤などを適宜混合して使用することができる。
なお、本実施形態に係る熱可塑性樹脂3は、太陽電池モジュール100の封止材として主に使用されるEVA樹脂ではなく、EVA樹脂と比較して接着強度が低いのであるが、以下の理由により、ポリオレフィン系樹脂を用いている。
EVA樹脂は、EVA樹脂を封止材として用いた完成品の太陽電池モジュール100に対して1000時間の高温高湿試験(85℃、85%RH)を行ったところ、EVA樹脂の架橋反応開始剤の分解ガス成分である、2−エチルヘキサノールと、酢酸と、アセトンと、t−ブタノールとが発生し、太陽電池モジュール100内に気泡が生じ、認証試験の条件を満たさないものであった。
これに対し、ポリオレフィン系樹脂は、ポリオレフィン系樹脂を封止材として用いた完成品の太陽電池モジュール100に対して1000時間の高温高湿試験(85℃、85%RH)を行ったところ、ポリオレフィン系樹脂から気体が発生せず、認証試験の条件を満たすものであった。
つぎに、太陽電池モジュール100の製造方法を、図1及び図2を用いて説明する。
なお、前述したように、熱可塑性樹脂3であるポリオレフィン系樹脂とポリカーボネートとの接着強度が低いため、ポリカーボネート基板1と熱可塑性樹脂3(ポリオレフィン系樹脂)とを直に接触させる場合には、後述するラミネート加工後(数時間後)に、ポリカーボネート基板1と熱可塑性樹脂3との界面の一部分から剥離現象が始まり、数日後に、ポリカーボネート基板1全面に剥離現象が生じることがあり、太陽電池モジュール100の発電に大きく影響を及ぼすことになる。
このため、まず、熱可塑性樹脂3であるポリオレフィン系樹脂とポリカーボネートとの接着強度を高める溶液系のプライマーをポリカーボネート基板1の表面に塗布し、プライマーを乾燥させてポリカーボネート基板1上にプライマー層(不図示)を形成する。
そして、図1(b)に示すように、一のポリカーボネート基板1(ここでは、下側PC基板1b)のプライマー層上に、熱可塑性樹脂3をシート状にした一の熱可塑性樹脂シート(以下、下側封止シート3bと称す)と、複数の太陽電池セル2から構成されるマトリクスと、熱可塑性樹脂3をシート状にした他の熱可塑性樹脂シート(以下、上側封止シート3aと称す)と、下側PC基板1bと熱収縮特性(基板の厚み)が略同一であり、プライマー層を上側封止シート3aに対向させた他のポリカーボネート基板1(ここでは、上側PC基板1a)とを、順次積層する(積層工程)。
そして、この積層状態の太陽電池モジュール100(以下、被加工物101と称す)に対して、封止材(熱可塑性樹脂3、上側封止シート3a、下側封止シート3b)を加熱溶融しながら真空脱泡してプレス加工するラミネート装置200に、被加工物101を投入する。
ラミネート装置200は、図2(a)に示すように、本体部201から蓋202を離間した状態で、本体部201に配設された熱板203上に被加工物101を図示しないコンベアベルトにより搬入したうえで、図2(b)に示すように、蓋202を下降して本体部201及び蓋202の周縁部同士を重ね合わせる。
そして、ラミネート装置200は、熱板203により被加工物101を加熱し始める(加熱工程の開始)と同時に、チャンバ(上チャンバ204、下チャンバ205)内の真空度が200Pa〜1Pa(好ましくは、150Pa〜1Pa)になるように、図示しない真空ポンプに連結した蓋202の吸排気口202aから上チャンバ204内の空間を減圧(真空引き)し始めると共に、図示しない真空ポンプに連結した本体部201の吸排気口201aから下チャンバ205内の空間を減圧(真空引き)し始める(真空工程の開始)。
なお、真空工程は、上側PC基板1a及び下側PC基板1b間に存在する気体を上側PC基板1a及び下側PC基板1bの周縁部から排出させ、太陽電池モジュール100内に気泡を残存させない工程である。
また、加熱工程における加熱温度(熱板203の設定温度)は、封止材(熱可塑性樹脂3、上側封止シート3a、下側封止シート3b)の融点より高く、所定の時間が経過することで、封止材の温度は熱板203の設定温度と略同一となり、封止材を溶融することができる。
なお、本実施形態に係る加熱工程における加熱温度T(℃)は、下記式(1)を満たすものであり、具体的には、封止材(熱可塑性樹脂3、上側封止シート3a、下側封止シート3b)であるポリオレフィン樹脂の接着強度を出すために140℃以上であり、ポリカーボネート基板1(上側PC基板1a、下側PC基板1b)の変形及びクラックの発生を防止するために148℃以下である。
[式1]
Tg−10≦T≦Tm+70 ・・・(1)
但し、式1において、Tgは、ポリカーボネート基板1に係るポリカーボネートのガラス転移温度(℃)であり、Tmは、封止材(熱可塑性樹脂3、上側封止シート3a、下側封止シート3b)に係る熱可塑性樹脂の融点(℃)である。
