JP5099520B2 - Articles in which noble metal particles are present on the substrate surface, laminates and methods for producing them - Google Patents

Articles in which noble metal particles are present on the substrate surface, laminates and methods for producing them Download PDF

Info

Publication number
JP5099520B2
JP5099520B2 JP2008323941A JP2008323941A JP5099520B2 JP 5099520 B2 JP5099520 B2 JP 5099520B2 JP 2008323941 A JP2008323941 A JP 2008323941A JP 2008323941 A JP2008323941 A JP 2008323941A JP 5099520 B2 JP5099520 B2 JP 5099520B2
Authority
JP
Japan
Prior art keywords
noble metal
substrate
particle
present
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008323941A
Other languages
Japanese (ja)
Other versions
JP2010143127A (en
Inventor
伸 堀内
幸道 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2008323941A priority Critical patent/JP5099520B2/en
Publication of JP2010143127A publication Critical patent/JP2010143127A/en
Application granted granted Critical
Publication of JP5099520B2 publication Critical patent/JP5099520B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は貴金属粒子が基材表面に存在する物、および該貴金属粒子が基材表面に存在する物の表面に金属皮膜を配置した積層体、さらにはこれら貴金属粒子が基材表面に存在する物および積層体の製造方法に関する。特に、粒子の一部分が基材表面に埋め込まれた状態の貴金属ナノ粒子が基材表面に存在する物であって、貴金属ナノ粒子が強く基材に固定される物および該貴金属ナノ粒子が基材表面に存在する物の表面に金属皮膜を配置した積層体、さらにはこれら貴金属ナノ粒子が基材表面に存在する物および積層体の製造方法に関する。   The present invention relates to an article in which noble metal particles are present on the surface of a substrate, a laminate in which a metal film is disposed on the surface of an article in which the noble metal particles are present on the surface of a substrate, and an article in which these noble metal particles are present on the surface of a substrate. And a method for manufacturing a laminate. In particular, a precious metal nanoparticle in which a part of the particle is embedded in the base material surface is present on the surface of the base material, and the precious metal nanoparticle is strongly fixed to the base material and the precious metal nanoparticle is a base material. The present invention relates to a laminate in which a metal film is disposed on the surface of an object existing on the surface, and further to an article in which these noble metal nanoparticles are present on the surface of a substrate and a method for producing the laminate.

従来から、基材表面に貴金属粒子が固定された構成物は、その貴金属粒子により各種用途に用いられている。例えば、貴金属粒子が白金、パラジウム、ロジウム、ルテニウムの粒子の場合は各種の化学反応に対する担持触媒に用いられ、前記貴金属粒子が銀粒子の場合は抗菌材に用いられ、前記貴金属粒子が白金、パラジウムの場合は無電解メッキ前駆体として有用である。
例えば前記無電解メッキ前駆体の製造法として、まず基材表面の一部を溶解して粗化し、接着層として錫化合物などを塗布した上に貴金属イオンを固定し、さらに還元処理する方法が知られている(非特許文献1)。この製造方法からも明らかなように、従来から知られている前記貴金属粒子が基材表面に存在する物の製造法は操作が煩雑であり、そのうえ、貴金属粒子の粒度分布が広くなること、貴金属粒子の凝集を起こすなどの問題がある。これら従来から知られている製造法では、数ナノメートル(nm)の粒径の揃った貴金属粒子を基材表面上に一様に固定化することは極めて困難であった。
Conventionally, a structure in which noble metal particles are fixed on the surface of a base material has been used for various applications due to the noble metal particles. For example, when the noble metal particles are platinum, palladium, rhodium, and ruthenium particles, they are used as a supported catalyst for various chemical reactions. When the noble metal particles are silver particles, they are used as antibacterial materials. The noble metal particles are platinum, palladium. In this case, it is useful as an electroless plating precursor.
For example, as a method for producing the electroless plating precursor, there is known a method in which a part of the surface of a substrate is first melted and roughened, a tin compound or the like is applied as an adhesive layer, noble metal ions are fixed, and further reduction treatment is performed. (Non-patent Document 1). As is apparent from this production method, the conventional production method of the above-mentioned noble metal particles existing on the substrate surface is complicated in operation, and in addition, the particle size distribution of the noble metal particles is widened. There are problems such as causing aggregation of particles. In these conventionally known production methods, it has been extremely difficult to uniformly immobilize noble metal particles having a uniform particle diameter of several nanometers (nm) on the substrate surface.

一方、紫外線で硬化する接着層を介して貴金属粒子を直接ポリマー表面に固定する技術に関する報告があるが(特許文献1)、この方法は操作が煩雑であるうえ、貴金属粒子の多くの部分が接着層中に埋まりこみ、当該貴金属粒子を効率的に機能させることが出来ないなどの難点がある。   On the other hand, there is a report on a technique for directly fixing noble metal particles to the polymer surface via an adhesive layer that is cured by ultraviolet rays (Patent Document 1). However, this method is complicated and many parts of the noble metal particles are bonded. There is a drawback that the precious metal particles cannot be efficiently functioned by being buried in the layer.

この他、界面活性剤処理と貴金属ゾルにより順次処理する方法によれば(例えば特許文献2)、極めて微細な貴金属粒子をポリマー表面に配置することができ、これを無電解メッキした後に加熱することによりメッキ皮膜の密着性を向上させることが可能である。
しかし、貴金属粒子の表面への結合が弱いため、無電解メッキの際に、容器壁に貴金属粒子が移って不要なメッキが生じたり、攪拌によりメッキ皮膜が剥がれ落ちるなどの困難があった。
In addition, according to the method of sequentially treating with a surfactant and a noble metal sol (for example, Patent Document 2), extremely fine noble metal particles can be arranged on the polymer surface, and this is heated after electroless plating. It is possible to improve the adhesion of the plating film.
However, since the bonding of the noble metal particles to the surface is weak, there has been a difficulty that, during electroless plating, the noble metal particles move to the container wall to cause unnecessary plating, or the plating film is peeled off by stirring.

特開2001-303255号公報JP 2001-303255 A 特願2008-216028Japanese Patent Application No. 2008-216028 プラスチックメタライジング p.34-38, オーム社, 1978年Plastic Metallizing p.34-38, Ohmsha, 1978

前記のような実情において、本発明の課題は、粒子の一部が基材に埋まった多数の貴金属ナノ粒子が基材表面に存在する物であって、粒子の全ての部分が基材中に埋め込まれた状態の貴金属ナノ粒子は実質的に存在しない物、およびその物をより簡単に製造する方法を提供することにある。また、前記物を一つの層とする積層体、およびその積層体のより簡単な製造方法を提供することにある。   In the above situation, the problem of the present invention is that a large number of noble metal nanoparticles in which a part of the particles are embedded in the substrate are present on the surface of the substrate, and all the parts of the particles are in the substrate. An object of the present invention is to provide a material in which noble metal nanoparticles in an embedded state are substantially absent, and a method for producing the material more easily. Another object of the present invention is to provide a laminate having the above-mentioned material as one layer and a simpler method for producing the laminate.

本発明者らは前記課題を解決するべく鋭意研究を重ねる中、陽イオン性界面活性剤処理したポリマー表面に貴金属ゾルを接触させて固定化した後、ポリマーのガラス転移点以上でかつ融点以下の温度で加熱すると、意外にも貴金属ナノ粒子がポリマー中に一部分が埋まり込む状態でポリマー表面に存在し、粒子の全ての部分が基材に埋まっている貴金属ナノ粒子は存在しないことを見出した。また、ポリマー表面の貴金属ナノ粒子面に粘着テープを付着させた後に、当該粘着テープを引き剥がしても粘着テープに粘着面には貴金属ナノ粒子を確認することが出来ないほど、前記貴金属ナノ粒子はポリマー表面に強く固定されることを見出した。さらに、ポリマー表面が親水性の場合には、貴金属ゾルを塗布した後に加熱しても同じ効果が得られることを見出した。これら見出したことを基に更に研究を重ね,遂に本発明を完成させた。   While the inventors of the present invention have been diligently researched to solve the above-described problems, after fixing a noble metal sol on the surface of the polymer treated with a cationic surfactant, the polymer has a glass transition point or higher and a melting point or lower. It was found that when heated at a temperature, the noble metal nanoparticles were unexpectedly present on the polymer surface in a state of being partially embedded in the polymer, and there were no noble metal nanoparticles in which all of the particles were embedded in the substrate. In addition, after attaching the adhesive tape to the surface of the noble metal nanoparticles on the polymer surface, the noble metal nanoparticles cannot be confirmed on the adhesive surface of the adhesive tape even if the adhesive tape is peeled off. It was found to be strongly fixed to the polymer surface. Furthermore, it has been found that when the polymer surface is hydrophilic, the same effect can be obtained by heating after applying the noble metal sol. Based on these findings, further research was conducted and the present invention was finally completed.

すなわち、本発明の請求項1記載の発明は、基材を貴金属ゾル中に浸漬処理する工程、および前記基材のガラス転移点以上でかつ融点以下の温度で、空気中において前記基材を加熱処理する工程を有することを特徴とする下記貴金属粒子が基材表面に存在する物の製造方法。
基材表面に粒径が10nm以下の貴金属粒子が存在する物であって、前記貴金属粒子はその粒子の一部分が前記基材中に埋まっており、粒子の全ての部分が基材に埋まっている貴金属粒子は存在しないことを特徴とする貴金属粒子が基材表面に存在する物。
ここで、基材が熱可塑性ポリマーまたは加熱により軟化するポリマーでもよく、貴金属粒子が白金、パラジウム、ロジウム、ルテニウム、金、銀、イリジウム、オスミウムの中から選ばれた少なくとも1種でもよい(以下、同様)。
本発明の請求項2記載の発明は、請求項1の発明において、基材を貴金属ゾル中に浸漬処理する工程、および前記基材のガラス転移点以上でかつ融点以下の温度で、不活性ガス雰囲気下において前記基材を加熱処理する工程を有することを特徴とする請求項1記載の貴金属粒子が基材表面に存在する物の製造方法の発明である。 本発明の請求項3記載の発明は、請求項1又は2の発明において、基材を陽イオン性界面活性剤水溶液中に浸漬処理する工程をさらに有することを特徴とする発明である。
That is, the invention according to claim 1 of the present invention includes a step of immersing the base material in a noble metal sol, and heating the base material in air at a temperature not lower than the glass transition point and not higher than the melting point of the base material. The manufacturing method of the thing in which the following noble metal particle exists in the base-material surface characterized by having the process to process.
A noble metal particle having a particle size of 10 nm or less is present on the surface of the substrate, and the noble metal particle has a part of the particle embedded in the substrate, and the entire part of the particle is embedded in the substrate. An article in which noble metal particles are present on the substrate surface, characterized in that no noble metal particles are present.
Here, the substrate may be a thermoplastic polymer or a polymer softened by heating, and the noble metal particles may be at least one selected from platinum, palladium, rhodium, ruthenium, gold, silver, iridium, and osmium (hereinafter, The same).
The invention according to claim 2 of the present invention is the process of immersing the substrate in a noble metal sol according to the invention of claim 1, and an inert gas at a temperature above the glass transition point and below the melting point of the substrate. The invention for producing a product in which the noble metal particles are present on the surface of the base material according to claim 1, further comprising a step of heat-treating the base material in an atmosphere. The invention according to claim 3 of the present invention is the invention according to claim 1 or 2, further comprising a step of immersing the substrate in an aqueous solution of a cationic surfactant.

