JP2014152350A - Adhesion improvement and removal method of electroless plating film and patterning method using the same - Google Patents
Adhesion improvement and removal method of electroless plating film and patterning method using the same Download PDFInfo
- Publication number
- JP2014152350A JP2014152350A JP2013021464A JP2013021464A JP2014152350A JP 2014152350 A JP2014152350 A JP 2014152350A JP 2013021464 A JP2013021464 A JP 2013021464A JP 2013021464 A JP2013021464 A JP 2013021464A JP 2014152350 A JP2014152350 A JP 2014152350A
- Authority
- JP
- Japan
- Prior art keywords
- pulse
- light
- plastic molded
- pulsed light
- plating film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 51
- 238000007772 electroless plating Methods 0.000 title claims abstract description 33
- 238000000059 patterning Methods 0.000 title abstract description 11
- 238000007747 plating Methods 0.000 claims abstract description 118
- 229910052751 metal Inorganic materials 0.000 claims abstract description 90
- 239000002184 metal Substances 0.000 claims abstract description 90
- 229920003023 plastic Polymers 0.000 claims abstract description 62
- 239000004033 plastic Substances 0.000 claims abstract description 60
- 230000001678 irradiating effect Effects 0.000 claims description 25
- 238000004519 manufacturing process Methods 0.000 claims description 20
- 239000000463 material Substances 0.000 claims description 13
- 239000000758 substrate Substances 0.000 abstract description 32
- 238000010438 heat treatment Methods 0.000 abstract description 9
- 238000011282 treatment Methods 0.000 abstract description 8
- 238000003486 chemical etching Methods 0.000 abstract description 7
- 238000009832 plasma treatment Methods 0.000 abstract description 5
- 238000007788 roughening Methods 0.000 abstract description 5
- 238000000465 moulding Methods 0.000 abstract 1
- 239000010408 film Substances 0.000 description 172
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 38
- 229910052737 gold Inorganic materials 0.000 description 38
- 239000010931 gold Substances 0.000 description 38
- 239000004734 Polyphenylene sulfide Substances 0.000 description 12
- 229920000069 polyphenylene sulfide Polymers 0.000 description 12
- 229920002799 BoPET Polymers 0.000 description 11
- 239000004698 Polyethylene Substances 0.000 description 8
- 239000004793 Polystyrene Substances 0.000 description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 8
- 229920000573 polyethylene Polymers 0.000 description 8
- -1 polyethylene terephthalate Polymers 0.000 description 8
- 239000010409 thin film Substances 0.000 description 8
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 7
- 239000004417 polycarbonate Substances 0.000 description 7
- 229920000515 polycarbonate Polymers 0.000 description 7
- 229920000139 polyethylene terephthalate Polymers 0.000 description 7
- 239000005020 polyethylene terephthalate Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 239000012528 membrane Substances 0.000 description 6
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 6
- 239000004926 polymethyl methacrylate Substances 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 238000004544 sputter deposition Methods 0.000 description 5
- 229910052697 platinum Inorganic materials 0.000 description 4
- 239000002390 adhesive tape Substances 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 239000000084 colloidal system Substances 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 229910052724 xenon Inorganic materials 0.000 description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 2
- 229910000906 Bronze Inorganic materials 0.000 description 1
- 229920000106 Liquid crystal polymer Polymers 0.000 description 1
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- VBIIFPGSPJYLRR-UHFFFAOYSA-M Stearyltrimethylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCC[N+](C)(C)C VBIIFPGSPJYLRR-UHFFFAOYSA-M 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 229920006351 engineering plastic Polymers 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Landscapes
- Chemically Coating (AREA)
Abstract
Description
本発明は、樹脂素材からなる基材と高い密着性を有するめっき膜との積層体の効率的な製造方法と、当該方法を用いた金属パターニング方法に関する。本発明は、エッチング等による基材表面への改質を行わずに、高い密着強度を有する樹脂/めっき積層体を提供する。さらに、めっき膜の任意の部位のみの密着性を向上させ、他の部位を除去することにより、金属パターニングを可能にする方法に関する。 The present invention relates to an efficient manufacturing method of a laminate of a base material made of a resin material and a plating film having high adhesion, and a metal patterning method using the method. The present invention provides a resin / plated laminate having high adhesion strength without modifying the substrate surface by etching or the like. Furthermore, the present invention relates to a method that enables metal patterning by improving the adhesion of only an arbitrary part of the plating film and removing the other part.
ポリイミドやPETフィルム、PE板等の樹脂基材はプリント配線基板等に広く利用されている。これらの基材上の配線の作製は、通常、これらの基材上に金属薄膜を作製し、当該薄膜を配線のパターンに加工することにより行われる。
これらの基材上に金属薄膜を作製する方法としては、スパッタリングなど真空装置を用いたプロセスにより銅薄膜を作製し、その後電気めっきにより10μm程度の厚みの膜を作製する方法が一般的である。しかしながら、スパッタリング処理は、高価な真空装置が必要であり、さらに、roll-to-rollなどの大量生産には不向きであるため、このようなスパッタリングに代わる、高価な装置を用いずに金属膜を作製することが可能な技術として、無電解めっきが期待されている。
このような金属膜の作製方法においては、基材と金属膜との密着性を得るため、プラズマ処理や化学的なエッチング処理などの表面処理を予め基材に施すことが一般的であり、特に無電解めっきにおいては、予めこのような表面粗化工程を行わないと、十分な密着性を得ることが難しい。しかしながら、これらの表面粗化処理のうち、プラズマ処理は、スパッタリング処理と同様に、高価な真空装置が必要であり、さらに、roll-to-rollなどの大量生産に不向きである。また、化学的なエッチング処理は、有害な薬品を大量に使用するため、環境負荷が大きく、さらに、基材表面に凹凸が形成されるため、この上に形成される金属膜の平滑性が悪く、電気・光学特性に悪い影響を及ぼすなどの問題がある。
また、配線等の金属パターンの基材上の作製は、基材全面に金属膜を作製後、フォトレジストによりマスクパターンを金属膜上に作製し、エッチングすることにより行われており、上記表面粗化工程と同様に、環境負荷が大きいという問題を有している。
Resin base materials such as polyimide, PET film, and PE board are widely used for printed wiring boards and the like. The production of wiring on these substrates is usually performed by producing a metal thin film on these substrates and processing the thin film into a wiring pattern.
As a method for producing a metal thin film on these substrates, a method of producing a copper thin film by a process using a vacuum apparatus such as sputtering and then producing a film having a thickness of about 10 μm by electroplating is common. However, since sputtering requires an expensive vacuum device and is not suitable for mass production such as roll-to-roll, a metal film can be formed without using an expensive device instead of such sputtering. As a technique that can be produced, electroless plating is expected.
In such a metal film production method, in order to obtain adhesion between the base material and the metal film, it is common to perform surface treatment such as plasma treatment or chemical etching treatment on the base material in advance. In electroless plating, it is difficult to obtain sufficient adhesion unless such a surface roughening step is performed in advance. However, among these surface roughening treatments, the plasma treatment requires an expensive vacuum device as in the sputtering treatment, and is not suitable for mass production such as roll-to-roll. In addition, since chemical etching uses a large amount of harmful chemicals, it has a large environmental load, and furthermore, unevenness is formed on the surface of the substrate, so that the smoothness of the metal film formed thereon is poor. There are problems such as adversely affecting electrical and optical characteristics.
In addition, the fabrication of the metal pattern such as the wiring on the substrate is performed by fabricating a metal film on the entire surface of the substrate, then fabricating a mask pattern on the metal film with a photoresist, and performing etching. Similar to the conversion process, there is a problem that the environmental load is large.