特に、加熱工程における加熱温度は、下側PC基板1b(上側PC基板1a)の厚みを増加させるほど、加熱温度を高くする必要があり、下側PC基板1b(上側PC基板1a)の厚みに応じて、140℃〜148℃の範囲内で適宜設定することが好ましい。なお、本実施形態においては、下側PC基板1b及び上側PC基板1aの厚みをそれぞれ1.5mmとし、加熱温度を145℃に設定している。
また、ラミネート装置200は、熱板203が被加工物101の下方に位置するため、下側PC基板1b、下側封止シート3b、マトリクス(複数の太陽電池セル2)、上側封止シート3a、上側PC基板1aの順に熱板203からの熱を伝導させ、図1(c)に示すように、下側PC基板1bが飽和温度に達した後に、上側PC基板1aが飽和温度に達するまで、下側PC基板1bの基板温度と上側PC基板1aの基板温度との間に温度差が生じることになる。
ここで、飽和温度とは、熱板203の設定温度であり、本実施形態においては、145℃である。
特に、ポリカーボネート基板1は、ガラス基板と比較して熱伝導率が低く、上側PC基板1aが飽和温度に達する時間は、下側PC基板1bがガラス基板である場合と比較して時間が掛かることになる。
そして、ラミネート装置200は、加熱工程において、上側PC基板1a及び下側PC基板1bが共に飽和温度に達するまで加熱し、上側PC基板1a及び下側PC基板1bが共に飽和温度に達した後、図1(c)に示すように、上側PC基板1a及び下側PC基板1bの飽和温度を所定の時間だけ維持する(飽和維持工程)。
そして、ラミネート装置200は、熱板203の加熱を停止して加熱工程(飽和維持工程)を終了すると共に、蓋202の吸排気口202aから上チャンバ204内のみに大気を導入してプレス工程を開始(真空工程を終了)する。
なお、本実施形態に係る加熱工程及び真空工程における開始から終了までの処理時間は、夏季は25分に設定し、冬季は27分に設定することにより、上側PC基板1a及び下側PC基板1bが共に飽和温度に達するまで加熱することができると共に、上側PC基板1a及び下側PC基板1b間に存在する気体を上側PC基板1a及び下側PC基板1bの周縁部から完全に排出させることができた。
すなわち、加熱工程及び真空工程の最適な処理時間は、太陽電池モジュール100の製造時の季節(ラミネート装置200の設置場所の温度環境、下側PC基板1b(上側PC基板1a)の加熱前の基板温度)に応じて変化するものであり、25分〜27分に設定することが好ましい。
特に、加熱工程に含まれる飽和維持工程における上側PC基板1a及び下側PC基板1bの飽和温度を維持する所定の時間は、11分〜40分に設定することが好ましく、11分〜25分に設定することがより好ましい。
なお、前述した特許文献1には、熱ラミネータの温度の保持時間が記載されているが、この保持時間は、加熱工程の開始から終了までの処理時間であり、ポリカーボネート基材(上側PC基板1aに相当)及び耐候層(下側PC基板1bに相当)が共に飽和温度に達した後、ポリカーボネート基材及び耐候層の飽和温度を維持する飽和維持工程を意図した処理時間ではない。
そして、ラミネート装置200は、上チャンバ204内のみに大気を導入することにより、下チャンバ205内の真空と上チャンバ204内の大気圧との1気圧の差圧により、図2(c)に示すように、ダイアフラム206を風船のように下方に膨張させ、熱板203及びダイアフラム206間で被加工物101を狭圧して、被加工物101を一体に接合(ラミネート加工)することで、太陽電池モジュール100を得ることができる。
そして、ラミネート装置200は、所定のプレス時間である5分〜30分(好ましくは、10分〜20分であり、例えば、10分間)が経過したら、本体部201の吸排気口201aから下チャンバ205内に大気を導入して大気圧に戻してプレス工程を終了する。
そして、ラミネート装置200は、本体部201から蓋202を上昇して離間し、図示しないコンベアベルトにより被加工物101を外部に搬出する。
最後に、図示しないアルミニウム板(以下、下側放熱調節部材と称す)上に被加工物101を載置させ、当該被加工物101と略同時に同一条件でラミネート加工した他の被加工物又はアルミニウム板(以下、上側放熱調節部材と称す)を当該被加工物101上に載置させて、被加工物101を冷却して、太陽電池モジュール100(被加工物101)の製造工程を終了する。
なお、本実施形態に係る太陽電池モジュール100の製造方法は、ラミネート加工後の被加工物101に対する冷却工程の温度条件も重要であり、適切な温度条件で冷却工程が行われない場合に、上側PC基板1a及び下側PC基板1bが変形して、太陽電池モジュール100が平面にならない。
特に、本実施形態に係る太陽電池モジュール100は、冷却工程での冷却を急激に行うと、ポリカーボネート基板1(上側PC基板1a、下側PC基板1b)及びマトリクス(複数の太陽電池セル2)の熱収縮速度が、封止材(熱可塑性樹脂3、上側封止シート3a、下側封止シート3b)の熱収縮速度に追従できずに、太陽電池セル2と封止材との界面に剥離現象を引き起こし、間隙が生じる。
