JP2014159591A - Method of producing olefin polymer particles - Google Patents

Method of producing olefin polymer particles Download PDF

Info

Publication number
JP2014159591A
JP2014159591A JP2014092925A JP2014092925A JP2014159591A JP 2014159591 A JP2014159591 A JP 2014159591A JP 2014092925 A JP2014092925 A JP 2014092925A JP 2014092925 A JP2014092925 A JP 2014092925A JP 2014159591 A JP2014159591 A JP 2014159591A
Authority
JP
Japan
Prior art keywords
group
polymerization
general formula
olefin
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014092925A
Other languages
Japanese (ja)
Other versions
JP5796797B2 (en
Inventor
Munehito Funatani
宗人 船谷
Atsushi Sakuma
篤 佐久間
Masahiro Yamashita
正洋 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2014092925A priority Critical patent/JP5796797B2/en
Publication of JP2014159591A publication Critical patent/JP2014159591A/en
Application granted granted Critical
Publication of JP5796797B2 publication Critical patent/JP5796797B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/65Pretreating the metal or compound covered by group C08F4/64 before the final contacting with the metal or compound covered by group C08F4/44
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65927Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of efficiently producing olefin polymer particles having an excellent particulate morphology without fouling accompanied.SOLUTION: A solid catalyst (K) for olefin polymerization contains a specific Zr-based metallocene-based compound and simultaneously meets the following requirements [1] and [2]: [1] the loss of ignition is 30 wt.% or less as measured on a differential thermobalance; and [2] after normal-temperature steam treatment and contact with acetonitrile, an eluted component contains a compound having a molecular skeleton of the specified general formula [I], where R is a hydrogen atom or an alkyl group having 1 to 12 carbon atoms.

Description

本発明は、オレフィン重合体粒子の製造方法に関する。   The present invention relates to a method for producing olefin polymer particles.

ポリエチレン、ポリプロピレン、エチレン・α-オレフィン共重合体、プロピレン・α-オレフィン共重合体等のオレフィン重合体を、均一系触媒として知られているメタロセン化合物、例えばジルコニウム等の第4族金属のメタロセン化合物と有機アルミニウム成分などの助触媒成分を含むメタロセン系触媒の存在下にオレフィンを重合または共重合させることによって製造できることが知られている。このようなメタロセン系触媒として、メタロセン化合物とアルミノキサンなどの助触媒成分からなる「均一系触媒」と、担体上にメタロセンや助触媒成分を担持した「担持固体触媒」が知られている。   Metallocene compounds known as homogeneous catalysts, such as polyethylene, polypropylene, ethylene / α-olefin copolymers, propylene / α-olefin copolymers, metallocene compounds of Group 4 metals such as zirconium, etc. It is known that it can be produced by polymerizing or copolymerizing an olefin in the presence of a metallocene catalyst containing a cocatalyst component such as an organic aluminum component. As such a metallocene-based catalyst, a “homogeneous catalyst” composed of a metallocene compound and a promoter component such as aluminoxane, and a “supported solid catalyst” in which a metallocene or promoter component is supported on a carrier are known.

ポリオレフィン産業上の視点からは、均一系触媒は溶液重合プロセスには好適に用いることができるが、気相重合プロセスやスラリー重合プロセスなどに用いると、ポリマーが不定形粒子になり、嵩密度が低く、重合器内で塊の生成や付着が起るという問題点があった。一方で担持固体触媒は、気相重合プロセスやスラリー重合プロセスにおいて、均一系触媒に比較してポリマー粒子形状に優れ、嵩密度も向上することが知られている。しかし、重合中にポリマー塊、シート状ポリマーなどが発生(以下、このような現象を「ファウリング」と呼ぶ場合がある。)する場合があり、長期的・安定的な重合運転の障害となることがあった。   From the viewpoint of the polyolefin industry, homogeneous catalysts can be suitably used for solution polymerization processes, but when used in gas phase polymerization processes and slurry polymerization processes, the polymer becomes amorphous particles and the bulk density is low. There has been a problem that formation and adhesion of lumps occur in the polymerization vessel. On the other hand, it is known that the supported solid catalyst is excellent in the polymer particle shape and the bulk density in the gas phase polymerization process and the slurry polymerization process as compared with the homogeneous catalyst. However, polymer lump, sheet-like polymer, etc. may be generated during polymerization (hereinafter, this phenomenon may be referred to as “fouling”), which hinders long-term and stable polymerization operation. There was a thing.

融点の低い成分を含むポリマーを製造する場合、例えば比較的エチレン含量の高いエチレン・プロピレン共重合体や、多段重合プロセスの前段においてプロピレン単独あるいはプロピレンと少量のエチレンとの混合物の重合を連続的に行い、後段においてプロピレンとエチレンの共重合を連続的に行って、非晶性のプロピレン・エチレン共重合体を製造する、いわゆるプロピレン・エチレンブロック共重合体の製造においては、特にファウリングが発生し易いことが知られており、産業界から解決策が求められていた。   When producing a polymer containing a component having a low melting point, for example, an ethylene / propylene copolymer having a relatively high ethylene content, or a polymerization of propylene alone or a mixture of propylene and a small amount of ethylene in the previous stage of the multistage polymerization process is continuously performed. In the production of the so-called propylene / ethylene block copolymer, in which the copolymerization of propylene and ethylene is continuously performed in the subsequent stage to produce an amorphous propylene / ethylene copolymer, fouling occurs particularly. It was known that it was easy, and a solution was sought by the industry.

解決方法として、例えば特開2000−297114号公報では、オレフィンを予備重合させた固体触媒に界面活性剤を担持した触媒を重合に用いることが開示されている。また、特開2000−327707号公報ではオレフィンを予備重合させた固体触媒を用いて、重合時に界面活性剤を投入する重合方法が開示されている。しかし、これらの効果は充分とは言い難い。また、重合工程に界面活性剤を投入する場合、重合設備に界面活性剤供給のための装置が必要となり、経済性の観点から好ましくない。   As a solution, for example, Japanese Patent Application Laid-Open No. 2000-297114 discloses that a catalyst in which a surfactant is supported on a solid catalyst obtained by prepolymerizing olefin is used for polymerization. Japanese Patent Application Laid-Open No. 2000-327707 discloses a polymerization method in which a surfactant is added during polymerization using a solid catalyst obtained by prepolymerizing an olefin. However, these effects are not sufficient. In addition, when a surfactant is added to the polymerization step, an apparatus for supplying the surfactant to the polymerization facility is required, which is not preferable from the viewpoint of economy.

一方で、メタロセン担持固体触媒を溶媒により洗浄する方法も開示されている。例えば、WO00/008080号パンフレットにはメタロセン担持固体触媒を特定の温度において特定溶媒で複数回洗浄する方法が開示されている。特開2004−51715号公報にはメタロセン担持固体触媒を洗浄する工程において、洗浄廃液中のメタロセン化合物由来の遷移金属量が一定の濃度以下になるまで洗浄する方法が開示されている。また、特開2002−284808号公報には予備重合を行ったメタロセン担持固体触媒を有機アルミニウム含有の有機溶媒で洗浄する方法が開示されている。   On the other hand, a method for washing a metallocene-supported solid catalyst with a solvent is also disclosed. For example, WO00 / 008080 pamphlet discloses a method of washing a metallocene-supported solid catalyst multiple times with a specific solvent at a specific temperature. Japanese Patent Application Laid-Open No. 2004-51715 discloses a method of washing the metallocene-supported solid catalyst until the amount of transition metal derived from the metallocene compound in the washing waste liquid becomes a certain concentration or less. Japanese Patent Laid-Open No. 2002-284808 discloses a method of washing a prepolymerized metallocene-supported solid catalyst with an organic solvent containing organoaluminum.

しかし、これらの高い効率の洗浄を必要とする方法では、大量の溶媒が必要であり、大量の廃液も発生する。さらに洗浄工程に長時間を要する等、工業的生産の視点からは問題点の多い方法といえる。
特開2000−297114号公報 特開2000−327707号公報 WO00/008080号パンフレット 特開2004−51715号公報 特開2002−284808号公報 Angew. Chem. Int. Ed. Engl., 24, 507(1985)
However, these methods that require highly efficient cleaning require a large amount of solvent and also generate a large amount of waste liquid. Furthermore, it can be said that there are many problems from the viewpoint of industrial production, for example, the cleaning process requires a long time.
JP 2000-297114 A JP 2000-327707 A WO00 / 008080 pamphlet JP 2004-51715 A JP 2002-284808 A Angew. Chem. Int. Ed. Engl., 24, 507 (1985)

本発明が解決しようとする課題は、粒子性状に優れたオレフィン重合体を、ファウリングを併発することなく、また重合活性を大きく低下させることなく効率的に製造するためのオレフィン重合用固体状触媒、該固体状触媒共存下でのオレフィンの重合方法を提供することである。   The problem to be solved by the present invention is to provide a solid catalyst for olefin polymerization for efficiently producing an olefin polymer excellent in particle properties without causing fouling and greatly reducing polymerization activity. Another object of the present invention is to provide a method for polymerizing olefins in the presence of the solid catalyst.

前記した公知技術が抱える課題を解決するために本発明者らは鋭意検討を重ねた結果、特定の要件を満たすオレフィン重合用の固体状触媒を用いることによって、粒子性状に優れたオレフィン重合体を、ファウリングを併発することなく効率的に製造できることを見出した。   In order to solve the problems of the above-mentioned known techniques, the present inventors have conducted extensive studies, and as a result, by using a solid catalyst for olefin polymerization that satisfies specific requirements, an olefin polymer having excellent particle properties can be obtained. It has been found that it can be efficiently produced without causing fouling.

すなわち、本発明のオレフィン重合用固体状触媒(K)は、下記要件[1]および[2]を同時に満たすことを特徴としている。
[1] 示差熱天秤で測定された灼熱減量が30重量%以下である。
[2] 常温の水蒸気と処理、続いてアセトニトリルと接触後のアセトニトリルへの溶出成分が、下記一般式[I] で表される分子骨格を備えた化合物を含有すること。
That is, the solid catalyst for olefin polymerization (K) of the present invention is characterized by satisfying the following requirements [1] and [2] simultaneously.
[1] The loss on ignition measured with a differential thermobalance is 30% by weight or less.
[2] A component having a molecular skeleton represented by the following general formula [I] is contained in the elution component to acetonitrile after contact with water vapor at room temperature and subsequent treatment with acetonitrile.

Figure 2014159591
(上記一般式[I]において、Rは水素原子又は炭素数1〜12のアルキル基を示す。)
Figure 2014159591
(In the above general formula [I], R represents a hydrogen atom or an alkyl group having 1 to 12 carbon atoms.)

本発明のオレフィン重合用固体状触媒(K)の好ましい態様では、前記要件[1]および[2]に加えて、下記要件[3]を満たす。
[3] ヘキサンと接触後に固形部を濾別後の濾液に溶解している不揮発成分が実質的に存在しないこと。
In a preferred embodiment of the solid catalyst for olefin polymerization (K) of the present invention, the following requirement [3] is satisfied in addition to the requirements [1] and [2].
[3] There must be substantially no non-volatile component dissolved in the filtrate after the solid part has been filtered off after contact with hexane.

また、本発明の他の態様は前記したオレフィン重合用固体状触媒(K)が、エチレン及び炭素数3〜8のα-オレフィンから選ばれる1種以上のオレフィンで予備重合されているオレフィン重合用固体状触媒(K')に関する。なお、以下の説明では固体状触媒(K‘)を「予備重合触媒」と略称する場合がある。   In another aspect of the present invention, the solid catalyst for olefin polymerization (K) is prepolymerized with at least one olefin selected from ethylene and an α-olefin having 3 to 8 carbon atoms. It relates to the solid catalyst (K ′). In the following description, the solid catalyst (K ′) may be abbreviated as “preliminary polymerization catalyst”.

本発明は、前記のオレフィン重合用固体状触媒(K)または(K')と、必要により前記(B)周期律表第13族元素含有化合物の共存下で、エチレンおよび炭素数3〜12のα−オレフィンから選ばれる一種以上のモノマー(M)を重合する方法に関する。この重合方法においては、モノマー(M)が、プロピレン、並びにエチレンおよび炭素数4〜10のα−オレフィンから選ばれる一種以上のモノマーであるか、エチレン、並びに炭素数3〜10のα−オレフィンから選ばれる一種以上のモノマーであることが好ましい態様である。   In the present invention, ethylene and a carbon number of 3 to 12 in the presence of the solid catalyst for olefin polymerization (K) or (K ′) and, if necessary, the (B) group 13 element-containing compound of the periodic table. The present invention relates to a method for polymerizing one or more monomers (M) selected from α-olefins. In this polymerization method, the monomer (M) is propylene and one or more monomers selected from ethylene and an α-olefin having 4 to 10 carbon atoms, or from ethylene and an α-olefin having 3 to 10 carbon atoms. A preferred embodiment is one or more selected monomers.

本発明は、さらに、前記のオレフィン重合用固体状触媒(K)または(K')と、必要により前記(B)周期律表第13族元素含有化合物の共存下で、エチレンおよび炭素数3〜12のα−オレフィンから選ばれる一種以上のモノマー(M)を重合する方法により得られるオレフィン重合体粒子に関する。   The present invention further includes ethylene and a carbon number of 3 to 3 in the presence of the solid catalyst for olefin polymerization (K) or (K ′) and, if necessary, the (B) group 13 element-containing compound of the periodic table. The present invention relates to olefin polymer particles obtained by a method of polymerizing one or more monomers (M) selected from 12 α-olefins.

オレフィン重合体粒子の好ましい態様の一は、プロピレンから導かれる繰り返し単位(U1)を、50〜100モル%、エチレン及び炭素数4〜10のα−オレフィンから選ばれる1種以上のオレフィンの繰り返し単位(U2)を0〜50モル%の割合で含有するオレフィン重合体粒子である。(該オレフィン重合体粒子を、以下の説明では「プロピレン系重合体粒子」と呼称する場合がある。) この中でも融点(Tm)が130℃以下であるプロピレン系重合体粒子が好ましい態様であり、嵩密度が0.30(g/ml)以上であるプロピレン系重合体粒子が更に好ましい態様である。   One of the preferred embodiments of the olefin polymer particles is that the repeating unit derived from propylene (U1) is a repeating unit of one or more olefins selected from 50 to 100 mol%, ethylene and an α-olefin having 4 to 10 carbon atoms. It is an olefin polymer particle which contains (U2) in the ratio of 0-50 mol%. (The olefin polymer particles may be referred to as “propylene-based polymer particles” in the following description.) Among these, propylene-based polymer particles having a melting point (Tm) of 130 ° C. or less are preferred embodiments. Propylene polymer particles having a bulk density of 0.30 (g / ml) or more are a more preferred embodiment.

オレフィン重合体粒子の好ましい態様の二は、エチレンから導かれる繰り返し単位(U3)を、50〜100モル%、炭素数3〜10のα−オレフィンから選ばれる1種以上のオレフィンの繰り返し単位(U4)を0〜50モル%の割合で含有するオレフィン重合体粒子である。(該オレフィン重合体粒子を、以下の説明では「エチレン系重合体粒子」と呼称する場合がある。)   Two preferred embodiments of the olefin polymer particles include a repeating unit (U3) derived from ethylene having a repeating unit (U4) of at least one olefin selected from 50 to 100 mol% and an α-olefin having 3 to 10 carbon atoms. Is an olefin polymer particle containing 0 to 50 mol%. (The olefin polymer particles may be referred to as “ethylene polymer particles” in the following description.)

粒子性状に優れたオレフィン重合体を、ファウリングを併発することなく効率的に製造するための固体状触媒、該固体状触媒共存下でのオレフィンの重合方法が提供される。本発明の重合方法によれば、ファウリングが起こりやすく効率的な製造方法が困難であった低融点重合体の製造においても本発明の効果を遺憾なく発揮する。   Provided are a solid catalyst for efficiently producing an olefin polymer having excellent particle properties without causing fouling, and a method for polymerizing olefins in the presence of the solid catalyst. According to the polymerization method of the present invention, the effects of the present invention can be fully exhibited even in the production of a low-melting-point polymer, which is prone to fouling and difficult to produce efficiently.

実施例1で得られたオレフィン重合用固体触媒と重水素化アセトニトリルとの接触後のアセトニトリルへの溶出成分の1H−NMRスペクトルチャートを示す。The 1 H-NMR spectrum chart of the elution component to acetonitrile after the contact of the solid catalyst for olefin polymerization obtained in Example 1 and deuterated acetonitrile is shown.

以下、本発明を実施するための最良形態を、(1)オレフィン重合用固体状触媒、(2)該触媒を用いるオレフィンの重合方法、および(3)その重合方法により得られる重合体粒子、の順番で詳細に説明する。   Hereinafter, the best mode for carrying out the present invention is as follows: (1) a solid catalyst for olefin polymerization, (2) an olefin polymerization method using the catalyst, and (3) polymer particles obtained by the polymerization method. Details will be described in order.

(1)オレフィン重合用固体状触媒
本発明のオレフィン重合用固体状触媒(K)は下記要件[1]および[2]を同時に満たし、好ましくは要件[1]、[2]および[3]を同時に満たすことを特徴としている。
[1] 示差熱天秤で測定される灼熱減量が30重量%以下である。
[2] 常温水蒸気と処理、続いてアセトニトリルと接触後のアセトニトリルへの溶出成分が、下記一般式[I]で表される分子骨格を備えた化合物を含有すること。
(1) Solid catalyst for olefin polymerization The solid catalyst for olefin polymerization (K) of the present invention simultaneously satisfies the following requirements [1] and [2], and preferably satisfies the requirements [1], [2] and [3] It is characterized by satisfying at the same time.
[1] The loss on ignition measured with a differential thermobalance is 30% by weight or less.
[2] A component having a molecular skeleton represented by the following general formula [I] is contained in an elution component of acetonitrile after contact with normal temperature water vapor and treatment followed by acetonitrile.

Figure 2014159591
Figure 2014159591

(上記一般式[I] において、Rは水素原子又は炭素数1〜12のアルキル基を示す。)
[3] ヘキサンと接触後に固形部を濾別後の濾液に溶解している不揮発成分が実質的に存在しないこと。
(In the above general formula [I], R represents a hydrogen atom or an alkyl group having 1 to 12 carbon atoms.)
[3] There must be substantially no non-volatile component dissolved in the filtrate after the solid part has been filtered off after contact with hexane.

以下、要件[1]〜[3]を詳細に説明する。
(要件[1])
本発明のオレフィン重合用固体状触媒(K)は、示差熱天秤で測定された灼熱減量が30重量%以下、好ましくは25重量%以下、より好ましくは20重量%以下であるという特徴をもつ。本発明に関わる灼熱減量とは、後述するように、参照物質としてアルミナを用い、サンプルを大気中で約10mgを採取し、5℃/分の速度で600℃まで昇温後、600℃で30分間保持する昇温プロファイルにおいて、200℃での重量を基準とし、200℃〜600℃での重量減少率(重量%)として定義される。
The requirements [1] to [3] will be described in detail below.
(Requirement [1])
The solid catalyst (K) for olefin polymerization of the present invention is characterized in that the loss on ignition measured with a differential thermal balance is 30% by weight or less, preferably 25% by weight or less, more preferably 20% by weight or less. As will be described later, the loss on ignition related to the present invention uses alumina as a reference material, samples about 10 mg in the air, raises the temperature to 600 ° C. at a rate of 5 ° C./min, and then reaches 30 ° C. at 600 ° C. In the temperature rising profile held for a minute, it is defined as the weight reduction rate (% by weight) at 200 ° C. to 600 ° C., based on the weight at 200 ° C.

本発明においては、灼熱後の残渣が実質的に、アルミニウム原子、ケイ素原子及び酸素原子から選ばれる原子から構成されていることが好ましい。より好ましい態様は、酸素原子を必須原子として含み、アルミニウム原子およびケイ素原子から選ばれる1種以上の原子を含む無機微粒子である。なお、「実質的にアルミニウム原子、ケイ素原子及び酸素原子から選ばれる原子から構成される」とは、灼熱残渣の全量に対するアルミニウム原子、ケイ素原子及び酸素原子から選ばれる原子の合計量が、重量ベースで80%以上であることとして定義される。   In the present invention, it is preferable that the residue after ignition is substantially composed of atoms selected from aluminum atoms, silicon atoms and oxygen atoms. A more preferred embodiment is an inorganic fine particle containing an oxygen atom as an essential atom and containing one or more atoms selected from an aluminum atom and a silicon atom. The phrase “consisting essentially of atoms selected from aluminum atoms, silicon atoms and oxygen atoms” means that the total amount of atoms selected from aluminum atoms, silicon atoms and oxygen atoms relative to the total amount of the burning residue is based on weight. Is defined as 80% or more.

本発明に関わる前記灼熱残渣が、実質的にアルミニウム原子、ケイ素原子及び酸素原子から選ばれる原子から構成されていることは、本発明に関わる灼熱残渣を、誘導結合プラズマ分析(ICP)等の元素分析法、イオンクロマトグラフィー等の公知の分析を行うことによって容易に定量・同定することができる。   The ignition residue relating to the present invention is substantially composed of an atom selected from aluminum atom, silicon atom and oxygen atom. This means that the ignition residue relating to the invention is converted into an element such as inductively coupled plasma analysis (ICP). It can be easily quantified and identified by performing a known analysis such as an analysis method or ion chromatography.

(要件[2])
本発明のオレフィン重合用固体状触媒(K)は、前記要件[1]のみならず下記要件[2]をも満たすことを特徴としている。
[2] 常温の水蒸気と処理、続いてアセトニトリルと接触後のアセトニトリルへの溶出成分が、下記一般式[I] で表される分子骨格を備えた化合物を含有すること。
(Requirement [2])
The solid catalyst for olefin polymerization (K) of the present invention is characterized by satisfying not only the requirement [1] but also the following requirement [2].
[2] A component having a molecular skeleton represented by the following general formula [I] is contained in the elution component to acetonitrile after contact with water vapor at room temperature and subsequent treatment with acetonitrile.

Figure 2014159591
Figure 2014159591

すなわち、常温の水蒸気と処理、続いてアセトニトリルと接触後のアセトニトリルへの溶出成分が含有する成分は一般式[I]で表される骨格を持つのである。該骨格は後述するように核磁気共鳴(NMR)スペクトルなどの公知の分析手法によって同定が可能である。(以下の説明では、一般式[I] で表される分子骨格を「オキシアルキレン骨格」と呼ぶ場合がある。) That is, the component contained in the elution component of acetonitrile after contact with water vapor at normal temperature and after treatment with acetonitrile has a skeleton represented by the general formula [I]. The skeleton can be identified by a known analysis method such as a nuclear magnetic resonance (NMR) spectrum as described later. (In the following description, the molecular skeleton represented by the general formula [I] may be referred to as an “oxyalkylene skeleton”.)

なお上記一般式[I] において、Rは水素原子又は炭素数1〜12のアルキル基を示す。炭素数1〜12のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基などの直鎖状または分岐状のアルキル基を例示することができるが、Rがメチル基である固体状触媒を用いた場合に、重合活性とファウリング抑制効果に優れるので好ましい。 In the general formula [I], R represents a hydrogen atom or an alkyl group having 1 to 12 carbon atoms. Examples of the alkyl group having 1 to 12 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, n- Examples include straight-chain or branched alkyl groups such as hexyl group, n-heptyl group, n-octyl group and n-nonyl group, but when a solid catalyst in which R is a methyl group is used. It is preferable because it is excellent in polymerization activity and fouling suppression effect.

常温の水蒸気との処理は、飽和酢酸カリウム水溶液を備えたデシケーター内で、オレフィン重合用固体状触媒(K)を5日間以上暴露することによって行われる。このとき、固体状触媒(K)と水蒸気との接触を十分に行うために、固体状触媒(K)を満遍なく容器内に広げ、必要に応じて適宜攪拌、混合する。   The treatment with water vapor at room temperature is performed by exposing the olefin polymerization solid catalyst (K) for 5 days or more in a desiccator equipped with a saturated aqueous potassium acetate solution. At this time, in order to sufficiently bring the solid catalyst (K) into contact with the water vapor, the solid catalyst (K) is spread evenly in the container and appropriately stirred and mixed as necessary.

次に、前記方法によって水蒸気処理が行われた固体物をアセトニトリル中に加え、20〜30℃で30分間〜10時間攪拌する。なおアセトニトリルの代わりに重水素化アセトニトリルを用いることもできる。このとき、アセトニトリル(S)と該固体物の重量比〔(Sの重量)/(固体物の重量)〕は1:0.15〜1:1が好ましい。
続いて固形部を取り除くため、メンブレンフィルター、ガラスウール等を用いてろ過を行う。フィルター等濾材のメッシュは、続いて行われる濾液のNMR分析を妨げない限りは特段の制約は存在しない。
Next, the solid material that has been subjected to the steam treatment by the above method is added to acetonitrile, and the mixture is stirred at 20 to 30 ° C. for 30 minutes to 10 hours. Deuterated acetonitrile can be used instead of acetonitrile. At this time, the weight ratio [(weight of S) / (weight of solid)] between acetonitrile (S) and the solid is preferably 1: 0.15 to 1: 1.
Then, in order to remove a solid part, it filters using a membrane filter, glass wool, etc. There is no particular limitation on the mesh of the filter medium such as a filter unless it interferes with the subsequent NMR analysis of the filtrate.

濾液のNMR分析から算出される、オレフィン重合用固体状触媒(K)から溶出される前記一般式[I]で表される骨格を有する化合物の含有量は、通常オレフィン重合用固体状触媒(K)に対して0.20重量%を超え10重量%以下、好ましくは0.3〜5重量%である。一般式[I]で表される骨格を有する化合物の含有量が0.1重量%に満たない場合はオレフィン重合時にファウリングが発生、オレフィン重合体粒子がプロピレン系重合粒子である場合は嵩密度の低下が生じ、含有量が10重量%を超える場合は重合活性が低下することがある。   The content of the compound having the skeleton represented by the above general formula [I] eluted from the solid catalyst for olefin polymerization (K), calculated from the NMR analysis of the filtrate, is usually the solid catalyst for olefin polymerization (K ) To more than 0.20% by weight and 10% by weight or less, preferably 0.3 to 5% by weight. When the content of the compound having a skeleton represented by the general formula [I] is less than 0.1% by weight, fouling occurs during olefin polymerization, and when the olefin polymer particles are propylene polymer particles, the bulk density When the content exceeds 10% by weight, the polymerization activity may decrease.