本発明者らは、先に、基材に予めエッチング等の表面処理を行わずに高い密着性を有するめっき膜を作製する方法として、図1に示すような金属コロイドを触媒とする無電解めっき方法を提案した(特許文献1)。この方法では、コロイド触媒を基材表面に固定化し、めっき膜を形成した後に,加熱処理により,密着性を向上させる。しかしながら,この加熱処理工程は、基材の収縮などの変形を引き起こす問題があり、さらに、加熱工程に時間がかかり、プロセスの簡略化が困難であるという欠点があった。 As a method for producing a plating film having high adhesion without previously performing surface treatment such as etching on the base material in advance, the present inventors have used electroless plating using a metal colloid as a catalyst as shown in FIG. A method was proposed (Patent Document 1). In this method, the colloidal catalyst is immobilized on the surface of the substrate, and after forming a plating film, the adhesion is improved by heat treatment. However, this heat treatment process has a problem of causing deformation such as shrinkage of the base material, and further has a drawback that it takes time for the heating process and it is difficult to simplify the process.
本発明は、従来技術の上記欠点を改善し、プラズマ処理や化学的エッチング処理などの表面粗化前処理を施すことなく、また、基材の変形を伴う加熱処理を施すことなく、無電解めっき膜の基材に対する密着性を向上させる方法を提供することを、第一の課題とし、また、化学的エッチング処理によらず、簡単にめっき膜のパターニングを行う方法を提供することを第二の課題とする。 The present invention improves the above-mentioned drawbacks of the prior art, and without performing surface roughening pretreatment such as plasma treatment or chemical etching treatment, and without subjecting to heat treatment accompanied by deformation of the substrate, electroless plating It is a first object to provide a method for improving the adhesion of a film to a substrate, and a second method is to provide a method for easily patterning a plating film regardless of chemical etching treatment. Let it be an issue.
本発明者らは、上記課題を解決すべく、加熱処理に代わる無電解めっき膜の界面強化方法を多角的に種々検討した結果、高強度パルス光の照射が、基材の変形を起こさずにめっき膜との界面のみを短時間で選択的に加熱することができるため、無電解めっき膜の密着性の向上に有効であることを見出し、さらに、これよりも強い超高強度パルス光を照射すれば、めっき膜の溶融・除去も可能であることを見出した。すなわち、キセノンランプやパルスレーザーを光源とするパルス光の照射を行うことにより、瞬間的にサンプルの加熱処理が可能であり、樹脂基材に熱ダメージを与えることなく、金属薄膜が加熱され、金属薄膜の密着性を向上させることができ、あるいは、金属薄膜を溶融・除去することが可能になる。
本手法は、さまざまな種類の金属膜に適用することができ、また、大面積処理が可能である。さらに、本手法によれば、最適なマスクを併用することにより、めっき膜の任意の箇所において、選択的に密着強度の向上または溶融・除去を行うことができ、簡潔なプロセスで金属パターンを樹脂基板上に形成することができる。
In order to solve the above problems, the present inventors have studied various methods for strengthening the interface of the electroless plating film in place of the heat treatment, and as a result, irradiation with high-intensity pulsed light does not cause deformation of the substrate. Since only the interface with the plating film can be selectively heated in a short time, it has been found that it is effective in improving the adhesion of the electroless plating film. Then, it was found that the plating film can be melted and removed. In other words, by performing pulsed light irradiation using a xenon lamp or pulse laser as a light source, the sample can be instantaneously heated, and the metal thin film is heated without causing heat damage to the resin substrate. The adhesion of the thin film can be improved, or the metal thin film can be melted and removed.
This method can be applied to various types of metal films, and large area processing is possible. Further, according to this method, by using an optimal mask in combination, the adhesion strength can be selectively improved or melted / removed at any location of the plating film, and the metal pattern is formed by a simple process. It can be formed on a substrate.
すなわち、この出願は、以下の発明を提供する。
〈1〉プラスチック成形品を形成し、その表面上に無電解金属めっきを施し、パルス幅35〜7000μsec、パルス強度0.06〜4.33J/cm2のパルス光を照射することを特徴とする、金属層を有するプラスチック成形品の製造方法。
〈2〉前記パルス光が、パルス幅35〜7000μsec、パルス強度0.06〜4.33J/cm2の光であり、且つプラスチック成形品の表面と金属層との密着性を向上させることができる高強度パルス光であることを特徴とする、〈1〉の方法。
〈3〉前記パルス光が、1回の照射あるいは2回以上の照射によってプラスチック成形品の表面と金属層との密着性を向上させることができる高強度パルス光であることを特徴とする、〈2〉の方法。
〈4〉前記パルス光が、パルス幅35〜7000μsec、パルス強度0.06〜4.33J/cm2の光であり、且つプラスチック成形品の表面上の金属層を除去することができる超高強度パルス光であることを特徴とする、〈1〉の方法。
〈5〉前記パルス光が、1回の照射あるいは2回以上の照射によってプラスチック成形品の表面上の金属層を除去することができる超高強度パルス光であることを特徴とする、〈4〉の方法。
〈6〉プラスチック成形品を形成し、その表面上に無電解金属めっきを施し、当該無電解金属めっきを施したプラスチック成形品に対し、遮光するパターンを有するフォトマスクを設置し、〈2〉または〈3〉に記載の高強度パルス光を照射することにより上記プラスチック成形品の表面と非遮光部分の金属層との密着性を向上させた後、フォトマスクを外し、遮光部分の金属めっき膜を物理的に剥離することを特徴とする、パターン状の金属層を有するプラスチック成形品の製造方法。
〈7〉プラスチック成形品を形成し、その表面上に無電解金属めっきを施し、当該無電解金属めっきを施したプラスチック成形品に対し、遮光するパターンを有するフォトマスクを設置し、〈4〉または〈5〉に記載の超高強度パルス光を照射することにより上記プラスチック成形品の非遮光部分の金属層を除去した後、フォトマスクを外し、〈2〉または〈3〉に記載の高強度パルス光を照射することにより上記プラスチック成形品の表面と金属層との密着性を向上させることを特徴とする、パターン状の金属層を有するプラスチック成形品の製造方法。
〈8〉プラスチック成形品を形成し、その表面上に無電解金属めっきを施し、〈2〉または〈3〉に記載の高強度パルス光を照射することにより上記プラスチック成形品の表面と金属層との密着性を向上させた後、当該金属層を有するプラスチック成形品に対し、遮光するパターンを有するフォトマスクを設置し、〈4〉または〈5〉に記載の超高強度パルス光を照射することにより上記プラスチック成形品の表面上の金属層を除去し、フォトマスクを外すことを特徴とする、パターン状の金属層を有するプラスチック成形品の製造方法。
〈9〉プラスチック成形品を形成し、その表面上に金属めっきを施し、当該金属めっきを施したプラスチック成形品に対し、遮光するパターンを有するフォトマスクを設置し、〈4〉または〈5〉に記載の超高強度パルス光を照射することにより上記プラスチック成形品の表面上の金属層を除去した後、フォトマスクを外すことを特徴とする、パターン状の金属層を有するプラスチック成形品の製造方法。
〈10〉前記金属めっき膜の膜厚は、10nm以上2000nm以下であることを特徴とする、〈1〉〜〈8〉に記載の方法。
〈11〉前記プラスチック成形品は、前記高強度パルス光を透過する材料で形成することを特徴とする、〈1〉〜〈8〉に記載の方法。
That is, this application provides the following inventions.
<1> Metal layer characterized by forming a plastic molded product, applying electroless metal plating on the surface, and irradiating pulsed light with a pulse width of 35 to 7000 μsec and a pulse intensity of 0.06 to 4.33 J / cm 2 A method for producing a plastic molded article having
<2> The pulse light is a light having a pulse width of 35 to 7000 μsec and a pulse intensity of 0.06 to 4.33 J / cm 2 , and a high intensity pulse capable of improving the adhesion between the surface of the plastic molded product and the metal layer. The method according to <1>, wherein the method is light.
<3> The pulsed light is high-intensity pulsed light that can improve the adhesion between the surface of the plastic molded article and the metal layer by one irradiation or two or more irradiations. Method 2).
<4> The pulse light is light having a pulse width of 35 to 7000 μsec, a pulse intensity of 0.06 to 4.33 J / cm 2 , and an ultra high intensity pulse light that can remove the metal layer on the surface of the plastic molded product. The method according to <1>, characterized in that it exists.