本発明の請求項4記載の発明は、請求項1〜3のいずれかに記載の方法により得られた貴金属粒子が基材表面に存在する物を還元剤水溶液で処理する工程、および前記処理工程物を無電解メッキ液に浸漬する工程を有することを特徴とする下記積層体の製造方法の発明である。
基材表面に粒径が10nm以下の貴金属粒子が存在する物であって、前記貴金属粒子はその粒子の一部分が前記基材中に埋まっており、粒子の全ての部分が基材に埋まっている貴金属粒子は存在しないことを特徴とする貴金属粒子が基材表面に存在する物の表面に、金属皮膜が配置されていることを特徴とする積層体。
本発明の請求項5記載の発明は、請求項1〜3のいずれかに記載の方法により得られた貴金属粒子が基材表面に存在する物を還元剤水溶液で処理する工程、および前記処理工程物を無電解メッキ液に浸漬する工程を有することを特徴とする下記積層体の製造方法の発明である。
基材表面に粒径が10nm以下の貴金属粒子が存在する物であって、前記貴金属粒子はその粒子の一部分が前記基材中に埋まっており、粒子の全ての部分が基材に埋まっている貴金属粒子は存在しないことを特徴とする貴金属粒子が基材表面に存在する物の表面に、厚さが10〜200nmの金属皮膜が配置されていることを特徴とする積層体。
本発明の請求項6記載の発明は、請求項1〜3のいずれかに記載の方法により得られた貴金属粒子が基材表面に存在する物を無電解メッキ液に浸漬する工程を有することを特徴とする下記積層体の製造方法の発明である。
基材表面に粒径が10nm以下の貴金属粒子が存在する物であって、前記貴金属粒子はその粒子の一部分が前記基材中に埋まっており、粒子の全ての部分が基材に埋まっている貴金属粒子は存在しないことを特徴とする貴金属粒子が基材表面に存在する物の表面に、金属皮膜が配置されていることを特徴とする積層体。
本発明の請求項8記載の発明は、金属無電解メッキ液が、金、銀、ニッケル、コバルト、銅の無電解メッキ液の中から選ばれた少なくとも1種である請求項4〜7のいずれかに記載の積層体の製造方法の発明である。
Invention of Claim 4 of this invention is a process which processes the thing which the noble metal particle obtained by the method in any one of Claims 1-3 exists in the base-material surface with a reducing agent aqueous solution, and the said process process It is the invention of the following method for producing a laminate, comprising the step of immersing an object in an electroless plating solution.
A noble metal particle having a particle size of 10 nm or less is present on the surface of the substrate, and the noble metal particle has a part of the particle embedded in the substrate, and the entire part of the particle is embedded in the substrate. A laminate comprising a metal film disposed on a surface of a precious metal particle existing on the surface of a base material, characterized in that no precious metal particle is present.
The invention according to claim 5 of the present invention is a process in which a noble metal particle obtained by the method according to any one of claims 1 to 3 is treated with an aqueous reducing agent solution, and the treatment process. It is the invention of the following method for producing a laminate, comprising the step of immersing an object in an electroless plating solution.
A noble metal particle having a particle size of 10 nm or less is present on the surface of the substrate, and the noble metal particle has a part of the particle embedded in the substrate, and the entire part of the particle is embedded in the substrate. A laminate comprising a metal film having a thickness of 10 to 200 nm disposed on a surface of a substrate on which the noble metal particles are present, wherein noble metal particles are present.
Invention of Claim 6 of this invention has the process of immersing the thing in which the noble metal particle obtained by the method in any one of Claims 1-3 exists in the base-material surface in an electroless-plating liquid. It is invention of the manufacturing method of the following laminated body characterized.
A noble metal particle having a particle size of 10 nm or less is present on the surface of the substrate, and the noble metal particle has a part of the particle embedded in the substrate, and the entire part of the particle is embedded in the substrate. A laminate comprising a metal film disposed on a surface of a precious metal particle existing on the surface of a base material, characterized in that no precious metal particle is present.
The invention according to claim 8 of the present invention is that the metal electroless plating solution is at least one selected from gold, silver, nickel, cobalt and copper electroless plating solutions. It is invention of the manufacturing method of the laminated body as described in this.

以下、本発明を詳細に説明する。
本発明で用いる基材としては熱可塑性ポリマーまたは加熱により軟化するポリマーであることが好ましいが、所期の目的を達成することができる材質のものであれば特に制限されない。熱可塑性ポリマーまたは加熱により軟化するポリマーの例としてはポリエステル、ポリアミド、ポリカーボネート、ポリメチルメタアクリレート等のアクリル系樹脂、アクリロニトリルブタジエンスチレン樹脂(ABS樹脂)、ポリエチレン、ポリプロピレンなどのポリオレフィン、ポリスチレン、ポリ塩化ビニル、ポリアセタール、ポリフェニレンスルフィド、熱可塑性ポリウレタン、熱可塑性を有するエポキシ樹脂、熱可塑性ポリイミドなどが挙げられるが、それらに何ら限定されない。
基材の形状については特に限定されないのであって、例えば、フィルム状物、板状物、線状物、繊維状物、任意の形状の成形物や積層体等を例示できる。また、例えば熱可塑性ポリマーのコーティング層など熱可塑性の塗膜を有する任意の形状の物も好ましい例として例示できる。前記基材の大きさも特に限定されない。
Hereinafter, the present invention will be described in detail.
The substrate used in the present invention is preferably a thermoplastic polymer or a polymer that is softened by heating, but is not particularly limited as long as it is a material that can achieve the intended purpose. Examples of thermoplastic polymers or polymers that soften when heated include acrylic resins such as polyester, polyamide, polycarbonate, polymethyl methacrylate, acrylonitrile butadiene styrene resin (ABS resin), polyolefins such as polyethylene and polypropylene, polystyrene, and polyvinyl chloride. , Polyacetal, polyphenylene sulfide, thermoplastic polyurethane, epoxy resin having thermoplasticity, thermoplastic polyimide and the like, but are not limited thereto.
The shape of the substrate is not particularly limited, and examples thereof include a film-like product, a plate-like product, a linear product, a fiber-like product, a molded product having a desired shape, and a laminate. Moreover, the thing of arbitrary shapes which have thermoplastic coating films, such as a coating layer of a thermoplastic polymer, for example can be illustrated as a preferable example. The size of the substrate is not particularly limited.

本発明の貴金属粒子の粒径は10nm以下であり、この点が本発明の大きな特徴の一つである。ここでいう粒径が10nm以下とは、基材表面に存在する全ての貴金属粒子を基準として、95%以上の粒子の粒径が10nm以下であるという意味である。さらには、98%以上の粒子の粒径が10nm以下であることがより好ましい。貴金属粒子の下限値は特に制限されない。しかし、強いて記載するなら,2nmを例示できるが、本発明はこの数字に限定されるということではない。
本発明においては、電子顕微鏡を用いて常法により当該粒子の粒径を測定する。より具体的には、貴金属粒子が基材表面に存在する物を樹脂に埋め込んだ後極めて薄い切片を作り、電子顕微鏡を用い常法により測定する。前記樹脂は特に制限されないのであって、用いた基材や貴金属粒子により最適な樹脂を使用すればよい。
貴金属粒子としては、白金、パラジウム、ロジウム、ルテニウム、金、銀、イリジウム、オスミウムの粒子を例示できるが、それらに何ら限定されない。
The particle diameter of the noble metal particles of the present invention is 10 nm or less, and this is one of the major features of the present invention. Here, the particle size of 10 nm or less means that the particle size of 95% or more of the particles is 10 nm or less on the basis of all noble metal particles present on the substrate surface. Furthermore, the particle size of 98% or more of the particles is more preferably 10 nm or less. The lower limit value of the noble metal particles is not particularly limited. However, if it is strongly described, 2 nm can be exemplified, but the present invention is not limited to this number.
In the present invention, the particle size of the particles is measured by an ordinary method using an electron microscope. More specifically, after embedding a precious metal particle on the substrate surface in a resin, an extremely thin section is prepared and measured by an ordinary method using an electron microscope. The resin is not particularly limited, and an optimal resin may be used depending on the used base material and noble metal particles.
Examples of the noble metal particles include platinum, palladium, rhodium, ruthenium, gold, silver, iridium, and osmium particles, but are not limited thereto.