溶解成分の分析方法は特に制限はないが、上記操作において重水素化アセトニトリルを用いた場合は、1H−NMR(核磁気共鳴スペクトル)法により分析することができる。一般式[I]において酸素原子に隣接する炭素原子に結合した水素原子に由来するシグナルは、重水素化アセトニトリル中、テトラメチルシランを基準とした場合、3〜4 ppmに観測される。また一般式[I]においてRが、例えばメチル基の場合は、0.8〜1.5 ppmにメチル基に由来するシグナルが観測される。 The analysis method of the dissolved component is not particularly limited, but when deuterated acetonitrile is used in the above operation, it can be analyzed by 1 H-NMR (nuclear magnetic resonance spectrum) method. In the general formula [I], a signal derived from a hydrogen atom bonded to a carbon atom adjacent to an oxygen atom is observed at 3 to 4 ppm when tetramethylsilane is used as a reference in deuterated acetonitrile. In the general formula [I], when R is, for example, a methyl group, a signal derived from the methyl group is observed at 0.8 to 1.5 ppm.

一般式[I]で表される骨格の含有量は上述の1H−NMR測定時に基準物質を添加し、シグナルの強度比を測定することで算出することができる。基準物質としては、溶媒や溶解成分とシグナルが重ならない物質が好ましく、具体的にはベンゼンやクロロベンゼン、ナフタレン、クロロホルム、塩化メチレン等を挙げることができる。 The content of the skeleton represented by the general formula [I] can be calculated by adding a reference substance during the 1 H-NMR measurement described above and measuring the signal intensity ratio. As the reference substance, a substance that does not overlap with the solvent or dissolved component is preferable, and specific examples include benzene, chlorobenzene, naphthalene, chloroform, methylene chloride, and the like.

(要件[3])
本発明のオレフィン重合用固体状触媒(K)の好ましい態様では、前記要件[1]および[2]に加えて、下記要件[3]を満たすことを特徴とする。
[3] ヘキサンと接触後に固形部を濾別後の濾液に溶解している不揮発成分が実質的に存在しないこと。
オレフィン重合用固体状触媒(K)とヘキサンの接触は、すべて乾燥窒素または乾燥アルゴンなどの不活性ガス雰囲気下で行い、ヘキサンは十分に脱水、脱酸素したものを用いる。
(Requirement [3])
In a preferred embodiment of the solid catalyst (K) for olefin polymerization of the present invention, in addition to the above requirements [1] and [2], the following requirement [3] is satisfied.
[3] There must be substantially no non-volatile component dissolved in the filtrate after the solid part has been filtered off after contact with hexane.
The contact between the solid catalyst for olefin polymerization (K) and hexane is all carried out in an inert gas atmosphere such as dry nitrogen or dry argon, and hexane is sufficiently dehydrated and deoxygenated.

オレフィン重合用固体状触媒(K)とヘキサンの接触においては、ヘキサンはオレフィン重合用固体状触媒(K)の30重量倍〜100重量倍を用い、20〜30℃で30分間〜10時間、攪拌下に接触させる。その後、固形部を取り除くのに十分な大きさの孔径を持ったメンブレンフィルター等を用いてろ過を行う。   In the contact of the solid catalyst for olefin polymerization (K) and hexane, hexane uses 30 to 100 times by weight of the solid catalyst for olefin polymerization (K) and is stirred at 20 to 30 ° C. for 30 minutes to 10 hours. Touch the bottom. Thereafter, filtration is performed using a membrane filter having a pore size large enough to remove the solid part.

濾液に溶解している不揮発成分が実質的に存在しないとは、上記操作で得られた濾液を、20℃〜30℃で減圧下に濃縮し、更に20℃〜30℃、1〜5hPaで恒量に達するまで乾燥し、得られた濃縮・乾燥物が、接触に供したオレフィン重合用固体状触媒(K)の重量の5重量%以下、好ましくは3重量%以下、更に好ましくは1重量%以下、特に好ましくは0.5重量%以下であることをいう。   The fact that the non-volatile component dissolved in the filtrate is substantially absent means that the filtrate obtained by the above operation is concentrated under reduced pressure at 20 ° C. to 30 ° C. and further constant at 20 ° C. to 30 ° C. and 1 to 5 hPa. The resulting concentrated and dried product is 5% by weight or less, preferably 3% by weight or less, more preferably 1% by weight or less of the weight of the solid catalyst for olefin polymerization (K) subjected to contact. Particularly preferably, it means 0.5% by weight or less.

本発明のオレフィン重合用固体状触媒(K)は、前記要件[1]および[2]を同時に、好ましくは[1]、[2]および[3]を同時に満たす限りその調製方法が限定されるわけではないが、その調製効率から本願実施例にも詳細記載した以下の方法が好ましく採用される。   The preparation method of the solid catalyst for olefin polymerization (K) of the present invention is limited as long as the requirements [1] and [2] are satisfied simultaneously, and preferably [1], [2] and [3] are satisfied simultaneously. However, the following method described in detail in the examples of the present application is preferably employed because of its preparation efficiency.

すなわち、本発明のオレフィン重合用固体状触媒(K)は、次の工程P1およびP2を順次実施することによって効率よく調製することができる。
[工程P1] (A)実質的に、アルミニウム原子、ケイ素原子及び酸素原子から選ばれる原子から構成される無機微粒子と、(B) 周期律表第13族元素含有化合物とを炭化水素媒体中で接触させる工程。
[工程P2] 上記工程P1で得られた懸濁液と、(C)オキシアルキレン骨格含有化合物、(D)メタロセン化合物、および必要に応じて(B)周期律表第13族元素含有化合物とを任意の順番で接触させる工程。
That is, the solid catalyst for olefin polymerization (K) of the present invention can be efficiently prepared by sequentially performing the following steps P1 and P2.
[Step P1] (A) An inorganic fine particle substantially composed of an atom selected from an aluminum atom, a silicon atom and an oxygen atom, and (B) a group 13 element-containing compound of the periodic table in a hydrocarbon medium The process of making it contact.
[Step P2] The suspension obtained in Step P1 above, (C) an oxyalkylene skeleton-containing compound, (D) a metallocene compound, and (B) a group 13 element-containing compound in the periodic table as necessary. The step of contacting in any order.

工程P1で用いられる、(A)実質的に、アルミニウム原子、ケイ素原子及び酸素原子から選ばれる原子から構成される無機微粒子としては、多孔質酸化物、粘土および粘土鉱物を例示することができる。   Examples of the inorganic fine particles (A) substantially composed of atoms selected from an aluminum atom, a silicon atom and an oxygen atom used in the step P1 include porous oxides, clays and clay minerals.

多孔質酸化物としては、具体的にSiO2、Al23、天然または合成ゼオライト、SiO2−MgO、SiO2−Al23、SiO2−TiO2、SiO2−V25、SiO2−Cr23、SiO2−TiO2−MgOなどの多孔質酸化物を例示することができる。これらのうち、SiO2および/またはAl23を主成分とするものが好ましい。このような多孔質酸化物は、種類および製法によりその性状は異なるが、本発明に好ましく用いられる微粒子は、粒径が1〜300μm、より好ましくは3〜100μmであって、比表面積が50〜1300m2/g、より好ましくは200〜1200m2/gの範囲にあり、細孔容積が0.3〜3.0cm3/gの範囲にあることが望ましい。このような担体は、必要に応じて100〜1000℃、好ましくは150〜700℃で焼成して使用される。粒子形状については特に制限はないが、好ましくは球状である。 The porous oxide, specifically SiO 2, Al 2 O 3, natural or synthetic zeolites, SiO 2 -MgO, SiO 2 -Al 2 O 3, SiO 2 -TiO 2, SiO 2 -V 2 O 5, Examples thereof include porous oxides such as SiO 2 —Cr 2 O 3 and SiO 2 —TiO 2 —MgO. Of these, those containing SiO 2 and / or Al 2 O 3 as main components are preferred. Such porous oxides have different properties depending on the type and production method, but the fine particles preferably used in the present invention have a particle size of 1 to 300 μm, more preferably 3 to 100 μm, and a specific surface area of 50 to 50 μm. 1300 m 2 / g, more preferably in the range of 200~1200m 2 / g, it is desirable that the pore volume is in the range of 0.3~3.0cm 3 / g. Such a carrier is used after being calcined at 100 to 1000 ° C., preferably 150 to 700 ° C., if necessary. The particle shape is not particularly limited but is preferably spherical.

本発明で用いられる粘土は、通常粘土鉱物を主成分として構成される。これらの粘土、粘土鉱物としては天然産のものに限らず、人工合成物を使用することもできる。このような粘土、粘土鉱物としては、カオリン、ベントナイト、木節粘土、ガイロメ粘土、アロフェン、ヒシンゲル石、パイロフィライト、ウンモ群、モンモリロナイト群、バーミキュライト、リョクデイ石群、パリゴルスカイト、カオリナイト、ナクライト、ディッカイト、ハロイサイトなどが挙げられる。本発明で用いられる粘土、粘土鉱物には、化学処理を施すことも好ましい。化学処理としては、表面に付着している不純物を除去する表面処理、粘土の結晶構造に影響を与える処理など、何れも使用できる。化学処理として具体的には、酸処理、アルカリ処理、塩類処理、有機物処理などが挙げられる。これらのうち、好ましいものはモンモリロナイト、バーミキュライト、ペクトライト、テニオライトおよび合成雲母である。   The clay used in the present invention is usually composed mainly of clay minerals. These clays and clay minerals are not limited to natural ones, and artificial synthetic products can also be used. Examples of such clays and clay minerals include kaolin, bentonite, kibushi clay, gyrome clay, allophane, hysingelite, pyrophyllite, ummo group, montmorillonite group, vermiculite, ryokdeite group, palygorskite, kaolinite, nacrite, dickite And halloysite. The clay and clay mineral used in the present invention are preferably subjected to chemical treatment. As the chemical treatment, any of a surface treatment that removes impurities adhering to the surface and a treatment that affects the crystal structure of clay can be used. Specific examples of the chemical treatment include acid treatment, alkali treatment, salt treatment, and organic matter treatment. Of these, montmorillonite, vermiculite, pectolite, teniolite and synthetic mica are preferred.

これらの中では、シリカ、アルミナ、粘土鉱物から選ばれる1種以上の化合物が入手容易であることから好んで用いられる。   Among these, one or more compounds selected from silica, alumina, and clay minerals are preferably used because they are easily available.

工程P1で用いる(B) 周期律表第13族元素含有化合物を構成する周期律表第13族元素としては、ホウ素元素およびアルミニウム元素を挙げることができ、ルイス酸性を示す限りは、これらの化合物の形態は何ら限定されない。   (B) Periodic Table Group 13 element-containing compounds used in Step P1 can include boron elements and aluminum elements as periodic table Group 13 elements, and these compounds can be used as long as they exhibit Lewis acidity. The form of is not limited at all.

本発明においては、(B) 周期律表第13族元素含有化合物が、
(b-1) 下記一般式[II]で表される有機アルミニウム化合物、

Figure 2014159591
In the present invention, (B) Group 13 element-containing compound of the periodic table is
(b-1) an organoaluminum compound represented by the following general formula [II],
Figure 2014159591

(上記一般式[II]において、R1、R2およびR3は相互に同一でも異なっていてもよく、水素原子、ハロゲン原子、または炭素数1〜20の炭化水素基から選ばれる基を示す。)
(b-2) 有機アルミニウムオキシ化合物、および
(b-3) 有機ホウ素化合物、
から選ばれる一種以上の化合物であることが好ましい。
(In the above general formula [II], R 1 , R 2 and R 3 may be the same or different from each other and each represents a group selected from a hydrogen atom, a halogen atom, or a hydrocarbon group having 1 to 20 carbon atoms. .)
(b-2) an organoaluminum oxy compound, and
(b-3) organoboron compounds,
It is preferable that it is 1 or more types of compounds chosen from these.

(b-1) 前記一般式[II]で表される有機アルミニウム化合物としては具体的に、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、ジイソブチルアルミニウムハイドライド、トリn-ブチルアルミニウム、トリn-ヘキシルアルミニウム、トリn-オクチルアルミニウム、エチルアルミニウムジクロライド、ジエチルアルミニウムクロライドなどを例示することができる。 (b-1) As the organoaluminum compound represented by the general formula [II], specifically, trimethylaluminum, triethylaluminum, triisobutylaluminum, diisobutylaluminum hydride, tri-n-butylaluminum, tri-n-hexylaluminum, Examples include tri-n-octylaluminum, ethylaluminum dichloride, diethylaluminum chloride and the like.

(b-2) 有機アルミニウムオキシ化合物は、従来公知のアルミノキサンであってもよく、また特開平2−78687号公報に例示されているようなベンゼン不溶性の有機アルミニウムオキシ化合物であってもよい。   (b-2) The organoaluminum oxy compound may be a conventionally known aluminoxane or a benzene-insoluble organoaluminum oxy compound as exemplified in JP-A-2-78687.

従来公知のアルミノキサンは、たとえば下記のような方法によって製造することができ、通常、炭化水素溶媒の溶液として得られる。
(i) 吸着水を含有する化合物または結晶水を含有する塩類、たとえば塩化マグネシウム水和物、硫酸銅水和物、硫酸アルミニウム水和物、硫酸ニッケル水和物、塩化第1セリウム水和物などの炭化水素媒体懸濁液に、トリアルキルアルミニウムなどの有機アルミニウム化合物を添加して、吸着水または結晶水と有機アルミニウム化合物とを反応させる方法。
(ii) ベンゼン、トルエン、ジエチルエーテル、テトラヒドロフランなどの媒体中で、トリアルキルアルミニウムなどの有機アルミニウム化合物に直接水、氷または水蒸気を作用させる方法。
(iii) デカン、ベンゼン、トルエンなどの媒体中でトリアルキルアルミニウムなどの有機アルミニウム化合物に、ジメチルスズオキシド、ジブチルスズオキシドなどの有機スズ酸化物を反応させる方法。
(iv) ベンゼン、トルエン、ヘキサン、デカンなどの媒体中で、トリアルキルアルミニウムなどの有機アルミニウム化合物に二酸化炭素、安息香酸、酢酸等のカルボキシル基を有する化合物を反応させる方法。
A conventionally well-known aluminoxane can be manufactured, for example with the following method, and is normally obtained as a solution of a hydrocarbon solvent.
(i) Compounds containing adsorbed water or salts containing water of crystallization, such as magnesium chloride hydrate, copper sulfate hydrate, aluminum sulfate hydrate, nickel sulfate hydrate, first cerium chloride hydrate, etc. A method of reacting adsorbed water or crystal water with an organoaluminum compound by adding an organoaluminum compound such as trialkylaluminum to the suspension of the hydrocarbon.
(ii) A method of allowing water, ice or water vapor to act directly on an organoaluminum compound such as trialkylaluminum in a medium such as benzene, toluene, diethyl ether or tetrahydrofuran.
(iii) A method in which an organotin oxide such as dimethyltin oxide or dibutyltin oxide is reacted with an organoaluminum compound such as trialkylaluminum in a medium such as decane, benzene, or toluene.
(iv) A method of reacting an organoaluminum compound such as trialkylaluminum with a compound having a carboxyl group such as carbon dioxide, benzoic acid or acetic acid in a medium such as benzene, toluene, hexane or decane.

なお、上記アルミノキサンは、少量の有機金属成分を含有してもよい。また、回収された上記のアルミノキサンの溶液から溶媒または未反応有機アルミニウム化合物を蒸留して除去した後、溶媒に再溶解またはアルミノキサンの貧溶媒に懸濁させてもよい。アルミノキサンを調製する際に用いられる有機アルミニウム化合物として具体的には、前記(b-1)に属する有機アルミニウム化合物として例示したものと同一の有機アルミニウム化合物を挙げることができる。これらのうち、トリアルキルアルミニウムが好ましく、トリメチルアルミニウムが特に好ましい。上記のような有機アルミニウム化合物は、1種単独でまたは2種以上組み合せて用いられる。   The aluminoxane may contain a small amount of an organometallic component. Further, after removing the solvent or the unreacted organoaluminum compound from the recovered aluminoxane solution by distillation, it may be redissolved in a solvent or suspended in a poor aluminoxane solvent. Specific examples of the organoaluminum compound used in preparing the aluminoxane include the same organoaluminum compounds as those exemplified as the organoaluminum compound belonging to the above (b-1). Of these, trialkylaluminum is preferred, and trimethylaluminum is particularly preferred. The above organoaluminum compounds are used singly or in combination of two or more.

また、本発明で用いられるベンゼン不溶性の有機アルミニウムオキシ化合物は、60℃のベンゼンに溶解するAl成分がアルミニウム原子換算で通常10%以下、好ましくは5%以下、特に好ましくは2%以下であるもの、すなわち、ベンゼンに対して不溶性または難溶性であるものが好ましい。   The benzene-insoluble organoaluminum oxy compound used in the present invention has an Al component dissolved in benzene at 60 ° C. of usually 10% or less, preferably 5% or less, particularly preferably 2% or less in terms of aluminum atoms. That is, those which are insoluble or hardly soluble in benzene are preferred.

これらの有機アルミニウムオキシ化合物(b-2)は、1種単独でまたは2種以上組み合せて用いられる。   These organoaluminum oxy compounds (b-2) are used singly or in combination of two or more.

その他、本発明で用いられる有機アルミニウムオキシ化合物としては修飾メチルアルミノキサンが挙げられる。ここで言う修飾メチルアルミノキサンとはトリメチルアルミニウムとトリメチルアルミニウム以外のアルキルアルミニウムを用いて調製されたアルミノキサンである。このような化合物は一般にMMAOと呼ばれている。MMAOはUS4960878号公報およびUS5041584号公報に記載されている方法で調製することが出来る。また、MMAOは東ソー・ファインケム社等でも実際に商業生産が行われている。このようなMMAOは各種溶媒への溶解性および保存安定性を改良したアルミノキサンであり、具体的には上記のようなベンゼンに対して不溶性または難溶性のものとは違い、脂肪族炭化水素や脂環族炭化水素に溶解するという特徴を持つ。   Other examples of the organoaluminum oxy compound used in the present invention include modified methylaluminoxane. The modified methylaluminoxane referred to here is an aluminoxane prepared using trimethylaluminum and an alkylaluminum other than trimethylaluminum. Such a compound is generally called MMAO. MMAO can be prepared by the method described in US Pat. No. 4,960,878 and US Pat. MMAO is also commercially produced by Tosoh Finechem Corporation. Such MMAO is an aluminoxane having improved solubility in various solvents and storage stability. Specifically, unlike MMAO, which is insoluble or hardly soluble in benzene, aliphatic hydrocarbons and fatty acids are used. It has the feature of dissolving in cyclic hydrocarbons.

さらに、本発明に関わる工程P1で用いられる有機アルミニウムオキシ化合物としては、ホウ素原子を含んだ有機アルミニウムオキシ化合物を挙げることもできる。   Furthermore, examples of the organoaluminum oxy compound used in step P1 according to the present invention include an organoaluminum oxy compound containing a boron atom.

(b-3) 有機ホウ素化合物としては具体的に、特開平1−501950号公報、特開平1−502036号公報、特開平3−179005号公報、特開平3−179006号公報、特開平3−207703号公報、特開平3−207704号公報、WO1996/41808、US5321106号などに記載されたルイス酸、イオン性化合物、ボラン化合物およびカルボラン化合物などを挙げることができる。このようなホウ素化合物(b-3)は、1種単独または2種以上組み合せて用いられる。   (b-3) Specific examples of the organoboron compound include JP-A-1-501950, JP-A-1-503636, JP-A-3-179005, JP-A-3-179006, and JP-A-3-173. Examples include Lewis acids, ionic compounds, borane compounds, and carborane compounds described in 207703, JP-A-3-207704, WO1996 / 41808, US5321106, and the like. Such boron compounds (b-3) are used singly or in combination of two or more.

本発明に関わる工程P1で使用される(B) 周期律表第13族元素含有化合物としては、(b-1) 前記一般式[I]で表される有機アルミニウム化合物、および/または(b-2) 有機アルミニウムオキシ化合物であることが好ましく、(b-1) 有機アルミニウム化合物と(b-2) 有機アルミニウムオキシ化合物を併用することが更に好ましく、(b-1)がトリイソブチルアルミニウムであり、(b-2)がメチルアルミノキサンであることが特に好ましい。工程P1において、(b-1) 有機アルミニウム化合物と(b-2) 有機アルミニウムオキシ化合物を併用する場合はその使用量は、通常、前記無機微粒子(A)に対し、成分(b-1)を0.5〜30重量%、成分(b-2)を10重量%〜200重量%、好ましくは(b-1)を3〜20重量%、(b-2)を50重量%〜150重量%用いる。   (B) Periodic table group 13 element-containing compound used in step P1 according to the present invention includes (b-1) an organoaluminum compound represented by the above general formula [I] and / or (b- 2) preferably an organoaluminum oxy compound, more preferably (b-1) an organoaluminum compound and (b-2) an organoaluminum oxy compound in combination, (b-1) being triisobutylaluminum, It is particularly preferred that (b-2) is methylaluminoxane. In step P1, when (b-1) an organoaluminum compound and (b-2) an organoaluminum oxy compound are used in combination, the amount used is usually the component (b-1) with respect to the inorganic fine particles (A). 0.5-30 wt%, component (b-2) 10 wt% -200 wt%, preferably (b-1) 3-20 wt%, (b-2) 50 wt% -150 wt% Use.

また無機微粒子(A)に成分(b-1)、成分(b-2)および成分(b-3)から選ばれる一種以上の化合物を炭化水素媒体中で接触させる際の接触方法と接触温度は、例えば、成分(b-1)および成分(b-2)を用いる場合、通常−78℃〜100℃で、一括又は個別に添加し、さらに0℃〜130℃で接触処理させる方法が挙げられる。好ましくは−10℃〜70℃で個別に添加し、50℃〜120℃で接触処理させる。無機微粒子(A)と成分(B)の接触時には通常、炭化水素溶媒が用いられる。好ましい炭化水素溶媒としては、トルエン、キシレン、ベンゼンなどの芳香族炭化水素、ヘキサン、ヘプタン、デカン、シクロヘキサンなどの飽和炭化水素、テトラヒドロフラン、ジイソプロピルエーテル等のエーテル類、クロロホルム、クロロベンゼンなどのハロゲン化炭化水素などが挙げられるが、好ましくはトルエン、キシレン等の芳香族炭化水素、ヘキサン、ヘプタン、デカンなどの飽和脂肪族炭化水素が用いられる。これらの溶媒は通常、無機微粒子(A)に対し、1〜100重量倍、好ましくは2〜20重量倍用いられる。また、該溶媒は、接触時に単独で添加されてもよいし、成分(B)の希釈溶剤の形態で添加されてもよい。   The contact method and contact temperature when contacting one or more compounds selected from the component (b-1), the component (b-2) and the component (b-3) in the hydrocarbon medium with the inorganic fine particles (A) are as follows: For example, in the case of using the component (b-1) and the component (b-2), there is a method in which the mixture is usually added individually or individually at −78 ° C. to 100 ° C., and further contact-treated at 0 ° C. to 130 ° C. . Preferably, it adds individually at -10 degreeC-70 degreeC, and makes it contact-process at 50 degreeC-120 degreeC. A hydrocarbon solvent is usually used when the inorganic fine particles (A) and the component (B) are in contact with each other. Preferred hydrocarbon solvents include aromatic hydrocarbons such as toluene, xylene and benzene, saturated hydrocarbons such as hexane, heptane, decane and cyclohexane, ethers such as tetrahydrofuran and diisopropyl ether, and halogenated hydrocarbons such as chloroform and chlorobenzene. Of these, aromatic hydrocarbons such as toluene and xylene, and saturated aliphatic hydrocarbons such as hexane, heptane and decane are preferably used. These solvents are usually used in an amount of 1 to 100 times by weight, preferably 2 to 20 times by weight with respect to the inorganic fine particles (A). Moreover, this solvent may be added independently at the time of a contact, and may be added with the form of the dilution solvent of a component (B).

工程P2は、前記工程P1で得られた懸濁液と、 (C)オキシアルキレン骨格含有化合物、(D)メタロセン化合物および、必要に応じて(B)周期律表第13族元素含有化合物を任意の順番で接触させる工程である。重合活性およびファウリング抑制能の視点から、好ましい接触順序は、工程P1で得られた懸濁液と、必要に応じて(B)周期律表第13族元素含有化合物を接触させ、次いで、(C)オキシアルキレン骨格含有化合物および(D)メタロセン化合物とを任意の順番で接触させる方法であり、上記と同様な視点から更に好ましい接触順序は、工程P1で得られた懸濁液と、(C)オキシアルキレン骨格含有化合物を接触させ、次いで、予め接触させた(B)周期律表第13族元素含有化合物と (D)メタロセン化合物の混合物を添加し、接触させる方法である。   Step P2 optionally comprises the suspension obtained in Step P1, (C) an oxyalkylene skeleton-containing compound, (D) a metallocene compound, and (B) a group 13 element-containing compound in the periodic table as necessary. It is the process of making it contact in this order. From the viewpoint of polymerization activity and fouling suppressing ability, a preferred contact order is to contact the suspension obtained in step P1 with the (B) group 13 element-containing compound of the periodic table as necessary, and then ( C) A method in which the oxyalkylene skeleton-containing compound and the (D) metallocene compound are contacted in an arbitrary order, and a more preferable contact order from the same viewpoint as described above is the suspension obtained in step P1, (C This is a method in which an oxyalkylene skeleton-containing compound is brought into contact, and then a mixture of (B) a group 13 element-containing compound in the periodic table and (D) a metallocene compound, which are brought into contact in advance, is added and brought into contact.