これに対し、本実施形態に係る太陽電池モジュール100の製造方法は、下側放熱調節部材及び上側放熱調節部材で被加工物101を挟持して冷却することにより、上側PC基板1a及び下側PC基板1bからの放熱速度を略同一にし、封止材、ポリカーボネート基板1及び太陽電池セル2の温度を略同一に低下させることができる。
これにより、本実施形態に係る太陽電池モジュール100の製造方法は、封止材の熱収縮速度とポリカーボネート基板1及び太陽電池セル2の熱収縮速度とを略同一にすることができ、太陽電池モジュール100の変形を防止し、太陽電池セル2及び封止材の界面での剥離現象を抑制することができる。
以上のように、本実施形態に係る太陽電池モジュール100の製造方法は、熱収縮特性(基板の厚み)が略同一の上側PC基板1a及び下側PC基板1bが共に飽和温度に達するまで加熱した後に加熱を停止するために、基板温度が常温に戻る際に、上側PC基板1a及び下側PC基板1bの体積が共に最大の膨張状態から等しく収縮していくことになり、上側PC基板1a及び下側PC基板1bの熱収縮の差による上側PC基板1a又は下側PC基板1bと封止材(熱可塑性樹脂3)との境界における剥離現象を抑制して、太陽電池モジュール100の不良品の発生を防止することができるという作用効果を奏する。
また、本実施形態に係る太陽電池モジュール100は、封止材である熱可塑性樹脂3にポリオレフィン系樹脂を用いることにより、完成した太陽電池モジュール100に高温高湿試験(85℃、85%RH)を行った場合であっても、封止材から不要な気体が発生せず、太陽電池モジュール100内に気泡が存在する不良品の発生を防止することができるという作用効果を奏する。
(本発明の第2の実施形態)
前述した第1の実施形態においては、封止材である熱可塑性樹脂3にポリオレフィン系樹脂を用いることにより、高温高湿試験(85℃、85%RH)の認証試験の条件を満たすことができたのであるが、この認証試験を受けないのであれば、熱可塑性樹脂3にEVA樹脂を用いてもよい。
しかしながら、EVA樹脂は、70℃以上に加熱すると気体が大量に発生するために、前述した加熱温度(145℃)並びに加熱時間及び真空時間(25分)では太陽電池モジュール100内から気体を完全に排出することができず、不良品が発生する場合がある。
これに対し、以下の製造工程を用いることにより、ラミネート加工(加熱工程、真空工程、プレス工程)において、EVA樹脂からの気体の発生量を抑制し、被加工物101(太陽電池モジュール100)内の気泡の残留を防止することができる。
本実施形態に係る加熱工程は、第1の加熱工程及び第2の加熱工程を含み、第1の加熱工程の加熱温度がEVA樹脂(熱可塑性樹脂3)の架橋しない温度(例えば、110℃)であり、第2の加熱工程の加熱温度がEVA樹脂(熱可塑性樹脂3)の架橋する温度(例えば、145℃)である。
また、本実施形態に係る真空工程は、第2の加熱工程前に行われ、第1の加熱工程の開始と同時に開始し、第1の加熱工程の終了と同時に終了する工程であり、第1の加熱工程及び真空工程の処理時間は、例えば、15分である。
また、本実施形態に係るプレス工程は、第2の加熱工程の開始と同時に開始し、第2の加熱工程の終了と同時にする終了する工程であり、第2の加熱工程及びプレス工程の処理時間は、例えば、15分である。
このように、本実施形態に係る太陽電池モジュール100の製造方法は、加熱工程を第1の加熱工程及び第2の加熱工程の二段階に分け、第1の加熱工程と真空工程とを同時に行い、第2の加熱工程とプレス工程とを同時に行うことを特徴とする。
これにより、本実施形態に係る太陽電池モジュール100の製造方法は、第1の加熱工程及び真空工程において、EVA樹脂の架橋反応前の状態(封止材が柔軟で気体を排出し易い状態)で、上側PC基板1a及び下側PC基板1b間に存在する気体を十分に排出したうえで、第2の加熱工程及びプレス工程において、EVA樹脂を架橋することができ、EVA樹脂から発生する気体を効率よく排出することができると共に、EVA樹脂からの気体の発生量を抑制することができるという作用効果を奏する。
なお、第2の実施形態においては、封止材である熱可塑性樹脂3にEVA樹脂を用い、加熱工程を二段階に分けたところのみが第1の実施形態と異なるところであり、EVA樹脂及び二段階の加熱工程(EVA樹脂の二段架橋)による作用効果以外は、第1の実施形態と同様の作用効果を奏する。
1 ポリカーボネート基板
1a 上側PC基板
1b 下側PC基板
2 太陽電池セル
2a リード線
3 熱可塑性樹脂
3a 上側封止シート
3b 下側封止シート
100 太陽電池モジュール
101 被加工物
200 ラミネート装置
201 本体部
201a 吸排気口
202 蓋
202a 吸排気口
203 熱板
204 上チャンバ
205 下チャンバ
206 ダイアフラム