本発明の貴金属粒子が基材表面に存在する物において、基材は任意の形状の成形物が好ましく、その大きさ、形状、厚みは特に制限されない。
前記基材の表面に存在する貴金属粒子は、その粒子の一部が基材に埋まった状態で存在することが本発明の大きな特徴である。粒子の一部がどの程度基材に埋まっているかの点は、特に制限されない。また、本発明の特徴の一つに、粒子の全ての部分が基材に埋め込まれた貴金属粒子はないことも挙げられる。
本発明においては、電子顕微鏡を用いて常法により、粒子の一部が基材に埋まっている様子を確認することができる。具体的には前記のとおりである。粒子の全てが基材に埋まっているかの確認も上記方法と同様である。
本発明の貴金属粒子は強く基材に固定されていることも本発明の大きな特徴の一つである。
ここで、強く固定されているとは、市販のセロファンテープを本発明の貴金属粒子が基材表面に存在する物の貴金属粒子面に貼り付けた後、前記貴金属粒子面から剥がしたセロファンテープの粘着面に付着した貴金属粒子が付着していることが認められないことでもある。そこで、本発明の請求項1は、基材表面に粒径が10nm以下の貴金属粒子が存在する物であって、前記貴金属粒子はその粒子の一部分が前記基材中に埋まっており、粒子の全ての部分が基材に埋まっている貴金属粒子は存在せず、しかも粘着テープ試験等により前記貴金属粒子は剥離しないことを特徴とする貴金属粒子が基材表面に存在する物の発明でもある。
前記粘着テープ試験として、市販のセロファンテープを本発明の貴金属粒子が基材表面に存在する物の貴金属粒子面に所定圧にて貼り付け、室温下にて所定時間経過後、貴金属粒子面からセロファンテープを剥がす試験を例示できる。所定圧にて貼り付けるとは、例えば、自重数kgのローラーを用いて1往復又は数往復回付着したセロファンテープを押圧処理することを言い、所定時間は特に制限されないが、例えば、0.5〜5分間から適宜決定すればよい。貴金属粒子が剥離されたかどうかは、剥がしたセロファンテープの粘着面を観察することにより判断できる。例えば、前記剥がしたセロファンテープの粘着面の色が変化したと肉眼で認めることができたなら、粘着面に付着した貴金属粒子は基材表面から剥離したと知ることができる。
In the thing in which the noble metal particles of the present invention are present on the surface of the base material, the base material is preferably a molded product having an arbitrary shape, and the size, shape and thickness are not particularly limited.
A major feature of the present invention is that the noble metal particles present on the surface of the base material are present in a state where a part of the particles are embedded in the base material. The extent to which part of the particles are embedded in the substrate is not particularly limited. Another feature of the present invention is that there are no noble metal particles in which all of the particles are embedded in the substrate.
In the present invention, it is possible to confirm that a part of the particles are embedded in the base material by an ordinary method using an electron microscope. Specifically, as described above. The confirmation of whether all of the particles are embedded in the substrate is the same as the above method.
One of the major features of the present invention is that the noble metal particles of the present invention are strongly fixed to a substrate.
Here, the term “strongly fixed” means that after the cellophane tape of the present invention is attached to the surface of the noble metal particles of the present invention where the noble metal particles are present on the substrate surface, the cellophane tape peeled off from the surface of the noble metal particles is adhered. It is also not recognized that noble metal particles attached to the surface are attached. Therefore, claim 1 of the present invention is a product in which noble metal particles having a particle size of 10 nm or less are present on the surface of the substrate, and the noble metal particles are partially embedded in the substrate, There is no precious metal particle in which all parts are embedded in the base material, and the precious metal particle is present on the surface of the base material, characterized in that the precious metal particle does not peel off by an adhesive tape test or the like.
As the adhesive tape test, a commercially available cellophane tape was affixed to the surface of the noble metal particles of the present invention where the noble metal particles were present on the substrate surface at a predetermined pressure, and after a predetermined time at room temperature, cellophane was applied from the surface of the noble metal particles. The test which peels a tape can be illustrated. Affixing at a predetermined pressure refers to, for example, pressing the cellophane tape attached to the reciprocating one or several reciprocating times using a roller having a weight of several kg, and the predetermined time is not particularly limited. What is necessary is just to determine suitably from ~ 5 minutes. Whether or not the precious metal particles have been peeled can be determined by observing the adhesive surface of the peeled cellophane tape. For example, if it can be recognized with the naked eye that the color of the adhesive surface of the peeled cellophane tape has changed, it can be known that the noble metal particles adhering to the adhesive surface have peeled from the surface of the substrate.

前記貴金属粒子が基材表面に存在する物は、前記基材を貴金属ゾル中で処理する工程、および前記基材のガラス転移点以上でかつ融点以下の温度で、空気中又は不活性ガス中において前記基材を加熱処理する工程を経て製造することができる。   The precious metal particles are present on the surface of the base material in the step of treating the base material in a precious metal sol, and in the air or in an inert gas at a temperature not lower than the glass transition point and not higher than the melting point of the base material. It can be manufactured through a step of heat-treating the substrate.

前記貴金属ゾルは、液体中に、コロイド粒子と呼ばれる10nm又はこれ以下の粒径の貴金属粒子が均一に分散した形態をとるものとして知られている。前記貴金属粒子の液体中の量は1000ppm程度以下であることが好ましい。
本発明で用いる貴金属ゾルは本発明の所期の目的を達成することができる限り、何ら制限されないのであるが、例えば負電荷を持つ貴金属ナノ粒子を含む貴金属ゾルが好ましい。
前記貴金属ゾルは白金、パラジウム、ロジウム、ルテニウム、金、銀、イリジウム、オスミウムから選ばれる貴金属ゾルが好ましい。
The noble metal sol is known to take a form in which noble metal particles having a particle diameter of 10 nm or less, called colloidal particles, are uniformly dispersed in a liquid. The amount of the noble metal particles in the liquid is preferably about 1000 ppm or less.
The noble metal sol used in the present invention is not limited as long as the intended purpose of the present invention can be achieved. For example, a noble metal sol containing noble metal nanoparticles having a negative charge is preferable.
The noble metal sol is preferably a noble metal sol selected from platinum, palladium, rhodium, ruthenium, gold, silver, iridium, and osmium.

前記貴金属ゾルは貴金属含有化合物を原料として公知の方法により調製できる。例えば、水中で貴金属塩を還元剤で還元し、共存する保護物質により貴金属ゾルを保持させる貴金属ゾルの製法が知られている。特に、原料貴金属塩に含まれるハロゲンイオンが還元後の貴金属ナノ粒子の表面に吸着されて負電荷を持つ貴金属ナノ粒子を含む貴金属ゾルが調製される場合が多い。
貴金属ゾルとしては貴金属ヒドロゾルが好ましい。前記貴金属含有化合物としては、貴金属塩が好ましく、具体的には、塩化白金(VI)酸、塩化パラジウム(II)、塩化ロジウム(III)、塩化ルテニウム(III)、硝酸銀(I)等を例示できる。
前記還元剤としては、水素化ホウ素ナトリウム、水素化ホウ素カリウム、ジメチルアミンボラン、ヒドラジン、ホルムアルデヒド、クエン酸三ナトリウム
等を例示できる。前記保護物質として、水溶性ポリマー、蔗糖等を例示できる。
The noble metal sol can be prepared by a known method using a noble metal-containing compound as a raw material. For example, a method for producing a noble metal sol is known in which a noble metal salt is reduced with a reducing agent in water and the noble metal sol is retained by a coexisting protective substance. In particular, there are many cases where a noble metal sol containing noble metal nanoparticles having a negative charge is prepared by adsorbing halogen ions contained in a raw material noble metal salt on the surface of the reduced noble metal nanoparticles.
As the noble metal sol, a noble metal hydrosol is preferable. The noble metal-containing compound is preferably a noble metal salt, and specific examples thereof include platinum (VI) chloride, palladium (II) chloride, rhodium (III) chloride, ruthenium (III) chloride, silver nitrate (I) and the like. .
Examples of the reducing agent include sodium borohydride, potassium borohydride, dimethylamine borane, hydrazine, formaldehyde, and trisodium citrate. Examples of the protective substance include water-soluble polymers and sucrose.

前記貴金属含有化合物を原料として貴金属ゾルを調製するときには、安定剤を存在させることが好ましい。前記安定剤として、ポリビニルピロリドン、ポリビニルアルコール、ゼラチン等の水溶性ポリマー、蔗糖、クエン酸三ナトリウムなどから選ばれた安定剤を一種または二種以上を用いることが望ましい。前記安定剤の使用量は、共存する貴金属化合物の種類や量等によって変動するので一概に規定することができないが、例えば貴金属1(重量部)に対して0.1〜10(重量部)が好ましい。   When preparing a noble metal sol using the noble metal-containing compound as a raw material, it is preferable to have a stabilizer present. As the stabilizer, it is desirable to use one or more stabilizers selected from water-soluble polymers such as polyvinylpyrrolidone, polyvinyl alcohol and gelatin, sucrose, trisodium citrate and the like. The amount of the stabilizer used varies depending on the type and amount of the coexisting noble metal compound, and thus cannot be defined unconditionally. For example, 0.1 to 10 (parts by weight) of 1 (parts by weight) of the noble metal is 0.1 to 10 parts by weight. preferable.

前記基材を貴金属ゾルで処理する手段は特に限定されないのであって、用いる基材の種類や形状、用いる貴金属ゾルの種類や量に応じて最適な手段を選べばよい。
基材を貴金属ゾル中で処理する条件も特に限定されないのであって、用いる基材の種類や形状、用いる貴金属ゾルの種類や量に応じて最適な手段を選べばよく、例えば貴金属ゾル中に基材を室温下にて1分間程度以上浸漬すればよい。
The means for treating the base material with the noble metal sol is not particularly limited, and an optimum means may be selected according to the type and shape of the base material used and the type and amount of the precious metal sol used.
The conditions for treating the substrate in the noble metal sol are not particularly limited, and an optimum means may be selected according to the type and shape of the substrate to be used and the type and amount of the noble metal sol to be used. What is necessary is just to immerse a material at room temperature for about 1 minute or more.