なお、プロピレン系重合体粒子を製造するための固体状触媒を調製する場合は、工程P2において前記(B)成分を用いることが好ましく、一方エチレン系重合体粒子を製造するための固体状触媒を調製する場合は、工程P2おいては前記(B)成分の使用は必須ではない。   When preparing a solid catalyst for producing propylene polymer particles, it is preferable to use the component (B) in step P2, while a solid catalyst for producing ethylene polymer particles is used. When preparing, use of the said (B) component is not essential in process P2.

工程P2で用いられる(B)周期律表第13族元素含有化合物としては、工程P1で用いられる前記(B)周期律表第13族元素含有化合物と同様な化合物を挙げることができる。工程P2で使用される(B) 周期律表第13族元素含有化合物としては、成分(b-1) 前記一般式[II]で表される有機アルミニウム化合物単独であることが好ましく、成分(b-1)がトリイソブチルアルミニウムであることがより好ましい。   Examples of the (B) group 13 element-containing compound in the periodic table used in step P2 include the same compounds as the group 13B element-containing compound in the periodic table (B) used in step P1. The (B) group 13 element-containing compound used in step P2 is preferably the component (b-1) an organoaluminum compound represented by the general formula [II] alone, and the component (b More preferably, -1) is triisobutylaluminum.

工程P2で用いられる(C)オキシアルキレン骨格含有化合物としては、好ましくは前記一般式[I]で表されるオキシアルキレン骨格のエーテル酸素に水素原子が結合した形態を取り、特に好ましくは下記一般式[III]、[IV]または[V]で表される骨格を分子内に一つまたは二つ以上の複数個持つ化合物が制限無く使用できる。   The (C) oxyalkylene skeleton-containing compound used in Step P2 preferably takes a form in which a hydrogen atom is bonded to the ether oxygen of the oxyalkylene skeleton represented by the general formula [I], and particularly preferably the following general formula A compound having one or two or more skeletons represented by [III], [IV] or [V] in the molecule can be used without limitation.

Figure 2014159591
Figure 2014159591

上記一般式[III]、[IV]および[V]においてRは水素原子または炭素数1〜12のアルキル基を示す。炭素数1〜12のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基などの直鎖状または分岐状のアルキル基を例示することができるが、Rがメチル基であるオキシアルキレン骨格含有化合物を用いた場合に、重合活性とファウリング抑制効果に優れるので好ましい。また上記一般式[IV]におけるR‘は、上記のRと同様な原子または基を示し、nは0または1であり、nとmの合計は2である。重合活性とファウリング抑制効果の点からmは2であることが好ましい。   In the general formulas [III], [IV] and [V], R represents a hydrogen atom or an alkyl group having 1 to 12 carbon atoms. Examples of the alkyl group having 1 to 12 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, n- Examples include straight-chain or branched alkyl groups such as hexyl group, n-heptyl group, n-octyl group, and n-nonyl group, but an oxyalkylene skeleton-containing compound in which R is a methyl group was used. In this case, the polymerization activity and the fouling suppressing effect are excellent, which is preferable. R ′ in the general formula [IV] represents an atom or group similar to R, n is 0 or 1, and the sum of n and m is 2. From the viewpoint of polymerization activity and fouling suppression effect, m is preferably 2.

一般式[III]で表される骨格を含む化合物としては、下記一般式[VI]で表わされるポリオキシアルキレン系化合物を挙げることができる。

Figure 2014159591
上記一般式[VI]において、Rbは、水素原子、炭素数1〜12のアルキル基であり、Raは、水素原子、炭素数1〜20のアルキル基、炭素数6〜20のアリール基および炭素数1〜20のアシル基から選ばれる。kは平均繰り返し単位数を表わし、1〜100の範囲である。このようなポリオキシアルキレン化合物として具体的には、トリエチレングリコール、テトラエチレングリコール、ヘキサエチレングリコール、ヘプタエチレングリコール、ポリエチレングリコール、トリエチレングリコールモノアルキルエーテル、テトラエチレングリコールモノアルキルエーテル、ヘキサエチレングリコールモノアルキルエーテル、ヘプタエチレングリコールモノアルキルエーテル、ポリエチレングリコールモノアルキルエーテル、トリエチレングリコールモノアルキルエステル、テトラエチレングリコールモノアルキルエステル、ヘキサエチレングリコールモノアルキルエステル、ヘプタエチレングリコールモノアルキルエステル、ポリエチレングリコールモノアルキルエステル、トリエチレングリコールジアルキルエステル、トリプロピレングリコールモノアルキルエーテル、テトラプロピレングリコールモノアルキルエーテル、ヘキサプロピレングリコールモノアルキルエーテル、ヘプタプロピレングリコールモノアルキルエーテル、ポリプロピレングリコールモノアルキルエーテル等、更にテトラエチレングリコールモノアクリレート、ヘキサエチレングリコールモノアクリレート、ヘプタエチレングリコールモノアクリレート、ポリエチレングリコールモノアクリレート、トリエチレングリコールモノメタアクリレート、テトラエチレングリコールモノメタアクリレート、ヘキサエチレングリコールモノメタアクリレート、ヘプタエチレングリコールモノメタアクリレート、ポリエチレングリコールモノメタアクリレート、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシアルキレンラウリルエーテル、ポリオキシエチレンイソデシルエーテル、ポリオキシエチレンアルキルエーテル、ポリオキシアルキレンアルキルエーテル、ポリオキシエチレンヒマシ油、ポリオキシエチレン硬化ヒマシ油、ポリオキシエチレンスチレン化フェニルエーテル、ポリオキシエチレンオレイン酸エステル、ポリオキシエチレンジステアリン酸エステル、ポリオキシアルキレングリコール、ソルビタンセスキオレエート、ソルビタンモノオレエート、ソルビタンモノステアレート、ソルビタンモノラウレート、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタンモノオレエート、ポリオキシエチレンラノリンアルコールエーテル、ポリオキシエチレンラノリン脂肪酸エステル、ポリオキシエチレンアルキルアミンエーテル、ポリエチレングリコールアルキルエーテル、ポリエチレングリコールモノラウレート、ポリエチレングリコールモノステアレート、ポリエチレングリコールモノオレエート、ポリエチレングリコールソルビタンモノラウレート、ポリエチレングリコールソルビタンモノオレエートなどが挙げられる。これらのポリオキシアルキレン系化合物は、1種単独で、あるいは2種以上組み合わせて用いることができる。 Examples of the compound containing a skeleton represented by the general formula [III] include polyoxyalkylene compounds represented by the following general formula [VI].
Figure 2014159591
In the general formula [VI], Rb is a hydrogen atom or an alkyl group having 1 to 12 carbon atoms, and Ra is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms. And an acyl group having 1 to 20 carbon atoms. k represents the average number of repeating units and is in the range of 1-100. Specific examples of such polyoxyalkylene compounds include triethylene glycol, tetraethylene glycol, hexaethylene glycol, heptaethylene glycol, polyethylene glycol, triethylene glycol monoalkyl ether, tetraethylene glycol monoalkyl ether, hexaethylene glycol mono Alkyl ether, heptaethylene glycol monoalkyl ether, polyethylene glycol monoalkyl ether, triethylene glycol monoalkyl ester, tetraethylene glycol monoalkyl ester, hexaethylene glycol monoalkyl ester, heptaethylene glycol monoalkyl ester, polyethylene glycol monoalkyl ester, Triethylene glycol dialkyl ester Ter, tripropylene glycol monoalkyl ether, tetrapropylene glycol monoalkyl ether, hexapropylene glycol monoalkyl ether, heptapropylene glycol monoalkyl ether, polypropylene glycol monoalkyl ether, etc., tetraethylene glycol monoacrylate, hexaethylene glycol monoacrylate, Heptaethylene glycol monoacrylate, polyethylene glycol monoacrylate, triethylene glycol monomethacrylate, tetraethylene glycol monomethacrylate, hexaethylene glycol monomethacrylate, heptaethylene glycol monomethacrylate, polyethylene glycol monomethacrylate, polyoxyethylene lauric Ether, polyoxyethylene oleyl ether, polyoxyalkylene lauryl ether, polyoxyethylene isodecyl ether, polyoxyethylene alkyl ether, polyoxyalkylene alkyl ether, polyoxyethylene castor oil, polyoxyethylene hydrogenated castor oil, polyoxyethylene styrene Phenyl ether, polyoxyethylene oleate, polyoxyethylene distearate, polyoxyalkylene glycol, sorbitan sesquioleate, sorbitan monooleate, sorbitan monostearate, sorbitan monolaurate, polyoxyethylene sorbitan monolaurate , Polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan monooleate, polyoxy Ethylene lanolin alcohol ether, polyoxyethylene lanolin fatty acid ester, polyoxyethylene alkylamine ether, polyethylene glycol alkyl ether, polyethylene glycol monolaurate, polyethylene glycol monostearate, polyethylene glycol monooleate, polyethylene glycol sorbitan monolaurate, polyethylene Examples include glycol sorbitan monooleate. These polyoxyalkylene compounds can be used singly or in combination of two or more.

後述する実施例においては、入手容易性、ファウリング抑制能力などの視点から下記一般式[VII]で表わされるポリオキシアルキレングリコールを好んで多用しているが、本願発明に関わる(C)オキシアルキレン骨格含有化合物はこの化合物に何ら限定されるものではない。

Figure 2014159591
In the examples to be described later, polyoxyalkylene glycol represented by the following general formula [VII] is preferably used from the viewpoints of availability, fouling suppression ability and the like. The skeleton-containing compound is not limited to this compound.
Figure 2014159591

上記一般式[VII]において、m、n及びpは平均繰返し単位数を表し、m=1〜20、n=2〜50、p=1〜20の範囲である。Rcは炭素数1〜10のアルキル基を示し、入手が容易であるという点でメチル基が好んで用いられる。上記一般式[VII]中、(CH2CH2O)で表されるオキシエチレン単位の繰返し単位数を示すm及びpの合計(m+p)は、2〜40、好ましくは4〜20、更に好ましくは4〜15の範囲である。繰り返し単位数の比(m/p)は0.1〜10であり、0.5〜5が好ましい。一方、[CH2CH(Rc)O]で表されるオキシアルキレン単位の繰返し単位数を示すnの好ましい範囲は10〜50、より好ましい範囲は20〜50である。 In the general formula [VII], m, n, and p represent the average number of repeating units, and m = 1 to 20, n = 2 to 50, and p = 1 to 20. R c represents an alkyl group having 1 to 10 carbon atoms, and a methyl group is preferably used because it is easily available. In the general formula [VII], the total of m and p (m + p) indicating the number of repeating units of the oxyethylene unit represented by (CH 2 CH 2 O) is 2 to 40, preferably 4 to 20, and more preferably. Is in the range of 4-15. The ratio (m / p) of the number of repeating units is 0.1 to 10, and preferably 0.5 to 5. On the other hand, a preferable range of n indicating the number of repeating units of the oxyalkylene unit represented by [CH 2 CH (R c ) O] is 10 to 50, and a more preferable range is 20 to 50.

一般式[IV]で表される骨格を含む化合物としては、下記一般式[VIII]で表わされる脂肪族ジエタノールアミドを好ましく例示することができる。

Figure 2014159591
上記一般式[VIII]中、mは1〜30、好ましくは6〜20、より好ましくは7〜17の範囲である。 Preferred examples of the compound containing a skeleton represented by the general formula [IV] include aliphatic diethanolamides represented by the following general formula [VIII].
Figure 2014159591
In the above general formula [VIII], m is in the range of 1-30, preferably 6-20, more preferably 7-17.

このような脂肪酸ジエタノールアミドの好ましい具体例としては、ヘキサン酸ジエタノールアミド、ヘプタン酸ジエタノールアミド、オクタン酸ジエタノールアミド、ノナン酸ジエタノールアミド、デカン酸ジエタノールアミド、ウンデカン酸ジエタノールアミド、ラウリン酸ジエタノールアミド、トリデシル酸ジエタノールアミド、ミリスチン酸ジエタノールアミド、ペンタデシル酸ジエタノールアミド、パルミチン酸ジエタノールアミド、ヘプタデカン酸ジエタノールアミド、ステアリン酸ジエタノールアミドなどが挙げられる。これらのなかでは、特にラウリン酸ジエタノールアミドが好ましい。また、脂肪酸ジエタノールアミド以外では、脂肪酸ジメタノールアミド、脂肪酸モノメタノールアミド、脂肪酸モノエタノールアミド、脂肪酸モノプロパノールアミドなどが挙げられる。これらの脂肪族アミドは、1種単独で、あるいは2種以上組み合わせて用いることができる。   Preferred examples of such fatty acid diethanolamides include hexanoic acid diethanolamide, heptanoic acid diethanolamide, octanoic acid diethanolamide, nonanoic acid diethanolamide, decanoic acid diethanolamide, undecanoic acid diethanolamide, lauric acid diethanolamide, tridecylic acid. Examples include diethanolamide, myristic acid diethanolamide, pentadecyl acid diethanolamide, palmitic acid diethanolamide, heptadecanoic acid diethanolamide, stearic acid diethanolamide, and the like. Of these, lauric acid diethanolamide is particularly preferable. In addition to fatty acid diethanolamide, fatty acid dimethanolamide, fatty acid monomethanolamide, fatty acid monoethanolamide, fatty acid monopropanolamide and the like can be mentioned. These aliphatic amides can be used alone or in combination of two or more.

一般式[V]で表される骨格を含む化合物としては、下記一般式[IX]で表わされる第3級アミン化合物を挙げることができる。

Figure 2014159591
上記一般式[IX]中、Rdは水素原子又は1〜50の炭素原子を有する線状又は分枝状アルキル基であり、Reは(CH2xOH基(式中、xは1〜50、好ましくは2〜25の整数である)のようなヒドロキシアルキル基である。このような化合物の非限定例としては、C1837N(CH2CH2OH)2を有するケマミン(Kemamine)AS-990[テキサス、ヒューストンのウィトコ・ケミカル・コーポレーション(Witco Chemical Corporation)から入手可能)、C1225N(CH2CH2OH)2を有するケマミンAS-650(ウィトコから入手可能)及びICIスペシャリテイーズから入手可能なアトマー163、和光純薬から入手可能なポリオキシエチレン(10)ステアリルアミンエーテルを例示することができる。 Examples of the compound containing a skeleton represented by the general formula [V] include tertiary amine compounds represented by the following general formula [IX].
Figure 2014159591
In the general formula [IX], R d is a hydrogen atom or a linear or branched alkyl group having 1 to 50 carbon atoms, and R e is a (CH 2 ) x OH group (wherein x is 1 To 50, preferably an integer of 2 to 25). Non-limiting examples of such compounds include Kemamine AS-990 with C 18 H 37 N (CH 2 CH 2 OH) 2 (available from Witco Chemical Corporation, Houston, Texas). Possible), Chemamine AS-650 with C 12 H 25 N (CH 2 CH 2 OH) 2 (available from Witco) and Atomer 163 available from ICI Specialties, polyoxyethylene available from Wako Pure Chemical ( 10) Stearylamine ether can be exemplified.

(C)オキシアルキレン骨格含有化合物は、前記工程P1で得られた懸濁液中の固形分に対し、0.1〜10重量%、更に好ましくは0.3〜5重量%用いる。また温度は、通常−78℃〜100℃で添加、より好ましくは0℃〜70℃で添加し、通常1分間から10時間、好ましくは10分間から3時間接触混合させる。ポリオキシアルキレン化合物は溶媒に希釈して用いてもよい。好ましい溶媒としては、トルエン、キシレン、ベンゼンなどの芳香族炭化水素、ヘキサン、ヘプタン、デカン、シクロヘキサンなどの飽和炭化水素、THF、ジイソプロピルエーテル等のエーテル類、クロロホルム、クロロベンゼンなどのハロゲン化炭化水素などが挙げられるが、より好ましくはトルエン、キシレン等の芳香族炭化水素、ヘキサン、ヘプタン、デカンなどの飽和炭化水素である。なお、本発明でいう「希釈」とは、オキシアルキレン骨格含有化合物(C)に対して不活性な液体と該化合物(C)とが混合された状態のもの又は分散された状態のものも全て含む。すなわち、溶液又は分散体であり、より具体的には、溶液、サスペンジョン(懸濁液)又はエマルジョン(乳濁液)である。その中でも、オキシアルキレン骨格含有化合物(C)と溶媒が混合し、溶液状態となるものが好ましい。   (C) The oxyalkylene skeleton-containing compound is used in an amount of 0.1 to 10% by weight, more preferably 0.3 to 5% by weight, based on the solid content in the suspension obtained in Step P1. Further, the temperature is usually added at −78 ° C. to 100 ° C., more preferably 0 ° C. to 70 ° C., and the mixture is usually contact-mixed for 1 minute to 10 hours, preferably 10 minutes to 3 hours. The polyoxyalkylene compound may be diluted in a solvent. Preferred solvents include aromatic hydrocarbons such as toluene, xylene and benzene, saturated hydrocarbons such as hexane, heptane, decane and cyclohexane, ethers such as THF and diisopropyl ether, and halogenated hydrocarbons such as chloroform and chlorobenzene. More preferred are aromatic hydrocarbons such as toluene and xylene, and saturated hydrocarbons such as hexane, heptane and decane. The term “dilution” as used in the present invention refers to a mixture of a liquid inert to the oxyalkylene skeleton-containing compound (C) and the compound (C) or a dispersion of the compound (C). Including. That is, it is a solution or dispersion, and more specifically, a solution, suspension (suspension) or emulsion (emulsion). Among these, those in which the oxyalkylene skeleton-containing compound (C) and the solvent are mixed to form a solution are preferable.

工程P2で用いられる(D)メタロセン化合物は、シクロペンタジエニル骨格を有する配位子を分子内に含む遷移金属化合物である。シクロペンタジエニル骨格を有する配位子を分子内に含む遷移金属化合物は、その化学構造から下記一般式[X]で表されるメタロセン化合物(D1)、下記一般式[XI]で表される架橋型メタロセン化合物(D2)および下記一般式[XII]で表される拘束幾何型化合物(D3)に3分類される。これらの中では、メタロセン化合物(D1)および架橋型メタロセン化合物(D2)が好ましく、さらに好ましくはメタロセン化合物(D2)である。   The (D) metallocene compound used in Step P2 is a transition metal compound containing a ligand having a cyclopentadienyl skeleton in the molecule. A transition metal compound containing a ligand having a cyclopentadienyl skeleton in the molecule is represented by a metallocene compound (D1) represented by the following general formula [X] and a general formula [XI] below from its chemical structure. It is classified into three types: a bridged metallocene compound (D2) and a constrained geometric compound (D3) represented by the following general formula [XII]. Among these, the metallocene compound (D1) and the bridged metallocene compound (D2) are preferable, and the metallocene compound (D2) is more preferable.

Figure 2014159591
Figure 2014159591

〔上記一般式[X]および[XI]において、Mはチタン原子、ジルコニウム原子、またはハフニウム原子を示し、Qはハロゲン原子、炭化水素基、アニオン配位子、及び孤立電子対で配位可能な中性配位子から選ばれ、jは1〜4の整数であり、Cp1およびCp2は、互いに同一か又は異なっていてもよく、Mと共にサンドイッチ構造を形成することができるシクロペンタジエニルまたは置換シクロペンタジエニル基である。ここで、置換シクロペンタジエニル基は、インデニル基、フルオレニル基、およびこれらが一つ以上のハイドロカルビル基で置換された基も包含し、インデニル基またはフルオレニル基の場合はシクロペンタジエニル基に縮合するベンゼン骨格に二重結合の一部は水添されていてもよい。一般式[XI]においてYは、炭素原子数1〜20の2価の炭化水素基、炭素原子数1〜20の2価のハロゲン化炭化水素基、2価のケイ素含有基、2価のゲルマニウム含有基、2価のスズ含有基、-O-、-CO-、-S-、-SO-、-SO2-、-Ge-、-Sn-、-NRa-、-P(Ra)-、-P(O)(Ra)-、-BRa-または-AlRa-を示す。(但し、Raは、互いに同一でも異なっていてもよく、炭素原子数1〜20の炭化水素基、炭素原子数1〜20のハロゲン化炭化水素基、水素原子、ハロゲン原子または窒素原子に炭素原子数1〜20の炭化水素基が1個または2個結合した窒素化合物残基である)。〕 [In the above general formulas [X] and [XI], M represents a titanium atom, a zirconium atom, or a hafnium atom, and Q can be coordinated by a halogen atom, a hydrocarbon group, an anionic ligand, and a lone electron pair. Cyclopentadienyl selected from neutral ligands, j is an integer of 1 to 4, Cp 1 and Cp 2 may be the same or different from each other and can form a sandwich structure with M Or a substituted cyclopentadienyl group. Here, the substituted cyclopentadienyl group includes an indenyl group, a fluorenyl group, and a group in which these are substituted with one or more hydrocarbyl groups, and in the case of an indenyl group or a fluorenyl group, a cyclopentadienyl group. A part of the double bond may be hydrogenated to the benzene skeleton that condenses with benzene. In the general formula [XI], Y represents a divalent hydrocarbon group having 1 to 20 carbon atoms, a divalent halogenated hydrocarbon group having 1 to 20 carbon atoms, a divalent silicon-containing group, or divalent germanium. -Containing group, divalent tin-containing group, -O-, -CO-, -S-, -SO-, -SO 2- , -Ge-, -Sn-, -NR a- , -P (R a ) -, - P (O) ( R a) -, - BR a - or -AlR a - it shows the. (However, R a may be the same or different from each other, and is a hydrocarbon group having 1 to 20 carbon atoms, a halogenated hydrocarbon group having 1 to 20 carbon atoms, a hydrogen atom, a halogen atom, or a nitrogen atom. A nitrogen compound residue in which one or two hydrocarbon groups having 1 to 20 atoms are bonded. ]

Figure 2014159591
Figure 2014159591

〔上記一般式[XII]において、Tiは+2、+3、+4の酸化状態であるチタン原子を示し、Cp3はチタン原子にη結合するシクロペンタジエニルまたは置換シクロペンタジエニル基である。X1はアニオン性リガンドであり、X2は中性共役ジエン化合物である。n+mは1または2であり、Zは、−O−、−S−、−NRb−、または−PRb−であり、Wは、SiRb 2 、CRb 2 、SiRb 2−SiRb 2 、CRb 2−CRb 2 、CRb=CRb、CRb 2−SiRb 2 、GeRb 2 、BRb 2 であり、Rbは水素原子、ハイドロカルビル基、シリル基、ゲルミウム基、シアノ基、ハロゲン原子またはこれらの組み合わせ、及び20個までの非水素原子をもつそれらの組み合わせから選ばれる。置換シクロペンタジエニル基としては、1種またはそれ以上の炭素数1〜20のハイドロカルビル基、炭素数1〜20のハロハイドロカルビル基、ハロゲン原子または炭素数1〜20のハイドロカルビル置換第14族メタロイド基で置換されたシクロペンタジエニル基、インデニル基、テトラヒドロインデニル基、フルオレニル基もしくはオクタフルオレニル基が挙げられ、好ましくは炭素数1〜6のアルキル基で置換されたシクロペンタジエニル基である。X1、X2としては、例えば上記一般式[XII]において nが2、mが0で、チタンの酸化数が+4であれば、X1はハロゲン原子、メチル基、ベンジル基などの炭素数1〜20のアルキル基またはアラルキル基から選ばれ、nが1、mが0でチタンの酸化数は+3であればX1は、2−(N,N−ジメチル)アミノベンジル、さらにチタンの酸化数が+4であれば、X1は2−ブテン−1,4−ジイル、さらにnが0で、mが1でチタンの酸化数が+2であればX2は1,4−ジフェニル−1,3−ブタジエン、または1,3−ペンタジエンなどのジエン化合物が選ばれる。〕 [In the above general formula [XII], Ti represents a titanium atom in the oxidation state of +2, +3, and +4, and Cp 3 represents a cyclopentadienyl or substituted cyclopentadienyl group that is η-bonded to the titanium atom. X 1 is an anionic ligand and X 2 is a neutral conjugated diene compound. n + m is 1 or 2, Z is —O—, —S—, —NR b —, or —PR b —, and W is SiR b 2 , CR b 2 , SiR b 2 —SiR b 2. , CR b 2 -CR b 2 , CR b = CR b , CR b 2 -SiR b 2 , GeR b 2 , BR b 2 , where R b is a hydrogen atom, hydrocarbyl group, silyl group, germanium group, Selected from cyano groups, halogen atoms or combinations thereof and combinations thereof having up to 20 non-hydrogen atoms. Examples of the substituted cyclopentadienyl group include one or more hydrocarbyl groups having 1 to 20 carbon atoms, halohydrocarbyl groups having 1 to 20 carbon atoms, halogen atoms, and hydrocarbyl having 1 to 20 carbon atoms. Examples include a cyclopentadienyl group, an indenyl group, a tetrahydroindenyl group, a fluorenyl group, or an octafluorenyl group substituted with a substituted group 14 metalloid group, preferably substituted with an alkyl group having 1 to 6 carbon atoms. A cyclopentadienyl group; As X 1 and X 2 , for example, in the above general formula [XII], when n is 2, m is 0, and the oxidation number of titanium is +4, X 1 is a carbon number such as a halogen atom, a methyl group, a benzyl group If 1 is selected from 1 to 20 alkyl groups or aralkyl groups, n is 1 and m is 0 and the oxidation number of titanium is +3, X 1 is 2- (N, N-dimethyl) aminobenzyl, and further oxidation of titanium If the number is +4, X 1 is 2-butene-1,4-diyl, and if n is 0, m is 1 and the oxidation number of titanium is +2, X 2 is 1,4-diphenyl-1, A diene compound such as 3-butadiene or 1,3-pentadiene is selected. ]

後述する実施例において用いたメタロセン化合物は、下記式[XIII]で表される化合物、下記式[XIV]で表される化合物、および下記式[XV]で表される化合物であるが、本発明は、これら実施例で用いられている化合物に何ら制約を受けるものではない。

Figure 2014159591
The metallocene compound used in the examples described later is a compound represented by the following formula [XIII], a compound represented by the following formula [XIV], and a compound represented by the following formula [XV]. Is not limited by the compounds used in these examples.
Figure 2014159591

メタロセン化合物(D)は、前記工程P1で得られた懸濁液中の固形分に対し、0.1〜10重量%、更に好ましくは0.3〜5重量%添加された後に接触混合される。添加時の温度および接触混合時の温度は、通常−78℃〜100℃で添加、より好ましくは0℃〜80℃で添加し、通常1分間から10時間、好ましくは10分間から3時間接触混合させる。メタロセン化合物は溶媒に希釈して用いてもよい。このような希釈用溶媒としては、トルエン、キシレン、ベンゼンなどの芳香族炭化水素、ヘキサン、ヘプタン、デカン、シクロヘキサンなどの飽和炭化水素、THF、ジイソプロピルエーテル等のエーテル類、クロロホルム、クロロベンゼンなどのハロゲン化炭化水素などが挙げられるが、より好ましくはトルエン、キシレン等の芳香族炭化水素、ヘキサン、ヘプタン、デカン、シクロヘキサンなどの飽和炭化水素である。   The metallocene compound (D) is mixed by contact after adding 0.1 to 10% by weight, more preferably 0.3 to 5% by weight, based on the solid content in the suspension obtained in the step P1. . The temperature at the time of addition and the temperature at the time of contact mixing are usually added at −78 ° C. to 100 ° C., more preferably 0 ° C. to 80 ° C., usually 1 minute to 10 hours, preferably 10 minutes to 3 hours. Let The metallocene compound may be used after diluted in a solvent. Solvents for such dilution include aromatic hydrocarbons such as toluene, xylene and benzene, saturated hydrocarbons such as hexane, heptane, decane and cyclohexane, ethers such as THF and diisopropyl ether, and halogenations such as chloroform and chlorobenzene. Although hydrocarbon etc. are mentioned, More preferable are aromatic hydrocarbons, such as toluene and xylene, and saturated hydrocarbons, such as hexane, heptane, decane, and cyclohexane.