<5> The pulsed light is ultra-high-intensity pulsed light that can remove the metal layer on the surface of the plastic molded article by one irradiation or two or more irradiations. <4> the method of.
<6> Form a plastic molded product, apply electroless metal plating on the surface, install a photomask having a light shielding pattern on the plastic molded product subjected to the electroless metal plating, <2> or After improving the adhesion between the surface of the plastic molded product and the metal layer of the non-light-shielding part by irradiating the high-intensity pulsed light according to <3>, the photomask is removed, and the metal plating film of the light-shielding part is removed. A method for producing a plastic molded article having a patterned metal layer, which is physically peeled off.
<7> A plastic molded product is formed, electroless metal plating is performed on the surface, and a photomask having a light shielding pattern is placed on the plastic molded product subjected to the electroless metal plating, and <4> or After irradiating the ultra-high intensity pulsed light according to <5>, the metal layer of the non-light-shielding portion of the plastic molded product is removed, and then the photomask is removed, and the high-intensity pulse according to <2> or <3> A method for producing a plastic molded article having a patterned metal layer, wherein the adhesion between the surface of the plastic molded article and the metal layer is improved by irradiating light.
<8> A plastic molded article is formed, electroless metal plating is performed on the surface thereof, and irradiation with the high-intensity pulsed light according to <2> or <3> causes the surface of the plastic molded article, the metal layer, After improving the adhesion of the resin, a plastic mask having the metal layer is provided with a photomask having a light shielding pattern and irradiated with the ultra-high intensity pulsed light according to <4> or <5>. A method for producing a plastic molded article having a patterned metal layer, wherein the metal layer on the surface of the plastic molded article is removed and the photomask is removed.
<9> Form a plastic molded product, apply metal plating to the surface, install a photomask having a light-shielding pattern on the plastic molded product, and then apply <4> or <5>. A method for producing a plastic molded article having a patterned metal layer, wherein the photomask is removed after removing the metal layer on the surface of the plastic molded article by irradiating the ultra-high intensity pulsed light described above .
<10> The method according to <1> to <8>, wherein the metal plating film has a thickness of 10 nm to 2000 nm.
<11> The method according to <1> to <8>, wherein the plastic molded article is formed of a material that transmits the high-intensity pulsed light.
本発明によれば、基材上の無電解めっき膜に高強度パルス光を照射することにより、めっき膜の密着性を向上させることができるため、プラズマ処理や化学的エッチングによる表面粗化の前処理を要することなく、また、基材の変形を伴う加熱処理をすることなく、各種のプラスチック基材表面に、密着性が優れためっき膜を簡単に形成させることができ、また、遮光マスクを併用し、遮光によって高強度パルス光の照射による密着性の向上がなされなかった部分のめっき膜を、接着テープを用いてはぎ取るなど、物理的に剥離することにより、めっき膜のパターニングを行うことができる。また、めっき膜に超高強度パルス光を照射することによって、めっき膜の任意の部分を除去することもできるため、遮光マスクを用い、遮光されない部分のめっき膜を超高強度パルス光の照射により除去することで、めっき膜のパターニングを行うことができる。 According to the present invention, the adhesiveness of the plating film can be improved by irradiating the electroless plating film on the substrate with high-intensity pulsed light. Therefore, before surface roughening by plasma treatment or chemical etching is performed. A plating film with excellent adhesion can be easily formed on the surface of various plastic substrates without the need for treatment and without heat treatment accompanied by deformation of the substrate. In combination, patterning of the plating film can be performed by physically peeling off the plating film where the adhesiveness has not been improved by irradiation with high-intensity pulsed light, such as by using an adhesive tape. it can. Also, any part of the plating film can be removed by irradiating the plating film with ultra-high intensity pulsed light. Therefore, using a light shielding mask, the part of the plating film that is not shielded by irradiation with ultra-high intensity pulsed light. By removing, the plating film can be patterned.
以下、本発明による無電解めっき膜の密着性向上と溶融・除去の方法、および、これを利用しためっき膜のパターニング方法について詳述する。 Hereinafter, a method for improving adhesion and melting / removal of an electroless plating film according to the present invention, and a method for patterning a plating film using the method will be described in detail.
図2に、本発明のパルス光照射による無電解めっき膜の密着および除去方法の概念図を示す。
無電解めっき後、特に何も処理をしないめっき膜(上段、左から二番目の図、以下、未処理無電解めっき膜という)は、そのままでは密着度が弱く、上段の左から一番目の図に示すように、はがれやすい。
ここで、未処理無電解めっき膜に高強度のパルス光を照射すると、密着度が増す(上段左から三番目の図→下段の左図)。
また、未処理無電解めっき膜または高強度のパルス光照射により密着度が増した無電解めっき膜に超高強度のパルス光を照射すると、無電解めっき膜は溶解・除去される(下段左図→右図)。
In FIG. 2, the conceptual diagram of the contact | adherence and removal method of the electroless plating film | membrane by pulse light irradiation of this invention is shown.
After electroless plating, the plating film that is not treated in particular (upper, second figure from the left, hereafter referred to as untreated electroless plating film) has low adhesion as it is, the first figure from the upper left. As shown in Figure 3, it is easy to peel off.
Here, when an untreated electroless plating film is irradiated with high-intensity pulsed light, the degree of adhesion increases (the third figure from the upper left to the lower left figure).
In addition, when an ultra-high intensity pulsed light is irradiated to an untreated electroless plated film or an electroless plated film whose adhesion has been increased by irradiation with high-intensity pulsed light, the electroless plated film is dissolved and removed (lower left figure). (→ right figure).
本発明に用いるパルス光としては、キセノンランプあるいはレーザーを光源とする、パルス幅35μsec〜7msec、パルス強度0.06〜4.33J/cm2のパルス光がのぞましい。このようなパルス光を発生する装置としては、たとえば、Novacentrix社製Pulseforge3300が好ましい。 The pulse light used in the present invention is preferably pulse light having a pulse width of 35 μsec to 7 msec and a pulse intensity of 0.06 to 4.33 J / cm 2 using a xenon lamp or a laser as a light source. As an apparatus for generating such pulsed light, for example, Pulseforge 3300 manufactured by Novacentrix is preferable.
本発明の方法が適用される無電解金属めっき膜は、特に限定されないが、たとえば、金、銀、銅、プラチナなどの貴金属や亜鉛、ニッケルなどの無電解金属めっき膜が挙げられる。
基材上の無電解メッキ膜の作製は、例えば、特許文献1に記載された方法(ただし、無電解めっき膜作成後の加熱処理は行わない)により行うことができる。
The electroless metal plating film to which the method of the present invention is applied is not particularly limited, and examples thereof include noble metals such as gold, silver, copper and platinum, and electroless metal plating films such as zinc and nickel.
The electroless plating film on the substrate can be produced, for example, by the method described in Patent Document 1 (however, no heat treatment is performed after the electroless plating film is formed).
本発明において、無電解金属めっき膜を設けるプラスチック成形品の素材としては、通常のエンジニアリングプラスチック、例えば、ポリカーボネート、ABS樹脂、ポリイミド、ポリエチレンテレフタレート、ポリプロピレン、液晶ポリマー等が好ましい。あるいはフッ素樹脂を用いてもよい。 In the present invention, as a material for a plastic molded product provided with an electroless metal plating film, ordinary engineering plastics such as polycarbonate, ABS resin, polyimide, polyethylene terephthalate, polypropylene, and liquid crystal polymer are preferable. Alternatively, a fluororesin may be used.