本発明においては、基材を貴金属ゾル中に浸漬する前に、基材を陽イオン性界面活性剤水溶液中に浸漬処理することが好ましい。すなわち、前記浸漬した基材を引き上げ、水洗洗浄し、乾燥させた基材を、貴金属ゾル中に浸漬処理することが好ましい。
前記陽イオン性界面活性剤は、水に溶けるときに疎水性基のついている部分がプラスイオンに電離する界面活性剤を意味する。陽イオン性界面活性剤はアミン塩型と第4級アンモニウム塩型に分類される。本発明では第4級アンモニウム塩型を用いることが有利であり、例えば、アルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウム塩、アルキルジメチルベンジルアンモニウム塩、アルキルピリジニウム塩が有利である。その中でも炭素数が12〜22程度の長鎖4級アンモニウム化合物が好ましい。具体的には、塩化ステアリルトリメチルアンモニウム、臭化ヘキサデシルトリメチルアンモニウム、塩化ドデシルトリメチルアンモニウム等が好ましい。
前記陽イオン性界面活性剤の水溶液での陽イオン性界面活性剤の濃度は、0.001〜1重量%程度とすることが好ましい。前記範囲を外れると本発明の効果を達成しづらくなり、1重量%よりも高いとコストがかかり不利である。
前記陽イオン性界面活性剤の水溶液中に基材を浸漬する時間は特に制限されないが、例えば、室温下で数秒以下と短い時間で充分である。前記陽イオン性界面活性剤の水溶液中に基材を浸漬し、直ちに引き上げる操作でも充分である。さらに、基材を陽イオン性界面活性剤水溶液中に浸漬し、加熱してもよい。
In the present invention, before immersing the substrate in the noble metal sol, the substrate is preferably immersed in an aqueous cationic surfactant solution. That is, it is preferable to immerse the soaked base material in a noble metal sol by pulling up the above-mentioned base material, washing it with water, washing it and drying it.
The cationic surfactant means a surfactant that ionizes a portion having a hydrophobic group into positive ions when dissolved in water. Cationic surfactants are classified into amine salt types and quaternary ammonium salt types. In the present invention, it is advantageous to use a quaternary ammonium salt type. For example, alkyltrimethylammonium salt, dialkyldimethylammonium salt, alkyldimethylbenzylammonium salt, and alkylpyridinium salt are advantageous. Among them, a long chain quaternary ammonium compound having about 12 to 22 carbon atoms is preferable. Specifically, stearyl trimethyl ammonium chloride, hexadecyl trimethyl ammonium bromide, dodecyl trimethyl ammonium chloride and the like are preferable.
The concentration of the cationic surfactant in the aqueous solution of the cationic surfactant is preferably about 0.001 to 1% by weight. If it is out of the above range, it is difficult to achieve the effect of the present invention, and if it exceeds 1% by weight, the cost is disadvantageous.
The time for immersing the substrate in the aqueous solution of the cationic surfactant is not particularly limited. For example, a short time of several seconds or less at room temperature is sufficient. It is sufficient to immerse the substrate in an aqueous solution of the cationic surfactant and immediately pull it up. Furthermore, the substrate may be immersed in an aqueous cationic surfactant solution and heated.

基材を陽イオン性界面活性剤水溶液中に浸漬する手段は特に限定されないのであって、用いる基材の種類や形状、用いる陽イオン性界面活性剤水溶液の種類や量に応じて最適な手段を選べばよい。   The means for immersing the base material in the aqueous solution of the cationic surfactant is not particularly limited, and an optimum means is selected according to the type and shape of the base material used and the type and amount of the cationic surfactant aqueous solution used. Just choose.

なお、基材表面が親水性の場合には、当該基材を前記陽イオン性界面活性剤水溶液中に浸漬処理しなくとも、直接貴金属ゾルを塗布し乾燥することによって陽イオン性界面活性剤水溶液中に浸漬処理したときの効果と同等の効果をもたらす。ここで、基材表面が親水性の基材とは、材質自体が親水性のものからなる基材、または、何らかの処理を基材表面に施した基材等を挙げることができる。具体的には、材質自体が親水性のものを使用する例としては、ナイロンなどのポリアミドが挙げられる。何らかの処理を基材表面に施す例としては、アルカリ処理して表面にカルボキシル基を持たせたポリエステルや熱可塑性ポリイミド、コロナ放電により一時的に表面を親水化したポリスチレン等を挙げることができる。   When the substrate surface is hydrophilic, the cationic surfactant aqueous solution can be obtained by directly applying a precious metal sol and drying it without immersing the substrate in the cationic surfactant aqueous solution. It brings about the same effect as that of the immersion treatment. Here, the base material having a hydrophilic base surface may be a base material made of a hydrophilic material, or a base material that has been subjected to some treatment. Specifically, examples of using a hydrophilic material itself include polyamides such as nylon. Examples of applying some treatment to the surface of the substrate include polyesters and thermoplastic polyimides which have been subjected to alkali treatment to give carboxyl groups on the surface, polystyrene whose surfaces have been temporarily hydrophilized by corona discharge, and the like.

本発明では、上記貴金属ゾルに浸漬した基材を引き上げ、水洗洗浄し、乾燥させることが好ましい。この基材を加熱処理する際には、前記基材のガラス転移点以上でかつ融点以下の温度で、空気中または不活性ガス雰囲気下において前記基材を加熱処理することが好ましい。前記不活性ガスとしては、窒素ガス、アルゴンガスなどを例示できる。   In the present invention, it is preferable that the substrate immersed in the noble metal sol is pulled up, washed with water and dried. When heat-treating this base material, it is preferable to heat-treat the base material in air or in an inert gas atmosphere at a temperature not lower than the glass transition point of the base material and not higher than the melting point. Examples of the inert gas include nitrogen gas and argon gas.

ここでの加熱方法、加熱時間などは特に制限されないのであって、用いる基材や貴金属ゾルの種類や量などに応じて最適な組み合わせを選択すればよい。例えば、加熱時間は2分〜1時間を例示することができる。
ここで、ガラス転移点はすでに知られており、例えば非晶質の固体を加熱すると、流動性がなかった固体が、ある狭い温度範囲で急速に粘度が低下し流動性が増し、このときの温度をガラス転移点という。この測定法も広く知られている。
The heating method and heating time here are not particularly limited, and an optimal combination may be selected according to the type and amount of the base material or noble metal sol used. For example, the heating time can be 2 minutes to 1 hour.
Here, the glass transition point is already known. For example, when an amorphous solid is heated, the solid that does not have fluidity rapidly decreases in viscosity within a narrow temperature range and the fluidity increases. The temperature is called the glass transition point. This measurement method is also widely known.

かくして、本発明が規定する基材表面に貴金属粒子が存在する物を製造できる。前記基材表面に貴金属粒子が存在する物は、基材表面に貴金属粒子が強く固定されているので、後述した用途の他に、例えば、基材表面の硬度を上げること、摩擦係数や濡れ性を変えること、接着性を向上させることなど、基材の表面改質の手段に繋がり、幅広い用途に役立つといえる。   Thus, a product in which noble metal particles are present on the substrate surface defined by the present invention can be produced. In the case where the noble metal particles are present on the substrate surface, the noble metal particles are strongly fixed on the substrate surface. Therefore, in addition to the uses described later, for example, increasing the hardness of the substrate surface, the coefficient of friction and the wettability. It can be said that it is useful for a wide range of applications because it leads to means for modifying the surface of the base material, such as changing the thickness and improving the adhesion.

本発明の貴金属粒子が基材表面に存在する物は既に説明したとおりである。 本発明では、貴金属粒子が基材に強く固定されていることも特徴の一つといえるので、例えば、前記本発明が規定する粘着テープ試験により、基材表面から剥離した貴金属粒子が確認できない程度であれば、粒子の少しの部分も前記基材に埋まっていない貴金属粒子が少数含まれている場合も本発明の範囲内である。また、本発明の貴金属粒子が基材表面に存在する物を製造する過程において、微量の粒子が基材中に埋まって存在する場合も本発明の範囲内である。
本発明の貴金属粒子が基材に強く固定されていることは、基材表面に傷が付かない程度に指でこすっても、当該貴金属粒子が脱落することはなかったことが観察されたことからも支持される。
The thing which the noble metal particle of this invention exists in the base-material surface is as having demonstrated already. In the present invention, it can be said that one of the features is that the noble metal particles are strongly fixed to the base material. For example, in the adhesive tape test specified by the present invention, noble metal particles peeled off from the surface of the base material cannot be confirmed. If so, it is within the scope of the present invention to include a small number of noble metal particles that are not embedded in the base material in any part of the particles. Further, in the process of producing an article in which the noble metal particles of the present invention are present on the surface of the substrate, it is also within the scope of the present invention when a minute amount of particles are embedded in the substrate.
The fact that the noble metal particles of the present invention are strongly fixed to the base material was observed from the fact that the noble metal particles did not fall off even when rubbed with a finger to the extent that the surface of the base material was not scratched. Is also supported.

かくして、本発明が規定する基材表面に貴金属粒子が存在する物を製造できる。ここで、貴金属粒子が白金、パラジウム、ロジウム、ルテニウムの粒子のときは、各種の化学反応に対する担持触媒に用いられる。前記貴金属粒子が銀粒子のときは、抗菌材に用いられ、例えば、抗菌シートとして有効である。また、それらから容器などの成形体を製造すると、抗菌機能を有する成形体を製造できる。前記貴金属粒子が白金、パラジウムのときは無電解メッキ前駆体として有用である。本発明においては、これらの記載になんら限定されない。   Thus, a product in which noble metal particles are present on the substrate surface defined by the present invention can be produced. Here, when the noble metal particles are platinum, palladium, rhodium, and ruthenium particles, they are used as supported catalysts for various chemical reactions. When the noble metal particles are silver particles, they are used as an antibacterial material, and are effective, for example, as an antibacterial sheet. Moreover, if molded objects, such as a container, are manufactured from them, the molded object which has an antibacterial function can be manufactured. When the noble metal particle is platinum or palladium, it is useful as an electroless plating precursor. The present invention is not limited to these descriptions.

本発明が規定する基材表面に貴金属粒子が存在する物を無電解メッキする点について、以下、詳細に説明する。   The point where electroless plating is performed on the surface of the base material defined by the present invention where noble metal particles are present will be described in detail below.

前記基材表面に貴金属粒子が存在する物を無電解メッキする方法は特に限定されないのであって、用いる基材の種類や形状、用いる貴金属ゾルの種類、形成されるメッキ皮膜の持たせる性状、機能等に応じて最適な無電解メッキする方法を選べばよい。
メッキ皮膜を形成する金属としては、例えば、ニッケル、銅、金、白金、銀、パラジウムなどを例示できるが、本発明ではそれらに限定されない。
There is no particular limitation on the method of electroless plating the precious metal particles present on the surface of the base material. The type and shape of the base material to be used, the kind of precious metal sol to be used, the properties and functions of the plating film to be formed. An optimal electroless plating method may be selected according to the above.
Examples of the metal forming the plating film include nickel, copper, gold, platinum, silver, and palladium, but the present invention is not limited thereto.