また、(D)メタロセン化合物は予め、前述した成分(B)周期律表第13族元素含有化合物と接触させておいても良い。このような予備接触する場合の成分(B)としては、好ましくは(b-1)有機アルミニウム化合物が用いられ、より好ましくはトリイソブチルアルミニウムが用いられる。予備接触時の、(D)メタロセン化合物と(B)周期律表第13族元素含有化合物との接触は、溶媒中で行っても良く、この場合の好ましい溶媒としては上述のメタロセン化合物希釈用の溶媒と同種の溶媒があげられ、特に好ましくはトルエン、キシレン等の芳香族炭化水素、ヘキサン、ヘプタン、デカン、シクロヘキサンなどの飽和炭化水素である。   Further, (D) the metallocene compound may be previously brought into contact with the aforementioned component (B) group 13 element-containing compound of the periodic table. As component (B) for such preliminary contact, (b-1) an organoaluminum compound is preferably used, and triisobutylaluminum is more preferably used. The contact between the (D) metallocene compound and the (B) group 13 element-containing compound at the time of preliminary contact may be carried out in a solvent. In this case, a preferable solvent is for diluting the above-mentioned metallocene compound. Solvents of the same type as the solvent are mentioned, and aromatic hydrocarbons such as toluene and xylene, and saturated hydrocarbons such as hexane, heptane, decane and cyclohexane are particularly preferable.

本発明の他の態様は、前記オレフィン重合用固体状触媒(K)が、エチレン及び炭素数3〜8のα-オレフィンから選ばれる1種以上のオレフィンで予備重合されているオレフィン重合用固体状触媒(K')に関する。   In another aspect of the present invention, the olefin polymerization solid catalyst (K) is prepolymerized with one or more olefins selected from ethylene and an α-olefin having 3 to 8 carbon atoms. It relates to the catalyst (K ′).

予備重合に用いられるオレフィンとしては、エチレン及び炭素数3〜8のα−オレフィンが挙げられる。炭素数3〜8のα−オレフィンとしては具体的にプロピレン、1-ブテン、2-ブテン、1-ペンテン、3-メチル-1-ブテン、3-メチル-1-ペンテン、3-エチル-1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、4-メチル-1-ヘキセン、4,4-ジメチル-1-ヘキセン、4,4-ジメチル-1-ペンテン、4-エチル-1-ヘキセン、3-エチル-1-ヘキセン、1-オクテンなどを例示することができる。特に好ましくは、エチレン、プロピレン、1-ヘキセン、3-メチル-1-ブテン、4-メチル-1-ペンテンが挙げられる。これらのオレフィンは二種以上を用いて共重合させても良く、また一種類以上のオレフィンを重合させた後に、他のオレフィンを重合しても良い。   Examples of the olefin used for the prepolymerization include ethylene and an α-olefin having 3 to 8 carbon atoms. Specific examples of the α-olefin having 3 to 8 carbon atoms include propylene, 1-butene, 2-butene, 1-pentene, 3-methyl-1-butene, 3-methyl-1-pentene and 3-ethyl-1- Pentene, 1-hexene, 4-methyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ethyl-1-hexene, Examples thereof include 3-ethyl-1-hexene and 1-octene. Particularly preferred are ethylene, propylene, 1-hexene, 3-methyl-1-butene and 4-methyl-1-pentene. Two or more of these olefins may be copolymerized, or one or more olefins may be polymerized and then another olefin may be polymerized.

予備重合の相状態には特に制限はないが液相重合が好ましく採用される。液相重合時の好ましい溶媒としては、プロパン、ブタン、ヘキサン、シクロヘキサン、ヘプタン、デカンなどの飽和炭化水素、トルエン、キシレンなどの芳香族炭化水素の他、α−オレフィン自身を溶媒として用いても良く、これらの混合物を用いても良い。   The phase state of the prepolymerization is not particularly limited, but liquid phase polymerization is preferably employed. Preferred solvents for liquid phase polymerization include saturated hydrocarbons such as propane, butane, hexane, cyclohexane, heptane and decane, aromatic hydrocarbons such as toluene and xylene, and α-olefin itself as a solvent. A mixture of these may also be used.

また予備重合の際には、必要に応じて有機アルミニウム化合物を共存させても良い。好ましい有機アルミニウム化合物としては、(b-1)と同様の化合物が挙げられ、特に好ましくは、トリイソブチルアルミニウム、トリエチルアルミニウム、ジイソブチルアルミニウムハイドライドが挙げられる。これらは重合系中の濃度が0.001〜1000 mmol/Lが好ましく、より好ましくは0.01〜200 mmol/Lである。   In the prepolymerization, an organoaluminum compound may coexist if necessary. Preferable organoaluminum compounds include the same compounds as (b-1), and particularly preferred are triisobutylaluminum, triethylaluminum, and diisobutylaluminum hydride. The concentration in the polymerization system is preferably 0.001 to 1000 mmol / L, more preferably 0.01 to 200 mmol / L.

予備重合量としては、オレフィン重合用固体状触媒(K)1g当たり、好ましくは0.1〜1000g、より好ましくは0.5〜500g、特に好ましくは1〜200gである。   The prepolymerization amount is preferably 0.1 to 1000 g, more preferably 0.5 to 500 g, and particularly preferably 1 to 200 g per 1 g of the solid catalyst for olefin polymerization (K).

(2)オレフィンの重合方法
本発明の重合方法は、前記のオレフィン重合用固体状触媒(K)または予備重合された固体状触媒(K')と、必要に応じて前記(B)周期律表第13族元素含有化合物の共存下で、エチレンおよび炭素数3〜12のオレフィンから選ばれる1種以上の重合性モノマーを重合することを特徴としている。
(2) Polymerization Method of Olefin The polymerization method of the present invention comprises the solid catalyst for olefin polymerization (K) or the prepolymerized solid catalyst (K ′) and, if necessary, the (B) periodic table. One or more polymerizable monomers selected from ethylene and olefins having 3 to 12 carbon atoms are polymerized in the presence of a Group 13 element-containing compound.

前記(B)周期律表第13族元素含有化合物としては、前記一般式[II]で表される有機アルミニウム化合物が好ましく、トリエチルアルミニウム、トリイソブチルアルミニウムが特に好ましい。重合系中の成分(B)の濃度は、0.001〜1000 mmol/Lが好ましく、より好ましくは0.01〜200 mmol/Lである。   The (B) group 13 element-containing compound of the periodic table is preferably an organoaluminum compound represented by the general formula [II], and triethylaluminum and triisobutylaluminum are particularly preferable. The concentration of the component (B) in the polymerization system is preferably 0.001 to 1000 mmol / L, more preferably 0.01 to 200 mmol / L.

本発明で用いられる炭素数3〜12のオレフィンとしては、プロピレン、1-ブテン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、3-メチル-1-ペンテン、1-オクテン、1-デセン、1-ドデセンなどが挙げられる。本発明で用いられる重合性モノマーは、通常エチレン、プロピレン、1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、および1-オクテンから選ばれる少なくても1種以上である。   Examples of the olefin having 3 to 12 carbon atoms used in the present invention include propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, and 3-methyl-1. -Pentene, 1-octene, 1-decene, 1-dodecene and the like. The polymerizable monomer used in the present invention is usually at least one selected from ethylene, propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, and 1-octene.

本発明の好ましい重合方法の態様の一つは、プロピレンを必須成分、好ましくは主要成分として含み、且つ任意成分としてエチレンおよび炭素数4〜10のα−オレフィンから選ばれる一種以上を含む重合性モノマーである。これらのα−オレフィンは同時に二種以上を用いて共重合させても良く、またある組成の(共)重合体を製造した後に続けて異なる組成の(共)重合体を製造しても良い。このような連続的に二種類以上の異なった組成の(共)重合体を製造する例としては、結晶性プロピレン(共)重合体を製造した後に、続けて非晶性プロピレン系共重合体を製造する、いわゆるブロック共重合体が例として挙げられる。なお本発明において、「プロピレンが主要成分である」とは全重合性モノマー中に占めるプロピレン濃度は50モル%以上であるとして定義される。  One of the preferred embodiments of the polymerization method of the present invention is a polymerizable monomer containing propylene as an essential component, preferably a main component, and optionally containing at least one selected from ethylene and an α-olefin having 4 to 10 carbon atoms. It is. These α-olefins may be copolymerized using two or more of them at the same time, or (co) polymers having different compositions may be produced after producing (co) polymers having a certain composition. As an example of continuously producing (co) polymers having two or more different compositions as described above, after producing a crystalline propylene (co) polymer, an amorphous propylene copolymer is subsequently produced. An example is a so-called block copolymer to be produced. In the present invention, “propylene is the main component” is defined as the propylene concentration in the total polymerizable monomer being 50 mol% or more.

本発明の好ましい重合方法の態様の他の一つは、エチレンを必須成分、好ましくは主要成分として含み、且つ任意成分として炭素数3〜10のα−オレフィンから選ばれる一種以上を含む重合性モノマーである。これらのα−オレフィンは同時に二種以上を用いて共重合させても良い。なお本発明において、「エチレンが主要成分である」とは全重合性モノマー中に占めるエチレン濃度は50モル%以上であるとして定義される。  Another aspect of the preferred polymerization method of the present invention is a polymerizable monomer containing ethylene as an essential component, preferably a main component, and optionally containing one or more selected from α-olefins having 3 to 10 carbon atoms. It is. These α-olefins may be copolymerized using two or more at the same time. In the present invention, “ethylene is the main component” is defined as the ethylene concentration in the total polymerizable monomer being 50 mol% or more.

本発明では、重合は溶液重合、懸濁重合などの液相重合法、または気相重合法のいずれにおいても実施できる。液相重合法において用いられる不活性炭化水素媒体として具体的には、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、灯油などの脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタンなどの脂環族炭化水素;ベンゼン、トルエン、キシレンなどの芳香族炭化水素;エチレンジクロリド、クロロベンゼン、ジクロロメタンなどのハロゲン原子化炭化水素またはこれらの混合物等を挙げることができる。また液化オレフィン自身を溶媒として用いる、いわゆるバルク重合法を用いることもできる。重合活性の低下が少ないこと、ファウリングが抑制されるという視点から、本発明はバルク重合、懸濁重合および気相重合に好んで採用される。   In the present invention, the polymerization can be carried out by either a liquid phase polymerization method such as solution polymerization or suspension polymerization, or a gas phase polymerization method. Specific examples of the inert hydrocarbon medium used in the liquid phase polymerization method include aliphatic hydrocarbons such as propane, butane, pentane, hexane, heptane, octane, decane, dodecane, and kerosene; cyclopentane, cyclohexane, and methylcyclopentane. And alicyclic hydrocarbons such as benzene, toluene, xylene and the like; halogen atomized hydrocarbons such as ethylene dichloride, chlorobenzene and dichloromethane, and mixtures thereof. A so-called bulk polymerization method using liquefied olefin itself as a solvent can also be used. The present invention is preferably employed for bulk polymerization, suspension polymerization, and gas phase polymerization from the viewpoint that the decrease in polymerization activity is small and fouling is suppressed.

上記したオレフィン重合用固体状触媒(K)または予備重合された固体状触媒(K')を用いて、重合を行うに際して、成分(K)または(K')は、反応容積1リットル当り、全遷移金属原子が通常10-10〜10-2モル、好ましくは10-9〜10-3モルになるような量で用いられる。また、重合温度は、通常−50〜+200℃、好ましくは0〜170℃の範囲である。重合圧力は、通常、常圧〜10MPaゲージ圧、好ましくは常圧〜5MPaゲージ圧の条件下であり、重合反応は、回分式、半連続式、連続式のいずれの方法においても行うことができる。重合反応は、反応条件の異なる二段以上に分けて行うことも可能である。 When the polymerization is carried out using the solid catalyst for olefin polymerization (K) or the prepolymerized solid catalyst (K ′), the component (K) or (K ′) The transition metal atom is usually used in such an amount that it is 10 −10 to 10 −2 mol, preferably 10 −9 to 10 −3 mol. The polymerization temperature is usually in the range of −50 to + 200 ° C., preferably 0 to 170 ° C. The polymerization pressure is usually under conditions of normal pressure to 10 MPa gauge pressure, preferably normal pressure to 5 MPa gauge pressure, and the polymerization reaction can be performed in any of batch, semi-continuous and continuous methods. . The polymerization reaction can be performed in two or more stages with different reaction conditions.

得られる重合体の分子量を調節するために、重合系に水素分子を存在させるか、または重合温度を変化させることによっても調節することができる。水素分子を添加する場合、その量は得られる重合体 1kgあたり0.001〜100NL程度が適当である。   In order to adjust the molecular weight of the obtained polymer, it can be adjusted by allowing hydrogen molecules to be present in the polymerization system or changing the polymerization temperature. When hydrogen molecules are added, the amount is suitably about 0.001 to 100 NL per 1 kg of the obtained polymer.

(3)オレフィン重合体粒子
本発明のオレフィン重合体粒子の好ましい態様の一つは、プロピレンから導かれる繰り返し単位(U1)を、50〜100モル%、エチレン及び炭素数4〜10のα−オレフィンから選ばれる1種以上のオレフィンの繰り返し単位(U2)を0〜50モル%の割合で含有するプロピレン系重合体粒子である。該プロピレン系重合体粒子は、嵩密度が0.30(g/ml)以上、好ましくは0.35(g/ml)以上、さらに好ましくは0.38(g/ml)以上であるという特徴を持つ。また、プロピレン系重合体粒子の融点(Tm)が130℃以下、好ましくは、128℃以下、更に好ましくは120℃以下であるか、あるいは非晶性のプロピレン系共重合体を全オレフィン重合体の5重量%〜80重量%、好ましくは8重量%〜65重量%を含むという特徴を持つ。
(3) Olefin polymer particles One of the preferred embodiments of the olefin polymer particles of the present invention is that the repeating unit (U1) derived from propylene is 50 to 100 mol%, ethylene and an α-olefin having 4 to 10 carbon atoms. Propylene polymer particles containing one or more olefin repeating units (U2) selected from 0 to 50 mol%. The propylene polymer particles have a feature that the bulk density is 0.30 (g / ml) or more, preferably 0.35 (g / ml) or more, more preferably 0.38 (g / ml) or more. Have. Further, the melting point (Tm) of the propylene polymer particles is 130 ° C. or less, preferably 128 ° C. or less, more preferably 120 ° C. or less, or an amorphous propylene copolymer is used for all olefin polymers. It is characterized by containing 5% to 80% by weight, preferably 8% to 65% by weight.

本発明のオレフィン重合体粒子の、他の好ましい態様は、エチレンから導かれる繰り返し単位(U3)を、50〜100モル%、炭素数3〜10のα−オレフィンから選ばれる1種以上のオレフィンの繰り返し単位(U4)を0〜50モル%の割合で含有するエチレン系重合体粒子である。本発明のエチレン系重合粒子は、密度が870〜1000kg/m3、好ましくは890〜985kg/m3、特に好ましくは895〜980kg/m3である。 In another preferred embodiment of the olefin polymer particles of the present invention, the repeating unit (U3) derived from ethylene is composed of 50 to 100 mol% of one or more olefins selected from α-olefins having 3 to 10 carbon atoms. It is an ethylene polymer particle which contains a repeating unit (U4) in the ratio of 0-50 mol%. The ethylene polymer particles of the present invention have a density of 870 to 1000 kg / m 3 , preferably 890 to 985 kg / m 3 , particularly preferably 895 to 980 kg / m 3 .

本発明のオレフィン重合体粒子は流動性が良いという特徴をもつ。流動性の指標としては、安息角、圧縮度、スパチュラ角、均一度を総合的に評価したCarrの指数〔Chem.Eng., 72, 163(1965)〕が知られている。   The olefin polymer particles of the present invention are characterized by good fluidity. As an index of fluidity, Carr's index (Chem. Eng., 72, 163 (1965)) that comprehensively evaluates the angle of repose, the degree of compression, the spatula angle, and the uniformity is known.

本発明のオレフィン重合体粒子は、安息角が10°〜50°、好ましくは20°〜45°、更に好ましくは23°〜40°であるという特徴を持つ。圧縮度は通常、1%〜25%、好ましくは3〜20%、より好ましくは4%〜15%であるという特徴を持つ。
スパチュラ角は通常、10°〜60°、好ましくは20°〜55°、より好ましくは25°〜45°であるという特徴を持つ。均一度は通常、1〜12、好ましくは1〜8、より好ましくは1〜5であるという特徴を持つ。
The olefin polymer particles of the present invention are characterized by an angle of repose of 10 ° to 50 °, preferably 20 ° to 45 °, more preferably 23 ° to 40 °. The degree of compression is usually 1% to 25%, preferably 3 to 20%, more preferably 4% to 15%.
The spatula angle is usually 10 ° to 60 °, preferably 20 ° to 55 °, more preferably 25 ° to 45 °. The uniformity is usually 1 to 12, preferably 1 to 8, more preferably 1 to 5.

本発明のオレフィン重合体粒子はCarrの指数が70点〜100点、好ましくは80点〜100点であるという特徴をもつ。   The olefin polymer particles of the present invention are characterized by a Carr index of 70 to 100 points, preferably 80 to 100 points.

本発明のオレフィン重合体粒子は、柔軟性、透明性、ヒートシール性に優れ、フィルム、シート、延伸テープ、繊維などに好適に用いられる。   The olefin polymer particles of the present invention are excellent in flexibility, transparency and heat sealability, and are suitably used for films, sheets, stretched tapes, fibers and the like.

[実施例]
以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれら実施例に何ら制約を受けるものではない。以下に示す触媒製造例や重合例は、特に断りのない場合は乾燥窒素雰囲気下で行った。なお、実施例において各種物性は以下のように測定した。
[Example]
EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example, this invention does not receive a restriction | limiting at all in these Examples. The catalyst production examples and polymerization examples shown below were carried out in a dry nitrogen atmosphere unless otherwise specified. In the examples, various physical properties were measured as follows.

[融点(Tm)、融解熱量(ΔH)]
パーキンエルマー社製Diamond DSCを用い、窒素雰囲気下(20ml/min)、約5mgの試料を230℃まで昇温、10分間保持した後、10℃/分で30℃まで冷却した。30℃で1分間保持した後、10℃/分で230℃まで昇温させた時の結晶溶融ピークのピーク頂点から融点、ピークの積算値から融解熱量を算出した。
[Melting point (Tm), heat of fusion (ΔH)]
Using a Diamond DSC manufactured by PerkinElmer, under a nitrogen atmosphere (20 ml / min), a sample of about 5 mg was heated to 230 ° C. and held for 10 minutes, and then cooled to 30 ° C. at 10 ° C./min. After maintaining at 30 ° C. for 1 minute, the melting point was calculated from the peak of the crystal melting peak when the temperature was raised to 230 ° C. at 10 ° C./min, and the heat of fusion was calculated from the integrated value of the peaks.

[分子量分布(Mw/Mn)]
分子量分布(Mw/Mn)は、Waters社製ゲル浸透クロマトグラフAlliance GPC−2000型を用い、以下のようにして測定した。分離カラムは、TSKgel GNH6−HTを2本およびTSKgel GNH6−HTLを2本であり、カラムサイズはいずれも直径7.5mm、長さ300mmであり、カラム温度は140℃とし、移動相にはo−ジクロロベンゼン(和光純薬工業)および酸化防止剤としてBHT(武田薬品)0.025重量%を用い、1.0ml/分で移動させ、試料濃度は15mg/10mLとし、試料注入量は500マイクロリットルとし、検出器として示差屈折計を用いた。標準ポリスチレンは、分子量がMw<1000およびMw>4×106については東ソー社製を用い、1000≦Mw≦4×106についてはプレッシャーケミカル社製を用いた。
[Molecular weight distribution (Mw / Mn)]
The molecular weight distribution (Mw / Mn) was measured as follows using a gel permeation chromatograph Alliance GPC-2000 manufactured by Waters. The separation columns are two TSKgel GNH6-HT and two TSKgel GNH6-HTL, the column size is 7.5 mm in diameter and 300 mm in length, the column temperature is 140 ° C., and the mobile phase is o -Using dichlorobenzene (Wako Pure Chemical Industries) and 0.025 wt% BHT (Takeda Pharmaceutical) as an antioxidant, moving at 1.0 ml / min, sample concentration 15 mg / 10 mL, sample injection volume 500 micron A differential refractometer was used as a detector. The standard polystyrene used was manufactured by Tosoh Corporation for molecular weights of Mw <1000 and Mw> 4 × 10 6 , and used by Pressure Chemical Co. for 1000 ≦ Mw ≦ 4 × 10 6 .

[極限粘度(η)]
デカリン溶媒を用いて、135℃で測定した値である。すなわち重合パウダーまたは樹脂塊約20mgをデカリン15mlに溶解し、135℃のオイルバス中で比粘度ηspを測定する。このデカリン溶液にデカリン溶媒を5ml追加して希釈後、同様にして比粘度ηspを測定する。この希釈操作をさらに2回繰り返し、濃度(C)を0に外挿した時のηsp/Cの値を極限粘度として求める(下式参照)。
(η)=lim(ηsp/C) (C→0)
[Intrinsic viscosity (η)]
It is a value measured at 135 ° C. using a decalin solvent. That is, about 20 mg of polymer powder or resin mass is dissolved in 15 ml of decalin, and the specific viscosity η sp is measured in an oil bath at 135 ° C. After adding 5 ml of decalin solvent to this decalin solution for dilution, the specific viscosity η sp is measured in the same manner. This dilution operation is further repeated twice, and the value of η sp / C when the concentration (C) is extrapolated to 0 is obtained as the intrinsic viscosity (see the following formula).
(Η) = lim (η sp / C) (C → 0)

[MFR]
テスター産業製TP−406型MFR計を用い、安定剤としてBHTを添加し、予熱時間6分、230℃で2.16kgfの荷重にて測定した。
[MFR]
Using a TP-406 type MFR meter manufactured by Tester Sangyo Co., Ltd., BHT was added as a stabilizer, and a preheating time of 6 minutes was measured at 230 ° C. under a load of 2.16 kgf.

[粗粒量]
プロピレン系重合体:ポリマー粒子を目開き1 mmの篩上で振動させ、篩上に残ったポリマー重量%を測定した。
エチレン系重合体:ポリマー粒子を目開き1.7 mmの篩上で振動させ、篩上に残ったポリマー重量%を測定した。
[Rough grain amount]
Propylene-based polymer: The polymer particles were vibrated on a sieve having an opening of 1 mm, and the polymer weight% remaining on the sieve was measured.
Ethylene polymer: Polymer particles were vibrated on a sieve having an opening of 1.7 mm, and the polymer weight% remaining on the sieve was measured.

[嵩密度]
ASTM D1895−96 A法に準じて測定を行った。
[The bulk density]
Measurements were performed according to ASTM D1895-96 A method.

[エチレン含量]
日本分光社製フーリエ変換赤外分光光度計FT/IR−610を用い、メチレン基に基づく横揺れ振動733cm-1付近の面積とC−H伸縮振動による倍音吸収4325cm-1付近の吸光度を求め、その比から検量線(13C−NMRにて標定した標準試料を用い作成)により算出した。
[Ethylene content]
Using a Fourier transform infrared spectrophotometer FT / IR-610 manufactured by JASCO Corporation, the area near the rolling vibration 733 cm −1 based on the methylene group and the absorbance near the harmonic overtone 4325 cm −1 due to the C—H stretching vibration are obtained. The ratio was calculated from a calibration curve (prepared using a standard sample standardized by 13 C-NMR).

[安息角、圧縮度、スパチュラ角]
セイシン企業社製多機能型粉体物性測定器(マルチテスター)MT−1001を用いて測定した。
[Repose angle, degree of compression, spatula angle]
Measurement was performed using a multifunctional powder property measuring instrument (multi-tester) MT-1001 manufactured by Seishin Enterprise Co., Ltd.