本発明において用いられる高強度パルス光とは、パルス幅35〜7000μsec、パルス強度0.06〜4.33J/cm2の範囲の、基材(プラスチック成形品)の表面と無電解金属めっき層との密着性を向上させることができるパルス光を意味する。
また、本発明において用いられる超高強度パルス光とは、パルス幅35〜7000μsec、パルス強度0.06〜4.33J/cm2の範囲の、基材(プラスチック成形品)の表面上の金属層を除去することができるパルス光を意味する。
例えば、実施例1のPETフィルム上の無電解金めっき膜については、高強度パルス光は、パルス幅 40〜5000μsec、パルスエネルギー 0.49〜4.10J/cm2の範囲内に存在し、超高強度パルス光は、パルス幅 35〜2500μsec、パルスエネルギー 0.68〜4.33J/cm2の範囲内に存在する(図8および表1)。また、実施例2のCOPフィルム上の無電解金めっき膜については、高強度パルス光は、パルス幅 1600あるいは1800μsec、パルスエネルギー 3.05〜3.43J/cm2の範囲内に存在し、超高強度パルス光は、パルス幅 35〜7000μsec、パルスエネルギー 0.124〜4.33J/cm2の範囲内に存在する(図9および表2)。実施例3のPE板上の無電解金めっき膜については、高強度パルス光は、パルス幅 800〜1800μsec、パルスエネルギー 2.78〜4.01J/cm2の範囲内に存在し、超高強度パルス光は、パルス幅 35〜1600μsec、パルスエネルギー 0.873〜4.28J/cm2の範囲内に存在する(図10および表3)。
The high-intensity pulsed light used in the present invention is an adhesion between the surface of the substrate (plastic molded product) and the electroless metal plating layer in the range of pulse width 35 to 7000 μsec and pulse intensity 0.06 to 4.33 J / cm 2 . It means the pulsed light that can improve.
Further, the ultra-high intensity pulsed light used in the present invention removes the metal layer on the surface of the base material (plastic molded product) having a pulse width of 35 to 7000 μsec and a pulse intensity of 0.06 to 4.33 J / cm 2. Means pulsed light that can.
For example, for the electroless gold plating film on the PET film of Example 1, the high-intensity pulsed light exists in the range of pulse width 40 to 5000 μsec and pulse energy 0.49 to 4.10 J / cm 2 , and the ultra-high intensity pulse The light is present in the range of a pulse width of 35 to 2500 μsec and a pulse energy of 0.68 to 4.33 J / cm 2 (FIG. 8 and Table 1). In addition, for the electroless gold plating film on the COP film of Example 2, the high-intensity pulsed light exists in the range of pulse width 1600 or 1800 μsec, pulse energy 3.05 to 3.43 J / cm 2 , and ultra-high intensity pulse The light is present in the range of a pulse width of 35 to 7000 μsec and a pulse energy of 0.124 to 4.33 J / cm 2 (FIG. 9 and Table 2). For the electroless gold plating film on the PE plate of Example 3, the high-intensity pulsed light exists in the range of pulse width 800 to 1800 μsec and pulse energy 2.78 to 4.01 J / cm 2. And a pulse width of 35 to 1600 μsec and a pulse energy of 0.873 to 4.28 J / cm 2 (FIG. 10 and Table 3).
上述のように、具体的にどのようなパルス光が高強度パルス光であり、また、どのようなパルス光が超高強度パルス光であるかは、無電解金属膜を構成する金属の種類、膜厚等、および、基材の材質、形状等により異なり、様々である。
しかしながら、本発明において本発明者らにより新たに見出された知見によれば、いずれの無電解金属膜および基材を用いた場合でも、上記範囲内においてパルス光のパルス幅およびパルス強度を変更することにより、基材と無電解めっき膜との密着性を向上させることができるパルス光のパルス幅およびパルス強度の範囲が存在し、また、基材の表面上の金属層を除去することができるパルス光のパルス幅およびパルス強度の範囲が存在する。
したがって、当該知見に基づき、当業者は、必要に応じて適宜試験を行うことにより、上記範囲内において、それぞれの金属膜及び基材に応じた適切な高強度パルス光のパルス幅およびパルス強度の範囲、および、超高強度パルス光のパルス幅およびパルス強度の範囲を見出すことができる。
As described above, what kind of pulsed light is high-intensity pulsed light, and what kind of pulsed light is ultra-high-intensity pulsed light is the type of metal constituting the electroless metal film, It varies depending on the film thickness and the like, and the material and shape of the substrate.
However, according to the knowledge newly found by the present inventors in the present invention, the pulse width and pulse intensity of the pulsed light are changed within the above range regardless of which electroless metal film and substrate are used. There is a range of pulse width and pulse intensity of pulsed light that can improve the adhesion between the substrate and the electroless plating film, and the metal layer on the surface of the substrate can be removed. There is a range of pulse width and pulse intensity of the pulsed light that can be generated.
Therefore, based on this knowledge, those skilled in the art can appropriately test the pulse width and pulse intensity of the appropriate high-intensity pulsed light according to each metal film and the substrate within the above range by performing appropriate tests as necessary. The range and the range of the pulse width and pulse intensity of the ultra-high intensity pulsed light can be found.
パルス光の無電解めっき膜への照射回数は通常は1回でよいが、2回以上の照射でもよい。その場合は、無電解めっき膜を密着させ、あるいは金属層を除去するために用いるパルス光のパルス幅、パルス強度の範囲をより広く設定することができる。 The number of times the electroless plating film is irradiated with pulsed light is usually one time, but may be two or more times. In that case, the range of the pulse width and pulse intensity of the pulsed light used for closely attaching the electroless plating film or removing the metal layer can be set wider.
パルス光は、プラスチック成形品の表面上に施した無電解金属めっき膜に対して照射してもよいが、透明なプラスチック成形品の場合は、金属膜を施している側とは反対側(裏面)から、プラスチック層をとおして照射することもできる。 The pulsed light may be applied to the electroless metal plating film applied on the surface of the plastic molded product, but in the case of a transparent plastic molded product, the side opposite to the side on which the metal film is applied (the back surface) ) Can also be irradiated through the plastic layer.
本発明は、上記構成に加え、パルス光の光源と無電解めっき膜を設けた基材の間に、遮光パターンを有するフォトマスクを設置し、高強度パルス光を照射することもできる。 In the present invention, in addition to the above-described configuration, a photomask having a light-shielding pattern can be installed between a light source for pulsed light and a substrate provided with an electroless plating film, and high-intensity pulsed light can be irradiated.
上記構成によれば、フォトマスクで遮光される部分の金属膜はプラスチック成形品の表面との密着強度は増強されず、一方、遮光されない部分の金属層は密着性が向上するため、フォトマスクを除去し遮光部分の金属めっき膜を粘着テープなどで剥離することにより、基材上にパターン状の金属層を形成することができる(図3)。 According to the above configuration, the metal film in the portion shielded from light by the photomask does not increase the adhesion strength with the surface of the plastic molded product, while the metal layer in the portion not shielded from light improves the adhesion. A patterned metal layer can be formed on the substrate by removing and peeling off the light-shielded portion of the metal plating film with an adhesive tape or the like (FIG. 3).
本発明は、上記構成に加え、パルス光の光源と無電解めっき膜を設けた基材の間に、遮光パターンを有するフォトマスクを設置し、超高強度パルス光を照射することもできる。 In the present invention, in addition to the above-described configuration, a photomask having a light-shielding pattern can be installed between a light source for pulsed light and a base material provided with an electroless plating film, and ultrahigh-intensity pulsed light can be irradiated.
上記構成によれば、フォトマスクで遮光されない部分の金属膜は融解してその表面張力により微粒子状となりプラスチック表面から除去されてしまうため、フォトマスクを除去し遮光部分の金属めっき膜に再び高強度パルス光を照射することにより密着強度を増強することによって、粘着テープなどでの剥離作業をすることなしに、基材上に容易にパターン状の金属層を形成することができる(図4)。 According to the above configuration, the portion of the metal film that is not shielded by the photomask melts and becomes fine particles due to its surface tension and is removed from the plastic surface. By enhancing the adhesion strength by irradiating with pulsed light, a patterned metal layer can be easily formed on the substrate without performing a peeling operation with an adhesive tape or the like (FIG. 4).