例えば、前記基材表面に貴金属粒子が存在する物を無電解メッキ液に浸漬し、機材表面にメッキ皮膜を形成することができる。   For example, an object in which noble metal particles are present on the substrate surface can be immersed in an electroless plating solution to form a plating film on the surface of the equipment.

通常、前記無電解メッキ液は、メッキ皮膜を形成する金属含有化合物、還元剤、各種配合剤から形成される。
前記金属含有化合物としては、つぎのような化合物が知られている。例えば、塩化金(III)酸、臭化金(III)酸およびこれらのアルカリ金属(K,Na)塩等の金ハロゲン化塩、硫酸ニッケル(II)六水塩、硫酸銅(II)五水塩、硫酸コバルト(II)七水塩等が挙げられる。
その金属含有化合物のメッキ液中での濃度は用いる基材の種類や形状、形成させる貴金属の種類、形成されるメッキ皮膜の持たせる性状、機能等に応じて変動するので一概に規定することができないが、例えば、メッキ液に1〜100mMの濃度で存在させることが好ましい。
Usually, the electroless plating solution is formed from a metal-containing compound that forms a plating film, a reducing agent, and various compounding agents.
The following compounds are known as the metal-containing compound. For example, gold halide salts such as gold chloride (III) acid, gold bromide (III) acid and alkali metal (K, Na) salts thereof, nickel sulfate (II) hexahydrate, copper sulfate (II) pentahydrate Salt, cobalt sulfate (II) heptahydrate and the like.
The concentration of the metal-containing compound in the plating solution varies depending on the type and shape of the base material to be used, the type of noble metal to be formed, the properties and functions of the plated film to be formed, so it can be specified unconditionally. Although not possible, for example, it is preferably present in the plating solution at a concentration of 1 to 100 mM.

前記還元剤としては、次亜リン酸ナトリウム、過酸化水素、ジメチルアミンボラン、ヒドラジン、水素化ホウ素ナトリウムなどが挙げられる。
その金属含有化合物のメッキ液中での濃度は用いる基材の種類や形状、形成させる貴金属の種類、形成されるメッキ皮膜の持たせる性状、機能等に応じて変動するので一概に規定することができないが、例えば、メッキ液に1〜1000mMの濃度で存在させることが好ましい。
Examples of the reducing agent include sodium hypophosphite, hydrogen peroxide, dimethylamine borane, hydrazine, sodium borohydride and the like.
The concentration of the metal-containing compound in the plating solution varies depending on the type and shape of the base material to be used, the type of noble metal to be formed, the properties and functions of the plated film to be formed, so it can be specified unconditionally. Although not possible, for example, it is preferably present in the plating solution at a concentration of 1 to 1000 mM.

前記配合剤としては、界面活性剤、水溶性ポリマー、pH調整剤、緩衝剤、錯化剤が知られている。   As the compounding agent, a surfactant, a water-soluble polymer, a pH adjuster, a buffer, and a complexing agent are known.

前記界面活性剤としては、ドデシルベンゼンスルホン酸ナトリウム、ポリエチレングリコールエーテルなどを挙げることができる。   Examples of the surfactant include sodium dodecylbenzene sulfonate and polyethylene glycol ether.

前記水溶性ポリマーとしては、ゼラチン、ポリビニルアルコールなどを挙げることができる。   Examples of the water-soluble polymer include gelatin and polyvinyl alcohol.

前記pH調整剤としては、塩酸、水酸化ナトリウムなどを挙げることができる。緩衝剤としては、リン酸塩、乳酸、カルボン酸などを挙げることができる。錯化剤としては、乳酸、カルボン酸などを挙げることができる。   Examples of the pH adjuster include hydrochloric acid and sodium hydroxide. Examples of the buffer include phosphate, lactic acid, carboxylic acid and the like. Examples of the complexing agent include lactic acid and carboxylic acid.

前記処理した基材を上記無電解メッキ液に浸漬させる手段やメッキ皮膜を形成させる条件は特に制限されないのであって、用いる基材の種類や形状、形成させる貴金属の種類、形成されるメッキ皮膜の持たせる性状、機能等に応じて変動するので一概に規定することができないが、例えば、室温以上であって基材の融点以下の温度にて、数分から数時間程度基材を浸漬することが好ましい。
なお、本発明では、無電解メッキ用基材を無電解メッキ液中に浸漬し、基材のガラス転移点以上でかつ融点以下の温度において加熱処理することが特に好ましい。
このようにして形成されたメッキ皮膜は、当該皮膜が貴金属粒子に空隙無く密着しており、基材表面に強固に密着されている。
The means for immersing the treated substrate in the electroless plating solution and the conditions for forming the plating film are not particularly limited, and the type and shape of the substrate to be used, the type of precious metal to be formed, and the plating film to be formed Since it varies depending on the properties, functions, etc. to be given, it can not be specified unconditionally, but for example, it is possible to immerse the substrate for about several minutes to several hours at a temperature of room temperature or more and below the melting point of the substrate preferable.
In the present invention, it is particularly preferable to immerse the electroless plating substrate in an electroless plating solution and heat-treat at a temperature not lower than the melting point and not higher than the glass transition point of the substrate.
The plating film thus formed is in close contact with the noble metal particles without voids, and is firmly in close contact with the substrate surface.

無電解メッキ液は、処理の直前に調製することが望ましく、そのためには、たとえば金属含有化合物の水溶液と還元剤含有水溶液を別々につくっておき、この両者を使用直前に混合するのが便利である。   It is desirable to prepare the electroless plating solution immediately before the treatment. For this purpose, for example, it is convenient to prepare an aqueous solution of a metal-containing compound and an aqueous solution containing a reducing agent separately, and mix both of them immediately before use. is there.

本発明のメッキ技術は、プリント基板、電子デバイス実装パッケージ、フラットパネルディスプレー、太陽電池などの配線基盤、電極、あるいは電子機器の電磁波シールド膜などを構成する材料のメッキに応用することができる。   The plating technique of the present invention can be applied to plating of materials constituting a printed circuit board, an electronic device mounting package, a flat panel display, a wiring board such as a solar cell, an electrode, or an electromagnetic wave shielding film of an electronic device.

本発明により、粒子の一部が基材に埋まった貴金属粒子が基材表面に存在する物であって、粒子の全ての部分が基材中に埋め込まれた貴金属粒子は存在しない物(以下、本発明の物ということがある)が得られる。本発明の物は、所謂ナノ粒子が基材中に一部埋まり、一部露出した状態で基材表面に存在しているので、例えば触媒としての機能等の前記貴金属粒子が有する機能を効率的に果たすことができる。そのうえ、本発明の物は貴金属粒子の全てが基材中に埋め込まれてはいないため、無駄がなく経済的であるし、簡単な操作・方法で製造できるので有利である。また、貴金属粒子は基材に強く固定した状態であるうえ、貴金属粒子の凝集なども殆ど無く、貴金属粒子の粒度分布が広くはないなどの点でも有利である。さらに、操作が煩雑な従来法と比較すると、操作の煩雑さも改善されている。また、本発明の物は貴金属粒子が基材表面に強く固定されているので、例えば、触媒や抗菌材など貴金属粒子が機能する用途に有効である。
特に、本発明の物を無電解メッキ前駆体として用いると、金属皮膜が貴金属粒子に空隙無く密着している程度まで優れた密着性を有するメッキ皮膜が形成されるのであり、その点でも有利である。
According to the present invention, the precious metal particles in which part of the particles are embedded in the base material are present on the surface of the base material, and the precious metal particles in which all the parts of the particles are embedded in the base material are not present (hereinafter, (Sometimes referred to as the product of the present invention). In the present invention, since the so-called nanoparticles are partially embedded in the base material and are partly exposed on the surface of the base material, the functions of the noble metal particles such as the function of the catalyst are efficiently obtained. Can be fulfilled. In addition, since the precious metal particles are not embedded in the base material, the product of the present invention is advantageous because it is economical and can be manufactured by a simple operation and method. Further, the noble metal particles are advantageous in that they are strongly fixed to the base material, there is almost no aggregation of the noble metal particles, and the particle size distribution of the noble metal particles is not wide. Furthermore, the complexity of the operation is improved as compared with the conventional method which is complicated. In addition, since the noble metal particles are strongly fixed to the substrate surface, the product of the present invention is effective for applications where the noble metal particles function, such as catalysts and antibacterial materials.
In particular, when the product of the present invention is used as an electroless plating precursor, a plating film having excellent adhesion is formed to the extent that the metal film adheres to the noble metal particles without voids, which is also advantageous in that respect. is there.

以下、本発明を実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されない。なお、数字は特に記載しない限り重量%、重量部である。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples. Note that the numbers are% by weight and parts by weight unless otherwise specified.

実施例1a 貴金属ゾルの調製
20mM-塩化白金酸(IV)水溶液(2.5mL)を純水で94mLに希釈し、室温下で攪拌しながら、1%-ポリビニルピロリドンK-30水溶液(1mL)および40mL-水素化ホウ素ナトリウム水溶液(5mL)を順次加え、数日放置して、暗褐色透明な白金ヒドロゾル(Pt-PVP、100mL)を得た。
Example 1a Preparation of noble metal sol 20 mM-chloroplatinic acid (IV) aqueous solution (2.5 mL) was diluted to 94 mL with pure water and stirred at room temperature with 1% -polyvinylpyrrolidone K-30 aqueous solution (1 mL) and 40 mL-sodium borohydride aqueous solution (5 mL) was sequentially added and allowed to stand for several days to obtain a dark brown transparent platinum hydrosol (Pt-PVP, 100 mL).