Claims (12)

  1. 一のポリカーボネート基板上に一の熱可塑性樹脂シートを積層し、当該一の熱可塑性樹脂シート上に太陽電池セルを積層し、当該太陽電池セル上に他の熱可塑性樹脂シートを積層し、当該一のポリカーボネート基板と熱収縮特性が略同一である他のポリカーボネート基板を当該他の熱可塑性樹脂シート上に積層する積層工程と、
    前記一のポリカーボネート基板及び他のポリカーボネート基板が共に飽和温度に達するまで加熱する加熱工程と、
    前記一のポリカーボネート基板及び他のポリカーボネート基板間に存在する気体を当該一のポリカーボネート基板及び他のポリカーボネート基板の周縁部から排出させる真空工程と、
    を含むことを特徴とする太陽電池モジュールの製造方法。
  2. 前記請求項1に記載の太陽電池モジュールの製造方法において、
    前記一の熱可塑性樹脂シート及び他の熱可塑性樹脂シートの熱可塑性樹脂が、ポリオレフィン系樹脂であることを特徴とする太陽電池モジュールの製造方法。
  3. 前記請求項2に記載の太陽電池モジュールの製造方法において、
    前記加熱工程における加熱温度T(℃)が、下記式(1)を満たすことを特徴とする太陽電池モジュールの製造方法。
    [式1]
    Tg−10≦T≦Tm+70
    (但し、Tg:前記ポリカーボネート基板に係るポリカーボネートのガラス転移温度(℃)、Tm:前記熱可塑性樹脂シートに係る熱可塑性樹脂の融点(℃))
  4. 前記請求項2又は3に記載の太陽電池モジュールの製造方法において、
    前記加熱工程における加熱温度が、140℃〜148℃であることを特徴とする太陽電池モジュールの製造方法。
  5. 前記請求項4に記載の太陽電池モジュールの製造方法において、
    前記真空工程が、前記加熱工程と略同時に開始され、
    前記真空工程における真空時間が、25分〜27分であることを特徴とする太陽電池モジュールの製造方法。
  6. 前記請求項2乃至5のいずれかに記載の太陽電池モジュールの製造方法において、
    前記加熱工程は、前記一のポリカーボネート基板及び他のポリカーボネート基板が共に飽和温度に達した後、当該一のポリカーボネート基板及び他のポリカーボネート基板の飽和温度を維持する飽和維持工程を含むことを特徴とする太陽電池モジュールの製造方法。
  7. 前記請求項6に記載の太陽電池モジュールの製造方法において、
    前記飽和維持工程における、前記一のポリカーボネート基板及び他のポリカーボネート基板の飽和温度を維持する時間が、11分〜40分であることを特徴とする太陽電池モジュールの製造方法。
  8. 前記請求項2乃至7のいずれかに記載の太陽電池モジュールの製造方法において、
    前記真空工程における真空度が、150Pa〜1Paであることを特徴とする太陽電池モジュールの製造方法。
  9. 前記請求項2乃至7のいずれかに記載の太陽電池モジュールの製造方法において、
    前記加熱工程及び真空工程の後に、前記一のポリカーボネート基板及び他のポリカーボネート基板間を5分〜30分で加圧するプレス工程を含むことを特徴とする太陽電池モジュールの製造方法。
  10. 前記請求項1に記載の太陽電池モジュールの製造方法において、
    前記熱可塑性樹脂が、エチレン−酢酸ビニル共重合体であり、
    前記加熱工程が、第1の加熱工程及び第2の加熱工程を含み、
    前記第1の加熱工程の加熱温度が、前記エチレン−酢酸ビニル共重合体が架橋しない温度であり、
    前記第2の加熱工程の加熱温度が、前記エチレン−酢酸ビニル共重合体が架橋する温度であり、
    前記真空工程が、前記第2の加熱工程前に行われることを特徴とする太陽電池モジュールの製造方法。
  11. 熱収縮特性が略同一である二枚のポリカーボネート基板と、
    前記二枚のポリカーボネート基板間に挟持される太陽電池セルと、
    前記二枚のポリカーボネート基板が共に飽和温度に達するまで加熱され、当該二枚のポリカーボネート基板間に存在する気体を当該二枚のポリカーボネート基板の周縁部から排出されたうえで、前記二枚のポリカーボネート基板間で前記太陽電池セルを封止する熱可塑性樹脂と、
    を備えることを特徴とする太陽電池モジュール。
  12. 前記請求項11に記載の太陽電池モジュールにおいて、
    前記熱可塑性樹脂が、ポリオレフィン系樹脂であることを特徴とする太陽電池モジュール。
JP2014013787A 2013-01-28 2014-01-28 太陽電池モジュール及びその製造方法 Pending JP2014160814A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014013787A JP2014160814A (ja) 2013-01-28 2014-01-28 太陽電池モジュール及びその製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013013140 2013-01-28
JP2013013140 2013-01-28
JP2014013787A JP2014160814A (ja) 2013-01-28 2014-01-28 太陽電池モジュール及びその製造方法