上記構成に加え、従来法で作製された任意の金属めっき膜についても、フォトマスクで遮光されない部分の金属膜は超高強度パルス光の照射により融解してその表面張力により微粒子状となりプラスチック表面から除去されることから、超高強度パルス光を照射するだけで、容易にパターン状の金属層を形成することができる(図5)。 In addition to the above configuration, for any metal plating film produced by the conventional method, the metal film in the portion that is not shielded by the photomask is melted by irradiation with ultra-high-intensity pulsed light and becomes fine particles due to its surface tension. Since it is removed, it is possible to easily form a patterned metal layer only by irradiating ultra-high intensity pulsed light (FIG. 5).
フォトマスクとしては、カーボンブラックなどの遮光性のあるインクによりパターニングされた透明な合成樹脂あるいはパターニングされた金属等を用いることができる。
透明なプラスチックフィルム、例えばPETフィルムに市販のレーザープリンタを用いて必要なパターンを印刷したものを用いてもよい。
フォトマスク用金属材料としては、主にステンレス鋼、りん青銅等が用いられ、その厚さは通常50〜300μm程度である。
As the photomask, a transparent synthetic resin patterned with a light-shielding ink such as carbon black, a patterned metal, or the like can be used.
A transparent plastic film, for example, a PET film printed with a necessary pattern using a commercially available laser printer may be used.
As the metal material for the photomask, stainless steel, phosphor bronze and the like are mainly used, and the thickness is usually about 50 to 300 μm.
以下、実施例によって、本発明を更に詳細に説明する。 Hereinafter, the present invention will be described in more detail by way of examples.
実施例1:
0.1重量%のトリメチルステアリルアンモニウムクロライド水溶液に厚さ100μmのPETフィルムを浸漬した後、ポリビニルピロリドンにより安定化された白金コロイドに1分間浸漬し、触媒となる白金ナノ粒子をフィルム表面に吸着させた。つぎに、20mM−塩化金(III)酸水溶液(1ml)と0.1M−過酸化水素水溶液(1ml)を混合して得られる無電解金めっき液中に、白金コロイドを付与したポリエチレンテレフタレート(PET)フィルムを加え、時々撹拌しながら25℃、30分間浸漬したのち水洗・乾燥して、外観が金色のPETフィルムを得た。金めっき膜の厚みは重量換算で100nmであり、良好な導電性を示した。このめっき膜はテープ剥離試験により容易にはがれ、十分な密着力が得られない。
短パルス光照射装置(Novacentrix社製Pulseforge3300)により、表1のAで示すパルス幅、パルスエネルギーのパルス光(パルス幅 40〜5000μsec、パルスエネルギー 0.49〜4.10J/cm2の範囲内から選択)、たとえば、300μsec、1.21J/cm2のパルス光を1回照射したところ、テープ剥離試験ではく離を起こさない密着力が得られた。表1のEに示すパルス幅、パルスエネルギーのパルス光(パルス幅 35〜2500μsec、パルスエネルギー 0.68〜4.33J/cm2の範囲内から選択)、たとえば、300μsec、2.06J/cm2のパルス光を1回照射したところ、めっき膜は除去された。
表1のPで示すパルス幅、パルスエネルギーのパルス光(パルス幅 35〜7000μsec、パルスエネルギー 0.025〜3.97J/cm2の範囲内から選択)を照射した場合は、めっき膜は残るものの、テープ剥離試験により容易に剥離し、十分な密着力が得られない。
図8にパルス光のパルス幅、パルスエネルギーとパルス光照射後のめっき膜の状態(密着、除去、剥離)を示す。
Example 1:
A PET film having a thickness of 100 μm was immersed in a 0.1 wt% trimethylstearylammonium chloride aqueous solution, and then immersed in platinum colloid stabilized with polyvinylpyrrolidone for 1 minute to adsorb platinum nanoparticles as a catalyst onto the film surface. Next, polyethylene terephthalate (PET) provided with platinum colloid in electroless gold plating solution obtained by mixing 20mM-gold chloride (III) acid aqueous solution (1ml) and 0.1M hydrogen peroxide aqueous solution (1ml) The film was added, immersed for 30 minutes at 25 ° C. with occasional stirring, washed with water and dried to obtain a PET film having a golden appearance. The thickness of the gold plating film was 100 nm in terms of weight and showed good conductivity. This plating film is easily peeled off by a tape peeling test, and sufficient adhesion cannot be obtained.
Using a short pulse light irradiation device (Pulseforge 3300 manufactured by Novacentrix), the pulse width and pulse energy indicated by A in Table 1 (pulse width 40 to 5000 μsec, pulse energy selected from the range of 0.49 to 4.10 J / cm 2 ), For example, when 300 μsec, 1.21 J / cm 2 pulsed light was irradiated once, adhesion force that did not cause peeling was obtained in the tape peeling test. Pulse light with pulse width and pulse energy shown in E in Table 1 (Pulse width 35 to 2500 μsec, selected from the range of pulse energy 0.68 to 4.33 J / cm 2 ), for example, 300 μsec and 2.06 J / cm 2 pulse light When irradiated once, the plating film was removed.
When the pulse width and pulse energy indicated by P in Table 1 are irradiated (pulse width 35 to 7000 μsec, pulse energy selected from the range of 0.025 to 3.97 J / cm 2 ), the plating film remains but the tape is peeled off. It peels easily by the test, and sufficient adhesion cannot be obtained.
FIG. 8 shows the pulse width and pulse energy of the pulsed light and the state of the plating film after the pulsed light irradiation (adhesion, removal, peeling).
実施例2:
実施例1と同様の方法で,厚さ100μmのシクロオレフィンポリマー(COP)フィルムに金めっき膜を作製し、表2のAで示すパルス幅、パルスエネルギーのパルス光(パルス幅1600あるいは1800μsec、パルスエネルギー 3.05〜3.43J/cm2の範囲内から選択)、たとえば、1800μsec、3.15J/cm2のパルス光を1回照射したところ,テープ剥離試験ではく離を起こさない密着力が得られた。表2のEに示すパルス幅、パルスエネルギーのパルス光(パルス幅 35〜7000μsec、パルスエネルギー 0.124〜4.33J/cm2の範囲内から選択)、たとえば、300μsec、2.06J/cm2のパルス光を1回照射したところ、めっき膜は除去された。表1のPで示すパルス幅、パルスエネルギーのパルス光(パルス幅 35〜3000μsec、パルスエネルギー 0.025〜4.05J/cm2の範囲内から選択)を照射した場合は、めっき膜は残るものの、テープ剥離試験により容易に剥離し、十分な密着力が得られない。図9にパルス光のパルス幅、パルスエネルギーとパルス光照射後のめっき膜の状態(密着、除去、剥離)を示す。
Example 2:
In the same manner as in Example 1, a gold plating film was produced on a 100 μm-thick cycloolefin polymer (COP) film, and the pulse width and pulse energy indicated by A in Table 2 (pulse width 1600 or 1800 μsec, pulse For example, when pulsed light of 1800 μsec and 3.15 J / cm 2 was irradiated once in the range of energy 3.05 to 3.43 J / cm 2 , adhesion without causing separation was obtained in the tape peeling test. Pulse light with pulse width and pulse energy shown in E in Table 2 (Pulse width 35 to 7000 μsec, selected from the range of pulse energy 0.124 to 4.33 J / cm 2 ), for example, 300 μsec and pulse light with 2.06 J / cm 2 When irradiated once, the plating film was removed. When the pulse width and pulse energy indicated by P in Table 1 are irradiated (pulse width 35 to 3000 μsec, pulse energy selected from the range of 0.025 to 4.05 J / cm 2 ), the plating film remains but the tape is peeled off. It peels easily by the test, and sufficient adhesion cannot be obtained. FIG. 9 shows the pulse width and pulse energy of the pulsed light and the state of the plating film after the pulsed light irradiation (adhesion, removal, peeling).