[均一度]
Leeds & Northrup 社製粒度分析計Microtrac 9320-X100 を用いて、分散媒としてメタノールを使用し、装置内超音波ホモジナイザー5分間(出力25W)で分散させて粒度分布を測定した。得られた結果と下式より均一度を算出した。
均一度=Dp60/Dp10
p60: 粒度分布における小径側からの累積重量が60%に相当する粒子径
p10: 粒度分布における小径側からの累積重量が10%に相当する粒子径
[Uniformity]
Using a particle size analyzer Microtrac 9320-X100 manufactured by Leeds & Northrup, methanol was used as a dispersion medium, and the particle size distribution was measured by dispersing with an ultrasonic homogenizer for 5 minutes (output: 25 W). The uniformity was calculated from the obtained result and the following formula.
Uniformity = D p60 / D p10
D p60 : Particle diameter corresponding to 60% cumulative weight from the small diameter side in the particle size distribution D p10 : Particle diameter corresponding to 10% cumulative weight from the small diameter side in the particle size distribution

[密 度]
190℃に設定した神藤金属工業社製油圧式熱プレス機を用い、100kg/cm2の圧力で0.5mm厚のシートを成形し(スペーサー形状:240×240×0.5mm厚の板に45×45×0.5mm、9個取り)、20℃に設定した別の神藤金属工業社製油圧式熱プレス機を用い、100kg/cm2の圧力で圧縮することで冷却して測定用試料を作成した。熱板は5mm厚のSUS板を用いた。
このプレスシートを120℃で1時間熱処理し、1時間かけて直線的に室温まで徐冷したのち、密度勾配管で測定した。
[density]
A sheet of 0.5 mm thickness was formed at a pressure of 100 kg / cm 2 using a hydraulic heat press machine manufactured by Shindo Metal Industry Co., Ltd. set at 190 ° C. (spacer shape: 45 × on a 240 × 240 × 0.5 mm thick plate) 45 × 0.5 mm, 9 pieces), using another hydraulic hot press machine manufactured by Shinfuji Metal Industry Co., Ltd. set to 20 ° C., and cooled by compressing at a pressure of 100 kg / cm 2 to prepare a measurement sample. . As the hot plate, a 5 mm thick SUS plate was used.
The press sheet was heat-treated at 120 ° C. for 1 hour, linearly cooled to room temperature over 1 hour, and then measured with a density gradient tube.

[灼熱減量]
株式会社リガク製示差熱天秤TG8120を用いて測定を行った。参照物質としてアルミナを用い、サンプルを大気中で約10mg採取し、5℃/分の速度で600℃まで昇温後、600℃で30分間保持した。このときの200℃での重量を基準とし、200℃〜600℃での重量減少率(重量%)を灼熱減量とした。
[Loss of burning]
The measurement was performed using a differential thermal balance TG8120 manufactured by Rigaku Corporation. Using alumina as a reference substance, about 10 mg of a sample was collected in the air, heated to 600 ° C. at a rate of 5 ° C./min, and held at 600 ° C. for 30 minutes. Based on the weight at 200 ° C. at this time, the weight loss rate (% by weight) at 200 ° C. to 600 ° C. was defined as a loss on ignition.

[元素分析]
株式会社島津製作所製ICP(誘導結合プラズマ)発光分光分析装置:ICPS-8100型を用いて測定を行った。アルミニウム、ジルコニウムの定量、定性分析には、試料を硫酸および硝酸にて湿式分解後、定容(必要に応じてろ過及び希釈含む)したものを検液とした。またケイ素の定量、定性分析には試料を炭酸ナトリウムにて溶融後、塩酸を加え溶解し、定容および希釈したものを検液とした。
[Elemental analysis]
Measurement was performed using ICP (Inductively Coupled Plasma) emission spectroscopic analyzer manufactured by Shimadzu Corporation: ICPS-8100 type. For quantification and qualitative analysis of aluminum and zirconium, the sample was subjected to wet decomposition with sulfuric acid and nitric acid, and then a constant volume (including filtration and dilution as necessary) was used as a test solution. For quantitative and qualitative analysis of silicon, a sample was melted with sodium carbonate, dissolved by adding hydrochloric acid, and a constant volume and diluted sample was used as a test solution.

−オレフィン重合用固体状触媒(K)の製造−
[工程P1]
充分に窒素置換した100mlの四口フラスコに攪拌棒を装着し、これに窒素雰囲気下、200℃で乾燥したシリカゲル(商品名:H-122、旭エスアイテック株式会社製)5.01g、脱水トルエン44mlを添加し、オイルバスによる過熱で50℃に昇温した。トリイソブチルアルミニウムのトルエン溶液(1M)2.5mlを添加し、更にメチルアルミノキサンのトルエン溶液(東ソー・ファインケム株式会社製、アルミニウム濃度9.1重量%)19.0mlを加えた。50℃で30分反応させた後、さらに95℃で4時間反応させた。60℃にて静置後、上澄みをデカンテーションによって36mL取り除き、シリカ担持メチルアルミノキサンのトルエンスラリーを得た。
-Production of solid catalyst (K) for olefin polymerization-
[Process P1]
A 100 ml four-necked flask fully purged with nitrogen was equipped with a stir bar, and 5.01 g of silica gel (trade name: H-122, manufactured by Asahi S-Tech Co., Ltd.) dried at 200 ° C. in a nitrogen atmosphere, 44 ml of dehydrated toluene Was added and the temperature was raised to 50 ° C. by overheating in an oil bath. 2.5 ml of a toluene solution (1M) of triisobutylaluminum was added, and 19.0 ml of a toluene solution of methylaluminoxane (produced by Tosoh Finechem Co., Ltd., aluminum concentration 9.1% by weight) was further added. The mixture was reacted at 50 ° C. for 30 minutes, and further reacted at 95 ° C. for 4 hours. After standing at 60 ° C., 36 mL of the supernatant was removed by decantation to obtain a toluene slurry of silica-supported methylaluminoxane.

[工程P2]
前記工程P1で得られたシリカ担持メチルアルミノキサンのトルエンスラリーを35℃に保温し、ここにヘキサンを10ml加え、続いてポリアルキレンオキシグリコール(商品名:アデカプルロニックL-71、旭電化工業株式会社製)の1.5重量%ヘキサン溶液20mlを加えた。45分反応させた後に、予め混合しておいた、遷移金属化合物であるジフェニルメチレン(3-tert-ブチル-5-メチル-シクロペンタジエニル)(2,7-ジ-tert-ブチル-フルオレニル)ジルコニウムジクロリド(WO2004/087775に記載の方法で製造した。)149mgとトリイソブチルアルミニウムのトルエン溶液(1M)1.86ml、ヘキサン4mlの混合物を添加した。1時間反応させた後に、得られたスラリーをメンブレンフィルターで濾過した。得られた粉体を2時間減圧乾燥して9.45gの粉体状の固体状触媒(K)を得た。これを脱水流動パラフィンと混合して20.0 重量%スラリーとした。分析の結果、粉体中のジルコニウムは0.17重量%、アルミニウムは17.6重量%であった。灼熱減量は13.5重量%であった。灼熱後残渣を元素分析したところ、ケイ素原子およびアルミニウム原子に基づくピークが確認された。
[Process P2]
The toluene slurry of silica-supported methylaluminoxane obtained in Step P1 was kept at 35 ° C., and 10 ml of hexane was added thereto, followed by polyalkyleneoxy glycol (trade name: Adeka Pluronic L-71, manufactured by Asahi Denka Kogyo Co., Ltd. 20 ml of a 1.5% by weight hexane solution. After reacting for 45 minutes, diphenylmethylene (3-tert-butyl-5-methyl-cyclopentadienyl) (2,7-di-tert-butyl-fluorenyl), a transition metal compound, previously mixed A mixture of 149 mg of zirconium dichloride (produced by the method described in WO2004 / 087775), 1.86 ml of a toluene solution (1M) of triisobutylaluminum and 4 ml of hexane was added. After reacting for 1 hour, the resulting slurry was filtered through a membrane filter. The obtained powder was dried under reduced pressure for 2 hours to obtain 9.45 g of a powdery solid catalyst (K). This was mixed with dehydrated liquid paraffin to make a 20.0 wt% slurry. As a result of analysis, zirconium in the powder was 0.17% by weight and aluminum was 17.6% by weight. The loss on ignition was 13.5% by weight. Elemental analysis of the residue after ignition confirmed peaks based on silicon atoms and aluminum atoms.

シリカゲル(商品名:H-122、旭エスアイテック株式会社製)として分級によって直径4μm以下の微粒子を取り除いたシリカゲルを用い、メチルアルミノキサンのトルエン溶液を16.8ml用いた以外は実施例1と同様に製造を行った。分析の結果、粉体中のジルコニウムは0.18重量%、アルミニウムは16.7重量%、ケイ素は23.2重量%であった。灼熱減量は14.1重量%であった。また、灼熱後残渣を元素分析したところ、ケイ素原子およびアルミニウム原子に基づくピークが確認された。   Manufactured in the same manner as in Example 1 except that silica gel (product name: H-122, manufactured by Asahi S-Tech Co., Ltd.) was used to remove fine particles having a diameter of 4 μm or less by classification, and 16.8 ml of a toluene solution of methylaluminoxane was used. Went. As a result of analysis, zirconium in the powder was 0.18% by weight, aluminum was 16.7% by weight, and silicon was 23.2% by weight. The loss on ignition was 14.1% by weight. Further, when the residue was subjected to elemental analysis after heating, peaks based on silicon atoms and aluminum atoms were confirmed.

−オレフィン重合用固体状触媒(K')の製造−
200mLフラスコに、実施例2で製造した流動パラフィンスラリー10.02 g、メンブレンフィルターでろ過した際の濾液を6.51g、ヘキサンを30ml加え、34℃まで加熱した。ここに1 mol/Lのトリイソブチルアルミニウムのヘキサン溶液2.0ml、ポリアルキレンオキシグリコール(商品名:アデカプルロニックL-71、旭電化工業株式会社製)の10g/L ヘキサン溶液2 mlを加えた。気相部にエチレンを1.5NL/h の速度で吹き込み、35℃で4時間重合を行った。窒素で残存エチレンをパージし、得られたスラリーをメンブレンフィルターで濾過した。減圧下で3時間乾燥を行い、固体状触媒(K')7.56g得た。
-Production of solid catalyst for olefin polymerization (K ')-
To a 200 mL flask, 10.02 g of the liquid paraffin slurry produced in Example 2, 6.51 g of the filtrate obtained by filtering with a membrane filter and 30 ml of hexane were added, and the mixture was heated to 34 ° C. To this, 2.0 ml of a 1 mol / L triisobutylaluminum hexane solution and 2 ml of a 10 g / L hexane solution of polyalkyleneoxy glycol (trade name: Adeka Pluronic L-71, manufactured by Asahi Denka Kogyo Co., Ltd.) were added. Ethylene was blown into the gas phase at a rate of 1.5 NL / h, and polymerization was carried out at 35 ° C. for 4 hours. The residual ethylene was purged with nitrogen, and the resulting slurry was filtered through a membrane filter. Drying was performed under reduced pressure for 3 hours to obtain 7.56 g of a solid catalyst (K ′).

−プロピレンのホモ重合(1)−
充分に窒素置換した50 mlの枝付きフラスコに磁気攪拌子を入れ、これに上記実施例1で調製した固体状触媒(K)のスラリー 803 mgとトリイソブチルアルミニウムのヘキサン溶液(Al=1.0M) 1.0 mmolおよび脱水ヘキサン5.0 mlを加え、充分に窒素置換した内容量2,000 mlのSUS製オートクレーブに導入した。その後、液体プロピレン500 gを装入し、70℃で40分間重合を行った後、オートクレーブを冷却およびプロピレンをパージして重合を停止した。ポリマーは80℃で10時間、減圧乾燥を行った。
得られたポリマーはアイソタクチックポリプロピレン125.8gであり、重合活性は62.3 kg-PP/mmol-Zr・hrであった。ポリマー分析の結果、(η)=3.27 dl/g、MFR=0.30 g/10分、嵩密度は0.49 g/cm3、粗粒量は2.2重量%であった。なお、オートクレーブ内にポリマーの付着はみられなかった。
-Homopolymerization of propylene (1)-
A magnetic stirrer was placed in a 50 ml branch flask thoroughly purged with nitrogen, and 803 mg of the slurry of the solid catalyst (K) prepared in Example 1 above and a hexane solution of triisobutylaluminum (Al = 1.0 M). 1.0 mmol and 5.0 ml of dehydrated hexane were added, and the mixture was introduced into a 2,000-ml SUS autoclave thoroughly purged with nitrogen. Thereafter, 500 g of liquid propylene was charged and polymerization was performed at 70 ° C. for 40 minutes, and then the polymerization was stopped by cooling the autoclave and purging propylene. The polymer was dried under reduced pressure at 80 ° C. for 10 hours.
The obtained polymer was 125.8 g of isotactic polypropylene, and the polymerization activity was 62.3 kg-PP / mmol-Zr · hr. As a result of polymer analysis, (η) = 0.27 dl / g, MFR = 0.30 g / 10 min, bulk density was 0.49 g / cm 3 , and the amount of coarse particles was 2.2% by weight. In addition, adhesion of the polymer was not seen in the autoclave.

−プロピレンのホモ重合(2)−
上記実施例1で調製した固体状触媒(K)のスラリーを352 mg使用し、液体プロピレン500 gを装入した後、水素0.08NLを加えた以外は、上記実施例4と同じ条件で重合を行った。
得られたポリマーはアイソタクチックポリプロピレン160.2 gであり、重合活性は181 kg-PP/mmol-Zr・hrであった。ポリマー分析の結果、(η)=2.30 dl/g、MFR=2.38g/10分、嵩密度は0.50g/cm3、粗粒量は0.11重量%であった。均一度は2、安息角は28°、圧縮度は10%、スパチュラ角は30°であり、Carrの指数は93.5点であった。なお、オートクレーブ内にポリマーの付着はみられなかった。
-Homopolymerization of propylene (2)-
Polymerization was carried out under the same conditions as in Example 4 except that 352 mg of the slurry of the solid catalyst (K) prepared in Example 1 was used, 500 g of liquid propylene was charged, and 0.08 NL of hydrogen was added. went.
The obtained polymer was 160.2 g of isotactic polypropylene, and the polymerization activity was 181 kg-PP / mmol-Zr · hr. As a result of polymer analysis, (η) = 2.30 dl / g, MFR = 2.38 g / 10 min, bulk density was 0.50 g / cm 3 , and the amount of coarse particles was 0.11% by weight. Uniformity was 2, repose angle was 28 °, compression degree was 10%, spatula angle was 30 °, and Carr's index was 93.5 points. In addition, adhesion of the polymer was not seen in the autoclave.

−プロピレンのホモ重合(3)−
充分に窒素置換した50 mlの枝付きフラスコに磁気攪拌子を入れ、これに上記実施例2で調製した固体状触媒(K)のスラリー 802 mgとトリイソブチルアルミニウムのヘキサン溶液(Al=1.0M)1.0 mmolおよび脱水ヘキサン5.0 mlを加え、充分に窒素置換した内容量2,000 mlのSUS製オートクレーブに導入した。その後、液体プロピレン500 gを装入し、70℃で40分間重合を行った後、オートクレーブを冷却およびプロピレンをパージして重合を停止した。ポリマーは80℃で10時間、減圧乾燥を行った。
得られたポリマーはアイソタクチックポリプロピレン143.1 gであり、重合活性は66.1 kg-PP/mmol-Zr・hrであった。ポリマー分析の結果、(η)=3.18 dl/g、MFR=0.32 g/10分、Mw=558,000、Mw/Mn=3.1、Tm=144.0℃、ΔH=86.0 J/g、嵩密度は0.50 g/cm3、粗粒量は0.0重量%であった。なお、オートクレーブ内にポリマーの付着はみられなかった。
-Homopolymerization of propylene (3)-
A magnetic stirrer was placed in a 50 ml branch flask thoroughly purged with nitrogen, and 802 mg of the slurry of the solid catalyst (K) prepared in Example 2 above and a hexane solution of triisobutylaluminum (Al = 1.0 M). 1.0 mmol and 5.0 ml of dehydrated hexane were added, and the mixture was introduced into a 2,000-ml SUS autoclave thoroughly purged with nitrogen. Thereafter, 500 g of liquid propylene was charged and polymerization was performed at 70 ° C. for 40 minutes, and then the polymerization was stopped by cooling the autoclave and purging propylene. The polymer was dried under reduced pressure at 80 ° C. for 10 hours.
The obtained polymer was 143.1 g of isotactic polypropylene, and the polymerization activity was 66.1 kg-PP / mmol-Zr · hr. As a result of polymer analysis, (η) = 3.18 dl / g, MFR = 0.32 g / 10 min, Mw = 558,000, Mw / Mn = 3.1, Tm = 144.0 ° C., ΔH = 86.0 J / g, bulk density is 0.50 g / cm 3 , and the amount of coarse particles was 0.0% by weight. In addition, adhesion of the polymer was not seen in the autoclave.

−プロピレンのホモ重合(4)−
上記実施例2で調製した固体状触媒(K)のスラリーを356 mg使用し、液体プロピレン500 gを装入した後、水素0.08 NLを加えた以外は、上記実施例6と同じ条件で重合を行った。
得られたポリマーはアイソタクチックポリプロピレン159.6 gであり、重合活性は166.2 kg-PP/mmol-Zr・hrであった。ポリマー分析の結果、(η)=2.32 dl/g、MFR=1.85 g/10分、Mw=330,000、Mw/Mn=2.7、Tm=146.7℃、ΔH=88.6 J/g、嵩密度は0.51 g/cm3、粗粒量は0.0重量%であった。なお、オートクレーブ内にポリマーの付着はみられなかった。
-Homopolymerization of propylene (4)-
Polymerization was carried out under the same conditions as in Example 6 except that 356 mg of the slurry of the solid catalyst (K) prepared in Example 2 was used, 500 g of liquid propylene was charged, and 0.08 NL of hydrogen was added. went.
The obtained polymer was 159.6 g of isotactic polypropylene, and the polymerization activity was 166.2 kg-PP / mmol-Zr · hr. As a result of polymer analysis, (η) = 2.32 dl / g, MFR = 1.85 g / 10 min, Mw = 330,000, Mw / Mn = 2.7, Tm = 146.7 ° C., ΔH = 88.6 J / g, bulk density is 0.51 g / cm 3 , and the amount of coarse particles was 0.0% by weight. In addition, adhesion of the polymer was not seen in the autoclave.

−プロピレンのホモ重合(5)−
充分に窒素置換した50 mlの枝付きフラスコに磁気攪拌子を入れ、これに上記実施例3で調製した固体状触媒(K') 641 mgとトリイソブチルアルミニウムのヘキサン溶液(Al=1.0 M) 1.0 mmolおよび脱水ヘキサン5.0 mlを加え、充分に窒素置換した内容量2,000 mlのSUS製オートクレーブに導入した。その後、液体プロピレン 500 gを装入し、70℃で40分間重合を行った後、オートクレーブを冷却およびプロピレンをパージして重合を停止した。ポリマーは80℃で10時間、減圧乾燥を行った。
得られたポリマーはアイソタクチックポリプロピレン122.9gであり、重合活性は55.1 kg-PP/mmol-Zr・hrであった。ポリマー分析の結果、(η)=3.58 dl/g、MFR=0.25g/10分、嵩密度は0.49 g/cm3、粗粒量は0.0重量%であった。なお、オートクレーブ内にポリマーの付着はみられなかった。
-Homopolymerization of propylene (5)-
A magnetic stirring bar was placed in a 50-ml branch flask thoroughly purged with nitrogen, and 641 mg of the solid catalyst (K ′) prepared in Example 3 above and a hexane solution of triisobutylaluminum (Al = 1.0 M) 1.0 mmol and 5.0 ml of dehydrated hexane were added, and the mixture was introduced into a 2,000-ml SUS autoclave sufficiently purged with nitrogen. Thereafter, 500 g of liquid propylene was charged and polymerization was performed at 70 ° C. for 40 minutes, and then the polymerization was stopped by cooling the autoclave and purging propylene. The polymer was dried under reduced pressure at 80 ° C. for 10 hours.
The obtained polymer was 122.9 g of isotactic polypropylene, and the polymerization activity was 55.1 kg-PP / mmol-Zr · hr. As a result of polymer analysis, (η) = 3.58 dl / g, MFR = 0.25 g / 10 min, bulk density was 0.49 g / cm 3 , and the amount of coarse particles was 0.0% by weight. In addition, adhesion of the polymer was not seen in the autoclave.

−プロピレンのホモ重合(6)−
上記実施例3で調製した固体状触媒(K') 283 mg使用し、液体プロピレン500 gを装入した後、水素0.08 NLを加えた以外は、上記実施例8と同じ条件で重合を行った。
得られたポリマーはアイソタクチックポリプロピレン170.5 gであり、重合活性は172.9 kg-PP/mmol-Zr・hrであった。ポリマー分析の結果、(η)=2.24 dl/g、MFR=2.67 g/10分、嵩密度は0.50 g/cm3、粗粒量は0.0重量%であった。なお、オートクレーブ内にポリマーの付着はみられなかった。
-Homopolymerization of propylene (6)-
Polymerization was carried out under the same conditions as in Example 8 except that 283 mg of the solid catalyst (K ′) prepared in Example 3 was used, 500 g of liquid propylene was charged, and 0.08 NL of hydrogen was added. .
The obtained polymer was 170.5 g of isotactic polypropylene, and the polymerization activity was 172.9 kg-PP / mmol-Zr · hr. As a result of polymer analysis, (η) = 2.24 dl / g, MFR = 2.67 g / 10 min, bulk density was 0.50 g / cm 3 , and the amount of coarse particles was 0.0% by weight. In addition, adhesion of the polymer was not seen in the autoclave.

−プロピレンのランダム重合(1)−
充分に窒素置換した50 mlの枝付きフラスコに磁気攪拌子を入れ、これに上記実施例2で調製した固体状触媒(K)のスラリー160 mgとトリイソブチルアルミニウムのヘキサン溶液(Al=1.0M)1.0mmolおよび脱水ヘキサン5.0mlを加え、充分に窒素置換した内容量2,000 mlのSUS製オートクレーブに導入した。その後、液体プロピレン500 gを装入し、エチレンを3.0NL、続いて水素を0.3NL装入した。60℃で40分間重合を行った後、オートクレーブを冷却およびプロピレンをパージして重合を停止した。ポリマーは80℃で10時間、減圧乾燥を行った。
得られたポリマーはエチレン-プロピレン共重合体243.5 gであり、重合活性は562.8 kg-PP/mmol-Zr・hrであった。ポリマー分析の結果、(η)=1.44 dl/g、MFR=23.6 g/10分、エチレン含量は2.53 mol%、Tm=131.3℃、ΔH=85.7J/g、嵩密度は0.42 g/cm3、粗粒量は0.12重量%であった。均一度は2、安息角は32°、圧縮度は8%、スパチュラ角は37°であり、Carrの指数は88点であった。
-Random polymerization of propylene (1)-
A magnetic stirring bar was placed in a 50-ml branch flask thoroughly purged with nitrogen, and 160 mg of the slurry of the solid catalyst (K) prepared in Example 2 above and a hexane solution of triisobutylaluminum (Al = 1.0M). 1.0 mmol and 5.0 ml of dehydrated hexane were added, and the mixture was introduced into a 2,000-ml SUS autoclave thoroughly purged with nitrogen. Thereafter, 500 g of liquid propylene was charged, and 3.0 NL of ethylene was charged, followed by 0.3 NL of hydrogen. After polymerization at 60 ° C. for 40 minutes, the autoclave was cooled and purged with propylene to stop the polymerization. The polymer was dried under reduced pressure at 80 ° C. for 10 hours.
The obtained polymer was 243.5 g of an ethylene-propylene copolymer, and the polymerization activity was 562.8 kg-PP / mmol-Zr · hr. As a result of polymer analysis, (η) = 1.44 dl / g, MFR = 23.6 g / 10 min, ethylene content 2.53 mol%, Tm = 131.3 ° C., ΔH = 85.7 J / g, bulk density 0.42 g / cm 3 , The amount of coarse particles was 0.12% by weight. Uniformity was 2, repose angle was 32 °, compression was 8%, spatula angle was 37 °, and Carr's index was 88 points.

−プロピレンのランダム重合(2)−
上記実施例2で調製した固体状触媒(K)のスラリーを157 mg使用し、液体プロピレン500 gを装入した後、水素0.6 NLを加えた以外は、上記実施例10と同じ条件で重合を行った。
得られたポリマーはエチレン-プロピレン共重合体271.0 gであり、重合活性は638.3 kg-PP/mmol-Zr・hrであった。ポリマー分析の結果、(η)=0.96 dl/g、MFR=175 g/10分、エチレン含量は2.68 mol%、Tm=131.5℃、ΔH=76.2 J/g、嵩密度は0.44 g/cm3、粗粒量は0.53重量%であった。
-Random polymerization of propylene (2)-
Polymerization was carried out under the same conditions as in Example 10 except that 157 mg of the slurry of the solid catalyst (K) prepared in Example 2 was used, 500 g of liquid propylene was charged, and 0.6 NL of hydrogen was added. went.
The obtained polymer was 271.0 g of an ethylene-propylene copolymer, and the polymerization activity was 638.3 kg-PP / mmol-Zr · hr. As a result of polymer analysis, (η) = 0.96 dl / g, MFR = 175 g / 10 min, ethylene content 2.68 mol%, Tm = 131.5 ° C., ΔH = 76.2 J / g, bulk density 0.44 g / cm 3 , The amount of coarse particles was 0.53% by weight.

−プロピレンのランダム重合(3)−
上記実施例2で調製した固体状触媒(K)のスラリーを89 mg使用し、30分間重合した以外は、上記実施例10と同じ条件で重合を行った。
得られたポリマーはエチレン-プロピレン共重合体143.2 gであり、重合活性は795.3 kg-PP/mmol-Zr・hrであった。ポリマー分析の結果、(η)=1.97 dl/g、MFR=13.7 g/10分、エチレン含量は3.70 mol%、Tm=123.2℃、ΔH=66.4 J/g、嵩密度は0.38 g/cm3、粗粒量は0.13重量%であった。均一度は2、安息角は36°、圧縮度は7%、スパチュラ角は39°であり、Carrの指数は85点であった。
-Random polymerization of propylene (3)-
Polymerization was performed under the same conditions as in Example 10 except that 89 mg of the solid catalyst (K) slurry prepared in Example 2 was used and polymerized for 30 minutes.
The obtained polymer was 143.2 g of an ethylene-propylene copolymer, and the polymerization activity was 795.3 kg-PP / mmol-Zr · hr. As a result of polymer analysis, (η) = 1.97 dl / g, MFR = 13.7 g / 10 min, ethylene content 3.70 mol%, Tm = 123.2 ° C., ΔH = 66.4 J / g, bulk density 0.38 g / cm 3 , The amount of coarse particles was 0.13% by weight. Uniformity was 2, repose angle was 36 °, compression degree was 7%, spatula angle was 39 °, and Carr's index was 85 points.