実施例1b 貴金属粒子が基材表面に存在する物の製造
ポリエチレンテレフタレート(PET)フィルム(東レ(株)製、2cm×4cm、100μm厚)を0.1%-塩化ステアリルトリメチルアンモニウム水溶液中に数秒間浸漬したのち水洗し、さらに、実施例1aで調製されたPt-PVP中に1分間浸漬し水洗した。乾燥させた後、空気中、180℃において5分間加熱して、白金粒子が基材表面に存在するPETフィルムを得た。
前記白金粒子が基材表面に存在するPETフィルムを、光硬化性樹脂(JEOL Datum社製の D800)に埋め込み、ミクロトーム(RMC社 製のMTXL型)を用いて超薄切片を作製した。当該超薄切片を透過型電子顕微鏡(LEO社製の922型)により観察した。その結果、PETフィルム表面に、粒径10nm以下の白金粒子が一部をフィルム中に埋め込まれた状態で存在することが確認され、その白金粒子の多くはその粒径が2〜4nmであることも確認された。フィルム中に埋め込まれていない白金粒子は無かった。これらの白金粒子はフィルムに強く結合していて、下記粘着テープ試験によっても白金粒子の剥れを確認できなかった。
Example 1b Production of Precious Metal Particles Present on Substrate Surface Polyethylene terephthalate (PET) film (manufactured by Toray Industries, Inc., 2 cm × 4 cm, 100 μm thickness) in 0.1% -stearyltrimethylammonium chloride aqueous solution for several seconds After soaking, it was washed with water, and further immersed in Pt-PVP prepared in Example 1a for 1 minute and washed with water. After drying, it was heated in air at 180 ° C. for 5 minutes to obtain a PET film in which platinum particles were present on the substrate surface.
The PET film in which the platinum particles are present on the substrate surface was embedded in a photocurable resin (D800 manufactured by JEOL Datum), and an ultrathin section was prepared using a microtome (MTXL type manufactured by RMC). The ultrathin section was observed with a transmission electron microscope (type 922 manufactured by LEO). As a result, it was confirmed that platinum particles having a particle size of 10 nm or less exist on the surface of the PET film in a state of being partially embedded in the film, and most of the platinum particles have a particle size of 2 to 4 nm. Was also confirmed. There were no platinum particles not embedded in the film. These platinum particles were strongly bonded to the film, and peeling of the platinum particles could not be confirmed by the following adhesive tape test.

(粘着テープ試験)
上記PETフィルムの白金粒子存在面に市販のセロファンテープを貼り付け、自重2kgのローラーを用いて3往復して前記セロファンテープを押圧処理し、次いで室温下3分間経過後、当該セロファンテープを引き剥がし、セロファンテープの粘着剤層の表面を観察し、未処理のセロファンテープの粘着剤層の表面と肉眼で対比判断して、セロファンテープに付着した白金粒子の有無を判断する(以下、同様)。
(Adhesive tape test)
A commercially available cellophane tape is affixed to the surface of the PET film where platinum particles are present, and the cellophane tape is pressed 3 times using a roller with a weight of 2 kg, and after 3 minutes at room temperature, the cellophane tape is peeled off. The surface of the pressure-sensitive adhesive layer of the cellophane tape is observed, and the surface of the pressure-sensitive adhesive layer of the untreated cellophane tape is compared with the naked eye to determine the presence or absence of platinum particles attached to the cellophane tape (hereinafter the same).

実施例2 積層体の製造
実施例1bで得られた表面に白金粒子が存在するPETフィルムを、40mM-水素化ホウ素ナトリウム水溶液中に1分間浸漬した後、水洗し、さらに、等体積の20mM-塩化金(III)酸水溶液と40mL-過酸化水素水溶液を使用直前に混合して得た無電解金メッキ液(4mL)中に室温下で5分間浸漬して金の皮膜を形成させ、水洗、乾燥して、金メッキされたPETフィルムを得た。
この金メッキ皮膜は良好な密着性を示し、粘着テープ試験による剥れは全く認められなかった。実施例1bと同様に操作し、超薄切片を透過型電子顕微鏡により観察した。その結果、PETフィルム表面に、粒径10nm以下の白金粒子が一部をフィルム中に埋め込まれた状態で存在することが確認され、その白金粒子の多くはその粒径が2〜4nmであることも確認された。また空隙なく白金粒子の露出部分に結合した厚さ40nmの一様な金メッキ皮膜が存在することが確認された。
上記金メッキ皮膜の密着性試験はJIS K5600-5-6に準拠した。具体的には上記6ナイロンフィルムのメッキ皮膜面にカッターナイフで軽く縦横6本づつの溝を入れ、セロファンテープを貼り付けた上で、当該セロファンテープを引き剥がし、セロファンテープと共に引き剥がされた小片の個数から金メッキ皮膜の密着性を知ることができる(以下、同様)。
Example 2 Production of Laminate A PET film having platinum particles on the surface obtained in Example 1b was immersed in a 40 mM-sodium borohydride aqueous solution for 1 minute, then washed with water, and further an equal volume of 20 mM- A gold film is formed by immersion in an electroless gold plating solution (4 mL) obtained by mixing a gold chloride (III) acid aqueous solution and 40 mL-hydrogen peroxide aqueous solution immediately before use at room temperature, washed with water and dried. As a result, a gold-plated PET film was obtained.
This gold-plated film showed good adhesion, and no peeling was observed by the adhesive tape test. By operating in the same manner as in Example 1b, ultrathin sections were observed with a transmission electron microscope. As a result, it was confirmed that platinum particles having a particle size of 10 nm or less exist on the surface of the PET film in a state of being partially embedded in the film, and most of the platinum particles have a particle size of 2 to 4 nm. Was also confirmed. Further, it was confirmed that there was a uniform gold plating film having a thickness of 40 nm bonded to the exposed portion of the platinum particles without voids.
The adhesion test of the gold plating film was based on JIS K5600-5-6. Specifically, the 6 nylon film plating film surface is lightly cut with a cutter knife in 6 vertical and horizontal grooves, cellophane tape is applied, the cellophane tape is peeled off, and the small pieces peeled off with the cellophane tape are peeled off. The adhesion of the gold plating film can be known from the number of the same (hereinafter the same).

実施例3 貴金属粒子が基材表面に存在する物の製造
PETフィルム(2cm×4cm、100μm厚)を0.1%-塩化ステアリルトリメチルアンモニウム水溶液中に数秒間浸漬したのち水洗し、さらに、Pt-PVP中に1分間浸漬し水洗した。乾燥させた後、窒素中、180℃において5分間加熱して、PETフィルムおよび白金粒子から成る貴金属粒子が基材表面に存在する物を得た。
前記貴金属粒子が基材表面に存在する物を実施例1bと同様に操作し、作製された超薄切片を透過型電子顕微鏡により観察した。その結果、PETフィルム表面に、粒径10nm以下の白金粒子が一部をフィルム中に埋め込まれた状態で存在することが確認され、その白金粒子の多くはその粒径が2〜4nmであることも確認された。これらの白金粒子はフィルムに強く結合していて、粘着テープ試験によっても剥れなかった。
Example 3 Production of precious metal particles present on the substrate surface
A PET film (2 cm × 4 cm, 100 μm thickness) was immersed in a 0.1% -stearyltrimethylammonium chloride aqueous solution for several seconds, then washed with water, and further immersed in Pt-PVP for 1 minute and washed with water. After drying, heating was performed in nitrogen at 180 ° C. for 5 minutes to obtain a material in which noble metal particles composed of a PET film and platinum particles were present on the substrate surface.
The precious metal particles were present on the substrate surface in the same manner as in Example 1b, and the prepared ultrathin slices were observed with a transmission electron microscope. As a result, it was confirmed that platinum particles having a particle size of 10 nm or less exist on the surface of the PET film in a state of being partially embedded in the film, and most of the platinum particles have a particle size of 2 to 4 nm. Was also confirmed. These platinum particles were strongly bonded to the film and did not peel off by the adhesive tape test.

実施例4 積層体の製造
実施例3で得られた白金粒子を含むPETフィルムを、等体積の20mM-塩化金(III)酸水溶液と40mM-過酸化水素水溶液を使用直前に混合して得た無電解金メッキ液(4mL)中に室温下で5分間浸漬して金の皮膜を形成させ、水洗、乾燥して、金メッキしたPETフィルムを得た。
この金メッキ皮膜は良好な密着性を示し、実施例2に示した粘着テープ試験による剥れは全く認められなかった。実施例1bと同様に操作し、超薄切片を透過型電子顕微鏡により観察した。その結果、PETフィルム表面に、粒径10nm以下の白金粒子が一部をフィルム中に埋め込まれた状態で存在することが確認され、その白金粒子の多くはその粒径が2〜4nmであることも確認された。また空隙なく白金粒子の露出部分に結合した厚さ40nmの一様な金メッキ皮膜が存在することが確認された。
Example 4 Production of Laminate A PET film containing the platinum particles obtained in Example 3 was obtained by mixing an equal volume of 20 mM aqueous solution of gold (III) chloride and 40 mM aqueous solution of hydrogen peroxide immediately before use. It was immersed in an electroless gold plating solution (4 mL) at room temperature for 5 minutes to form a gold film, washed with water and dried to obtain a gold-plated PET film.
This gold-plated film showed good adhesion, and no peeling by the adhesive tape test shown in Example 2 was observed. By operating in the same manner as in Example 1b, ultrathin sections were observed with a transmission electron microscope. As a result, it was confirmed that platinum particles having a particle size of 10 nm or less exist on the surface of the PET film in a state of being partially embedded in the film, and most of the platinum particles have a particle size of 2 to 4 nm. Was also confirmed. Further, it was confirmed that there was a uniform gold plating film having a thickness of 40 nm bonded to the exposed portion of the platinum particles without voids.

実施例5a 貴金属ゾルの調製
蔗糖(1g)の水溶液(92.5mL)に、室温下で攪拌しながら20mM-塩化パラジウム(II)水溶液(100mMの塩化ナトリウムを含む、2.5mL)および40mM-水素化ホウ素ナトリウム水溶液(5mL)を順次加え、1日放置して、暗褐色透明なパラジウムヒドロゾル(Pd-suc、100mL)を得た。
Example 5a Preparation of noble metal sol To a solution (92.5 mL) of sucrose (1 g), 20 mM-palladium (II) chloride aqueous solution (containing 100 mM sodium chloride, 2.5 mL) and 40 mM-hydrogen were stirred at room temperature. Sodium borohydride aqueous solution (5 mL) was sequentially added and left for 1 day to obtain a dark brown transparent palladium hydrosol (Pd-suc, 100 mL).