実施例3:
実施例1と同様の方法で,厚さ2000μmのポリエチレン(PE)板に金めっき膜を作製し、表3のAで示すパルス幅、パルスエネルギーのパルス光(パルス幅 800〜1800μsec、パルスエネルギー 2.78〜4.01J/cm2の範囲内から選択)、たとえば、800μsec、2.78J/cm2のパルス光を1回照射することにより、テープ剥離試験によりはく離を起こさない密着力が得られた。表3のEに示すパルス幅、パルスエネルギーのパルス光(パルス幅 35〜1600μsec、パルスエネルギー 0.873〜4.28J/cm2の範囲内から選択)、たとえば、300μsec、2.23J/cm2のパルス光を1回照射したところ、めっき膜は除去された。表3のPで示すパルス幅、パルスエネルギーのパルス光を照射した場合は、めっき膜は残るものの、テープ剥離試験により容易に剥離し、十分な密着力が得られない。図10にパルス光のパルス幅、パルスエネルギーとパルス光照射後のめっき膜の状態(密着、除去、剥離)を示す。
Example 3:
In the same manner as in Example 1, a gold plating film was prepared on a polyethylene (PE) plate having a thickness of 2000 μm, and pulse light with a pulse width and pulse energy indicated by A in Table 3 (pulse width 800 to 1800 μsec, pulse energy 2.78). selected from a range of ~4.01J / cm 2), for example, 800μsec, by irradiating one pulse light of 2.78J / cm 2, the adhesion does not cause peeling by the tape peeling test was obtained. Pulse light with pulse width and pulse energy shown in E in Table 3 (Pulse width 35 to 1600 μsec, selected from the range of pulse energy 0.873 to 4.28 J / cm 2 ), for example, 300 μsec and pulse light with 2.23 J / cm 2 When irradiated once, the plating film was removed. When pulse light having a pulse width and pulse energy indicated by P in Table 3 is irradiated, the plating film remains, but it is easily peeled off by a tape peeling test, and sufficient adhesion cannot be obtained. FIG. 10 shows the pulse width and pulse energy of the pulsed light and the state of the plating film after the pulsed light irradiation (adhesion, removal, peeling).
実施例4:
実施例1と同様の方法で、厚さ100μmのポリメチルメタクリレート(PMMA)フィルムに金めっき膜を作製し、表4のAで示すパルス幅、パルスエネルギーのパルス光(たとえば、600μsec、1.16J/cm2)を1回照射することにより、テープ剥離試験によりはく離を起こさない密着力が得られた。表4のEに示すパルス幅、パルスエネルギーのパルス光を1回照射したところ、めっき膜は除去された。表4のPで示すパルス幅、パルスエネルギーのパルス光を照射した場合は、めっき膜は残るものの、テープ剥離試験により容易に剥離し、十分な密着力が得られない。図11にパルス光のパルス幅、パルスエネルギーとパルス光照射後のめっき膜の状態(密着、除去、剥離)を示す。
Example 4:
In the same manner as in Example 1, a gold plating film was prepared on a polymethyl methacrylate (PMMA) film having a thickness of 100 μm, and pulse light having a pulse width and pulse energy indicated by A in Table 4 (for example, 600 μsec, 1.16 J / By irradiating once with cm 2 ), an adhesive force that does not cause peeling was obtained in the tape peeling test. When the pulse width and pulse energy indicated by E in Table 4 were irradiated once, the plating film was removed. When pulse light having a pulse width and pulse energy indicated by P in Table 4 is irradiated, the plating film remains, but it is easily peeled off by a tape peeling test, and sufficient adhesion cannot be obtained. FIG. 11 shows the pulse width of the pulsed light, the pulse energy, and the state of the plating film after the pulsed light irradiation (adhesion, removal, peeling).
実施例5:
実施例1と同様の方法で、厚さ100μmのポリフェニレンサルファイド(PPS)フィルムに金めっき膜を作製し、表5のAで示すパルス幅、パルスエネルギーのパルス光を1回照射することにより、テープ剥離試験によりはく離を起こさない密着力が得られた。表5のEに示すパルス幅、パルスエネルギーのパルス光を1回照射したところ、めっき膜は除去された。表5のPで示すパルス幅、パルスエネルギーのパルス光を照射した場合は、めっき膜は残るものの、テープ剥離試験により容易に剥離し、十分な密着力が得られない。図12にパルス光のパルス幅、パルスエネルギーとパルス光照射後のめっき膜の状態(密着、除去、剥離)を示す。
Example 5:
In the same manner as in Example 1, a gold plating film was prepared on a polyphenylene sulfide (PPS) film having a thickness of 100 μm, and the tape was irradiated with pulse light having a pulse width and pulse energy shown by A in Table 5 once. Adhesion without causing peeling was obtained by a peel test. When the pulse width and pulse energy indicated by E in Table 5 were irradiated once, the plating film was removed. When pulse light having a pulse width and pulse energy indicated by P in Table 5 is irradiated, the plating film remains, but it is easily peeled off by a tape peeling test, and sufficient adhesion cannot be obtained. FIG. 12 shows the pulse width and pulse energy of the pulsed light and the state of the plating film after the pulsed light irradiation (adhesion, removal, peeling).
実施例6:
実施例1と同様の方法で、厚さ100μmのポリスチレン(PS)フィルムに金めっき膜を作製し、表6のAで示すパルス幅、パルスエネルギーのパルス光を1回照射することにより、テープ剥離試験によりはく離を起こさない密着力が得られた。表6のEに示すパルス幅、パルスエネルギーのパルス光を1回照射したところ、めっき膜は除去された。表6のPで示すパルス幅、パルスエネルギーのパルス光を照射した場合は、めっき膜は残るものの、テープ剥離試験により容易に剥離し、十分な密着力が得られない。図13にパルス光のパルス幅、パルスエネルギーとパルス光照射後のめっき膜の状態(密着、除去、剥離)を示す。
Example 6:
In the same manner as in Example 1, a gold plating film was prepared on a polystyrene (PS) film having a thickness of 100 μm, and the tape was peeled off by irradiating pulsed light having a pulse width and pulse energy indicated by A in Table 6 once. The test gave an adhesion that did not cause peeling. When pulse light having a pulse width and pulse energy indicated by E in Table 6 was irradiated once, the plating film was removed. When pulse light having a pulse width and pulse energy indicated by P in Table 6 is irradiated, the plating film remains, but it is easily peeled off by a tape peeling test, and sufficient adhesion cannot be obtained. FIG. 13 shows the pulse width and pulse energy of the pulsed light and the state of the plating film after the pulsed light irradiation (adhesion, removal, peeling).
実施例7:
実施例1と同様の方法で、厚さ100μmのポリフェニレンサルファイド(PPS)フィルム上に作製した銅めっき膜では、表7のAで示すパルス幅、パルスエネルギーのパルス光を1回照射することにより、テープ剥離試験によりはく離を起こさない密着力が得られた。表7のEに示すパルス幅、パルスエネルギーのパルス光を1回照射したところ、めっき膜は除去された。表7のPで示すパルス幅、パルスエネルギーのパルス光を照射した場合は、めっき膜は残るものの、テープ剥離試験により容易に剥離し、十分な密着力が得られない。図14にパルス光のパルス幅、パルスエネルギーとパルス光照射後のめっき膜の状態(密着、除去、剥離)を示す。
Example 7:
In the copper plating film produced on the polyphenylene sulfide (PPS) film having a thickness of 100 μm by the same method as in Example 1, the pulse width and pulse energy indicated by A in Table 7 were irradiated once, Adhesive strength that does not cause peeling was obtained by the tape peeling test. When the pulse width and pulse energy indicated by E in Table 7 were irradiated once, the plating film was removed. When pulse light having a pulse width and pulse energy indicated by P in Table 7 is irradiated, the plating film remains, but it is easily peeled off by a tape peeling test, and sufficient adhesion cannot be obtained. FIG. 14 shows the pulse width and pulse energy of the pulsed light and the state of the plating film after the pulsed light irradiation (adhesion, removal, peeling).