Publications (1)

Publication Number Publication Date
JP2014160814A true JP2014160814A (ja) 2014-09-04

Family

ID=51612284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014013787A Pending JP2014160814A (ja) 2013-01-28 2014-01-28 太陽電池モジュール及びその製造方法

Country Status (1)

Country Link
JP (1) JP2014160814A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016082006A (ja) * 2014-10-14 2016-05-16 積水化学工業株式会社 太陽電池の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016082006A (ja) * 2014-10-14 2016-05-16 積水化学工業株式会社 太陽電池の製造方法

Similar Documents

Publication Publication Date Title
TWI396290B (zh) 太陽電池模組及太陽電池模組之製造方法
TWI405339B (zh) 太陽電池模組
JP4401649B2 (ja) 太陽電池モジュールの製造方法
KR101275651B1 (ko) Cis계 박막 태양 전지 모듈 및 이의 제조방법
US10050163B2 (en) Solar cell apparatus and method for manufacturing same
EP1921684A1 (en) Solar cell module and process for manufacture thereof
US20110139225A1 (en) Shaped photovoltaic module
JP5820151B2 (ja) 太陽電池モジュールの製造方法
US20120125438A1 (en) Manufacturing method of solar battery module, and solar battery module manufactured with that manufacturing method
NL2021711B1 (en) A method of producing a solar panel curved in two directions.
US20240178334A1 (en) Method for manufacturing photovoltaic module and photovoltaic module
JP5482276B2 (ja) 太陽電池用封止材及び太陽電池モジュール
JP6013726B2 (ja) 一対の太陽電池用封止膜
JPWO2015182755A1 (ja) 太陽電池モジュールの製造方法及び太陽電池モジュール
JP2014160814A (ja) 太陽電池モジュール及びその製造方法
JP5650775B2 (ja) 太陽電池モジュールの製造方法及び太陽電池モジュール
JP2014239138A (ja) 太陽電池モジュールの製造方法及び太陽電池モジュール
JP2013030650A (ja) 太陽電池モジュールの製造方法
JP2004179397A (ja) 太陽電池モジュールの製造方法
JP5514910B2 (ja) 太陽電池モジュールを製造するための方法
JP2015046510A (ja) 太陽電池モジュール用封止材及び太陽電池モジュール
CN220306259U (zh) 一种电池片及光伏组件
CN212967722U (zh) 光伏组件用封装胶膜和具有其的光伏组件
KR20130130156A (ko) 백색 eva 수지층을 포함하는 태양전지 모듈
EP3032591B1 (en) Solar cell module