実施例5b 貴金属粒子が基材表面に存在する物の製造
ポリエチレンテレフタレート(PET)フィルム(東レ(株)製、2cm×4cm、100μm厚)を0.1%-塩化ステアリルトリメチルアンモニウム水溶液中に数秒間浸漬したのち水洗し、さらに、実施例5aで調製されたPd-suc中に30分間浸漬し水洗した。これを乾燥させた後、空気中、180℃において5分間加熱して、パラジウム粒子が基材表面に存在するPETフィルムを得た。
前記パラジウム粒子が基材表面に存在するPETフィルムを、実施例1bと同様に操作し、超薄切片を透過型電子顕微鏡により観察した。その結果、PETフィルム表面には、粒径10nm以下のパラジウム粒子が一部をフィルム中に埋め込まれた状態で存在することが確認され、そのパラジウム粒子の多くはその粒径が3〜5nmであることも確認された。そのパラジウム粒子はフィルムに強く結合していて、実施例1bに示した粘着テープ試験によっても脱落することはなかった。
Example 5b Production of Precious Metal Particles Present on Substrate Surface Polyethylene terephthalate (PET) film (manufactured by Toray Industries, Inc., 2 cm × 4 cm, 100 μm thickness) in 0.1% -stearyltrimethylammonium chloride aqueous solution for several seconds After soaking, it was washed with water, and further immersed in Pd-suc prepared in Example 5a for 30 minutes and washed with water. This was dried and then heated in air at 180 ° C. for 5 minutes to obtain a PET film in which palladium particles were present on the substrate surface.
The PET film in which the palladium particles were present on the surface of the substrate was operated in the same manner as in Example 1b, and the ultrathin section was observed with a transmission electron microscope. As a result, it was confirmed that palladium particles having a particle size of 10 nm or less exist on the surface of the PET film in a state where a part of the palladium particles are embedded in the film, and most of the palladium particles have a particle size of 3 to 5 nm. It was also confirmed. The palladium particles were strongly bonded to the film and did not fall off by the adhesive tape test shown in Example 1b.

実施例6a 無電解ニッケルメッキ液の調製
硫酸ニッケル(II)六水塩(8mmol)、乳酸(30mmol)およびプロピオン酸(3mmol)を純水(約70mL)中に溶解し、次に、次亜リン酸ナトリウム(24mmol)を溶解した。さらに、1規定水酸化ナトリウム水溶液を加えてpHを4.5に調節し、総体積が100mLとなるまで純水を加えて無電解ニッケルメッキ液を得た(Thin Solid Films, 2007年、515巻、7798-7804ページの記載に準じた)。
Example 6a Preparation of Electroless Nickel Plating Solution Nickel (II) sulfate hexahydrate (8 mmol), lactic acid (30 mmol) and propionic acid (3 mmol) are dissolved in pure water (about 70 mL), and then hypophosphorous acid is added. Sodium acid (24 mmol) was dissolved. Further, 1N aqueous sodium hydroxide solution was added to adjust the pH to 4.5, and pure water was added until the total volume became 100 mL to obtain an electroless nickel plating solution (Thin Solid Films, 2007, volume 515). , According to the description on pages 7798-7804).

実施例6b 積層体の製造
実施例5bで調製されたパラジウム粒子が表面に存在するPETフィルムを、上記の無電解ニッケルメッキ液(5mL)中に70℃で10分間浸漬してニッケルの皮膜を形成させ、水洗、乾燥後して、ニッケルメッキされたPETフィルムを得た。
このニッケルメッキ皮膜は良好な密着性を示し、実施例2に示した密着性試験での粘着テープによる剥れは全く認められなかった。実施例1bと同様に操作して作製した超薄切片を透過型電子顕微鏡により観察した結果、PETフィルム表面に、粒径10nm以下のパラジウム粒子が一部をフィルム中に埋め込まれた状態で存在することが確認され、そのパラジウム粒子の多くはその粒径が3〜5nmであることも確認され、空隙なくそのパラジウム粒子の露出部分に結合した厚さ100nmの一様なニッケルメッキ皮膜が存在することが確認された。
Example 6b Manufacture of Laminate A PET film prepared on Example 5b with the palladium particles existing on the surface was immersed in the above electroless nickel plating solution (5 mL) at 70 ° C. for 10 minutes to form a nickel film. After washing with water and drying, a nickel-plated PET film was obtained.
This nickel plating film showed good adhesion, and no peeling by the adhesive tape in the adhesion test shown in Example 2 was observed. As a result of observing an ultrathin section produced by operating in the same manner as in Example 1b with a transmission electron microscope, palladium particles having a particle size of 10 nm or less exist on the surface of the PET film in a state where a part thereof is embedded in the film. It was confirmed that most of the palladium particles had a particle size of 3 to 5 nm, and there was a uniform nickel plating film with a thickness of 100 nm bonded to the exposed portion of the palladium particles without voids. Was confirmed.

本発明を次のように記載することもできる。
(1)基材表面に粒径が10nm以下の貴金属粒子が存在する物であって、前記貴金属粒子はその粒子の一部分が前記基材中に埋まっており、粒子の全ての部分が基材に埋まっている貴金属粒子は存在せず、しかも下記粘着テープ試験により前記貴金属粒子は剥離しないことを特徴とする貴金属粒子が基材表面に存在する物。セロファンテープを前記貴金属粒子が基材表面に存在する物の貴金属粒子面に貼り付け、室温下にて所定時間経過後、貴金属粒子面からセロファンテープを剥がす試験。
(2)基材を貴金属ゾル中に浸漬処理する工程、および前記基材のガラス転移点以上でかつ融点以下の温度で、空気中において前記基材を加熱処理する工程を有する方法により得られることを特徴とする請求項1記載の貴金属粒子が基材表面に存在する物。
(3)基材と該基材表面の貴金属ゾルとを加熱して得られることを特徴とする基材層と貴金属粒子層の積層体。
(4)貴金属粒子層を構成する貴金属粒子の一部が基材層に埋め込まれている上記3記載の積層体。
(5)上記1記載の構成物の貴金属粒子面に金属皮膜層が配置されたことを特徴とする積層体。
(6)上記3または4記載の積層体の貴金属粒子層の表面に金属皮膜層が配置されたことを特徴とする積層体。
The present invention can also be described as follows.
(1) A precious metal particle having a particle size of 10 nm or less is present on the surface of the base material, and the precious metal particle has a part of the particle embedded in the base material, and all the part of the particle is in the base material. A precious metal particle present on the surface of a base material, characterized in that no precious metal particles are buried and the precious metal particles are not peeled by the following adhesive tape test. A test in which the cellophane tape is attached to the surface of the noble metal particle of the precious metal particles existing on the surface of the substrate, and the cellophane tape is peeled off from the surface of the noble metal particle after a predetermined time at room temperature.
(2) It is obtained by a method comprising a step of immersing a substrate in a noble metal sol and a step of heat-treating the substrate in the air at a temperature not lower than the glass transition point and not higher than the melting point of the substrate. The precious metal particles according to claim 1, wherein the precious metal particles are present on the surface of the substrate.
(3) A laminate of a base material layer and a noble metal particle layer obtained by heating a base material and a noble metal sol on the surface of the base material.
(4) The laminate according to 3 above, wherein a part of the noble metal particles constituting the noble metal particle layer is embedded in the base material layer.
(5) A laminate in which a metal film layer is disposed on the surface of the noble metal particles of the constituent described in (1) above.
(6) A laminate in which a metal film layer is disposed on the surface of the noble metal particle layer of the laminate as described in 3 or 4 above.

Claims (8)