実施例8:
実施例1と同様の方法で、厚さ100μmのポリカーボネート(PC)フィルムに金めっき膜を作製し、表8のAで示すパルス幅、パルスエネルギーのパルス光を1回照射することにより、テープ剥離試験によりはく離を起こさない密着力が得られた。表8のEに示すパルス幅、パルスエネルギーのパルス光を1回照射したところ、めっき膜は除去された。表8のPで示すパルス幅、パルスエネルギーのパルス光を照射した場合は、めっき膜は残るものの、テープ剥離試験により容易に剥離し、十分な密着力が得られない。図15にパルス光のパルス幅、パルスエネルギーとパルス光照射後のめっき膜の状態(密着、除去、剥離)を示す。
Example 8:
In the same manner as in Example 1, a gold plating film was produced on a polycarbonate (PC) film having a thickness of 100 μm, and the tape was peeled off by irradiating once with pulsed light having a pulse width and pulse energy indicated by A in Table 8. The test gave an adhesion that did not cause peeling. When the pulse width and pulse energy indicated by E in Table 8 were irradiated once, the plating film was removed. When pulse light having a pulse width and pulse energy indicated by P in Table 8 is irradiated, the plating film remains, but it is easily peeled off by a tape peeling test, and sufficient adhesion cannot be obtained. FIG. 15 shows the pulse width and pulse energy of the pulsed light and the state (adhesion, removal, peeling) of the plating film after the pulsed light irradiation.
実施例9:
実施例1と同様の方法で、厚さ100μmのポリカーボネート(PC)フィルムに金めっき膜を作製し、表9のAで示すパルス幅、パルスエネルギーのパルス光を2回照射することにより、テープ剥離試験によりはく離を起こさない密着力が得られた。表9のEに示すパルス幅、パルスエネルギーのパルス光を2回照射したところ、めっき膜は除去された。表9のPで示すパルス幅、パルスエネルギーのパルス光を2回照射した場合は、めっき膜は残るものの、テープ剥離試験により容易に剥離し、十分な密着力が得られない。図16にパルス光のパルス幅、パルスエネルギーとパルス光照射後のめっき膜の状態(密着、除去、剥離)を示す。
Example 9:
In the same manner as in Example 1, a gold plating film was prepared on a polycarbonate (PC) film having a thickness of 100 μm, and the tape was peeled off by irradiating twice with pulsed light having a pulse width and pulse energy indicated by A in Table 9 The test gave an adhesion that did not cause peeling. When the pulse light having the pulse width and pulse energy shown in E in Table 9 was irradiated twice, the plating film was removed. When pulse light having a pulse width and pulse energy indicated by P in Table 9 is irradiated twice, the plating film remains, but it is easily peeled off by a tape peeling test, and sufficient adhesion cannot be obtained. FIG. 16 shows the pulse width and pulse energy of the pulsed light and the state of the plating film after the pulsed light irradiation (adhesion, removal, peeling).
実施例10:
実施例1と同様の方法で、厚さ100μmのポリスチレン(PS)フィルムに金めっき膜を作製し、表10のAで示すパルス幅、パルスエネルギーのパルス光を裏面から1回照射することにより、テープ剥離試験によりはく離を起こさない密着力が得られた。表10のEに示すパルス幅、パルスエネルギーのパルス光を1回照射したところ、めっき膜は除去された。表10のPで示すパルス幅、パルスエネルギーのパルス光を照射した場合は、めっき膜は残るものの、テープ剥離試験により容易に剥離し、十分な密着力が得られない。図17にパルス光のパルス幅、パルスエネルギーとパルス光照射後のめっき膜の状態(密着、除去、剥離)を示す。
Example 10:
By producing a gold plating film on a polystyrene (PS) film having a thickness of 100 μm in the same manner as in Example 1, and by irradiating pulse light having a pulse width and pulse energy indicated by A in Table 10 once from the back surface, Adhesive strength that does not cause peeling was obtained by the tape peeling test. When pulse light having a pulse width and pulse energy indicated by E in Table 10 was irradiated once, the plating film was removed. When pulsed light having a pulse width and pulse energy indicated by P in Table 10 is irradiated, the plating film remains, but is easily peeled off by a tape peeling test, and sufficient adhesion cannot be obtained. FIG. 17 shows the pulse width and pulse energy of the pulsed light and the state of the plating film after the pulsed light irradiation (adhesion, removal, peeling).
実施例11:
PETフィルムに実施例1の方法で金めっき膜を作製し、所定パターンをレーザープリンタで印刷したPETフィルムをめっき膜上に載せ、実施例1と同様の条件で、300μsec、1.21J/cm2のパルス光を1回照射したところ、上記パターンによりマスクされパルス光が照射されなかった部分の密着力は低く、マスクを外した後、テープ剥離により、容易にはがすことができ、図6に示す金めっきパターンを得ることができた。
Example 11:
A gold plating film was prepared on the PET film by the method of Example 1, and a PET film on which a predetermined pattern was printed by a laser printer was placed on the plating film. Under the same conditions as in Example 1, 300 μsec, 1.21 J / cm 2 When the pulse light is irradiated once, the adhesive force of the portion masked by the above pattern and not irradiated with the pulse light is low, and after removing the mask, it can be easily peeled off by tape peeling, as shown in FIG. A plating pattern could be obtained.
実施例12:
PETフィルムに実施例1の方法で金めっき膜を作製し、実施例11と同様に所定のパターンを印刷したPETフィルムを金めっき膜上に載せ、300μsec、2.79J/cm2のパルス光を1回照射したところ、上記パターンによりマスクされずパルス光が照射された部位のめっき膜は除去された。マスクを外した後、これに、更に300μsec、1.21J/cm2のパルス光を1回照射することにより残っためっき膜の密着性を向上させ、図7に示すパターンを得ることができた。
Example 12:
A gold plating film was prepared on the PET film by the method of Example 1, and a PET film on which a predetermined pattern was printed was placed on the gold plating film in the same manner as in Example 11, and 300 μsec, 2.79 J / cm 2 pulsed light was applied to the PET film. When it was irradiated twice, the plating film at the portion irradiated with the pulsed light without being masked by the pattern was removed. After removing the mask, this was further irradiated with pulse light of 300 μsec and 1.21 J / cm 2 once to improve the adhesion of the remaining plating film, and the pattern shown in FIG. 7 could be obtained.
比較例1:
PETフィルムにスパッタリングにより金薄膜を作製し、実施例1と同様の条件でパルス光を照射したところ、密着性の向上は見られなかった。
Comparative Example 1:
When a gold thin film was produced on a PET film by sputtering and irradiated with pulsed light under the same conditions as in Example 1, no improvement in adhesion was observed.
比較例2:
実施例1と同様の方法により、PSフィルムに金めっき膜を作製し、100℃、10分間加熱処理した。これにより、金めっき膜の密着強度は向上するが、PSフィルムは変形した。
Comparative Example 2:
A gold plating film was produced on the PS film by the same method as in Example 1, and heat-treated at 100 ° C. for 10 minutes. Thereby, the adhesion strength of the gold plating film was improved, but the PS film was deformed.
本発明は、上述のプリント配線基板の技術分野のみならず、福祉医療機器の製造分野や、太陽電池、リチウムイオン電池等のエネルギー機器の製造分野に広く応用可能である。 The present invention can be widely applied not only to the technical field of the above-mentioned printed wiring board but also to the field of manufacturing welfare medical devices and the field of manufacturing energy devices such as solar cells and lithium ion batteries.