−オレフィン重合用固体状触媒(K)の抽出試験(1)−
乾燥窒素雰囲気下、実施例1で製造した粉末状固体状触媒(K) 150 mgをはかり取った。ここに、乾燥ヘキサンを7.5g加え、22℃の雰囲気下で1時間攪拌した。得られたスラリーを孔径3μmのテフロン(登録商標)製メンブレンフィルターを用いてろ過を行った。得られた濾液を減圧下に濃縮し、22℃の雰囲気下、3hPaで3時間減圧乾燥を行った。得られた不揮発成分は0.3 mgであった。
-Extraction test of solid catalyst (K) for olefin polymerization (1)-
In a dry nitrogen atmosphere, 150 mg of the powdered solid catalyst (K) produced in Example 1 was weighed. 7.5 g of dry hexane was added thereto, and the mixture was stirred for 1 hour in an atmosphere at 22 ° C. The obtained slurry was filtered using a Teflon (registered trademark) membrane filter having a pore diameter of 3 μm. The obtained filtrate was concentrated under reduced pressure, and dried under reduced pressure at 3 hPa for 3 hours in an atmosphere at 22 ° C. The obtained non-volatile component was 0.3 mg.

−オレフィン重合用固体状触媒(K)の抽出試験(2)−
乾燥窒素雰囲気下、実施例1で製造した粉末状固体状触媒(K)150mgをはかり取った。これを飽和酢酸カリウム水溶液を備えたデシケーター内に静置し、7日間水蒸気と接触させた。デシケーターから取り出した後に、大気中で重水素化アセトニトリルを1g加え、30分間攪拌した。ガラスウールを詰めたガラス管を通してろ過を行い、得られた濾液について、1H-NMR測定を行った。NMRチャートを図1に示す。3.2〜3.3ppmにオキシメチレン基由来のピークが確認された。なお、ケミカルシフトの基準はアセトニトリルの残留プロトンのピーク(1.93ppm)とした。
-Extraction test of solid catalyst (K) for olefin polymerization (2)-
In a dry nitrogen atmosphere, 150 mg of the powdered solid catalyst (K) produced in Example 1 was weighed. This was left still in a desiccator equipped with a saturated aqueous potassium acetate solution and contacted with water vapor for 7 days. After removing from the desiccator, 1 g of deuterated acetonitrile was added in the atmosphere and stirred for 30 minutes. Filtration was performed through a glass tube filled with glass wool, and the obtained filtrate was subjected to 1 H-NMR measurement. The NMR chart is shown in FIG. A peak derived from an oxymethylene group was confirmed at 3.2 to 3.3 ppm. The standard of chemical shift was the peak of residual proton of acetonitrile (1.93 ppm).

−オレフィン重合用固体状触媒(K)の製造−
直径4μm以下の微粒子を取り除いたシリカゲルを用い、実施例1、工程P1と同様にシリカ担持メチルアルミノキサンのトルエンスラリーを製造し、180g/Lに調製した。充分に窒素置換した100mlの四口フラスコに攪拌棒を装着し、このスラリーを11.1ml、トルエン30mlを装入した。ポリオキシエチレン(10)ステアリルアミンエーテル(和光純薬製)の10g/Lヘキサン懸濁液 1.0mlを加えた。35℃で45分間反応させた後に、予め混合しておいた、遷移金属化合物であるジフェニルメチレン(3-tert-ブチル-5-メチル-シクロペンタジエニル)(2,7-ジ-tert-ブチル-フルオレニル)ジルコニウムジクロリド(WO2004/087775に記載の方法で製造した。) 33.5mgとトリイソブチルアルミニウムのトルエン溶液(0.5M) 0.9ml、トルエン4mlの混合物を添加した。1時間反応させた後に、得られたスラリーをメンブレンフィルターで濾過し、15mlのヘキサンで2回洗浄後、ろ過した。さらにヘキサン15mlで洗浄し、ろ過を行い、得られた濾液を減圧下に濃縮したところ、残渣は0.1mg未満であった。得られた粉体を2時間減圧乾燥して2.09gの粉体状の固体状触媒を得た。これを脱水流動パラフィンと混合して20.0 重量%スラリーとした。分析の結果、粉体中のジルコニウムは0.17重量%、アルミニウムは16.9重量%であった。灼熱減量は11.2重量%であった。また、灼熱後残渣を元素分析したところ、ケイ素原子およびアルミニウム原子に基づくピークが確認された。
-Production of solid catalyst (K) for olefin polymerization-
Using silica gel from which fine particles having a diameter of 4 μm or less were removed, a toluene slurry of silica-supported methylaluminoxane was produced in the same manner as in Example 1 and Step P1, and prepared at 180 g / L. A 100-ml four-necked flask thoroughly purged with nitrogen was equipped with a stirring rod, and 11.1 ml of this slurry and 30 ml of toluene were charged. 1.0 ml of a 10 g / L hexane suspension of polyoxyethylene (10) stearylamine ether (Wako Pure Chemical Industries, Ltd.) was added. Diphenylmethylene (3-tert-butyl-5-methyl-cyclopentadienyl) (2,7-di-tert-butyl), a pre-mixed transition metal compound, after reacting at 35 ° C. for 45 minutes -Fluorenyl) zirconium dichloride (manufactured by the method described in WO2004 / 087775) A mixture of 33.5 mg, 0.9 ml of a toluene solution of triisobutylaluminum (0.5 M) and 4 ml of toluene was added. After reacting for 1 hour, the resulting slurry was filtered through a membrane filter, washed twice with 15 ml of hexane, and then filtered. Further, the resultant was washed with 15 ml of hexane, filtered, and the obtained filtrate was concentrated under reduced pressure. As a result, the residue was less than 0.1 mg. The obtained powder was dried under reduced pressure for 2 hours to obtain 2.09 g of a powdery solid catalyst. This was mixed with dehydrated liquid paraffin to make a 20.0 wt% slurry. As a result of analysis, zirconium in the powder was 0.17% by weight and aluminum was 16.9% by weight. The loss on ignition was 11.2% by weight. Further, when the residue was subjected to elemental analysis after heating, peaks based on silicon atoms and aluminum atoms were confirmed.

−プロピレンのホモ重合(7)−
充分に窒素置換した50 mlの枝付きフラスコに磁気攪拌子を入れ、これに上記実施例15で調製した固体状触媒のスラリー 599 mgとトリイソブチルアルミニウムのヘキサン溶液(Al=0.5M) 0.75 mmolおよび脱水ヘキサン5.0 mlを加え、充分に窒素置換した内容量3,400 mlのSUS製オートクレーブに導入した。その後、液体プロピレン750 gを装入し、水素0.08NLを加え、70℃で40分間重合を行った後、オートクレーブを冷却およびプロピレンをパージして重合を停止した。ポリマーは80℃で10時間、減圧乾燥を行った。得られたポリマーはアイソタクチックポリプロピレン183.3gであり、重合活性は120.4kg-PP/mmol-Zr・hrであった。ポリマー分析の結果、(η)=2.60 dl/g、MFR=1.17 g/10分、嵩密度は0.50 g/cm3、粗粒量は0.1重量%であった。均一度は2、安息角は28°、圧縮度は11%、スパチュラ角は26°であり、Carrの指数は93点であった。
-Homopolymerization of propylene (7)-
A magnetic stirring bar was placed in a 50 ml branch flask thoroughly purged with nitrogen, to which 599 mg of the solid catalyst slurry prepared in Example 15 above and 0.75 mmol of a hexane solution of triisobutylaluminum (Al = 0.5M) and 5.0 ml of dehydrated hexane was added, and the mixture was introduced into an autoclave made of SUS with an internal volume of 3,400 ml that was sufficiently purged with nitrogen. Thereafter, 750 g of liquid propylene was charged, 0.08 NL of hydrogen was added, polymerization was performed at 70 ° C. for 40 minutes, and then the autoclave was cooled and propylene was purged to stop the polymerization. The polymer was dried under reduced pressure at 80 ° C. for 10 hours. The obtained polymer was 183.3 g of isotactic polypropylene, and the polymerization activity was 120.4 kg-PP / mmol-Zr · hr. As a result of polymer analysis, (η) = 2.60 dl / g, MFR = 1.17 g / 10 min, bulk density was 0.50 g / cm 3 , and the amount of coarse particles was 0.1% by weight. Uniformity was 2, repose angle was 28 °, compression degree was 11%, spatula angle was 26 °, and Carr's index was 93 points.

−プロピレンのホモ重合(8)−
上記実施例15で調製した固体状触媒のスラリーを539 mg使用し、液体プロピレン750 gを装入した後、水素0.16NLを加えた以外は、上記実施例15と同じ条件で重合を行った。得られたポリマーはアイソタクチックポリプロピレン285.0gであり、重合活性は208kg-PP/mmol-Zr・hrであった。ポリマー分析の結果、(η)=1.86 dl/g、MFR=6.9g/10分、嵩密度は0.50g/cm3、粗粒量は0.2重量%であった。均一度は2、安息角は28°、圧縮度は11%、スパチュラ角は27°であり、Carrの指数は93点であった。
-Homopolymerization of propylene (8)-
Polymerization was carried out under the same conditions as in Example 15 except that 539 mg of the solid catalyst slurry prepared in Example 15 was used, 750 g of liquid propylene was charged, and then 0.16 NL of hydrogen was added. The obtained polymer was 285.0 g of isotactic polypropylene, and the polymerization activity was 208 kg-PP / mmol-Zr · hr. As a result of polymer analysis, (η) = 1.86 dl / g, MFR = 6.9 g / 10 min, bulk density was 0.50 g / cm 3 , and the amount of coarse particles was 0.2% by weight. Uniformity was 2, repose angle was 28 °, compression degree was 11%, spatula angle was 27 °, and Carr's index was 93 points.

−プロピレンのホモ重合(9)−
充分に窒素置換した50 mlの枝付きフラスコに磁気攪拌子を入れ、これに上記実施例2で調製した固体状触媒のスラリー 502 mgとトリイソブチルアルミニウムのヘキサン溶液(Al=0.5M) 0.75 mmolおよび脱水ヘキサン5.0 mlを加え、充分に窒素置換した内容量3,400 mlのSUS製オートクレーブに導入した。その後、液体プロピレン750 gを装入し、水素0.08NLを加え、70℃で40分間重合を行った後、オートクレーブを冷却およびプロピレンをパージして重合を停止した。ポリマーは80℃で10時間、減圧乾燥を行った。得られたポリマーはアイソタクチックポリプロピレン185.9gであり、重合活性は137.1kg-PP/mmol-Zr・hrであった。ポリマー分析の結果、(η)=2.54 dl/g、MFR=1.15 g/10分、嵩密度は0.49 g/cm3、粗粒量は0.1重量%であった。
-Homopolymerization of propylene (9)-
A magnetic stirring bar was placed in a 50 ml branch flask thoroughly purged with nitrogen, and 502 mg of the solid catalyst slurry prepared in Example 2 above and 0.75 mmol of hexane solution of triisobutylaluminum (Al = 0.5M) and 5.0 ml of dehydrated hexane was added, and the mixture was introduced into an autoclave made of SUS with an internal volume of 3,400 ml that was sufficiently purged with nitrogen. Thereafter, 750 g of liquid propylene was charged, 0.08 NL of hydrogen was added, polymerization was performed at 70 ° C. for 40 minutes, and then the autoclave was cooled and propylene was purged to stop the polymerization. The polymer was dried under reduced pressure at 80 ° C. for 10 hours. The obtained polymer was 185.9 g of isotactic polypropylene, and the polymerization activity was 137.1 kg-PP / mmol-Zr · hr. As a result of polymer analysis, (η) = 2.54 dl / g, MFR = 1.15 g / 10 min, bulk density was 0.49 g / cm 3 , and the amount of coarse particles was 0.1% by weight.

−プロピレンのホモ重合(10)−
水素0.16NLを加えた以外は、上記実施例18と同じ条件で重合を行った。得られたポリマーはアイソタクチックポリプロピレン286.2gであり、重合活性は211kg-PP/mmol-Zr・hrであった。ポリマー分析の結果、(η)=1.98 dl/g、MFR=4.9g/10分、嵩密度は0.50g/cm3、粗粒量は0.0重量%であった。
-Homopolymerization of propylene (10)-
Polymerization was carried out under the same conditions as in Example 18 except that hydrogen 0.16NL was added. The obtained polymer was 286.2 g of isotactic polypropylene, and the polymerization activity was 211 kg-PP / mmol-Zr · hr. As a result of polymer analysis, (η) = 1.98 dl / g, MFR = 4.9 g / 10 min, bulk density was 0.50 g / cm 3 , and the amount of coarse particles was 0.0% by weight.

−オレフィン重合用固体状触媒(K)の抽出試験(3)−
乾燥窒素雰囲気下、実施例15で製造した粉末状固体状触媒(K) 500 mgをはかり取った。ここに、乾燥ヘキサンを7.5g加え、22℃の雰囲気下で1時間攪拌した。得られたスラリーを孔径3μmのテフロン(登録商標)製メンブレンフィルターを用いてろ過を行った。得られた濾液を減圧下に濃縮し、22℃の雰囲気下、3hPaで3時間減圧乾燥を行った。得られた不揮発成分は0.1 mg未満であった。
-Extraction test of solid catalyst (K) for olefin polymerization (3)-
Under a dry nitrogen atmosphere, 500 mg of the powdered solid catalyst (K) produced in Example 15 was weighed. 7.5 g of dry hexane was added thereto, and the mixture was stirred for 1 hour in an atmosphere at 22 ° C. The obtained slurry was filtered using a Teflon (registered trademark) membrane filter having a pore diameter of 3 μm. The obtained filtrate was concentrated under reduced pressure, and dried under reduced pressure at 3 hPa for 3 hours in an atmosphere at 22 ° C. The obtained non-volatile component was less than 0.1 mg.

−オレフィン重合用固体状触媒(K)の抽出試験(4)−
乾燥窒素雰囲気下、実施例15で製造した粉末状固体状触媒(K)500mgをはかり取った。これを飽和酢酸カリウム水溶液を備えたデシケーター内に静置し、7日間水蒸気と接触させた。デシケーターから取り出した後に、大気中で重水素化アセトニトリルを1.5g加え、30分間攪拌した。ガラスウールを詰めたガラス管を通してろ過を行い、得られた濾液について、1H-NMR測定を行った。3.2〜3.3ppmにオキシメチレン基由来のピークが確認された。なお、ケミカルシフトの基準はテトラメチルシランのピークとした。
-Extraction test of solid catalyst (K) for olefin polymerization (4)-
Under a dry nitrogen atmosphere, 500 mg of the powdered solid catalyst (K) produced in Example 15 was weighed. This was left still in a desiccator equipped with a saturated aqueous potassium acetate solution and contacted with water vapor for 7 days. After removing from the desiccator, 1.5 g of deuterated acetonitrile was added in the atmosphere and stirred for 30 minutes. Filtration was performed through a glass tube filled with glass wool, and the obtained filtrate was subjected to 1 H-NMR measurement. A peak derived from an oxymethylene group was confirmed at 3.2 to 3.3 ppm. The standard of chemical shift was the peak of tetramethylsilane.

−オレフィン重合用固体状触媒(K)の製造−
特開2000-327707号公報に記載の方法でシリカ担持メチルアルミノキサンのトルエンスラリーを製造し、200g/Lの濃度に調整した。このシリカ担持メチルアルミノキサンのトルエンスラリー24mlとトルエン16mlを100ml三口フラスコに装入した。ここに、ポリアルキレンオキシグリコール(商品名:アデカプルロニックL-71、旭電化工業株式会社製)の20g/Lヘキサン溶液3.6mlを加えた。30分反応させた後に、エチレンビス(インデニル)ジルコニウムジクロリド45mgのトルエンスラリ−を添加した。1時間反応させた後に、得られたスラリーをメンブレンフィルターで濾過した。10mlのヘキサンで2回洗浄した。(全濾液を減圧下に濃縮したが残渣は0.1mg以下であった。) さらに10mlのヘキサンで洗浄し濾液を減圧下に濃縮したが、残渣は0.1mg以下であった。得られた粉体を2時間減圧乾燥して4.82gの粉体を得た。これを脱水流動パラフィンと混合して20.0重量%スラリーとした。分析の結果、担持触媒中のジルコニウム含量は0.18重量%、アルミニウムは11.8重量%であった。灼熱減量は7.79重量%であった。また、灼熱後残渣を元素分析した結果、ケイ素原子およびアルミニウム原子に基づくピークが確認された。
-Production of solid catalyst (K) for olefin polymerization-
A toluene slurry of silica-supported methylaluminoxane was produced by the method described in JP-A-2000-327707 and adjusted to a concentration of 200 g / L. The toluene slurry of 24 ml of silica-supported methylaluminoxane and 16 ml of toluene were charged into a 100 ml three-necked flask. To this, 3.6 ml of a 20 g / L hexane solution of polyalkyleneoxyglycol (trade name: Adeka Pluronic L-71, manufactured by Asahi Denka Kogyo Co., Ltd.) was added. After reacting for 30 minutes, 45 mg of toluene slurry of ethylenebis (indenyl) zirconium dichloride was added. After reacting for 1 hour, the resulting slurry was filtered through a membrane filter. Washed twice with 10 ml hexane. (The whole filtrate was concentrated under reduced pressure, but the residue was 0.1 mg or less.) Further, the filtrate was concentrated under reduced pressure by washing with 10 ml of hexane, but the residue was 0.1 mg or less. The obtained powder was dried under reduced pressure for 2 hours to obtain 4.82 g of powder. This was mixed with dehydrated liquid paraffin to make a 20.0 wt% slurry. As a result of analysis, the zirconium content in the supported catalyst was 0.18% by weight, and aluminum was 11.8% by weight. The loss on ignition was 7.79% by weight. Further, as a result of elemental analysis of the residue after heating, peaks based on silicon atoms and aluminum atoms were confirmed.

−エチレンのスラリー重合−
充分に窒素置換した内容量 1,000mlのSUS製オートクレーブにヘプタン 500mlを装入した。エチレンガスを流通させ、オートクレーブ内をエチレンで飽和させた。ここにトリイソブチルアルミニウムのヘキサン溶液(Al=0.5M) 0.25mmolを添加した。一方で50mlの3方コック付きフラスコに、実施例22で調製した担持触媒のスラリー0.133 gをはかり取り、ここへオートクレーブ内のヘプタンを4 ml移液し、撹拌した。得られた触媒のスラリーをオートクレーブへ装入した。オートクレーブよりヘプタン4 mlをフラスコへ移液し、再度オートクレーブへ装入することで触媒をオートクレーブへ添加した。その後、1−ヘキセン 5mlを装入し、80℃で0.8MPaとなるようにエチレンを連続的に供給し、65分間重合を行った。オートクレーブを冷却および残留ガスをパージして重合を停止した。重合器の内壁にはポリマーの付着が見られなかった。得られたポリマーのスラリーを桐山ロート(φ95mm、ろ紙No.5B)でろ過した。ろ紙のつまりはなかった。ポリマーを80℃で10時間、減圧乾燥を行った。得られたポリマーは44.7gであり、重合活性は80.4 kg-PE/mmol-Zr・hrであった。ポリマー分析の結果、嵩密度は0.38g/cm3、密度は930kg/m3であった。
-Slurry polymerization of ethylene-
500 ml of heptane was charged into a 1,000 ml SUS autoclave which had been sufficiently purged with nitrogen. Ethylene gas was circulated to saturate the autoclave with ethylene. To this, 0.25 mmol of hexane solution of triisobutylaluminum (Al = 0.5M) was added. On the other hand, 0.133 g of the slurry of the supported catalyst prepared in Example 22 was weighed into a 50 ml flask with a three-way cock, and 4 ml of heptane in the autoclave was transferred thereto and stirred. The obtained catalyst slurry was charged into an autoclave. 4 ml of heptane was transferred from the autoclave to the flask, and the catalyst was added to the autoclave by charging the autoclave again. Thereafter, 5 ml of 1-hexene was charged, ethylene was continuously supplied at 0.8 ° C. at 80 ° C., and polymerization was carried out for 65 minutes. The polymerization was stopped by cooling the autoclave and purging the residual gas. No polymer adhesion was observed on the inner wall of the polymerization vessel. The obtained polymer slurry was filtered with a Kiriyama funnel (φ95 mm, filter paper No. 5B). There was no clogging of filter paper. The polymer was dried under reduced pressure at 80 ° C. for 10 hours. The obtained polymer was 44.7 g, and the polymerization activity was 80.4 kg-PE / mmol-Zr · hr. As a result of polymer analysis, the bulk density was 0.38 g / cm 3 and the density was 930 kg / m 3 .

−エチレン気相重合−
充分に窒素置換した内容量1,000 mlのSUS製オートクレーブに塩化ナトリウム500gを装入した。加熱下で十分に乾燥させた後、冷却し、エチレンガスを流通させ、オートクレーブ内をエチレンで飽和させた。ここにトリイソブチルアルミニウムのヘキサン溶液(Al=0.5M)0.25mmolを添加した。一方で50mlの3方コック付きフラスコに、実施例22で調製した担持触媒のスラリー 0.312gとトリイソブチルアルミニウムのヘキサン溶液(Al=0.5M)0.13mmolを添加した。得られた触媒のスラリーをオートクレーブへ装入した。その後、1−ブテンを4.0重量%含むエチレンガスでオートクレーブ内を置換し、80℃で0.8MPaとなるようにエチレン/ブテン混合ガスを供給し、60分間重合を行った。オートクレーブを冷却および残留ガスをパージして重合を停止した。得られた粉体に水2Lを加え撹拌した後、ポリマーのスラリーをさらしでろ過した。ポリマーを洗浄後、80℃で10時間、減圧乾燥を行った。得られたポリマーは30.9gであり、重合活性は23.5 kg-PE/mmol-Zr・hrであった。ポリマー分析の結果、粗粒量は1.5重量%、嵩密度は0.31g/cm3、密度は922kg/m3、(η)=1.62 dl/gであった。
-Ethylene gas phase polymerization-
500 g of sodium chloride was charged into a SUS autoclave with an internal volume of 1,000 ml that had been sufficiently purged with nitrogen. After sufficiently drying under heating, the mixture was cooled, ethylene gas was circulated, and the inside of the autoclave was saturated with ethylene. To this was added 0.25 mmol of triisobutylaluminum in hexane (Al = 0.5M). Meanwhile, 0.312 g of the slurry of the supported catalyst prepared in Example 22 and 0.13 mmol of a hexane solution of triisobutylaluminum (Al = 0.5M) were added to a 50 ml three-way cocked flask. The obtained catalyst slurry was charged into an autoclave. Thereafter, the inside of the autoclave was replaced with ethylene gas containing 4.0% by weight of 1-butene, and an ethylene / butene mixed gas was supplied at 80 ° C. so that the pressure became 0.8 MPa, and polymerization was performed for 60 minutes. The polymerization was stopped by cooling the autoclave and purging the residual gas. After 2 L of water was added to the obtained powder and stirred, the polymer slurry was exposed and filtered. After washing the polymer, it was dried under reduced pressure at 80 ° C. for 10 hours. The obtained polymer was 30.9 g, and the polymerization activity was 23.5 kg-PE / mmol-Zr · hr. As a result of polymer analysis, the amount of coarse particles was 1.5% by weight, the bulk density was 0.31 g / cm 3 , the density was 922 kg / m 3 , and (η) = 1.62 dl / g.

−オレフィン重合用固体状触媒(K)の抽出試験(5)−
乾燥窒素雰囲気下、実施例22で製造した粉末状固体状触媒(K) 500mgをはかり取った。ここに、乾燥ヘキサンを7.5g加え、23℃の雰囲気下で1時間攪拌した。得られたスラリーを孔径3μmのテフロン(登録商標)製メンブレンフィルターを用いてろ過を行った。得られた濾液を減圧下に濃縮し、22℃の雰囲気下、3hPaで3時間減圧乾燥を行った。得られた不揮発成分は0.1 mg未満であった。
-Extraction test of solid catalyst (K) for olefin polymerization (5)-
Under a dry nitrogen atmosphere, 500 mg of the powdered solid catalyst (K) produced in Example 22 was weighed. 7.5 g of dry hexane was added thereto, and the mixture was stirred for 1 hour in an atmosphere at 23 ° C. The obtained slurry was filtered using a Teflon (registered trademark) membrane filter having a pore diameter of 3 μm. The obtained filtrate was concentrated under reduced pressure, and dried under reduced pressure at 3 hPa for 3 hours in an atmosphere at 22 ° C. The obtained non-volatile component was less than 0.1 mg.

−オレフィン重合用固体状触媒(K)の抽出試験(6)−
乾燥窒素雰囲気下、実施例22で製造した粉末状固体状触媒(K)500mgをはかり取った。これを飽和酢酸カリウム水溶液を備えたデシケーター内に静置し、7日間水蒸気と接触させた。デシケーターから取り出した後に、大気中で重水素化アセトニトリルを1.5g加え、30分間攪拌した。ガラスウールを詰めたガラス管を通してろ過を行い、得られた濾液について、1H-NMR測定を行った。3.2〜3.7ppmにオキシメチレン基由来のピークが確認された。なお、ケミカルシフトの基準はテトラメチルシランのピークとした。
-Extraction test of solid catalyst (K) for olefin polymerization (6)-
Under a dry nitrogen atmosphere, 500 mg of the powdered solid catalyst (K) produced in Example 22 was weighed. This was left still in a desiccator equipped with a saturated aqueous potassium acetate solution and contacted with water vapor for 7 days. After removing from the desiccator, 1.5 g of deuterated acetonitrile was added in the atmosphere and stirred for 30 minutes. Filtration was performed through a glass tube filled with glass wool, and the obtained filtrate was subjected to 1 H-NMR measurement. A peak derived from an oxymethylene group was confirmed at 3.2 to 3.7 ppm. The standard of chemical shift was the peak of tetramethylsilane.

−オレフィン重合用固体状触媒(K)の製造−
直径4μm以下の微粒子を取り除いたシリカゲルを用い、実施例1、工程P1と同様にシリカ担持メチルアルミノキサンのトルエンスラリーを製造し、180g/Lに調製した。充分に窒素置換した200mlの四口フラスコに攪拌棒を装着し、このスラリーを11.1ml、トルエン30mlを装入した。続いてポリアルキレンオキシグリコール(商品名:アデカプルロニックL-71、旭電化工業株式会社製)の20g/Lヘキサン溶液2ml を加え、35℃で45分間反応させた。そこに遷移金属化合物であるrac-ジメチルシリレンビス(2-メチル-4-フェニルインデン)ジルコニウムジクロリド30.2mgのトルエン懸濁液5mlの混合物を添加した。1時間反応させた後に、得られたスラリーをメンブレンフィルターで濾過し、15mlのヘキサンで2回洗浄後ろ過した(全濾液を減圧下に濃縮したが残渣は0.1mg以下であった。)。さらにヘキサン15mlで洗浄し、ろ過を行い、得られた濾液を減圧下に濃縮したところ、残渣は0.1mg未満であった。得られた粉体を2時間減圧乾燥して2.08gの粉体状の固体状触媒を得た。分析の結果、粉体中のジルコニウムは0.18重量%、アルミニウムは17.0重量%であった。これを脱水流動パラフィンと混合して10.0 重量%スラリーとした。
-Production of solid catalyst (K) for olefin polymerization-
Using silica gel from which fine particles having a diameter of 4 μm or less were removed, a toluene slurry of silica-supported methylaluminoxane was produced in the same manner as in Example 1 and Step P1, and prepared at 180 g / L. A 200 ml four-necked flask thoroughly purged with nitrogen was equipped with a stir bar, and 11.1 ml of this slurry and 30 ml of toluene were charged. Subsequently, 2 ml of a 20 g / L hexane solution of polyalkyleneoxy glycol (trade name: Adeka Pluronic L-71, manufactured by Asahi Denka Kogyo Co., Ltd.) was added and reacted at 35 ° C. for 45 minutes. Thereto was added a mixture of 5 ml of a toluene suspension of 30.2 mg of rac-dimethylsilylenebis (2-methyl-4-phenylindene) zirconium dichloride, which is a transition metal compound. After reacting for 1 hour, the obtained slurry was filtered with a membrane filter, washed twice with 15 ml of hexane and filtered (the whole filtrate was concentrated under reduced pressure, but the residue was 0.1 mg or less). Further, the resultant was washed with 15 ml of hexane, filtered, and the obtained filtrate was concentrated under reduced pressure. As a result, the residue was less than 0.1 mg. The obtained powder was dried under reduced pressure for 2 hours to obtain 2.08 g of a powdery solid catalyst. As a result of analysis, zirconium in the powder was 0.18% by weight and aluminum was 17.0% by weight. This was mixed with dehydrated liquid paraffin to make a 10.0 wt% slurry.

−プロピレンのホモ重合(11)−
充分に窒素置換した50 mlの枝付きフラスコに磁気攪拌子を入れ、これに上記実施例27で調製した固体状触媒(K)のスラリー 598 mgとトリイソブチルアルミニウムのヘキサン溶液(Al=1.0M) 0.75 mmolおよび脱水ヘキサン5.0 mlを加え、充分に窒素置換した内容量3,400 mlのSUS製オートクレーブに導入した。その後、液体プロピレン750 gを装入し、70℃で40分間重合を行った後、オートクレーブを冷却およびプロピレンをパージして重合を停止した。ポリマーは80℃で10時間、減圧乾燥を行った。
得られたポリマーはアイソタクチックポリプロピレン138.8gであり、重合活性は179 kg-PP/mmol-Zr・hrであった。ポリマー分析の結果、MFR<0.01g/10分、(η)=6.71 dl/g、嵩密度は0.47 g/cm3、粗粒量は1.2重量%であった。なお、オートクレーブ内にポリマーの付着はみられなかった。
-Homopolymerization of propylene (11)-
A magnetic stirring bar was placed in a 50 ml branch flask thoroughly purged with nitrogen, and 598 mg of the slurry of the solid catalyst (K) prepared in Example 27 and a hexane solution of triisobutylaluminum (Al = 1.0 M). 0.75 mmol and 5.0 ml of dehydrated hexane were added, and the mixture was introduced into an autoclave made of SUS having an internal volume of 3,400 ml which was sufficiently purged with nitrogen. Thereafter, 750 g of liquid propylene was charged and polymerization was performed at 70 ° C. for 40 minutes, and then the polymerization was stopped by cooling the autoclave and purging with propylene. The polymer was dried under reduced pressure at 80 ° C. for 10 hours.
The obtained polymer was 138.8 g of isotactic polypropylene, and the polymerization activity was 179 kg-PP / mmol-Zr · hr. As a result of polymer analysis, MFR <0.01 g / 10 min, (η) = 6.71 dl / g, bulk density was 0.47 g / cm 3 , and the amount of coarse particles was 1.2% by weight. In addition, adhesion of the polymer was not seen in the autoclave.

−オレフィン重合用固体状触媒(K)の抽出試験(7)−
乾燥窒素雰囲気下、実施例27で製造した粉末状固体状触媒(K)200mgをはかり取った。これを飽和酢酸カリウム水溶液を備えたデシケーター内に静置し、7日間水蒸気と接触させた。デシケーターから取り出した後に、大気中で重水素化アセトニトリルを1.5g加え、30分間攪拌した。ガラスウールを詰めたガラス管を通してろ過を行い、得られた濾液について、1H-NMR測定を行った。3.2〜3.7ppmにオキシメチレン基由来のピークが確認された。なお、ケミカルシフトの基準はテトラメチルシランのピークとした。
-Extraction test of solid catalyst (K) for olefin polymerization (7)-
Under a dry nitrogen atmosphere, 200 mg of the powdered solid catalyst (K) produced in Example 27 was weighed. This was left still in a desiccator equipped with a saturated aqueous potassium acetate solution and contacted with water vapor for 7 days. After removing from the desiccator, 1.5 g of deuterated acetonitrile was added in the atmosphere and stirred for 30 minutes. Filtration was performed through a glass tube filled with glass wool, and the obtained filtrate was subjected to 1 H-NMR measurement. A peak derived from an oxymethylene group was confirmed at 3.2 to 3.7 ppm. The standard of chemical shift was the peak of tetramethylsilane.

〔比較例1〕
−オレフィン重合用固体状触媒の製造−
[第一工程]
充分に窒素置換した100 mlの四口フラスコに攪拌棒を装着し、これに窒素雰囲気下、200℃で乾燥したシリカゲル(商品名:H-122、旭エスアイテック株式会社製)5.00g、脱水トルエン44 mlを添加し、オイルバスによる過熱で50℃に昇温した。トリイソブチルアルミニウムのトルエン溶液(1M)2.5 mlを添加し、更にメチルアルミノキサンのトルエン溶液(東ソー・ファインケム株式会社製、アルミニウム濃度9.1重量%)19.0 mlを加えた。50℃で30分反応させた後、さらに95℃で4時間反応させた。60℃にて静置後、上澄みをデカンテーションによって31 ml取り除き、シリカ担持メチルアルミノキサンのトルエンスラリーを得た。
[Comparative Example 1]
-Production of solid catalysts for olefin polymerization-
[First step]
A 100 ml four-necked flask fully purged with nitrogen was equipped with a stir bar, and this was dried at 200 ° C in a nitrogen atmosphere at 5.00 g of silica gel (trade name: H-122, manufactured by Asahi S-Tech Co., Ltd.), dehydrated toluene 44 ml was added and the temperature was raised to 50 ° C. by overheating in an oil bath. 2.5 ml of a toluene solution (1M) of triisobutylaluminum was added, and 19.0 ml of a toluene solution of methylaluminoxane (produced by Tosoh Finechem Co., Ltd., aluminum concentration 9.1% by weight) was further added. The mixture was reacted at 50 ° C. for 30 minutes, and further reacted at 95 ° C. for 4 hours. After standing at 60 ° C., 31 ml of the supernatant was removed by decantation to obtain a toluene slurry of silica-supported methylaluminoxane.

[第二工程]
上記方法で得られたシリカ担持メチルアルミノキサンのトルエンスラリーを35℃に保温し、ここにヘキサンを20 ml加えた。45分反応させた後に、予め混合しておいた、遷移金属化合物であるジフェニルメチレン(3-tert-ブチル-5-メチル−シクロペンタジエニル)(2,7-ジ-tert-ブチル-フルオレニル)ジルコニウムジクロリド(WO2004/087775に記載の方法で製造した。)150 mgとトリイソブチルアルミニウムのトルエン溶液(1M)1.86ml、ヘキサン4mlの混合物を添加した。1時間反応させた後に、得られたスラリーをメンブレンフィルターで濾過した。得られた粉体を2時間減圧乾燥して9.16gの粉体を得た。分析の結果、粉体中のジルコニウムは0.17重量%であった。これを脱水流動パラフィンと混合して20.0重量%スラリーとした。
[Second step]
The toluene slurry of silica-supported methylaluminoxane obtained by the above method was kept at 35 ° C., and 20 ml of hexane was added thereto. After reacting for 45 minutes, diphenylmethylene (3-tert-butyl-5-methyl-cyclopentadienyl) (2,7-di-tert-butyl-fluorenyl), a transition metal compound, previously mixed A mixture of 150 mg of zirconium dichloride (produced by the method described in WO2004 / 087775), 1.86 ml of a toluene solution (1 M) of triisobutylaluminum and 4 ml of hexane was added. After reacting for 1 hour, the resulting slurry was filtered through a membrane filter. The obtained powder was dried under reduced pressure for 2 hours to obtain 9.16 g of powder. As a result of analysis, zirconium in the powder was 0.17% by weight. This was mixed with dehydrated liquid paraffin to make a 20.0 wt% slurry.

〔比較例2〕
−プロピレンのホモ重合(1)−
充分に窒素置換した50 mlの枝付きフラスコに磁気攪拌子を入れ、これに上記比較例1で調製した担持触媒のスラリー714 mgとトリイソブチルアルミニウムのヘキサン溶液(Al=1.0M) 1.0 mmolおよび脱水ヘキサン5.0 mlを加え、充分に窒素置換した内容量2,000 mlのSUS製オートクレーブに導入した。その後、液体プロピレン500 gを装入し、70℃で40分間重合を行った後、オートクレーブを冷却およびプロピレンをパージして重合を停止した。ポリマーは80℃で10時間、減圧乾燥を行った。
得られたポリマーはアイソタクチックポリプロピレン128.6 gであり、重合活性は71.1 kg-PP/mmol-Zr・hrであった。ポリマー分析の結果、(η)=3.29 dl/g、MFR=0.27 g/10分、粗粒量は25.0重量%であった。嵩密度は、ポリマー粉体がロート内で閉塞してしまうため、測定できなかった。目開き1mmの篩を通過した粉体の嵩密度は0.39 g/cm3であった。重合後、オートクレーブ内にポリマーの付着が認められた。
[Comparative Example 2]
-Homopolymerization of propylene (1)-
A magnetic stirrer was placed in a 50-ml branch flask thoroughly purged with nitrogen, to which 714 mg of the supported catalyst slurry prepared in Comparative Example 1 above, 1.0 mmol of triisobutylaluminum in hexane (Al = 1.0M) and dehydration were added. Hexane (5.0 ml) was added, and the mixture was introduced into a 2,000-ml SUS autoclave thoroughly purged with nitrogen. Thereafter, 500 g of liquid propylene was charged and polymerization was performed at 70 ° C. for 40 minutes, and then the polymerization was stopped by cooling the autoclave and purging propylene. The polymer was dried under reduced pressure at 80 ° C. for 10 hours.
The obtained polymer was 128.6 g of isotactic polypropylene, and the polymerization activity was 71.1 kg-PP / mmol-Zr · hr. As a result of polymer analysis, (η) = 3.29 dl / g, MFR = 0.27 g / 10 min, and the amount of coarse particles was 25.0 wt%. The bulk density could not be measured because the polymer powder was blocked in the funnel. The bulk density of the powder that passed through the sieve having an opening of 1 mm was 0.39 g / cm 3 . After polymerization, polymer adhesion was observed in the autoclave.

〔比較例3〕
−プロピレンのホモ重合(2)−
上記比較例1で調製した担持触媒のスラリーを308 mg使用し、液体プロピレン500 gを装入した後、水素0.08 NLを加えた以外は、上記比較例2と同じ条件で重合を行った。
得られたポリマーはアイソタクチックポリプロピレン143.8 gであり、重合活性は184 kg-PP/mmol-Zr・hrであった。ポリマー分析の結果、(η)=2.34 dl/g、MFR=1.85g/10分、粗粒量は50.3重量%であった。嵩密度は、ポリマー粉体がロート内で閉塞してしまうため、測定できなかった。目開き1mmの篩を通過した粉体の嵩密度は0.36 g/cm3であった。重合後、オートクレーブ内にポリマーの付着が認められた。
[Comparative Example 3]
-Homopolymerization of propylene (2)-
Polymerization was carried out under the same conditions as in Comparative Example 2 except that 308 mg of the supported catalyst slurry prepared in Comparative Example 1 was used, 500 g of liquid propylene was charged, and then 0.08 NL of hydrogen was added.
The obtained polymer was 143.8 g of isotactic polypropylene, and the polymerization activity was 184 kg-PP / mmol-Zr · hr. As a result of polymer analysis, (η) = 2.34 dl / g, MFR = 1.85 g / 10 minutes, and the amount of coarse particles was 50.3% by weight. The bulk density could not be measured because the polymer powder was blocked in the funnel. The bulk density of the powder that passed through a sieve having an opening of 1 mm was 0.36 g / cm 3 . After polymerization, polymer adhesion was observed in the autoclave.

〔比較例4〕
−オレフィン重合用固体状触媒の製造−
ポリアルキレンオキシグリコール(商品名:アデカプルロニックL-71、旭電化工業株式会社製)を加えない以外は実施例22と同様の方法で調製を行った。分析の結果、担持触媒中のジルコニウム含量は0.19重量%であった。
[Comparative Example 4]
-Production of solid catalysts for olefin polymerization-
Preparation was carried out in the same manner as in Example 22 except that polyalkyleneoxy glycol (trade name: Adeka Pluronic L-71, manufactured by Asahi Denka Kogyo Co., Ltd.) was not added. As a result of analysis, the zirconium content in the supported catalyst was 0.19% by weight.

〔比較例5〕
−エチレンスラリー重合−
充分に窒素置換した内容量1,000 mlのSUS製オートクレーブにヘプタン500mlを装入した。エチレンガスを流通させ、オートクレーブ内をエチレンで飽和させた。ここにトリイソブチルアルミニウムのヘキサン溶液(Al=0.5M) 0.25mmolを添加した。一方で50mlの3方コック付きフラスコに、比較例4で調製した担持触媒のスラリー 0.134gを用い、90分間重合を行った以外は実施例23と同様の方法で重合を行った。重合器の内壁にはポリマーの付着が見られた。得られたポリマーのスラリーを桐山ロート(φ95mm、ろ紙No.5B)でろ過した。このろ過の際、微粉末のため、ろ紙の詰りがありろ過速度が遅かった。ポリマーを80℃で10時間、減圧乾燥を行った。得られたポリマーは52.7gであり、重合活性は62.4 kg-PE/mmol-Zr・hrであった。ポリマー分析の結果、嵩密度は0.38g/cm3、密度は930Kg/m3であった。
[Comparative Example 5]
-Ethylene slurry polymerization-
500 ml of heptane was charged into a SUS autoclave with an internal volume of 1,000 ml that had been sufficiently purged with nitrogen. Ethylene gas was circulated to saturate the autoclave with ethylene. To this, 0.25 mmol of hexane solution of triisobutylaluminum (Al = 0.5M) was added. On the other hand, polymerization was carried out in the same manner as in Example 23 except that 0.134 g of the slurry of the supported catalyst prepared in Comparative Example 4 was used in a 50 ml flask with a three-way cock and polymerization was carried out for 90 minutes. Polymer adhesion was observed on the inner wall of the polymerization vessel. The obtained polymer slurry was filtered with a Kiriyama funnel (φ95 mm, filter paper No. 5B). During the filtration, because of the fine powder, the filter paper was clogged and the filtration rate was slow. The polymer was dried under reduced pressure at 80 ° C. for 10 hours. The obtained polymer was 52.7 g, and the polymerization activity was 62.4 kg-PE / mmol-Zr · hr. As a result of polymer analysis, the bulk density was 0.38 g / cm 3 and the density was 930 kg / m 3 .

〔比較例6〕
−プロピレンバルク重合−
上記比較例1で調製した担持触媒のスラリーを303mg使用し、担持触媒を装入する前にL-71の10g/Lヘキサン溶液を0.15mlオートクレーブに装入した以外は、上記実施例4と同じ条件で重合を行った。重合器に付着は見られなかった。得られたポリマーはアイソタクチックポリプロピレン92.6gであり、重合活性は120.7 kg-PP/mmol-Zr・hrであった。ポリマー分析の結果、嵩密度は0.51g/cm3 、(η)=2.46 dl/gであった。ファウリング、ポリマーの嵩密度は改善されたが、重合活性が低下した。
[Comparative Example 6]
-Propylene bulk polymerization-
Same as Example 4 except that 303 mg of the supported catalyst slurry prepared in Comparative Example 1 above was used, and a 10 g / L hexane solution of L-71 was charged into a 0.15 ml autoclave before charging the supported catalyst. Polymerization was performed under conditions. No adhesion was observed on the polymerization vessel. The obtained polymer was 92.6 g of isotactic polypropylene, and the polymerization activity was 120.7 kg-PP / mmol-Zr · hr. As a result of polymer analysis, the bulk density was 0.51 g / cm 3 and (η) = 2.46 dl / g. Although the fouling and the bulk density of the polymer were improved, the polymerization activity was lowered.

〔比較例7〕
−エチレン気相重合−
充分に窒素置換した内容量1,000 mlのSUS製オートクレーブに塩化ナトリウム500gを装入した。加熱下で十分に乾燥させた後、冷却し、エチレンガスを流通させ、オートクレーブ内をエチレンで飽和させた。ここにトリイソブチルアルミニウムのヘキサン溶液(Al=0.5M)0.25mmolを添加した。一方で50mlの3方コック付きフラスコに、比較例4で調製した担持触媒のスラリー0.303gとトリイソブチルアルミニウムのヘキサン溶液(Al=0.5M)0.13mmolを添加した。得られた触媒のスラリーをオートクレーブへ装入した。その後、1−ブテンを4.0重量%含むエチレンガスでオートクレーブ内を置換し、80℃で0.8MPaとなるようにエチレン/ブテン混合ガスを供給し、60分間重合を行った。オートクレーブを冷却および残留ガスをパージして重合を停止した。得られた粉体に水2Lを加え撹拌した後、ポリマーのスラリーをさらしでろ過した。ポリマーを洗浄後、80℃で10時間、減圧乾燥を行った。得られたポリマーは27.2 gであり、重合活性は21.3 kg-PE/mmol-Zr・hrであった。ポリマー分析の結果、粗粒量は2.2重量%、嵩密度は0.29 g/cm3、密度は922kg/m3、(η)=3.24 dl/gであった。
[Comparative Example 7]
-Ethylene gas phase polymerization-
500 g of sodium chloride was charged into a SUS autoclave with an internal volume of 1,000 ml that had been sufficiently purged with nitrogen. After sufficiently drying under heating, the mixture was cooled, ethylene gas was circulated, and the inside of the autoclave was saturated with ethylene. To this was added 0.25 mmol of triisobutylaluminum in hexane (Al = 0.5M). Meanwhile, 0.303 g of the slurry of the supported catalyst prepared in Comparative Example 4 and 0.13 mmol of a hexane solution of triisobutylaluminum (Al = 0.5M) were added to a 50 ml three-way cocked flask. The obtained catalyst slurry was charged into an autoclave. Thereafter, the inside of the autoclave was replaced with ethylene gas containing 4.0% by weight of 1-butene, and an ethylene / butene mixed gas was supplied at 80 ° C. so that the pressure became 0.8 MPa, and polymerization was performed for 60 minutes. The polymerization was stopped by cooling the autoclave and purging the residual gas. After 2 L of water was added to the obtained powder and stirred, the polymer slurry was exposed and filtered. After washing the polymer, it was dried under reduced pressure at 80 ° C. for 10 hours. The obtained polymer was 27.2 g, and the polymerization activity was 21.3 kg-PE / mmol-Zr · hr. As a result of polymer analysis, the amount of coarse particles was 2.2% by weight, the bulk density was 0.29 g / cm 3 , the density was 922 kg / m 3 , and (η) = 3.24 dl / g.

〔比較例8〕
−オレフィン重合用固体状触媒の製造−
ポリアルキレンオキシグリコールを加えない以外は実施例27と同様に製造をおこない、固体状触媒の10重量%スラリーを得た。粉体中のジルコニウムは0.19重量%であった。
[Comparative Example 8]
-Production of solid catalysts for olefin polymerization-
Production was carried out in the same manner as in Example 27 except that polyalkyleneoxyglycol was not added to obtain a 10 wt% slurry of a solid catalyst. Zirconium in the powder was 0.19% by weight.

〔比較例9〕
上記比較例8で調製した固体状触媒のスラリー 601 mgを用いた以外は実施例28と同様に重合を行った。得られたポリマーはアイソタクチックポリプロピレン172.5gであり、重合活性は210 kg-PP/mmol-Zr・hrであった。ポリマー分析の結果、MFR<0.01 g/10分、(η)=6.93 dl/g、粗粒量は60.4重量%であった。嵩密度は、ポリマー粉体がロート内で閉塞してしまうため、測定できなかった。目開き1mmの篩を通過した粉体の嵩密度は0.33 g/cm3であった。なお、オートクレーブ内にポリマーの付着が認められた。
[Comparative Example 9]
Polymerization was carried out in the same manner as in Example 28 except that 601 mg of the solid catalyst slurry prepared in Comparative Example 8 was used. The obtained polymer was 172.5 g of isotactic polypropylene, and the polymerization activity was 210 kg-PP / mmol-Zr · hr. As a result of polymer analysis, MFR <0.01 g / 10 min, (η) = 6.93 dl / g, and the amount of coarse particles was 60.4% by weight. The bulk density could not be measured because the polymer powder was blocked in the funnel. The bulk density of the powder that passed through a sieve having an opening of 1 mm was 0.33 g / cm 3 . In addition, adhesion of the polymer was recognized in the autoclave.

〔比較例10〕
−オレフィン重合用予備重合触媒の製造−
200mLフラスコに、比較例1で製造した流動パラフィンスラリー10.01 g、ヘキサンを40ml加え、34℃まで加熱した。ここに1 mol/Lのトリイソブチルアルミニウムのヘキサン溶液2.0mlを加えた。気相部にエチレンを1.5NL/h の速度で吹き込み、35℃で4時間重合を行った。窒素で残存エチレンをパージし、得られたスラリーをメンブレンフィルターで濾過した。減圧下で3時間乾燥を行い、固体状触媒(K’)6.70gを得た。固体状触媒1gに対し、2.35gのポリマーが重合した。
[Comparative Example 10]
-Production of prepolymerization catalyst for olefin polymerization-
To the 200 mL flask, 10.01 g of liquid paraffin slurry prepared in Comparative Example 1 and 40 ml of hexane were added and heated to 34 ° C. To this, 2.0 ml of a 1 mol / L triisobutylaluminum hexane solution was added. Ethylene was blown into the gas phase at a rate of 1.5 NL / h, and polymerization was carried out at 35 ° C. for 4 hours. The residual ethylene was purged with nitrogen, and the resulting slurry was filtered through a membrane filter. Drying was performed under reduced pressure for 3 hours to obtain 6.70 g of a solid catalyst (K ′). 2.35 g of polymer was polymerized per 1 g of solid catalyst.

〔比較例11〕
−オレフィン重合用予備重合触媒とオキシアルキレン骨格含有化合物との接触処理−
乾燥窒素雰囲気下、比較例10で製造した予備重合触媒 2.0 gをはかり取った。ここに、乾燥ヘキサンを13.2g、ポリアルキレンオキシグリコール(商品名:アデカプルロニックL-71、旭電化工業株式会社製)の20g/L ヘキサン溶液2.0mlを加え、35℃で4時間攪拌した。得られたスラリーを孔径3μmのテフロン(登録商標)製メンブレンフィルターを用いてろ過を行い、さらに10 mlのヘキサンで5回洗浄した。得られた固体物を減圧下に乾燥した。得られた固体状触媒の灼熱減量は73.5重量%であった。また、得られた濾液を減圧下に濃縮し、油状物38.2mgを得た。1H-NMR測定より、この油状物はポリアルキレンオキシグリコール(商品名:アデカプルロニックL-71、旭電化工業株式会社製)であった。この結果より計算した結果、固体状触媒に対するポリアルキレンオキシグリコールの担持量は0.20重量%であった。
[Comparative Example 11]
-Contact treatment of prepolymerization catalyst for olefin polymerization and oxyalkylene skeleton-containing compound-
Under a dry nitrogen atmosphere, 2.0 g of the prepolymerized catalyst produced in Comparative Example 10 was weighed. To this, 13.2 g of dry hexane and 2.0 ml of a 20 g / L hexane solution of polyalkyleneoxyglycol (trade name: Adeka Pluronic L-71, manufactured by Asahi Denka Kogyo Co., Ltd.) were added and stirred at 35 ° C. for 4 hours. The resulting slurry was filtered using a Teflon (registered trademark) membrane filter having a pore size of 3 μm, and further washed 5 times with 10 ml of hexane. The resulting solid was dried under reduced pressure. The ignition loss of the obtained solid catalyst was 73.5% by weight. The obtained filtrate was concentrated under reduced pressure to obtain 38.2 mg of an oily substance. From 1 H-NMR measurement, this oily product was polyalkyleneoxy glycol (trade name: Adeka Pluronic L-71, manufactured by Asahi Denka Kogyo Co., Ltd.). As a result of calculation from this result, the amount of polyalkyleneoxy glycol supported on the solid catalyst was 0.20% by weight.

〔比較例12〕
−抽出試験(1)−
乾燥窒素雰囲気下、比較例11で調製した接触処理後固形物500mgをはかり取った。ここに、乾燥ヘキサンを7.5g加え、23℃の雰囲気下で1時間攪拌した。得られたスラリーを孔径3μmのテフロン(登録商標)製メンブレンフィルターを用いてろ過を行った。得られた濾液を減圧下に濃縮し、22℃の雰囲気下、3hPaで3時間減圧乾燥を行った。得られた不揮発成分は0.1 mg未満であった。
[Comparative Example 12]
-Extraction test (1)-
In a dry nitrogen atmosphere, 500 mg of the solid material after contact treatment prepared in Comparative Example 11 was weighed. 7.5 g of dry hexane was added thereto, and the mixture was stirred for 1 hour in an atmosphere at 23 ° C. The obtained slurry was filtered using a Teflon (registered trademark) membrane filter having a pore diameter of 3 μm. The obtained filtrate was concentrated under reduced pressure, and dried under reduced pressure at 3 hPa for 3 hours in an atmosphere at 22 ° C. The obtained non-volatile component was less than 0.1 mg.

〔比較例13〕
−抽出試験(2)−
乾燥窒素雰囲気下、比較例11で製造した接触処理後固形物160mgをはかり取った。これを飽和酢酸カリウム水溶液を備えたデシケーター内に静置し、2日間水蒸気と接触させた。デシケーターから取り出した後に、大気中で重水素化アセトニトリルを1g加え、30分間攪拌した。ガラスウールを詰めたガラス管を通してろ過を行い、得られた濾液について、1H-NMR測定を行った。3.2〜3.7ppmにオキシメチレン基由来のピークが確認された。なお、ケミカルシフトの基準はテトラメチルシランのピークとした。
[Comparative Example 13]
−Extraction test (2) −
Under a dry nitrogen atmosphere, 160 mg of the solid material after contact treatment produced in Comparative Example 11 was weighed. This was left still in a desiccator equipped with a saturated aqueous potassium acetate solution and contacted with water vapor for 2 days. After removing from the desiccator, 1 g of deuterated acetonitrile was added in the atmosphere and stirred for 30 minutes. Filtration was performed through a glass tube filled with glass wool, and the obtained filtrate was subjected to 1 H-NMR measurement. A peak derived from an oxymethylene group was confirmed at 3.2 to 3.7 ppm. The standard of chemical shift was the peak of tetramethylsilane.

〔比較例14〕
−プロピレンのホモ重合−
触媒として比較例11で調製した接触処理後固形物を408mgを用いた以外は、上記実施例18と同じ条件で重合を行った。得られたポリマーはアイソタクチックポリプロピレン144.5gであり、重合活性は99.7kg-PP/mmol-Zr・hrであった。ポリマー分析の結果、MFR=0.69g/10分、(η)=2.84 dl/g、嵩密度は0.32g/cm3、粗粒量は1.9重量%であった。なお、オートクレーブ内にポリマーの付着が認められた。
[Comparative Example 14]
-Homopolymerization of propylene-
Polymerization was performed under the same conditions as in Example 18 except that 408 mg of the solid after contact treatment prepared in Comparative Example 11 was used as a catalyst. The obtained polymer was 144.5 g of isotactic polypropylene, and the polymerization activity was 99.7 kg-PP / mmol-Zr · hr. As a result of polymer analysis, MFR = 0.69 g / 10 min, (η) = 2.84 dl / g, bulk density was 0.32 g / cm 3 , and the amount of coarse particles was 1.9% by weight. In addition, adhesion of the polymer was recognized in the autoclave.

〔比較例15〕
−プロピレンのホモ重合−
触媒として比較例11で調製した接触処理後固形物を400mgを用いた以外は、上記実施例18と同じ条件で重合を行った。得られたポリマーはアイソタクチックポリプロピレン144.5gであり、重合活性は69.1kg-PP/mmol-Zr・hrであった。ポリマー分析の結果、MFR=2.35g/10分、(η)=2.30 dl/g、嵩密度は0.51g/cm3、粗粒量は0.0重量%であった。なお、オートクレーブ内に僅かなポリマーの付着が認められた。ファウリングは完全に改善されず、重合活性が著しく低下した。
[Comparative Example 15]
-Homopolymerization of propylene-
Polymerization was performed under the same conditions as in Example 18 except that 400 mg of the solid material after contact treatment prepared in Comparative Example 11 was used as a catalyst. The obtained polymer was 144.5 g of isotactic polypropylene, and the polymerization activity was 69.1 kg-PP / mmol-Zr · hr. As a result of polymer analysis, MFR = 2.35 g / 10 min, (η) = 2.30 dl / g, bulk density was 0.51 g / cm 3 , and the amount of coarse particles was 0.0% by weight. A slight amount of polymer was observed in the autoclave. Fouling was not completely improved and the polymerization activity was significantly reduced.

本発明に拠れば、粒子性状に優れたオレフィン重合体が、ファウリングを併発することなく効率的に製造される。特に、従来ファウリングが起こりやすく工業的に製造することが難しかった低融点重合体の製造において、その効果は甚大である。   According to the present invention, an olefin polymer having excellent particle properties is efficiently produced without causing fouling. In particular, the effect is enormous in the production of a low-melting polymer, which has been difficult to produce industrially because fouling is likely to occur.

Claims (3)

下記要件[1]および[2]を同時に満たし、下記一般式(XIII)で表されるメタロセン化合物を含み、以下の工程P1および工程P2を順次実施する方法で製造することを特徴とするオレフィン重合用固体状触媒(K)と、必要により(B)周期律表第13族元素含有化合物の共存下で、プロピレンを必須成分、並びにエチレンおよび炭素数4〜10のα−オレフィンからなる群から選ばれる一種以上を任意成分として含むモノマー(M)を重合することにより、プロピレンから導かれる繰り返し単位(U1)を、50〜100モル%、エチレン及び炭素数4〜10のα−オレフィンから選ばれる1種以上のオレフィンの繰り返し単位(U2)を0〜50モル%の割合で含有するオレフィン重合体粒子の製造方法。

[1] 示差熱天秤で測定された灼熱減量が30重量%以下である。
[2] 常温の水蒸気と処理、続いてアセトニトリルと接触後のアセトニトリルへの溶出成分が、下記一般式[I] で表される分子骨格を備えた化合物を含有すること。
Figure 2014159591
(上記一般式[I] において、Rは水素原子又は炭素数1〜12のアルキル基を示す。)
Figure 2014159591






-----[XIII]

[工程P1] (A)実質的に、アルミニウム原子、ケイ素原子及び酸素原子から選ばれる原子から構成される無機微粒子と、(B) 周期律表第13族元素含有化合物とを炭化水素媒体中で接触させる工程。
[工程P2] 上記工程P1で得られた懸濁液と、(C)オキシアルキレン骨格含有化合物とを接触させ、予め接触させた(B)周期律表第13族元素含有化合物と(D)メタロセン化合物との混合物を添加し、接触させる工程。

上記(B) 周期律表第13族元素含有化合物が、
(b-1) 下記一般式[II]で表される有機アルミニウム化合物、
Figure 2014159591
(上記一般式[II]において、R1、R2およびR3は相互に同一でも異なっていてもよく、水素原子、ハロゲン原子、または炭素数1〜20の炭化水素基から選ばれる基を示す。)
(b-2) 有機アルミニウムオキシ化合物、および
(b-3) 有機ホウ素化合物、
から選ばれる一種以上の化合物で、

上記(C)オキシアルキレン骨格含有化合物が、
下記一般式[VI]で表わされるポリオキシアルキレン系化合物、下記一般式
[VII]で表わされるポリオキシアルキレングリコール、下記一般式[VIII]で表わされる脂肪族ジエタノールアミドまたは下記一般式[IX]で表わされる第3級アミン化合物である。
Figure 2014159591
(上記一般式[VI]において、Rbは、水素原子、炭素数1〜12のアルキル基であり、Raは、水素原子、炭素数1〜20のアルキル基、炭素数6〜20のアリール基および炭素数1〜20のアシル基から選ばれる。kは平均繰り返し単位数を表わし、1〜100の範囲である。)
Figure 2014159591
(上記一般式[VII]において、m、n及びpは平均繰返し単位数を表し、m=1〜20、n=2〜50、p=1〜20の範囲である。Rcは炭素数1〜10のアルキル基)
Figure 2014159591
(上記一般式[VIII]中、mは1〜30である。)
Figure 2014159591

(上記一般式[IX]中、Rdは水素原子又は1〜50の炭素原子を有する線状又は分枝状アルキル基であり、Reは(CH2xOH基(式中、xは1〜50の整数である)のようなヒドロキシアルキル基である。)
Olefin polymerization characterized by comprising the metallocene compound represented by the following general formula (XIII), which satisfies the following requirements [1] and [2], and is produced by a method in which the following steps P1 and P2 are sequentially performed Propylene is selected from the group consisting of essential components and ethylene and an α-olefin having 4 to 10 carbon atoms in the presence of the solid catalyst (K) for use and, if necessary, (B) a group 13 element-containing compound of the periodic table The monomer (M) containing one or more of the above as an optional component is polymerized so that the repeating unit (U1) derived from propylene is selected from 50 to 100 mol%, ethylene and an α-olefin having 4 to 10 carbon atoms. The manufacturing method of the olefin polymer particle which contains the repeating unit (U2) of a olefin of a seed | species in the ratio of 0-50 mol%.

[1] The loss on ignition measured with a differential thermobalance is 30% by weight or less.
[2] A component having a molecular skeleton represented by the following general formula [I] is contained in the elution component to acetonitrile after contact with water vapor at room temperature and subsequent treatment with acetonitrile.
Figure 2014159591
(In the above general formula [I], R represents a hydrogen atom or an alkyl group having 1 to 12 carbon atoms.)
Figure 2014159591






----- [XIII]

[Step P1] (A) An inorganic fine particle substantially composed of an atom selected from an aluminum atom, a silicon atom and an oxygen atom, and (B) a group 13 element-containing compound of the periodic table in a hydrocarbon medium The process of making it contact.
[Step P2] The suspension obtained in Step P1 above is brought into contact with (C) the oxyalkylene skeleton-containing compound, and (B) the group 13 element-containing compound in the periodic table and (D) metallocene, which have been contacted in advance. Adding and contacting the mixture with the compound.

The (B) group 13 element-containing compound of the periodic table is
(b-1) an organoaluminum compound represented by the following general formula [II],
Figure 2014159591
(In the above general formula [II], R 1 , R 2 and R 3 may be the same or different from each other and each represents a group selected from a hydrogen atom, a halogen atom, or a hydrocarbon group having 1 to 20 carbon atoms. .)
(b-2) an organoaluminum oxy compound, and
(b-3) organoboron compounds,
One or more compounds selected from

The (C) oxyalkylene skeleton-containing compound is
The polyoxyalkylene compound represented by the following general formula [VI], the following general formula
A polyoxyalkylene glycol represented by [VII], an aliphatic diethanolamide represented by the following general formula [VIII], or a tertiary amine compound represented by the following general formula [IX].
Figure 2014159591
(In the above general formula [VI], R b is a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, and R a is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms. Selected from a group and an acyl group having 1 to 20 carbon atoms, k represents the average number of repeating units and is in the range of 1 to 100.)
Figure 2014159591
(In the above general formula [VII], m, n and p represent the average number of repeating units, and m = 1 to 20, n = 2 to 50, and p = 1 to 20. Rc represents 1 to 20 carbon atoms. 10 alkyl groups)
Figure 2014159591
(In the general formula [VIII], m is 1 to 30.)
Figure 2014159591

(In the general formula [IX], R d is a hydrogen atom or a linear or branched alkyl group having 1 to 50 carbon atoms, and R e is a (CH 2 ) x OH group (wherein x is Which is an integer from 1 to 50).
オレフィン重合用固体状触媒(K)が、下記要件[3]を満たすことを特徴とする請求項1記載のオレフィン重合体粒子の製造方法。
[3] ヘキサンと接触後に固形部を濾別後の濾液に溶解している不揮発成分が、オレフィン重合用固体状触媒(K)の重量の5重量%以下である。
The method for producing olefin polymer particles according to claim 1, wherein the solid catalyst for olefin polymerization (K) satisfies the following requirement [3].
[3] The non-volatile component dissolved in the filtrate after separation of the solid portion after contact with hexane is 5% by weight or less of the weight of the solid catalyst for olefin polymerization (K).
オレフィン重合用固体状触媒(K)が、エチレン及び炭素数3〜8のα-オレフィンから選ばれる1種以上のオレフィンで予備重合されていることを特徴とする、請求項1または2に記載のオレフィン重合体粒子の製造方法。   The solid catalyst (K) for olefin polymerization is prepolymerized with at least one olefin selected from ethylene and an α-olefin having 3 to 8 carbon atoms, according to claim 1 or 2. A method for producing olefin polymer particles.
JP2014092925A 2006-12-19 2014-04-28 Process for producing olefin polymer particles Active JP5796797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014092925A JP5796797B2 (en) 2006-12-19 2014-04-28 Process for producing olefin polymer particles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006341343 2006-12-19
JP2006341343 2006-12-19
JP2014092925A JP5796797B2 (en) 2006-12-19 2014-04-28 Process for producing olefin polymer particles

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008550171A Division JPWO2008075717A1 (en) 2006-12-19 2007-12-19 Solid catalyst for olefin polymerization, olefin polymerization method, and olefin polymer particles obtained by the polymerization method

Publications (2)

Publication Number Publication Date
JP2014159591A true JP2014159591A (en) 2014-09-04
JP5796797B2 JP5796797B2 (en) 2015-10-21

Family

ID=39536344

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2008550171A Pending JPWO2008075717A1 (en) 2006-12-19 2007-12-19 Solid catalyst for olefin polymerization, olefin polymerization method, and olefin polymer particles obtained by the polymerization method
JP2014092925A Active JP5796797B2 (en) 2006-12-19 2014-04-28 Process for producing olefin polymer particles

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2008550171A Pending JPWO2008075717A1 (en) 2006-12-19 2007-12-19 Solid catalyst for olefin polymerization, olefin polymerization method, and olefin polymer particles obtained by the polymerization method

Country Status (6)

Country Link
US (1) US20100029877A1 (en)
EP (1) EP2096126A1 (en)
JP (2) JPWO2008075717A1 (en)
KR (1) KR101160383B1 (en)
CN (1) CN101558089B (en)
WO (1) WO2008075717A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023517918A (en) * 2020-08-12 2023-04-27 エルジー・ケム・リミテッド Metallocene-supported catalyst production method, metallocene-supported catalyst, and polyolefin production method using the same
WO2023145924A1 (en) * 2022-01-31 2023-08-03 三井化学株式会社 Ethylene polymer particles, method for producing ethylene polymer particles, stretch molded body, method for producing stretch molded body, and use of same
WO2023191080A1 (en) * 2022-03-31 2023-10-05 旭化成株式会社 Polyethylene powder and method for producing same, and olefin polymerization catalyst and method for producing same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102405240B (en) * 2009-04-21 2014-05-21 三井化学株式会社 Method for producing olefin polymer
US9321859B2 (en) * 2011-06-09 2016-04-26 Nova Chemicals (International) S.A. Modified phosphinimine catalysts for olefin polymerization
US9221935B2 (en) * 2011-06-09 2015-12-29 Nova Chemicals (International) S.A. Modified phosphinimine catalysts for olefin polymerization
US9315591B2 (en) * 2011-06-09 2016-04-19 Nova Chemicals (International) S.A. Modified phosphinimine catalysts for olefin polymerization
JP6295506B2 (en) * 2011-12-07 2018-03-20 住友化学株式会社 Polymerization method using surfactant-containing particles
US8821800B2 (en) * 2012-10-18 2014-09-02 Chevron Phillips Chemical Company Lp System and method for catalyst preparation
US11103651B2 (en) 2016-12-13 2021-08-31 Beckon, Dickinson and Company Safety needle devices
US10661026B2 (en) 2016-12-13 2020-05-26 Becton, Dickinson And Company Safety needle device
US10589036B2 (en) 2016-12-13 2020-03-17 Becton, Dickinson And Company Safety needle device
US10030086B1 (en) 2017-07-21 2018-07-24 Chevron Phillips Chemical Company Lp Methods for determining transition metal compound concentrations in multicomponent liquid systems
US10697889B2 (en) 2017-07-21 2020-06-30 Chevron Phillips Chemical Company Lp Methods for determining transition metal compound concentrations in multicomponent liquid systems
US10679734B2 (en) 2018-03-29 2020-06-09 Chevron Phillips Chemical Company Lp Methods for determining transition metal compound concentrations in multicomponent liquid systems
US10507445B2 (en) 2018-03-29 2019-12-17 Chevron Phillips Chemical Company Lp Methods for determining transition metal compound concentrations in multicomponent liquid systems

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05287017A (en) * 1992-04-07 1993-11-02 Mitsui Toatsu Chem Inc Olefin polymerization catalyst and production of polyolefin using the same
JPH05310829A (en) * 1992-03-12 1993-11-22 Tosoh Corp Catalyst for polymerization of olefin and polymerization of olefin
JPH08208717A (en) * 1995-01-31 1996-08-13 Mitsui Petrochem Ind Ltd Slurry polymerization process of olefin
JPH09157320A (en) * 1995-12-05 1997-06-17 Mitsui Petrochem Ind Ltd Solid catalyst for polymerization of olefin and prepolymerization catalyst for polymerization of olefin
WO2000008080A1 (en) * 1998-08-04 2000-02-17 Chisso Corporation Propylene//propylene/olefin block copolymer and process for producing the same
JP2002284808A (en) * 2001-01-18 2002-10-03 Japan Polychem Corp Olefin polymerization catalyst and production method for polyolefin
JP2004051715A (en) * 2002-07-17 2004-02-19 Japan Polychem Corp Olefin polymerization catalyst and process for producing polyolefin
WO2004087775A1 (en) * 2003-03-28 2004-10-14 Mitsui Chemicals, Inc. Propylene copolymer, polypropylene composition, use thereof, transition metal compounds, and catalysts for olefin polymerization

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL85097A (en) 1987-01-30 1992-02-16 Exxon Chemical Patents Inc Catalysts based on derivatives of a bis(cyclopentadienyl)group ivb metal compound,their preparation and their use in polymerization processes
PL276385A1 (en) 1987-01-30 1989-07-24 Exxon Chemical Patents Inc Method for polymerization of olefines,diolefins and acetylene unsaturated compounds
US5155080A (en) 1988-07-15 1992-10-13 Fina Technology, Inc. Process and catalyst for producing syndiotactic polyolefins
JP2693517B2 (en) 1988-09-14 1997-12-24 三井石油化学工業株式会社 Method for producing benzene-insoluble organoaluminum oxy compound
US5041584A (en) 1988-12-02 1991-08-20 Texas Alkyls, Inc. Modified methylaluminoxane
US4960878A (en) 1988-12-02 1990-10-02 Texas Alkyls, Inc. Synthesis of methylaluminoxanes
CA2027145C (en) 1989-10-10 2002-12-10 Michael J. Elder Metallocene catalysts with lewis acids and aluminum alkyls
EP0426637B2 (en) 1989-10-30 2001-09-26 Fina Technology, Inc. Preparation of metallocene catalysts for polymerization of olefins
ES2086397T5 (en) 1989-10-30 2005-07-16 Fina Technology, Inc. ADDITION OF ALKILOALUMINIO FOR AN IMPROVED METALOCENE CATALYST.
JP2545006B2 (en) 1990-07-03 1996-10-16 ザ ダウ ケミカル カンパニー Addition polymerization catalyst
JP3281389B2 (en) 1995-06-08 2002-05-13 昭和電工株式会社 Ionic compounds and catalysts for olefin polymerization using the compounds
JP3813299B2 (en) * 1997-06-02 2006-08-23 三井化学株式会社 Polymerization initiation method in olefin gas phase polymerization
JP2000297114A (en) 1999-04-14 2000-10-24 Mitsui Chemicals Inc Solid catalyst and process for olefin polymerization
JP3670163B2 (en) 1999-05-24 2005-07-13 三井化学株式会社 Olefin slurry polymerization method
JP2001011112A (en) * 1999-06-30 2001-01-16 Mitsui Chemicals Inc Olefin polymerization catalyst and production of catalyst and olefin polymer
EP1348719B2 (en) * 2002-03-25 2010-11-17 Mitsui Chemicals, Inc. Process for producing polyolefin
JP4479177B2 (en) * 2002-08-02 2010-06-09 チッソ株式会社 Metallocene compound, method for producing olefin polymer using catalyst containing the same, and olefin polymer produced by the production method
US6995279B2 (en) * 2002-08-02 2006-02-07 Chisso Corporation Metallocene compounds, processes for the production of olefin polymers using catalysts containing the compounds, and olefin polymers produced by the processes
JP4596951B2 (en) * 2005-03-29 2010-12-15 旭化成ケミカルズ株式会社 Olefin polymerization catalyst and olefin polymerization method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05310829A (en) * 1992-03-12 1993-11-22 Tosoh Corp Catalyst for polymerization of olefin and polymerization of olefin
JPH05287017A (en) * 1992-04-07 1993-11-02 Mitsui Toatsu Chem Inc Olefin polymerization catalyst and production of polyolefin using the same
JPH08208717A (en) * 1995-01-31 1996-08-13 Mitsui Petrochem Ind Ltd Slurry polymerization process of olefin
JPH09157320A (en) * 1995-12-05 1997-06-17 Mitsui Petrochem Ind Ltd Solid catalyst for polymerization of olefin and prepolymerization catalyst for polymerization of olefin
WO2000008080A1 (en) * 1998-08-04 2000-02-17 Chisso Corporation Propylene//propylene/olefin block copolymer and process for producing the same
JP2002284808A (en) * 2001-01-18 2002-10-03 Japan Polychem Corp Olefin polymerization catalyst and production method for polyolefin
JP2004051715A (en) * 2002-07-17 2004-02-19 Japan Polychem Corp Olefin polymerization catalyst and process for producing polyolefin
WO2004087775A1 (en) * 2003-03-28 2004-10-14 Mitsui Chemicals, Inc. Propylene copolymer, polypropylene composition, use thereof, transition metal compounds, and catalysts for olefin polymerization

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023517918A (en) * 2020-08-12 2023-04-27 エルジー・ケム・リミテッド Metallocene-supported catalyst production method, metallocene-supported catalyst, and polyolefin production method using the same
JP7471726B2 (en) 2020-08-12 2024-04-22 エルジー・ケム・リミテッド METHOD FOR PRODUCING SUPPORTED METALLOCENE CATALYST, METHOD FOR PRODUCING SUPPORTED METALLOCENE CATALYST AND METHOD FOR PRODUCING POLYOLEFIN USING SAME
WO2023145924A1 (en) * 2022-01-31 2023-08-03 三井化学株式会社 Ethylene polymer particles, method for producing ethylene polymer particles, stretch molded body, method for producing stretch molded body, and use of same
WO2023191080A1 (en) * 2022-03-31 2023-10-05 旭化成株式会社 Polyethylene powder and method for producing same, and olefin polymerization catalyst and method for producing same

Also Published As

Publication number Publication date
KR101160383B1 (en) 2012-06-27
KR20090068207A (en) 2009-06-25
CN101558089B (en) 2012-09-19
JP5796797B2 (en) 2015-10-21
CN101558089A (en) 2009-10-14
US20100029877A1 (en) 2010-02-04
EP2096126A1 (en) 2009-09-02
JPWO2008075717A1 (en) 2010-04-15
WO2008075717A1 (en) 2008-06-26

Similar Documents

Publication Publication Date Title
JP5796797B2 (en) Process for producing olefin polymer particles
CA2198954C (en) Substituded indenyl unbridged metallocenes
JP4299775B2 (en) Ethylene copolymer
JP5951108B2 (en) Process for producing olefin polymer and catalyst for olefin polymerization
JP2000517349A (en) Solution polymerization with dispersed catalytic activators.
JP6568082B2 (en) Process for producing olefin (co) polymer containing structural unit derived from 1-butene
CN112839966B (en) Process for the polymerization of olefins using an alkane soluble non-metallocene pre-catalyst
US20100010180A1 (en) Transition Metal Complexes Supported on Activating Support
KR20110082539A (en) Catalyst compositions and methods of making and using the same
EP1470132A1 (en) Polymerization catalyst system and its use in a polymerization process
RU2255941C2 (en) Catalytic composition and methods for preparation thereof as well as use thereof in polymerization process
JP2009520052A (en) Catalyst composition and method for producing isotactic polypropylene
AU4463800A (en) A method for preparing a supported catalyst system and its use in a polymerization process
CN112823163A (en) Alkane soluble non-metallocene precatalyst
JP6021748B2 (en) Olefin polymerization catalyst and process for producing olefin polymer using the same
EP2046842A2 (en) Isotactic-atactic polypropylene and methods of making same
EP1615961A1 (en) Catalysts for propylene copolymers, polymerization process and copolymer of propylene
JP6190594B2 (en) Process for producing olefin polymerization catalyst and process for producing ethylene polymer using olefin polymerization catalyst obtained thereby
US6534608B2 (en) Support materials for use with polymerization catalysts
JP2015526583A (en) Polymerization process using reactor components suspended in a hydrocarbon gel
RU2805112C2 (en) Method for olefin polymerization using non-metallocene precatalyst soluble in alkane
WO2002046248A2 (en) Support materials for use with polymerization catalysts
US20030055185A1 (en) Support materials for use with polymerization catalysts
KR20210053225A (en) Preparation method for metallocene supported catalyst and metallocene supported catalyst
JP2015160859A (en) Method for producing preliminary polymerization catalyst component used for olefin polymerization and method for producing olefin polymer using the preliminary polymerization catalyst component

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150722

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150806

R150 Certificate of patent or registration of utility model

Ref document number: 5796797

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250