基材を貴金属ゾル中に浸漬処理する工程、および前記基材のガラス転移点以上でかつ融点以下の温度で、空気中において前記基材を加熱処理する工程を有することを特徴とする下記貴金属粒子が基材表面に存在する物の製造方法。
基材表面に粒径が10nm以下の貴金属粒子が存在する物であって、前記貴金属粒子はその粒子の一部分が前記基材中に埋まっており、粒子の全ての部分が基材に埋まっている貴金属粒子は存在しないことを特徴とする貴金属粒子が基材表面に存在する物。
The following noble metal particles comprising: a step of immersing the substrate in a noble metal sol; and a step of heat-treating the substrate in the air at a temperature not lower than the glass transition point and not higher than the melting point of the substrate. Is a method for producing an article on the substrate surface.
A noble metal particle having a particle size of 10 nm or less is present on the surface of the substrate, and the noble metal particle has a part of the particle embedded in the substrate, and the entire part of the particle is embedded in the substrate. An article in which noble metal particles are present on the substrate surface, characterized in that no noble metal particles are present.
基材を貴金属ゾル中に浸漬処理する工程、および前記基材のガラス転移点以上でかつ融点以下の温度で、不活性ガス雰囲気下において前記基材を加熱処理する工程を有することを特徴とする請求項1記載の貴金属粒子が基材表面に存在する物の製造方法。 A step of immersing the base material in a noble metal sol, and a step of heat-treating the base material in an inert gas atmosphere at a temperature not lower than the glass transition point and not higher than the melting point of the base material. The manufacturing method of the thing in which the noble metal particle of Claim 1 exists in the base-material surface. 基材を陽イオン性界面活性剤水溶液中に浸漬処理する工程をさらに有することを特徴とする請求項1又は2記載の貴金属粒子が基材表面に存在する物の製造方法。 3. The method for producing an article in which the noble metal particles are present on the surface of the substrate, further comprising a step of immersing the substrate in an aqueous cationic surfactant solution. 請求項1〜3のいずれかに記載の方法により得られた貴金属粒子が基材表面に存在する物を還元剤水溶液で処理する工程、および前記処理工程物を無電解メッキ液に浸漬する工程を有することを特徴とする下記積層体の製造方法。
基材表面に粒径が10nm以下の貴金属粒子が存在する物であって、前記貴金属粒子はその粒子の一部分が前記基材中に埋まっており、粒子の全ての部分が基材に埋まっている貴金属粒子は存在しないことを特徴とする貴金属粒子が基材表面に存在する物の表面に、金属皮膜が配置されていることを特徴とする積層体。
A step of treating a precious metal particle obtained by the method according to any one of claims 1 to 3 with a reducing agent aqueous solution, and a step of immersing the treatment step in an electroless plating solution. The manufacturing method of the following laminated body characterized by having.
A noble metal particle having a particle size of 10 nm or less is present on the surface of the substrate, and the noble metal particle has a part of the particle embedded in the substrate, and the entire part of the particle is embedded in the substrate. A laminate comprising a metal film disposed on a surface of a precious metal particle existing on the surface of a base material, characterized in that no precious metal particle is present.
請求項1〜3のいずれかに記載の方法により得られた貴金属粒子が基材表面に存在する物を還元剤水溶液で処理する工程、および前記処理工程物を無電解メッキ液に浸漬する工程を有することを特徴とする下記積層体の製造方法。
基材表面に粒径が10nm以下の貴金属粒子が存在する物であって、前記貴金属粒子はその粒子の一部分が前記基材中に埋まっており、粒子の全ての部分が基材に埋まっている貴金属粒子は存在しないことを特徴とする貴金属粒子が基材表面に存在する物の表面に、厚さが10〜200nmの金属皮膜が配置されていることを特徴とする積層体。
A step of treating a precious metal particle obtained by the method according to any one of claims 1 to 3 with a reducing agent aqueous solution, and a step of immersing the treatment step in an electroless plating solution. The manufacturing method of the following laminated body characterized by having.
A noble metal particle having a particle size of 10 nm or less is present on the surface of the substrate, and the noble metal particle has a part of the particle embedded in the substrate, and the entire part of the particle is embedded in the substrate. A laminate comprising a metal film having a thickness of 10 to 200 nm disposed on a surface of a substrate on which the noble metal particles are present, wherein noble metal particles are present.
請求項1〜3のいずれかに記載の方法により得られた貴金属粒子が基材表面に存在する物を無電解メッキ液に浸漬する工程を有することを特徴とする下記積層体の製造方法。
基材表面に粒径が10nm以下の貴金属粒子が存在する物であって、前記貴金属粒子はその粒子の一部分が前記基材中に埋まっており、粒子の全ての部分が基材に埋まっている貴金属粒子は存在しないことを特徴とする貴金属粒子が基材表面に存在する物の表面に、金属皮膜が配置されていることを特徴とする積層体。
The manufacturing method of the following laminated body characterized by including the process of immersing the thing in which the noble metal particle obtained by the method in any one of Claims 1-3 exists in the base-material surface in an electroless-plating liquid.
A noble metal particle having a particle size of 10 nm or less is present on the surface of the substrate, and the noble metal particle has a part of the particle embedded in the substrate, and the entire part of the particle is embedded in the substrate. A laminate comprising a metal film disposed on a surface of a precious metal particle existing on the surface of a base material, characterized in that no precious metal particle is present.
請求項1〜3のいずれかに記載の方法により得られた貴金属粒子が基材表面に存在する物を無電解メッキ液に浸漬する工程を有することを特徴とする下記積層体の製造方法。
基材表面に粒径が10nm以下の貴金属粒子が存在する物であって、前記貴金属粒子はその粒子の一部分が前記基材中に埋まっており、粒子の全ての部分が基材に埋まっている貴金属粒子は存在しないことを特徴とする貴金属粒子が基材表面に存在する物の表面に、厚さが10〜200nmの金属皮膜が配置されていることを特徴とする積層体。
The manufacturing method of the following laminated body characterized by including the process of immersing the thing in which the noble metal particle obtained by the method in any one of Claims 1-3 exists in the base-material surface in an electroless-plating liquid.
A noble metal particle having a particle size of 10 nm or less is present on the surface of the substrate, and the noble metal particle has a part of the particle embedded in the substrate, and the entire part of the particle is embedded in the substrate. A laminate comprising a metal film having a thickness of 10 to 200 nm disposed on a surface of a substrate on which the noble metal particles are present, wherein noble metal particles are present.
無電解メッキ液が、金、銀、ニッケル、コバルト、銅の無電解メッキ液の中から選ばれた少なくとも1種である請求項4〜7のいずれかに記載の積層体の製造方法。 The method for producing a laminate according to any one of claims 4 to 7, wherein the electroless plating solution is at least one selected from electroless plating solutions of gold, silver, nickel, cobalt, and copper.
JP2008323941A 2008-12-19 2008-12-19 Articles in which noble metal particles are present on the substrate surface, laminates and methods for producing them Active JP5099520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008323941A JP5099520B2 (en) 2008-12-19 2008-12-19 Articles in which noble metal particles are present on the substrate surface, laminates and methods for producing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008323941A JP5099520B2 (en) 2008-12-19 2008-12-19 Articles in which noble metal particles are present on the substrate surface, laminates and methods for producing them

Publications (2)

Publication Number Publication Date
JP2010143127A JP2010143127A (en) 2010-07-01
JP5099520B2 true JP5099520B2 (en) 2012-12-19

Family

ID=42564045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008323941A Active JP5099520B2 (en) 2008-12-19 2008-12-19 Articles in which noble metal particles are present on the substrate surface, laminates and methods for producing them

Country Status (1)

Country Link
JP (1) JP5099520B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9622483B2 (en) 2014-02-19 2017-04-18 Corning Incorporated Antimicrobial glass compositions, glasses and polymeric articles incorporating the same
US11039620B2 (en) 2014-02-19 2021-06-22 Corning Incorporated Antimicrobial glass compositions, glasses and polymeric articles incorporating the same
US11039621B2 (en) 2014-02-19 2021-06-22 Corning Incorporated Antimicrobial glass compositions, glasses and polymeric articles incorporating the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6011841B2 (en) * 2012-03-09 2016-10-19 国立研究開発法人産業技術総合研究所 Resin / copper plating laminate and method for producing the same
JP6287385B2 (en) * 2014-03-12 2018-03-07 日本ゼオン株式会社 Method for producing film with particles and film with particles
JP6466182B2 (en) * 2015-01-19 2019-02-06 国立研究開発法人産業技術総合研究所 Palladium hydrosol catalyst solution for electroless plating and preparation method thereof
US20190070631A1 (en) * 2016-03-11 2019-03-07 Dic Corporation Method for manufacturing laminate
DE102022116641A1 (en) * 2022-07-04 2024-01-04 Hochschule Niederrhein, Körperschaft des öffentlichen Rechts Process for the surface catalytic treatment of polymer fibers and/or polymer sheets and the use thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3883472B2 (en) * 2002-05-20 2007-02-21 株式会社アイ.エス.テイ Composite film and method for producing the same
US7274458B2 (en) * 2005-03-07 2007-09-25 3M Innovative Properties Company Thermoplastic film having metallic nanoparticle coating
JP2007080541A (en) * 2005-09-09 2007-03-29 Nissan Motor Co Ltd Organic transparent conductor, its manufacturing method, and current drive type element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9622483B2 (en) 2014-02-19 2017-04-18 Corning Incorporated Antimicrobial glass compositions, glasses and polymeric articles incorporating the same
US11039619B2 (en) 2014-02-19 2021-06-22 Corning Incorporated Antimicrobial glass compositions, glasses and polymeric articles incorporating the same
US11039620B2 (en) 2014-02-19 2021-06-22 Corning Incorporated Antimicrobial glass compositions, glasses and polymeric articles incorporating the same
US11039621B2 (en) 2014-02-19 2021-06-22 Corning Incorporated Antimicrobial glass compositions, glasses and polymeric articles incorporating the same
US11464232B2 (en) 2014-02-19 2022-10-11 Corning Incorporated Antimicrobial glass compositions, glasses and polymeric articles incorporating the same
US11470847B2 (en) 2014-02-19 2022-10-18 Corning Incorporated Antimicrobial glass compositions, glasses and polymeric articles incorporating the same
US11751570B2 (en) 2014-02-19 2023-09-12 Corning Incorporated Aluminosilicate glass with phosphorus and potassium

Also Published As

Publication number Publication date
JP2010143127A (en) 2010-07-01

Similar Documents

Publication Publication Date Title
JP5099520B2 (en) Articles in which noble metal particles are present on the substrate surface, laminates and methods for producing them
Garcia et al. ABS polymer electroless plating through a one-step poly (acrylic acid) covalent grafting
JP5358328B2 (en) Conductive particles, anisotropic conductive film, joined body, and connection method
Huang et al. Fabrication of selective electroless copper plating on PET sheet: effect of PET surface structure on resolution and adhesion of copper coating
JP2015523680A (en) Formation of conductive patterns using ink containing metal nanoparticles and nanowires
KR100883726B1 (en) Method of plating nonconductor product
Jones et al. Direct metallisation of polyetherimide substrates by activation with different metals
JP2010047828A (en) Pretreatment method for electroless plating and electroless plating method of substrate
JP5629641B2 (en) Conductive fine particles and method for producing the same
JP6671583B2 (en) Metal plating method
TW570870B (en) Composite material with improved binding strength and method for forming the same
JP4940512B2 (en) Method for forming electroless plating film of resin
JP7455859B2 (en) Method of activating the surface of a non-conductive or carbon fiber-containing substrate for metallization
JP5956553B2 (en) Resin product with plating film and manufacturing method thereof
JPH0561351B2 (en)
JP6130331B2 (en) Manufacturing method of resin product with metal film
JP2013185225A (en) Electroless plating method and structure having electroless-plated layer formed by the same
JP2014152350A (en) Adhesion improvement and removal method of electroless plating film and patterning method using the same
JP5199606B2 (en) Method for producing molded article subjected to electroless plating
JP2023539602A (en) Method of activating the surface of a non-conductive or carbon fiber-containing substrate for metallization
JP5445818B2 (en) Electroless plating method and activation pretreatment method
JP2009259900A (en) Resin substrate with noble metal fixed to surface layer thereof, and manufacturing method therefor, and circuit board and manufacturing method therefor
KR20170030707A (en) Electroless copper plating method using metal particle
Kim et al. Selective electroless deposition using photoinduced oxidation of Sn (II) compounds on surface-modified polyimide layers
JP2021006653A (en) Article with plating pattern and manufacturing method of the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120717

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5099520

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250