[表1]
ポリエチレンテレフタレート(PET)フィルム上の無電解金めっき膜への各種パルス幅、パルスエネルギーのパルス光の照射とその結果
[Table 1]
Irradiation of electroless gold plating film on polyethylene terephthalate (PET) film with various pulse widths and pulse energy and results
[表2]
シクロオレフィンポリマー(COP)フィルム上の無電解金めっき膜への各種パルス幅、パルスエネルギーのパルス光の照射とその結果
[Table 2]
Irradiation of electroless gold plating film on cycloolefin polymer (COP) film with various pulse widths and pulse energy of pulse energy and its result
[表3]
ポリエチレン(PE)板上の無電解金めっき膜への各種パルス幅、パルスエネルギーのパルス光の照射とその結果
[Table 3]
Irradiation of electroless gold plating film on polyethylene (PE) plate with pulsed light of various pulse widths and energy and results
[表4]
ポリメチルメタクリレート(PMMA)フィルム上の無電解金めっき膜への各種パルス幅、パルスエネルギーのパルス光の照射とその結果
[Table 4]
Irradiation of electroless gold plating film on polymethylmethacrylate (PMMA) film with various pulse widths and pulse energy of pulse energy and its result
[表5]
ポリフェニレンサルファイド(PPS)フィルム上の無電解金めっき膜への各種パルス幅、パルスエネルギーのパルス光の照射とその結果
[Table 5]
Irradiation of electroless gold plating film on polyphenylene sulfide (PPS) film with various pulse widths and pulse energy and results
[表6]
ポリスチレン(PS)フィルム上の無電解金めっき膜への各種パルス幅、パルスエネルギーのパルス光の照射とその結果
[Table 6]
Irradiation of electroless gold plating film on polystyrene (PS) film with various pulse widths and pulse energy of pulse energy and the result
[表7]
ポリフェニレンサルファイド(PPS)フィルム上の無電解銅めっき膜への各種パルス幅、パルスエネルギーのパルス光の照射とその結果
[Table 7]
Irradiation of electroless copper plating film on polyphenylene sulfide (PPS) film with various pulse widths and pulse energy and results
[表8]
ポリカーボネート(PC)フィルム上の無電解金めっき膜への各種パルス幅、パルスエネルギーのパルス光の照射とその結果
[Table 8]
Irradiation of electroless gold-plated film on polycarbonate (PC) film with various pulse widths and pulse energy of pulse energy and the result
[表9]
ポリカーボネート(PC)フィルム上の無電解金めっき膜への各種パルス幅、パルスエネルギーのパルス光の2回照射とその結果
[Table 9]
Double irradiation of electroless gold-plated film on polycarbonate (PC) film with various pulse widths and pulse energy, and the result
[表10]
ポリスチレン(PS)フィルム上の無電解金めっき膜への各種パルス幅、パルスエネルギーのパルス光のフィルム裏面からの照射とその結果
Irradiation of electroless gold plating film on polystyrene (PS) film from the back side of the film with various pulse widths and pulse energy of the pulse energy and the result
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013021464A JP6233830B2 (en) | 2013-02-06 | 2013-02-06 | Method for improving adhesion and removing electroless plating film and patterning method using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013021464A JP6233830B2 (en) | 2013-02-06 | 2013-02-06 | Method for improving adhesion and removing electroless plating film and patterning method using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014152350A true JP2014152350A (en) | 2014-08-25 |
JP6233830B2 JP6233830B2 (en) | 2017-11-22 |
Family
ID=51574519
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013021464A Active JP6233830B2 (en) | 2013-02-06 | 2013-02-06 | Method for improving adhesion and removing electroless plating film and patterning method using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6233830B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI633203B (en) * | 2016-07-29 | 2018-08-21 | 羅門哈斯電子材料有限公司 | Method for plating on surface of non-conductive substrate |
JP2020037718A (en) * | 2018-09-03 | 2020-03-12 | アイテック株式会社 | Method and apparatus for modifying surface of plating film |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07321519A (en) * | 1994-05-21 | 1995-12-08 | Tdk Corp | Electrode forming method |
JPH10229268A (en) * | 1998-03-26 | 1998-08-25 | Matsushita Electric Works Ltd | Manufacture of circuit board |
JP2002129348A (en) * | 2000-10-19 | 2002-05-09 | Konica Corp | Method for forming electrode pattern by electroless plating and method for manufacturing ink-jet head |
JP2004190102A (en) * | 2002-12-12 | 2004-07-08 | Shinko Electric Ind Co Ltd | Metal film deposition method, semiconductor device, and wiring board |
JP2005268797A (en) * | 2004-03-17 | 2005-09-29 | Samsung Electronics Co Ltd | Method of manufacturing tape wiring substrate |
JP2012069939A (en) * | 2010-08-25 | 2012-04-05 | Ube Ind Ltd | Method of manufacturing flexible printed circuit board |
-
2013
- 2013-02-06 JP JP2013021464A patent/JP6233830B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07321519A (en) * | 1994-05-21 | 1995-12-08 | Tdk Corp | Electrode forming method |
JPH10229268A (en) * | 1998-03-26 | 1998-08-25 | Matsushita Electric Works Ltd | Manufacture of circuit board |
JP2002129348A (en) * | 2000-10-19 | 2002-05-09 | Konica Corp | Method for forming electrode pattern by electroless plating and method for manufacturing ink-jet head |
JP2004190102A (en) * | 2002-12-12 | 2004-07-08 | Shinko Electric Ind Co Ltd | Metal film deposition method, semiconductor device, and wiring board |
JP2005268797A (en) * | 2004-03-17 | 2005-09-29 | Samsung Electronics Co Ltd | Method of manufacturing tape wiring substrate |
JP2012069939A (en) * | 2010-08-25 | 2012-04-05 | Ube Ind Ltd | Method of manufacturing flexible printed circuit board |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI633203B (en) * | 2016-07-29 | 2018-08-21 | 羅門哈斯電子材料有限公司 | Method for plating on surface of non-conductive substrate |
JP2020037718A (en) * | 2018-09-03 | 2020-03-12 | アイテック株式会社 | Method and apparatus for modifying surface of plating film |
JP7232452B2 (en) | 2018-09-03 | 2023-03-03 | アイテック株式会社 | Plating film surface modification method and apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP6233830B2 (en) | 2017-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101191865B1 (en) | Fabrication method of flexible substrate having buried metal electrode and the flexible substrate thereby | |
JP5341966B2 (en) | Pattern transfer method and pattern transfer apparatus, flexible display panel using the same, flexible solar cell, electronic book, thin film transistor, electromagnetic wave shielding sheet, flexible printed circuit board | |
KR102319221B1 (en) | Method for Forming Electrically-Conductive Traces on a Polymer Article Surface | |
US20120074094A1 (en) | Manufacturing Method for Forming Circuit Structure on Non-Conductive Carrier | |
WO2010022641A1 (en) | Plastic composition and method of selective metallization on the surface thereof | |
TWI623426B (en) | Microcavity carrier with image enhancement for laser ablation | |
JP2011017069A (en) | Method for manufacturing formed-circuit parts | |
TW201448698A (en) | Process for producing three-dimensional conductive pattern structure, and material for three-dimensional molding for use therein | |
JP5099520B2 (en) | Articles in which noble metal particles are present on the substrate surface, laminates and methods for producing them | |
JP5149805B2 (en) | Electroless copper plating method | |
JP4019960B2 (en) | Substrate manufacturing method | |
KR20090062890A (en) | Flexible printed cercuit board having conductive circuit pattern by laser direct writing method and manufacturing system and method thereof | |
JP2014152350A (en) | Adhesion improvement and removal method of electroless plating film and patterning method using the same | |
JP3999696B2 (en) | Electroless plating method and plated parts | |
JP2019026879A5 (en) | ||
JP5075157B2 (en) | Wiring substrate manufacturing method and wiring substrate obtained by the manufacturing method | |
Ng et al. | Ultra-violet direct patterning of metal on polyimide | |
JP2007103479A (en) | Forming method of inorganic thin film pattern on polyimide resin substrate | |
JP2010047828A (en) | Pretreatment method for electroless plating and electroless plating method of substrate | |
JPH07336022A (en) | Electric circuit board and manufacture thereof | |
JP5956553B2 (en) | Resin product with plating film and manufacturing method thereof | |
JP2007214338A (en) | Manufacturing method of one-side polyimide wiring board | |
JPH10168577A (en) | Production of plated parts such as molded circuit parts | |
US20160186324A1 (en) | Resin article and method of manufacturing resin article | |
JP4332795B2 (en) | Electroless plating method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20151016 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160815 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160823 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161021 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170328 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170525 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20171017 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20171018 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6233830 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |