JP5445818B2 - Electroless plating method and activation pretreatment method - Google Patents

Electroless plating method and activation pretreatment method Download PDF

Info

Publication number
JP5445818B2
JP5445818B2 JP2008117200A JP2008117200A JP5445818B2 JP 5445818 B2 JP5445818 B2 JP 5445818B2 JP 2008117200 A JP2008117200 A JP 2008117200A JP 2008117200 A JP2008117200 A JP 2008117200A JP 5445818 B2 JP5445818 B2 JP 5445818B2
Authority
JP
Japan
Prior art keywords
nickel
plating
conductor
core
electroless plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008117200A
Other languages
Japanese (ja)
Other versions
JP2009263746A (en
Inventor
邦彦 赤井
中野  広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2008117200A priority Critical patent/JP5445818B2/en
Publication of JP2009263746A publication Critical patent/JP2009263746A/en
Application granted granted Critical
Publication of JP5445818B2 publication Critical patent/JP5445818B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemically Coating (AREA)

Description

本発明は、無電解めっき方法及び活性化前処理方法に関する。   The present invention relates to an electroless plating method and an activation pretreatment method.

金属は、導電性や剛直性、熱伝導性などの特徴を持ち、自動車、エレクトロニクス、半導体など各種分野で広く用いられている。特に、これら高度な技術発展が著しい分野では、金属は単一組成のものだけでなく、合金や樹脂含有金属など機能や特徴に合わせた複数の組成からなるものも用いられている。またこれらの金属の形態としては、延伸やプレス、打ち抜きなどの加工を用いて、板状や三次元的な成形物に加工し使用されている。   Metals have characteristics such as conductivity, rigidity, and heat conductivity, and are widely used in various fields such as automobiles, electronics, and semiconductors. In particular, in these fields where remarkable technological development is remarkable, not only metals having a single composition but also metals having a plurality of compositions in accordance with functions and characteristics such as alloys and resin-containing metals are used. In addition, these metal forms are used by processing into a plate-like or three-dimensional molded product by using processes such as stretching, pressing, and punching.

一方、プリント配線板や装飾分野では、導電層や腐食防止層などとして樹脂や金属の表面上に更に金属層を形成して使用している。このように樹脂上に金属層を形成したり、金属表面に異なる金属層を形成(積層)する方法としては、安価で簡便なめっき技術が用いられている。   On the other hand, in the printed wiring board and decoration fields, a metal layer is further formed on the surface of a resin or metal as a conductive layer or a corrosion prevention layer. As a method for forming a metal layer on the resin or forming (stacking) different metal layers on the metal surface in this way, an inexpensive and simple plating technique is used.

めっき技術には、電気めっきと無電解めっき(化学めっき)があり、電気めっきは外部電源と金属電極を接続し、金属イオンを電気により還元して金属を析出させる方法である。一方、無電解めっきは一般的に化学めっきともよばれ、化学反応を用いて金属を析出させる方法であり、還元型と置換型がある。還元型無電解めっきは、めっき液に溶解させた金属イオンを還元剤で還元させて析出させる方法である。一方、置換型無電解めっきは、金属のイオン化傾向の差を利用し、下地の金属よりも貴な金属を積層する場合に使用できる。どちらも、電気めっきのように電源、通電端子の形成が不要であり、より安価で簡便なめっき方法として各種分野で用いられている。(以後、還元型無電解めっきは無電解めっき、置換型無電解めっきは置換めっきと記する。)   Plating techniques include electroplating and electroless plating (chemical plating). Electroplating is a method in which an external power source and a metal electrode are connected and metal ions are reduced by electricity to deposit metal. On the other hand, electroless plating is generally called chemical plating and is a method of depositing metal using a chemical reaction, and there are a reduction type and a substitution type. Reduction type electroless plating is a method in which metal ions dissolved in a plating solution are reduced with a reducing agent and deposited. On the other hand, substitutional electroless plating can be used in the case of laminating a metal that is more precious than the underlying metal by utilizing the difference in ionization tendency of the metal. Both of them do not require the formation of a power source and energizing terminals as in electroplating, and are used in various fields as a cheaper and simpler plating method. (Hereinafter, reducing electroless plating is referred to as electroless plating, and substitutional electroless plating is referred to as displacement plating.)

無電解めっきと置換めっきは、特に低価格化と高精細化が著しいプリント配線板などで用途が拡大している。例えば、ドリル穴あけ後のスルーホール内めっきでは、まずスルーホール内にパラジウム触媒付与を行い、無電解銅めっきを行って層間の導通を確保している。これは、無電解めっきが触媒付与を行うことにより、プラスチックなどの不導体へも金属析出が可能である特徴を利用し、樹脂上に銅の導電層を形成した例である。   The use of electroless plating and displacement plating is expanding especially for printed wiring boards, which are remarkably low in price and high in definition. For example, in plating in a through hole after drilling, a palladium catalyst is first applied in the through hole, and electroless copper plating is performed to ensure conduction between layers. This is an example in which a copper conductive layer is formed on a resin by utilizing the feature that metal can be deposited on non-conductors such as plastics by electroless plating.

一方、導体である金属上に各種の金属を積層する場合にも、無電解めっきや置換めっきは使用される。例えば、半導体実装用プリント配線板では、ワイヤーボンディング用端子として、銅配線上にバリア及び触媒層として置換パラジウムめっきを行い、この上に無電解ニッケルめっきを行い、銅のバリア層としてニッケル層を形成し、更に置換金めっきを施し、最外層に金層を形成して、金ワイヤーとの接合性の高い端子を得ている。場合によっては、置換金めっき後に無電解金めっきを施し、金層をより厚く(厚付けめっき)して接続信頼性を高くしている。   On the other hand, electroless plating and displacement plating are also used when various kinds of metals are laminated on a metal that is a conductor. For example, in a printed wiring board for semiconductor mounting, as a terminal for wire bonding, replacement palladium plating is performed on a copper wiring as a barrier and a catalyst layer, electroless nickel plating is performed thereon, and a nickel layer is formed as a copper barrier layer Further, substitution gold plating is performed, and a gold layer is formed on the outermost layer to obtain a terminal having high bondability with a gold wire. In some cases, electroless gold plating is performed after displacement gold plating, and the gold layer is thickened (thick plating) to increase connection reliability.

置換めっきは、無電解めっきと比較して簡便で、下地金属と密着性の良いめっき層を形成できるが、下地金属よりも貴な金属を積層する場合にのみ使用でき、下地金属よりも卑な金属を積層する場合には使用できず、積層する金属の選択性が低い。   Displacement plating is simpler than electroless plating and can form a plating layer with good adhesion to the base metal, but it can be used only when laminating a noble metal than the base metal, and it is less basic than the base metal. When the metal is laminated, it cannot be used, and the selectivity of the metal to be laminated is low.

一方、無電解めっきは、下地金属上に触媒付与を行えば、均一な金属層の形成が可能であり、積層する金属の選択肢が広い。しかし、触媒を付与する必要があり、工程が長くなる点や、触媒に貴金属が使用されるためコストが掛かる点が欠点である。よって、高価な貴金属触媒を使用せずに、下地金属上に無電解めっきによって金属を積層することが求め
られている。
On the other hand, in electroless plating, if a catalyst is applied on a base metal, a uniform metal layer can be formed, and there are a wide range of metal options to be laminated. However, it is necessary to apply a catalyst, which is disadvantageous in that the process becomes long and the cost is high because noble metal is used for the catalyst. Therefore, it is required to laminate a metal by electroless plating on a base metal without using an expensive noble metal catalyst.

特許文献1によると、触媒付与無しに銅にのみ選択的に直接無電解ニッケルめっきができるとしている。これはホウ素系還元剤を用いた無電解ニッケルシステムの場合に、銅が触媒作用を示すことを利用したものであるが、この場合はめっき処理が不安定となり、めっき安定化を図るためには、還元剤の他に添加剤を加えることが必要となり、めっき皮膜の特性が限定される。無電解ニッケルめっきとして一般的に広く使われている次亜リン酸ナトリウムを還元剤としたシステムでは達成されない。
特許第3393190号公報
According to Patent Document 1, direct electroless nickel plating can be selectively performed only on copper without providing a catalyst. This is based on the fact that copper exhibits a catalytic action in the case of an electroless nickel system using a boron-based reducing agent. In this case, however, the plating process becomes unstable, and in order to stabilize plating. In addition to the reducing agent, it is necessary to add an additive, which limits the properties of the plating film. This cannot be achieved by a system using sodium hypophosphite as a reducing agent, which is generally widely used as electroless nickel plating.
Japanese Patent No. 3393190

このように、無電解めっきにおいては、下地金属と積層する金属、及び還元剤やpHを含めためっきのシステム全体が、積層させたい金属イオンの析出(還元)作用を発揮しなければならず、貴金属のような触媒を付与せずに金属を積層しようとすると、その金属の組み合わせは非常に限定的となってしまう。このため、無電解めっきを使用して、貴金属触媒を使用せず、積層する金属の組み合わせの制限がゆるい無電解めっき方法が求められていた。   In this way, in electroless plating, the entire plating system including the metal to be laminated with the base metal and the reducing agent and pH must exhibit the precipitation (reduction) action of metal ions to be laminated, When attempting to stack metals without applying a catalyst such as a noble metal, the combination of the metals is very limited. For this reason, there has been a demand for an electroless plating method that uses electroless plating, does not use a noble metal catalyst, and loosely restricts the combination of metals to be laminated.

本発明は、上記問題を解決するものであり、貴金属触媒を使用せず、無電解めっきシステムと積層する金属の組み合わせの制限が緩い無電解めっき方法を提供する。また、パラジウムや銀などの貴金属触媒を使用することなく、下地金属上に無電解めっきにより金属を積層する方法を提供する。更には、パラジウムや銀などの貴金属触媒を使用することなく、下地の金属より卑な金属を無電解めっき方法により積層する方法を提供する。更には、積層させる金属に対して触媒作用を発揮しない無電解めっきシステムを用いて、パラジウムや銀などの貴金属触媒を使用することなく、下地の金属上に異なる金属を無電解めっき方法により積層する方法を提供する。更には、パラジウムなどの貴金属触媒を使用せず、下地金属上に無電解めっきによって金属を積層させる為の、活性化前処理方法を提供する。   The present invention solves the above-described problems, and provides an electroless plating method that does not use a precious metal catalyst and has a loose restriction on the combination of the metal to be laminated with the electroless plating system. Moreover, the method of laminating | stacking a metal by electroless plating on a base metal, without using noble metal catalysts, such as palladium and silver, is provided. Furthermore, the present invention provides a method of laminating a base metal by an electroless plating method without using a noble metal catalyst such as palladium or silver. Furthermore, using an electroless plating system that does not exert a catalytic action on the metal to be laminated, different metals are laminated on the underlying metal by an electroless plating method without using a noble metal catalyst such as palladium or silver. Provide a method. Furthermore, there is provided an activation pretreatment method for laminating a metal by electroless plating on a base metal without using a noble metal catalyst such as palladium.

上記目的を達成するために、本発明は、(1)パラジウム、銀、白金などの貴金属触媒を表面に保有しない導電体へ、無電解ニッケルめっき層を形成する方法であって、a)表面にニッケルまたはニッケル合金を有する平均粒径10nm以上1mm以下の粉体である核体が、攪拌羽根による連続した攪拌操作により分散した水溶液を用意する工程と、b)金、銅、ニッケル又はニッケル合金のいずれかを表面に有する導電体を前記水溶液中に浸漬する工程と、c)次亜リン酸塩を還元剤とする無電解ニッケルめっき液を前記水溶液中に一定流速で添加する工程、又は、該無電解ニッケルめっき液の成分のうち、少なくともニッケルイオン溶液と還元剤溶液に分割し、それぞれを前記水溶液中に同時かつ並行に一定流速で添加する工程と、を含む導電体への無電解ニッケルめっき方法に関する。
また、本発明は、(2)導電体が、表面に銅と金を有する導電体である(1)に記載の導電体への無電解ニッケルめっき方法に関する。
又、本発明は、(3)導電体が、金、銅、ニッケル又はニッケル合金から1つ選ばれる金属を表面に有する導電体のうち、少なくとも異なる金属表面を有する2つ以上の導電体である(1)に記載の導電体への無電解ニッケルめっき方法に関する。
本発明の第1の特徴は、無電解めっき液中に核体が分散され、核体表面に無電解めっきにより導電層が析出中の核体を、導電体へ間欠的に接触させることを特徴とする導電体への無電解めっき方法であることを要旨とする。本発明の第1の特徴においては、無電解めっきにより導電層が析出中の核体を、導電体へ間欠的に接触することで、導電体表面の電位が、無電解めっきが進行中の核体表面の電位と近くなり、導電体上にも無電解めっき反応が発生し、導電層を析出することができる。更に、本発明の第1の特徴においては、核体を導電体へ間欠的に接触させるため、導電体上の導電層に核体が取り込まれず、導電体上に平滑な導電層を形成できる。更に、本発明の第1の特徴においては、核体を導電体へ間欠的に接触させるため、無電解めっき反応で析出する導電層と下地の導電体が同一組成であっても、異なっていても、下地の導電体によらず、選択的にムラ無く、均一な導電層を形成できる。
In order to achieve the above object, the present invention provides (1) a method of forming an electroless nickel plating layer on a conductor that does not have a noble metal catalyst such as palladium, silver or platinum on the surface, and a) on the surface A step of preparing an aqueous solution in which a core, which is a powder having an average particle diameter of 10 nm or more and 1 mm or less having nickel or a nickel alloy, is dispersed by a continuous stirring operation using a stirring blade; and b) of gold, copper, nickel or a nickel alloy A step of immersing a conductor having any of the surfaces in the aqueous solution, and c) a step of adding an electroless nickel plating solution containing hypophosphite as a reducing agent to the aqueous solution at a constant flow rate, or Dividing the components of the electroless nickel plating solution into at least a nickel ion solution and a reducing agent solution, and adding each to the aqueous solution simultaneously and in parallel at a constant flow rate. The present invention relates to a method for electroless nickel plating on a conductive material.
Moreover, this invention relates to the electroless nickel plating method to the conductor as described in (1) whose (2) conductor is a conductor which has copper and gold on the surface.
The present invention is also (3) two or more conductors having at least different metal surfaces among conductors having one surface selected from gold, copper, nickel, or nickel alloy. It is related with the electroless nickel plating method to the conductor as described in (1).
The first feature of the present invention is characterized in that the core is dispersed in the electroless plating solution, and the core in which the conductive layer is deposited on the surface of the core is intermittently brought into contact with the conductor. The gist of the present invention is the electroless plating method for the conductor. In the first feature of the present invention, the nucleus on which the conductive layer is deposited by electroless plating is intermittently brought into contact with the conductor so that the potential on the surface of the conductor is the nucleus on which electroless plating is in progress. It becomes close to the potential of the body surface, an electroless plating reaction occurs on the conductor, and the conductive layer can be deposited. Furthermore, in the first feature of the present invention, since the nucleus is intermittently brought into contact with the conductor, the nucleus is not taken into the conductive layer on the conductor, and a smooth conductive layer can be formed on the conductor. Furthermore, in the first feature of the present invention, since the core is intermittently brought into contact with the conductor, the conductive layer deposited by the electroless plating reaction and the underlying conductor are different even if they have the same composition. However, a uniform conductive layer can be selectively formed without unevenness regardless of the underlying conductor.

また、本発明の第2の特徴は、無電解めっき液中に核体が分散され、核体表面に無電解めっきにより導電層が析出中の核体が分散し、攪拌しているめっき液中へ、導電体を浸漬することを特徴とする導電体への無電解めっき方法であることを要旨とする。この発明によれば、導電層が析出中の核体が、導電体へ間欠的にムラなく接触することができる。   In addition, the second feature of the present invention is that in the plating solution in which nuclei are dispersed in the electroless plating solution, and the nuclei in which the conductive layer is deposited by electroless plating are dispersed on the surface of the nucleus. The gist of the present invention is an electroless plating method on a conductor characterized by immersing the conductor. According to this invention, the core body in which the conductive layer is being deposited can contact the conductor intermittently without unevenness.

また、本発明の第3の特徴は、無電解めっき液中に核体が分散され、核体表面に無電解めっきにより導電層が析出中の核体が分散している液中へ、導電体を浸漬し、導電体を揺動することを特徴とする導電体への無電解めっき方法であることを要旨とする。この発明によれば、導電層が析出中の核体が、導電体へ間欠的にムラなく接触することができる。   The third feature of the present invention is that the core is dispersed in the electroless plating solution, and the conductor is deposited in the liquid in which the core is deposited on the surface of the core by electroless plating. The subject matter of the present invention is a method of electroless plating on a conductor, characterized in that the conductor is immersed and the conductor is swung. According to this invention, the core body in which the conductive layer is being deposited can contact the conductor intermittently without unevenness.

また、本発明の第4の特徴は、導電体へ貴金属触媒の付与処理を行わないことを特徴とする無電解めっき方法であることを要旨とする。この発明によれば、パラジウムや金、銀、白金などの高価な貴金属触媒を使用しないため、コストがやすくなる。また、触媒付与の工程がなくなるため、工程短縮の効果がある。   Further, the fourth feature of the present invention is that it is an electroless plating method characterized by not applying a precious metal catalyst to the conductor. According to this invention, since expensive noble metal catalysts such as palladium, gold, silver, and platinum are not used, the cost becomes easy. In addition, since there is no catalyst application step, there is an effect of shortening the step.

また、本発明の第5の特徴は、核体が粉体または繊維状であることを特徴とする無電解めっき方法であることを要旨とする。この発明によれば、核体のサイズや形状を導電体の形状に合わせて選択できる。   Further, the fifth feature of the present invention is that it is an electroless plating method characterized in that the core is powdery or fibrous. According to the present invention, the size and shape of the core can be selected according to the shape of the conductor.

また、本発明の第6の特徴は、無電解めっきにより析出する導電層がニッケルまたはニッケル合金、導電体が金または銅またはニッケルまたはニッケル合金であることを特徴とする無電解めっき方法であることを要旨とする。   The sixth feature of the present invention is an electroless plating method characterized in that the conductive layer deposited by electroless plating is nickel or nickel alloy, and the conductor is gold, copper, nickel or nickel alloy. Is the gist.

また、本発明の第7の特徴は、核体の平均粒径が10nm以上10mm以下であることを特徴とする無電解めっき方法であることを要旨とする。この発明によれば、核体のサイズを任意に選択することが可能であることから、導電体の形状や無電解めっきまたは活性化前処理方法のシステムに合わせて核体の大きさを選択できる。   A seventh feature of the present invention is that it is an electroless plating method characterized in that the average particle size of the core is 10 nm or more and 10 mm or less. According to the present invention, since the size of the nucleus can be arbitrarily selected, the size of the nucleus can be selected in accordance with the shape of the conductor and the electroless plating or activation pretreatment method system. .

また、本発明の第8の特徴は、上記第1〜7の何れかの特徴を有する無電解めっき方法をめっき前処理とすることを特徴とする活性化前処理方法であることを要旨とする。   The eighth feature of the present invention is that it is an activation pretreatment method characterized in that the electroless plating method having any one of the first to seventh features is a pretreatment for plating. .

無電解めっきと下地金属の組み合わせの制限が緩い無電解めっきを提供する。更には、下地金属上に触媒処理を行わず、無電解めっきにより金属を析出させることができる。   Provide electroless plating with loose restrictions on the combination of electroless plating and base metal. Further, the metal can be deposited by electroless plating without performing catalyst treatment on the base metal.

図面を参照して、本発明の実施の形態を説明する。以下の図面の記載において、同一または類似の部分は、同一または類似の符号で表している。ただし、図面は模式的なものであり、数や長さ、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なる。したがって、具体的な厚みや寸法は、以下の説明を照らし合わせて判断するべきものである。また、これらは所望する機能や用途によってことなり、適宜判断するべきものである。また、図面相互間においても、互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。   Embodiments of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, the drawings are schematic, and the number and length, the relationship between the thickness and the planar dimensions, the ratio of the thickness of each layer, and the like are different from the actual ones. Therefore, specific thicknesses and dimensions should be determined in light of the following description. Further, these differ depending on the desired function and application, and should be appropriately determined. Moreover, it is a matter of course that the drawings include portions having different dimensional relationships and ratios.

図1に示す、本発明の第一の実施の形態に関わる導電層1とは、公知の無電解めっきで得ることが可能な材料である。本発明の無電解めっきとは、金属イオンを金属イオン還元剤の還元力で還元し析出させる方法を指す。このような導電層1として使用可能な具体的な材料は、金、プラチナ、銀、銅、鉛、パラジウム、錫、ニッケル、鉄、クロム、亜鉛、アルミなどの金属及びこれらの合金などである。その他の無電解めっきで得られる材料は、リン含有ニッケル、ホウ素含有ニッケル、フッ素含有ニッケルなどが挙げられる。耐腐食性の観点からは、金、プラチナ、パラジウム、ニッケルなどの金属が好ましい。   The conductive layer 1 according to the first embodiment of the present invention shown in FIG. 1 is a material that can be obtained by known electroless plating. The electroless plating of the present invention refers to a method of reducing and precipitating metal ions with the reducing power of a metal ion reducing agent. Specific materials that can be used as the conductive layer 1 include gold, platinum, silver, copper, lead, palladium, tin, nickel, iron, chromium, zinc, aluminum, and alloys thereof. Examples of other materials obtained by electroless plating include phosphorus-containing nickel, boron-containing nickel, and fluorine-containing nickel. From the viewpoint of corrosion resistance, metals such as gold, platinum, palladium, and nickel are preferable.

次亜リン酸を還元剤に用いた一般的な無電解ニッケルめっきでは、ニッケル皮膜中にリンが共析する。ニッケル中のリン含有割合は、還元型無電解めっきの液成分によって1〜14重量パーセントの範囲で自在に変更可能である。更にリン含有率は、ニッケル−リン皮膜の電気抵抗や硬度、磁性などの諸特性を左右するため、目的にあわせてリン含有量を調整するとよい。例えば、電気抵抗が低いニッケル−リン皮膜を得る場合は、リン含有率が5パーセント以下であることが好ましく、リン含有率は3パーセント以下であることがより好ましい。更に低抵抗にするには、リン含有率が1パーセント以下であることが特に好ましい。   In general electroless nickel plating using hypophosphorous acid as a reducing agent, phosphorus co-deposits in the nickel film. The phosphorus content ratio in nickel can be freely changed in the range of 1 to 14 weight percent depending on the liquid component of the reduction type electroless plating. Furthermore, since the phosphorus content affects various properties such as electric resistance, hardness, and magnetism of the nickel-phosphorus film, the phosphorus content may be adjusted according to the purpose. For example, when obtaining a nickel-phosphorus film having a low electric resistance, the phosphorus content is preferably 5% or less, and more preferably 3% or less. In order to further reduce the resistance, the phosphorus content is particularly preferably 1% or less.

ニッケル皮膜の硬度は、リン含有量とアニール条件によって左右されるため、所望の状態に合わせてリン含有率を調整する必要がある。めっき直後の硬度を高くするには、リン含有率が低い方が良い。具体的には、リン含有率が8パーセント以下であることが好ましく、更には5パーセント以下であることがより好ましい。更に硬度を高くするにはリン含有率は3パーセント以下であることが更に望ましく、1パーセント以下であることが特に好ましい。   Since the hardness of the nickel film depends on the phosphorus content and annealing conditions, it is necessary to adjust the phosphorus content according to the desired state. In order to increase the hardness immediately after plating, a lower phosphorus content is better. Specifically, the phosphorus content is preferably 8% or less, and more preferably 5% or less. In order to further increase the hardness, the phosphorus content is more preferably 3% or less, and particularly preferably 1% or less.

また、めっき後に例えば500℃以上でアニールを実施する場合は、結晶構造が変化するため、硬度は変化する。この場合、ニッケル−リン皮膜の硬度を高くするには、リン含有率は高い方が良い。具体的にはリン含有率が3パーセント以上であることが好ましく、更には5パーセント以上であることがより好ましい。より硬度を高くするにはリン含有率は8パーセント以上であることが更に望ましく、10パーセント以上であることが特に好ましい。   In addition, when annealing is performed at, for example, 500 ° C. or higher after plating, the crystal structure changes, so the hardness changes. In this case, in order to increase the hardness of the nickel-phosphorus film, a higher phosphorus content is better. Specifically, the phosphorus content is preferably 3% or more, and more preferably 5% or more. In order to further increase the hardness, the phosphorus content is more preferably 8% or more, and particularly preferably 10% or more.

また、ニッケル−リン皮膜は、リン含有率が約8パーセント以上で非晶質構造となり、磁性は無くなる。よって、ニッケル−リン皮膜に磁性を持たせる場合は、リン含有率は8パーセント以下が好ましく、3パーセント以下がより好ましい。更には、リン含有率はゼロであれば最も好ましい。   Further, the nickel-phosphorus film has an amorphous structure when the phosphorus content is about 8% or more, and the magnetism is lost. Therefore, when the nickel-phosphorus film is made magnetic, the phosphorus content is preferably 8% or less, and more preferably 3% or less. Furthermore, it is most preferable if the phosphorus content is zero.

本発明の第一の実施の形態に関わる核体3とは、無電解めっきによって、導電層1がその表面に析出する被めっき体及び該導電層1を表面に有した被めっき体を指す。核体3のサイズ及び形状は、本発明の無電解めっきによって、その表面に導電層1を析出させる初期の状態と定義する。   The core 3 according to the first embodiment of the present invention refers to a body to be plated on which the conductive layer 1 is deposited by electroless plating and a body to be plated having the conductive layer 1 on the surface. The size and shape of the core 3 are defined as an initial state in which the conductive layer 1 is deposited on the surface by electroless plating of the present invention.

核体3のサイズ及び形状は、微粉体であることが好ましい。核体3の形状は、特に限定されないが、具体的には図2(a)〜(e)に示すように繊維状、粉末状、球状、楕円状、多孔体、多角形状または、これらの形状の複合体及び凝集体が挙げられる。また、核体3の表面は、凹凸が少ない方が、無電解めっきで均一なめっき皮膜が得られやすいことから好ましい。   The size and shape of the core 3 are preferably fine powder. The shape of the core 3 is not particularly limited, but specifically, as shown in FIGS. 2A to 2E, it is fibrous, powdery, spherical, elliptical, porous, polygonal, or these shapes These composites and aggregates are included. Further, the surface of the core 3 is preferably less uneven because it is easy to obtain a uniform plating film by electroless plating.

核体3の形状が繊維状の場合、液中での絡まりや均一な分散性を確保するために、長さ方向は10mm以下が好ましく、1mm以下がより好ましい。更には断面の最長長さは50μm以下が好ましく10μm以下がより好ましい。更に、核体3は液中での分散性や容器などへの付着がより少なくなること、または固液の分離がしやすいことから、繊維状よりも粉体の方が好ましい。核体3のサイズは、平均粒径10nm以上10mm以下が好ましい。   When the shape of the core 3 is fibrous, the length direction is preferably 10 mm or less and more preferably 1 mm or less in order to ensure entanglement in the liquid and uniform dispersibility. Furthermore, the maximum length of the cross section is preferably 50 μm or less, and more preferably 10 μm or less. Further, the core 3 is preferably powder rather than fibrous because the core 3 is less dispersible in liquid and less adherent to a container or the like, or the solid-liquid is easily separated. The size of the core 3 is preferably an average particle size of 10 nm or more and 10 mm or less.

尚、核体3とめっき液の固液分離を行う必要がある場合は、核体3はより大きな方が好ましい。具体的には、平均粒径100nm以上10mm以下であることがより好ましく、平均粒径1μm以上10mm以下が特に好ましい。   When it is necessary to perform solid-liquid separation between the core 3 and the plating solution, the core 3 is preferably larger. Specifically, the average particle diameter is more preferably from 100 nm to 10 mm, and particularly preferably from 1 μm to 10 mm.

また、核体3を均一に攪拌及び分散させる場合は、めっき槽の大きさにも依存するが核体3のサイズはより小さい方が好ましい。具体的には、平均粒径10nm以上1mm以下がより好ましく、平均粒径10nm以上100μm以下が特に好ましい。   In addition, when the core 3 is uniformly stirred and dispersed, the size of the core 3 is preferably smaller although it depends on the size of the plating tank. Specifically, an average particle size of 10 nm to 1 mm is more preferable, and an average particle size of 10 nm to 100 μm is particularly preferable.

尚、本発明で記載する平均粒径とは、メディアン径のことを指す。また、その粒度分布は限定しないが、ろ過を用いた固液分離を想定すると均一な方がより好ましい。具体的には、D50(メディアン径)と、D10またはD90の差の絶対値をD50で除して100を掛けた値が、200以内が好ましく、100以内がより好ましい。更には、50以内がさらに好ましく10以内が特に好ましい。尚、無電解めっきにより核体3の表面への導電層1の析出が進行するに従い、見掛けのサイズと形状は変化していくことは無論である。   In addition, the average particle diameter described in the present invention refers to the median diameter. Moreover, although the particle size distribution is not limited, it is more preferable to be uniform when solid-liquid separation using filtration is assumed. Specifically, the value obtained by dividing the absolute value of the difference between D50 (median diameter) and D10 or D90 by D50 and multiplying by 100 is preferably within 200, and more preferably within 100. Furthermore, 50 or less is more preferable, and 10 or less is particularly preferable. Of course, the apparent size and shape change as the deposition of the conductive layer 1 on the surface of the core 3 proceeds by electroless plating.

本発明の第一の実施の形態に関わる核体3の材料は特に限定されない。表面に導電層1が析出中の核体3の断面を図3(a)〜(e)に示す。   The material of the core 3 related to the first embodiment of the present invention is not particularly limited. 3A to 3E show cross sections of the core 3 on which the conductive layer 1 is deposited on the surface.

図3(a)に示す様に、核体3は表面に形成される導電層1と同一組成で全てが構成されていても良く、この場合は前述の導電層1として記した金属や合金が使用できる。これらは、各種の金属や合金の様々なサイズのものが市場にあり、簡便に入手することができるため、汎用性が高い。   As shown in FIG. 3A, the core 3 may be entirely composed of the same composition as the conductive layer 1 formed on the surface. In this case, the metal or alloy described as the conductive layer 1 described above is formed. Can be used. These are highly versatile because various metals and alloys of various sizes are on the market and can be easily obtained.

一方、図3(b)に示す様に、核体3は表面の導電層1と異なる材料で構成されていてもかまわない。例えば、核体3の表面導電層1以外の金属または合金、プラスチック、セラミック、有機物などが使用できる。具体的には、金、プラチナ、銀、銅、鉛、パラジウム、錫、ニッケル、鉄、クロム、亜鉛、アルミなどの金属及びこれらの合金、ポリ塩化ビニル樹脂(PVC)、ポリ塩化ビニリデン樹脂、ポリ酢酸ビニル樹脂、ポリビニルアルコール樹脂(PVA)、ポリスチレン樹脂(PS)、スチレン・アクリロニトリル・ブタジエン共重合体(ABS)、ポリエチレン樹脂(PE)、エチレン・酢酸ビニル共重合体(EVA)、ポリプロピレン樹脂(PP)、ポリ4−メチルペンテン(TPX)、ポリメチルメタクリレート(PMMA)、ポリエーテルエーテルケトン(PEEK)、ポリイミド(PI)、ポリエーテルイミド(PEI)、ポリフェニレンサルファイド(PPS)、酢酸セルロース、四フッ化エチレン樹脂(PTFE)、4フッ化・6フッ化プロピレン樹脂(FEP)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、4フッ化エチレン・エチレン共重合体(ETFE)、3フッ化塩化エチレン(PCTFE)、フッ化ビニリデン(PVDF)、ポリエチレンテレフタレート樹脂(PET)、ポリアミド樹脂(ナイロン)、ポリアセタール(POM)、ポリフェニレンテレフタレート(PPO)、ポリカーボネート樹脂(PC)、ポリウレタン樹脂、ポリエステルエラストマ、ポリオレフィン樹脂、シリコーン樹脂、ポリイミド樹脂などの有機材質や、ガラス、石英、カーボン、シリカ、水酸化アルミニウムなどの無機材質がある。更に核体3の材料としては、セルロースなどの有機物が使用できる。   On the other hand, as shown in FIG. 3B, the core 3 may be made of a material different from that of the conductive layer 1 on the surface. For example, a metal or alloy other than the surface conductive layer 1 of the core 3, plastic, ceramic, organic matter, etc. can be used. Specifically, metals such as gold, platinum, silver, copper, lead, palladium, tin, nickel, iron, chromium, zinc, aluminum, and alloys thereof, polyvinyl chloride resin (PVC), polyvinylidene chloride resin, poly Vinyl acetate resin, polyvinyl alcohol resin (PVA), polystyrene resin (PS), styrene / acrylonitrile / butadiene copolymer (ABS), polyethylene resin (PE), ethylene / vinyl acetate copolymer (EVA), polypropylene resin (PP ), Poly-4-methylpentene (TPX), polymethyl methacrylate (PMMA), polyetheretherketone (PEEK), polyimide (PI), polyetherimide (PEI), polyphenylene sulfide (PPS), cellulose acetate, tetrafluoride Ethylene resin (PTFE), tetrafluoride, 6 Propylene fluoride resin (FEP), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / ethylene copolymer (ETFE), trifluoroethylene chloride (PCTFE), vinylidene fluoride (PVDF) ), Polyethylene terephthalate resin (PET), polyamide resin (nylon), polyacetal (POM), polyphenylene terephthalate (PPO), polycarbonate resin (PC), polyurethane resin, polyester elastomer, polyolefin resin, silicone resin, polyimide resin, etc. And inorganic materials such as glass, quartz, carbon, silica, and aluminum hydroxide. Furthermore, as a material of the core body 3, an organic substance such as cellulose can be used.

核体3の構成は、図3(b)のように、上述の材料が複数層構造であっても良い。また、それらの凝集体でもよい。また、図3(c)、(d)に示す様に、凝集体の表面に層を形成されたものでもよい。特に核体3を均一にめっき液中に分散させるには、核体3の体積密度が軽いことが望ましいので、核体3にプラスチックを用いることが好ましく、プラスチック材料の比重がより軽いものが好ましい。   As shown in FIG. 3B, the core 3 may have a multi-layer structure as described above. Moreover, those aggregates may be sufficient. Further, as shown in FIGS. 3C and 3D, a layer may be formed on the surface of the aggregate. In particular, in order to uniformly disperse the core 3 in the plating solution, it is desirable that the core 3 has a low volume density. Therefore, it is preferable to use a plastic for the core 3, and a plastic material having a lighter specific gravity is preferable. .

更には図3(b)に示すように、核体3が層構造であり、プラスチックの表面に金属が形成されている場合は、金属の厚みがより薄ければ、核体3全体の体積密度が支配的となり、より体積密度は軽くなり好ましい。具体的には、表面導電層1の厚さは核体3の平均粒径の50パーセント以下が好ましく、30パーセント以下がより好ましい。更には、10パーセント以下が更に好ましく、5パーセント以下が特に好ましい。例えば、平均粒径10μmのニッケル(リン含有率1パーセント以下)は、体積密度が8.9であるが、平均粒径10μmのポリスチレン粒子の表面にニッケル(導電層1)が厚さ0.1μm(平均粒径の1パーセント)で形成された核体3は、体積密度が約1.5となる。よって前者のニッケル単一組成の核体3よりも後者のポリスチレンとニッケルの核体3の方が、水(めっき液)中で弱い攪拌でより高分散する。   Furthermore, as shown in FIG. 3B, when the core 3 has a layer structure and a metal is formed on the surface of the plastic, the volume density of the entire core 3 is reduced if the metal is thinner. Is preferable, and the volume density is lighter. Specifically, the thickness of the surface conductive layer 1 is preferably 50 percent or less, more preferably 30 percent or less of the average particle diameter of the core 3. Furthermore, 10 percent or less is more preferable, and 5 percent or less is particularly preferable. For example, nickel having an average particle diameter of 10 μm (phosphorus content 1% or less) has a volume density of 8.9, but nickel (conductive layer 1) has a thickness of 0.1 μm on the surface of polystyrene particles having an average particle diameter of 10 μm. The core 3 formed with (one percent of the average particle size) has a volume density of about 1.5. Therefore, the latter polystyrene and nickel core 3 is more highly dispersed in water (plating solution) by weak stirring than the former nickel single core 3.

更に、核体3の表面が親水性の官能基をもつ材料であると、めっき液中での分散性が高まり、好ましい。親水性の官能基としては、ヒドロキシ基、アミノ基、スルホン基などが挙げられる。   Furthermore, it is preferable that the surface of the core 3 is a material having a hydrophilic functional group because dispersibility in the plating solution is increased. Examples of the hydrophilic functional group include a hydroxy group, an amino group, and a sulfone group.

また、図3(b)に示すように、核体3が層構造の場合、その表面は本発明の無電解めっきで形成する導電層1と同一材料であると、無電解めっきの際に自己触媒性により導電層1が析出し易く、好ましい。さらに、核体3の表面は、本発明の無電解めっきで形成する導電層1と同一材料でなくとも、無電解めっきに対して触媒作用のある金属を用いることができる。例えば、無電解ニッケルまたは銅めっきを行う場合は、図3(b)に示す様に、プラスチック粒子の表面にパラジウムや銀が形成されていると、核体3表面へニッケルまたは銅の導電層1が析出するため、好ましい。   In addition, as shown in FIG. 3B, when the core 3 has a layer structure, the surface thereof is the same material as the conductive layer 1 formed by the electroless plating of the present invention. The conductive layer 1 is easy to deposit due to its catalytic property, which is preferable. Furthermore, even if the surface of the core 3 is not made of the same material as that of the conductive layer 1 formed by electroless plating according to the present invention, a metal having a catalytic action for electroless plating can be used. For example, when electroless nickel or copper plating is performed, as shown in FIG. 3B, when palladium or silver is formed on the surface of the plastic particles, the nickel or copper conductive layer 1 is formed on the surface of the core 3. Is preferable.

尚、図3(a)に示すように、核体3全体が同一組成の場合は構成材料が、一方、図3(b)、(c)、(d)に示すように、核体3が層構造の場合は表面の材料が、貴金属または貴金属を含有すれば、後述するように核体3が繰り返し使用できて好ましい。   As shown in FIG. 3 (a), when the entire nuclear body 3 has the same composition, the constituent material is formed. On the other hand, as shown in FIGS. 3 (b), (c), and (d), In the case of a layer structure, it is preferable that the surface material contains a noble metal or a noble metal because the core 3 can be used repeatedly as described later.

図3(b)、(c)、(d)のように、核体3が層状になっている場合、表面は連続した形状(層)でなくてもよく、具体的には図3(e)に示すように、表面に粒状な物体が付着したような形態であっても良い。   When the core 3 is layered as shown in FIGS. 3B, 3C, and 3D, the surface may not be a continuous shape (layer). Specifically, FIG. As shown in (), a form in which a granular object adheres to the surface may be used.

図1に示す導電体2の材料としては、金属、合金または有機成分もしくは無機成分含有金属など、導電性を有する材料が使用できる。導電体2の材料の具体的な例としては、金、プラチナ、銀、銅、鉛、パラジウム、錫、ニッケル、鉄、クロム、亜鉛、アルミなどの金属及びこれらの合金などである。その他の無電解めっきで得られる材料は、リン含有ニッケル、ホウ素含有ニッケル、フッ素含有ニッケルなどが挙げられる。また、その形状は特に限定されないが、板状、球体、棒状などが上げられ、その表面は平滑、凹凸、その混合状態でもかまわない。   As the material of the conductor 2 shown in FIG. 1, a conductive material such as a metal, an alloy, or an organic component or an inorganic component-containing metal can be used. Specific examples of the material of the conductor 2 include metals such as gold, platinum, silver, copper, lead, palladium, tin, nickel, iron, chromium, zinc, and aluminum, and alloys thereof. Examples of other materials obtained by electroless plating include phosphorus-containing nickel, boron-containing nickel, and fluorine-containing nickel. Further, the shape is not particularly limited, but a plate shape, a sphere, a rod shape, and the like may be raised, and the surface may be smooth, uneven, or a mixed state thereof.

第一の実施の形態に関わる触媒とは、導電層1を形成させるための無電解めっきを実施する場合に、前記無電解めっきに対して触媒作用を発揮する物質を指す。触媒は、無電解めっきで析出させる導電層1と導電体2の組み合わせ及び使用する無電解めっきのシステムによって異なる。具体的には、導電体2が銅で、導電層1が次亜リン酸ナトリウムを還元剤とした無電解ニッケルめっきで形成するニッケルまたはニッケル合金の場合は、パラジウム触媒、銀触媒、プラチナ触媒などが挙げられる。従来、無電解めっきによって析出させる導電層1が導電体2よりも卑な材料である場合は、金属のイオン化傾向の差を用いた置換めっきが不可能なため、導電体2上に無電解めっきに対して触媒作用のある金属を付与させる必要があったが、本発明では導電体2への触媒付与を必要としない。よって、本発明を実施した場合の状態である図1では、導電体2と導電層1の界面には触媒は存在しない。   The catalyst related to the first embodiment refers to a substance that exhibits a catalytic action with respect to the electroless plating when the electroless plating for forming the conductive layer 1 is performed. The catalyst varies depending on the combination of the conductive layer 1 and the conductor 2 to be deposited by electroless plating and the electroless plating system used. Specifically, when the conductor 2 is copper and the conductive layer 1 is nickel or a nickel alloy formed by electroless nickel plating using sodium hypophosphite as a reducing agent, a palladium catalyst, a silver catalyst, a platinum catalyst, etc. Is mentioned. Conventionally, when the conductive layer 1 to be deposited by electroless plating is a base material than the conductor 2, substitution plating using a difference in metal ionization tendency is impossible, so the electroless plating on the conductor 2 is not possible. However, in the present invention, it is not necessary to apply a catalyst to the conductor 2. Therefore, in FIG. 1, which is a state when the present invention is implemented, no catalyst exists at the interface between the conductor 2 and the conductive layer 1.

本発明によると、導電体2への触媒付与処理を行わなくても無電解めっきで導電層1の形成が可能であるが、同時に核体3へも無電解めっきが進行する。例えば、導電体2へ無電解ニッケルめっきを行う場合、核体3または、核体3の表面が安定性の高い金やパラジウム、白金などを用いると、無電解めっき終了後に、核体3は表面にニッケル層を形成した形となる。核体3の表面に析出したニッケルを希硝酸等で溶解すると、核体3および核体3表面の金、パラジウム、白金などは溶解せず残っており、核体3を再利用することができる。また、パラジウム、白金などは無電解銅めっきや無電解ニッケルめっきに対して触媒作用を持つことから、核体3の材料として使用すると、より好ましい。   According to the present invention, the conductive layer 1 can be formed by electroless plating without performing the catalyst application treatment on the conductor 2, but at the same time, the electroless plating proceeds to the core 3. For example, when electroless nickel plating is performed on the conductor 2, if the core 3 or the surface of the core 3 is made of gold, palladium, platinum or the like having high stability, In this form, a nickel layer is formed. When nickel precipitated on the surface of the core 3 is dissolved with dilute nitric acid or the like, the core 3, the gold, palladium, platinum, etc. on the surface of the core 3 remain undissolved, and the core 3 can be reused. . Palladium, platinum, and the like have a catalytic action on electroless copper plating and electroless nickel plating, and are therefore more preferable when used as the material of the core 3.

本発明の第一の実施の形態は、導電層1が析出中の核体3を、導電体2へ間欠的に接触させることにより、導電体2上に導電層1を無電解めっきする方法である。導電層1が析出中の核体3を間欠的に接触させる方法としては、導電体2と核体3を液中に浸漬し、マグネチックスターラー、撹拌機(スリーワンモーターBL600型、新東科学株式会社製)、空気揺動、振動、超音波印加などにより、攪拌し及び分散させることで達成される。また、導電体2をラックやケーブルなどの固定具によって保持し、上記に示した方法で、核体3を攪拌及び分散させた液中へ浸漬させると、導電体2を所望の時間で引き上げることができ、好ましく、核体3と導電体2を簡便に分離できるため、好ましい。また、導電体2を液中に浸漬し、この導電体2を揺動させることにより、核体3を導電体2に間欠的に接触させる方法が挙げられる。この場合、導電体2が攪拌羽の役目を負い、核体3が液中で攪拌及び分散されている。   The first embodiment of the present invention is a method of electrolessly plating a conductive layer 1 on the conductor 2 by intermittently contacting the core 3 on which the conductive layer 1 is being deposited with the conductor 2. is there. As a method for intermittently contacting the core 3 on which the conductive layer 1 is deposited, the conductor 2 and the core 3 are immersed in a liquid, and a magnetic stirrer, stirrer (three-one motor BL600 type, Shinto Scientific Co., Ltd.) It is achieved by stirring and dispersing by air shaking, vibration, application of ultrasonic waves, etc. Further, when the conductor 2 is held by a fixture such as a rack or a cable, and the core 3 is immersed in the stirred and dispersed liquid by the method described above, the conductor 2 is pulled up in a desired time. It is preferable because the core 3 and the conductor 2 can be easily separated. Further, there is a method in which the core 3 is intermittently brought into contact with the conductor 2 by immersing the conductor 2 in the liquid and swinging the conductor 2. In this case, the conductor 2 serves as a stirring blade, and the core 3 is stirred and dispersed in the liquid.

本発明の第一の実施の形態に係る、核体3へ導電層1を析出させる無電解めっき方法としては、従来の無電解めっき方法を用いることができる。例えば、めっき液を建浴し、核体3を分散し、無電解めっきする方法(特開2003−157717号公報、特開2007−184115号公報)、核体3が浸漬された水溶液中へ、めっき液成分を滴下しながらめっきする逐次添加法(特許第2093116号公報、特許第2602495号公報)などが挙げられる。   As the electroless plating method for depositing the conductive layer 1 on the core 3 according to the first embodiment of the present invention, a conventional electroless plating method can be used. For example, a method of laying a plating solution, dispersing the core 3 and electroless plating (JP 2003-157717 A, JP 2007-184115 A), into an aqueous solution in which the core 3 is immersed, Examples include a sequential addition method (Japanese Patent No. 2093116 and Japanese Patent No. 2602495) in which plating is performed while dropping a plating solution component.

具体的には、錯化剤を入れた水、触媒付与処理を行った核体3を分散させ、無電解めっき液成分の内、少なくとも金属イオンと、還元剤と、アルカリを分割し、それぞれの水溶液を個別に同時かつ平行に滴下していく方法である。但し、還元剤とアルカリは混ぜてあってもよい。尚、金属イオン、還元剤、アルカリ以外の無電解めっき成分、例えば添加剤、錯化剤などは、核体3が分割した水溶液、滴下溶液のどれに入っていてもよく、全てに入っていても良い。例えば、逐次添加法の場合に滴下を進めると、核体3の分散しためっき液は増加し、初期の錯化剤と核体3を建浴した初期懸濁水溶液の錯化剤濃度が低下していくので、錯化剤や添加剤を滴下溶液に予め適宜加えておくことで、滴下が進行しても、浴全体の錯化剤濃度や添加剤の濃度が変化せず、析出する導電層1の特性が均一となり、好ましい。図4に本発明に係る導電体2上に無電解めっきにより析出する導電層1が形成されていく経時変化を模式的に示した。なお、図4に示す時間経過と導電層1の厚みやその他サイズの比などは実際とは異なる。   Specifically, water containing the complexing agent and the core 3 subjected to the catalyst application treatment are dispersed, and at least the metal ions, the reducing agent, and the alkali are divided among the electroless plating solution components. This is a method in which aqueous solutions are dropped individually and simultaneously in parallel. However, the reducing agent and alkali may be mixed. In addition, electroless plating components other than metal ions, reducing agents, and alkalis, for example, additives, complexing agents, etc., may be contained in any of the aqueous solution and dropping solution in which the core 3 is divided. Also good. For example, when the dropping is advanced in the sequential addition method, the plating solution in which the core 3 is dispersed increases, and the concentration of the complexing agent in the initial suspension aqueous solution in which the initial complexing agent and the core 3 are built is lowered. Therefore, by adding a complexing agent or additive to the dropping solution appropriately in advance, the concentration of the complexing agent or additive in the entire bath does not change even when the dropping proceeds, and the deposited conductive layer 1 is uniform and preferable. FIG. 4 schematically shows changes over time in which the conductive layer 1 deposited by electroless plating is formed on the conductor 2 according to the present invention. Note that the elapsed time shown in FIG. 4 and the ratio of the thickness and other sizes of the conductive layer 1 are different from actual ones.

(実施例1)
[導電体の調整]
導電体2として、10mm×10mmの銅板(ハルセル試験用銅板、株式会社山本鍍金試験器)を用意し、ガラス棒から被覆線を用いて吊り下げた。更に、比較サンプルとして、10mm×10mmのアクリル板、ポリスチレン板、スライドガラスを用意し、上記銅板を付けたガラス棒から同様にそれぞれを吊り下げた。このように、銅板、アクリル板、ポリスチレン板、スライドガラスが吊り下げられたガラス棒を3組(サンプルA1、B1、C1)用意した。銅板は希硫酸、他は水酸化ナトリウム水溶液で10秒洗浄し、直ぐに純水で水洗して使用した。
Example 1
[Conductor adjustment]
As the conductor 2, a 10 mm × 10 mm copper plate (Hull cell test copper plate, Yamamoto plating tester) was prepared and suspended from a glass rod using a covered wire. Furthermore, as a comparative sample, an acrylic plate, a polystyrene plate, and a slide glass of 10 mm × 10 mm were prepared, and each was similarly suspended from the glass rod provided with the copper plate. Thus, 3 sets (sample A1, B1, C1) of the glass rod from which the copper plate, the acrylic plate, the polystyrene plate, and the slide glass were suspended were prepared. The copper plate was washed with dilute sulfuric acid, the others were washed with an aqueous sodium hydroxide solution for 10 seconds, and immediately washed with pure water before use.

[導電体への無電解めっき]
1000mlのビーカーに水600ml、錯化剤として酒石酸ナトリウム16gを入れ80℃に温めた。ここへ、表面がニッケルで覆われた球状の核体3を4g(比重:2.0、平均粒径3μm)を投入し、撹拌機(スリーワンモーターBL600型、新東科学株式会社製)で撹拌(フッ素製4枚羽根、300rpm)して粒子を分散させた。この時の、分散液は灰色の懸濁状態であった。この懸濁液中へ、サンプルA1を投入した。次に、このビーカーへ定量ポンプを用いて表1に示しためっき液X、Yを、それぞれ同時に3.2ml/minの速度で滴下した。滴下開始30秒で懸濁液中から気泡の発生が確認され、核体3へのニッケルめっきが始まった。さらに滴下10分後の懸濁液中にサンプルB1を投入した。滴下開始から20分後にサンプルA1、及びB1を引き上げ、十分な流水洗を実施した。
[Electroless plating on conductors]
In a 1000 ml beaker, 600 ml of water and 16 g of sodium tartrate as a complexing agent were added and warmed to 80 ° C. 4 g (specific gravity: 2.0, average particle size 3 μm) of spherical core 3 whose surface is covered with nickel is added here, and stirred with a stirrer (three-one motor BL600 type, manufactured by Shinto Kagaku Co., Ltd.). (Fluorine 4 blades, 300 rpm) to disperse the particles. At this time, the dispersion was in a gray suspension state. Sample A1 was put into this suspension. Next, the plating solutions X and Y shown in Table 1 were simultaneously dropped into this beaker at a rate of 3.2 ml / min using a metering pump. Bubble generation was confirmed from the suspension 30 seconds after the start of dropping, and nickel plating on the core 3 started. Further, Sample B1 was put into the suspension 10 minutes after the dropping. Samples A1 and B1 were pulled up 20 minutes after the start of dripping, and sufficient running water was washed.

このサンプルA1及びサンプルB1を、光学顕微鏡の落射光にて表面観察を行ったところ、アクリル板、ポリスチレン板、スライドガラスには変化がなかったが、銅板表面は淡灰色を呈していた。この銅板の表面に凹凸や粒子などの異物の付着はなく平滑な表面であった。   When the surface of Sample A1 and Sample B1 was observed with incident light from an optical microscope, the acrylic plate, polystyrene plate, and slide glass were not changed, but the copper plate surface was light gray. The copper plate had a smooth surface with no foreign matter such as irregularities and particles attached to the surface.

サンプルA1、B1、C1の銅板を王水に溶解し、原子吸光測定(偏向ゼーマン原子吸光光度計、Z−2300型、株式会社日立製作所製)を行ったところ、サンプルAとBは両方からニッケルと銅が検出されたが、C1からは銅だけ検出され、ニッケルは検出されなかった。このことから、サンプルA1とB1の銅板表面には、導電層1としてニッケルが析出したことが確認された。尚、サンプルA1、B1、C1の銅板はいずれからもパラジウム及び金、鉛は検出されなかった。また、EDX(堀場製作所製、EDX EX−300)を用いてサンプルA1及びB1の表面を分析したところ、析出したニッケルは2.5重量パーセントのリンを含有していた。銅板上に析出したニッケルは、鉛フリーで低リンであることがわかった。   When the copper plates of Samples A1, B1, and C1 were dissolved in aqua regia and atomic absorption measurement (deflection Zeeman atomic absorption photometer, Z-2300 type, manufactured by Hitachi, Ltd.) was performed, samples A and B were both nickel. However, only copper was detected from C1, and nickel was not detected. From this, it was confirmed that nickel was deposited as the conductive layer 1 on the copper plate surfaces of Samples A1 and B1. In addition, palladium, gold | metal | money, and lead were not detected from any of the copper plate of sample A1, B1, C1. Further, when the surfaces of the samples A1 and B1 were analyzed using EDX (manufactured by Horiba, Ltd., EDX EX-300), the deposited nickel contained 2.5 weight percent phosphorus. The nickel deposited on the copper plate was found to be lead-free and low phosphorus.

このように、次亜リン酸ナトリウム系無電解ニッケルめっきを用いて、パラジウムのような触媒処理を施していない銅板上に、銅よりも卑な金属であるニッケルを無電解めっき方法で析出させることができた。   In this way, using sodium hypophosphite-based electroless nickel plating, nickel, which is a base metal rather than copper, is deposited by an electroless plating method on a copper plate not subjected to catalytic treatment such as palladium. I was able to.

尚、めっき使用後の核体3を十分に乾燥させ、重量を測定したところ、めっき使用前より約4.1g重くなっていた。更に、めっき使用前後の核体3を20mg秤量し、約1mlの王水で溶解し、メスフラスコで20mlに希釈した後に100倍希釈した。これを原子吸光測定(偏向ゼーマン原子吸光光度計、Z−2300型、株式会社日立製作所製)を行ったところ、ニッケルが検出され、めっき使用前が3.2ppm、めっき使用後が6.8ppm検出された。尚、銅は検出されなかった。このことから、核体3には無電解ニッケルめっきが進行していたことが分かった。   In addition, when the core 3 after plating was sufficiently dried and the weight was measured, it was about 4.1 g heavier than before plating. Further, 20 mg of the core 3 before and after plating was weighed, dissolved in about 1 ml of aqua regia, diluted to 20 ml with a volumetric flask, and then diluted 100 times. When this was subjected to atomic absorption measurement (deflection Zeeman atomic absorption photometer, Z-2300 type, manufactured by Hitachi, Ltd.), nickel was detected, 3.2 ppm before use of plating, and 6.8 ppm after use of plating. It was done. Copper was not detected. From this, it was found that the core 3 was subjected to electroless nickel plating.

表1に、ニッケルめっき用滴下液を示す。   Table 1 shows the dropping solution for nickel plating.

Figure 0005445818
Figure 0005445818

(実施例2)
[導電体の調整]
直径0.30mmの金ワイヤー5cm(株式会社ニラコ製)を、直径5mmのガラス棒に巻きつけ、らせん形状にした。この金ワイヤーを希硫酸中で10秒洗浄し、直ぐ流水洗を行い使用した。
(Example 2)
[Conductor adjustment]
A gold wire 5 cm (manufactured by Niraco Co., Ltd.) having a diameter of 0.30 mm was wound around a glass rod having a diameter of 5 mm to form a spiral shape. The gold wire was washed in dilute sulfuric acid for 10 seconds and immediately washed with running water.

[導電体への無電解めっき]
1000mlのビーカーに水600ml、錯化剤として酒石酸ナトリウム16gを入れ80℃に温めた。ここへ、表面にニッケル層を持つ核体3を4g(比重:2.0、平均粒径3μm)を投入し、撹拌機(スリーワンモーターBL600型、新東科学株式会社製)で撹拌(フッ素製4枚羽根、300rpm)して粒子を分散させた。この時の、分散液は灰色の懸濁状態であった。表1に示しためっき液XとYを同時に、0.5ml/minの速度で滴下した。滴下開始20分後に金ワイヤーを引き上げると、金ワイヤーは灰色を呈しておりニッケル皮膜が形成していた。光学顕微鏡を用いて落射光にてワイヤー表面の観察を行ったが、全面がニッケル皮膜で覆われており、表面は平滑で粒子の付着もなかった。
[Electroless plating on conductors]
In a 1000 ml beaker, 600 ml of water and 16 g of sodium tartrate as a complexing agent were added and warmed to 80 ° C. 4 g of core 3 having a nickel layer on the surface (specific gravity: 2.0, average particle size of 3 μm) was added here, and stirred with a stirrer (three-one motor BL600 type, manufactured by Shinto Kagaku Co., Ltd.) (made of fluorine) 4 blades, 300 rpm) to disperse the particles. At this time, the dispersion was in a gray suspension state. The plating solutions X and Y shown in Table 1 were simultaneously dropped at a rate of 0.5 ml / min. When the gold wire was pulled up 20 minutes after the start of dropping, the gold wire was gray and a nickel film was formed. The surface of the wire was observed with incident light using an optical microscope, but the entire surface was covered with a nickel film, the surface was smooth, and there was no adhesion of particles.

この金ワイヤーを王水で溶解し、この原液を原子吸光測定(偏向ゼーマン原子吸光光度計、Z−2300型、株式会社日立製作所製)を行ったが、パラジウムは検出されなかった。   This gold wire was dissolved in aqua regia, and this stock solution was subjected to atomic absorption measurement (deflection Zeeman atomic absorption photometer, Z-2300 type, manufactured by Hitachi, Ltd.), but palladium was not detected.

(実施例3)
無電解ニッケルめっき液(ICPニコロンU、奥野製薬工業株式会社製)を85℃で建浴し、エアー攪拌を行った。
(Example 3)
An electroless nickel plating solution (ICP Nicolon U, manufactured by Okuno Pharmaceutical Co., Ltd.) was erected at 85 ° C., and air agitation was performed.

実施例1と同様の手順でサンプルA3とB3を得て、銅板は希硝酸中で10秒洗浄し、その他のサンプルはアルカリ水溶液中で10秒洗浄した。更に実施例2で処理した金ワイヤーを希硝酸液中で10秒洗浄し、直ちに流水洗を実施した。   Samples A3 and B3 were obtained in the same procedure as in Example 1. The copper plate was washed in dilute nitric acid for 10 seconds, and the other samples were washed in an alkaline aqueous solution for 10 seconds. Further, the gold wire treated in Example 2 was washed in dilute nitric acid solution for 10 seconds and immediately washed with running water.

これらのサンプルを、上記建浴した無電解ニッケルめっき液へ投入した。30分後、引き上げ十分な流水洗浄を行った。   These samples were put into the electroless nickel plating solution bathed above. After 30 minutes, it was pulled up and washed with running water.

このサンプルA3及びB3を、光学顕微鏡の落射光にて表面観察を行ったところ、アクリル板、ポリスチレン板、スライドガラスには変化がなかったが、二つの銅板表面は全面が灰色を呈しており、ニッケル皮膜が形成されていた。このニッケル皮膜の表面は、凹凸や粒子などの異物の付着はなく平滑であった。また、金ワイヤーの表面も灰色を呈しており、凹凸や粒子などの異物の付着はなく平滑なニッケル皮膜が形成されていた。   When these samples A3 and B3 were subjected to surface observation with incident light from an optical microscope, the acrylic plate, polystyrene plate, and slide glass did not change, but the two copper plate surfaces had a gray surface overall, A nickel film was formed. The surface of the nickel film was smooth without foreign matter such as irregularities and particles. Further, the surface of the gold wire was also gray, and a smooth nickel film was formed without adhesion of foreign matters such as irregularities and particles.

サンプルA3及びB3の一部を、エポキシ樹脂を用いて注型してから研磨を行い、SEMを用いて銅配線の断面観察をおこなったところ、銅配線上のニッケル皮膜は約4μmであった。銅配線とニッケルとの界面に剥離や空隙は観察されず、良好な密着を得られていた。   When a part of samples A3 and B3 was cast using an epoxy resin and then polished, and a cross section of the copper wiring was observed using SEM, the nickel film on the copper wiring was about 4 μm. Peeling and voids were not observed at the interface between the copper wiring and nickel, and good adhesion was obtained.

更に、サンプルA3、B3の銅板及び金ワイヤーを王水に溶解し、原子吸光測定(偏向ゼーマン原子吸光光度計、Z−2300型、株式会社日立製作所製)を行ったところ、銅板と金ワイヤーからは、ニッケルが検出されたが、いずれからもパラジウムは検出されなかった。   Furthermore, when the copper plate and gold wire of samples A3 and B3 were dissolved in aqua regia and atomic absorption measurement (deflection Zeeman atomic absorption photometer, Z-2300 type, manufactured by Hitachi, Ltd.) was performed, from the copper plate and the gold wire Nickel was detected, but no palladium was detected in any of them.

このように実施例3では、本発明に係る実施例1と2の操作を行ったサンプルを、更に、通常の無電解ニッケルめっき浴にディップ(浸漬)することで、銅や金上にニッケルめっき膜を形成できることを示した。よって、本発明に係る実施例1と2の操作は、一般的なディップ(浸漬)による無電解めっき方法の前処理、例えば貴金属触媒処理や置換めっき処理などの活性化処理と同様の効果をもたらす前処理として使用することができることを示した。   As described above, in Example 3, the sample obtained by performing the operations of Examples 1 and 2 according to the present invention is further dipped (immersed) in a normal electroless nickel plating bath, thereby nickel plating on copper or gold. It was shown that a film can be formed. Therefore, the operations of Examples 1 and 2 according to the present invention bring about the same effect as the pretreatment of the electroless plating method by general dipping (immersion), for example, activation treatment such as precious metal catalyst treatment and displacement plating treatment. It can be used as a pretreatment.

尚、次亜リン酸系無電解ニッケルめっきでは、銅板に直接ニッケルを析出させることは難しく、銅板上へ予めパラジウムや銀などの貴金属触媒処理(活性化処理)を施す必要がある。   In the hypophosphorous acid electroless nickel plating, it is difficult to deposit nickel directly on the copper plate, and it is necessary to perform a precious metal catalyst treatment (activation treatment) such as palladium or silver on the copper plate in advance.

(実施例4)
ビーカー内に、参照電極(RE―1C飽和KCl/銀/塩化銀、ビー・エー・エス株式会社製)と金ワイヤーを入れ、両方をポテンションスタット(HA−151型、北斗電工株式会社製)へ接続したこと以外は、実施例2と同様の手順で操作を行った。金ワイヤーは作用電極へ接続した。
Example 4
In a beaker, put a reference electrode (RE-1C saturated KCl / silver / silver chloride, manufactured by BAS Co., Ltd.) and a gold wire, and both are potentiostat (HA-151 type, manufactured by Hokuto Denko Co., Ltd.) The operation was performed in the same procedure as in Example 2 except that the connection was made. A gold wire was connected to the working electrode.

めっき液XとYの滴下を始めると、ポテンションスタットは−520mV〜−600mVへ変化した。その後ポテンションスタットの値は、−520mV〜−600mVの範囲で一定の値となった。   When the dropping of the plating solutions X and Y was started, the potentiostat changed from −520 mV to −600 mV. Thereafter, the value of the potentiostat became a constant value in the range of -520 mV to -600 mV.

20分滴下したのち、金ワイヤーを引き上げ、流水洗浄を十分に行った。金ワイヤーの表面に、灰色を呈したニッケル皮膜が形成していた。ワイヤーを伸ばし、光学顕微鏡を用いて落射光にてワイヤー表面の観察を行ったが、全面がニッケル皮膜で覆われており、表面は平滑で粒子の付着もなかった。   After dripping for 20 minutes, the gold wire was pulled up and sufficiently washed with running water. A gray nickel film was formed on the surface of the gold wire. The wire was stretched and the surface of the wire was observed with incident light using an optical microscope, but the entire surface was covered with a nickel coating, the surface was smooth, and no particles adhered.

ニッケルの析出が進行中の核体3が、金ワイヤー表面に接触することで、金ワイヤー表面の電位が、核体3表面の電位すなわちニッケル還元電位に変化した。攪拌によってビーカー中で分散している多数の核体3が金ワイヤーに間欠的に接触することで、金ワイヤー全体の電位が核体3表面の電位と近似し、触媒が無くても金ワイヤー表面にニッケル層が析出したと考えられる。実施例1も同様に、無数の核体3が銅板に間欠的にしかも継続的に接触することで銅板の電位が核体3表面の電位に近くなり、ニッケルの析出が起こったと考えられる。   When the core 3 in which nickel deposition is in progress contacts the gold wire surface, the potential of the gold wire surface is changed to the potential of the surface of the core 3, that is, the nickel reduction potential. A large number of cores 3 dispersed in a beaker are intermittently brought into contact with the gold wire by stirring, so that the potential of the entire gold wire approximates the potential of the surface of the core 3, and even if there is no catalyst, the surface of the gold wire It is thought that the nickel layer was deposited on the surface. Similarly in Example 1, it is considered that the infinite number of nuclei 3 contacted the copper plate intermittently and continuously, so that the potential of the copper plate became close to the potential of the surface of the nuclei 3 and nickel precipitation occurred.

(実施例5)
[導電体の調整]
導電体2として以下のサンプルを用意し、重量を測定した。
銅、25mm×22mm(ハルセル試験用銅板、株式会社山本鍍金試験器)
ニッケル、20mm×20mm(銅張り積層板の銅表面にニッケルめっき済み)※
金、20mm×20mm(銅張り積層板の銅表面にニッケル/金めっき済み)※
※銅張りエポキシ積層板:MCL−E−679(日立化成工業株式会社製、商品名)
(Example 5)
[Conductor adjustment]
The following samples were prepared as the conductor 2, and the weight was measured.
Copper, 25mm x 22mm (Hull cell test copper plate, Yamamoto plating tester)
Nickel, 20 mm x 20 mm (Nickel plated on the copper surface of the copper-clad laminate) *
Gold, 20mm x 20mm (copper-clad laminate with nickel / gold plated on copper surface) *
* Copper-clad epoxy laminate: MCL-E-679 (manufactured by Hitachi Chemical Co., Ltd., trade name)

これらを、ガラス棒から被覆線を用いて吊り下げ、3組(サンプルA5、B5、C5)用意した。銅板は希硫酸、他は希塩酸で10秒洗浄し、直ぐに純水で水洗して使用した。   These were suspended from a glass rod using a coated wire, and three sets (samples A5, B5, C5) were prepared. The copper plate was washed with dilute sulfuric acid, the others were washed with dilute hydrochloric acid for 10 seconds, and immediately washed with pure water before use.

[導電体への無電解めっき]
1000mlのビーカーに水600ml、錯化剤として酒石酸ナトリウム16gを入れ80℃に温めた。ここへ、核体3としてニッケル粒子28g(比重:8.9、平均粒径10μm)を投入し、撹拌機(スリーワンモーターBL600型、新東科学株式会社製)(フッ素製4枚羽根を使用)で撹拌(400rpm)して粒子を分散させた。この時の、分散液は灰色の懸濁状態であった。このビーカーへ定量ポンプを用いて表に示しためっき液X、Yを、それぞれ同時に6.0ml/minの速度で滴下した。滴下開始30秒で懸濁液中から気泡の発生が確認され、核体3へのニッケルめっきが始まった。5分滴下し、泡の発生にムラが無く、ビーカー内の反応が十分均一になった後、懸濁液中にサンプルA5とB5を投入した。滴下開始から10分後にサンプルA5、及びB5を引き上げ、十分
な流水洗を実施した。
[Electroless plating on conductors]
In a 1000 ml beaker, 600 ml of water and 16 g of sodium tartrate as a complexing agent were added and warmed to 80 ° C. Here, 28 g of nickel particles (specific gravity: 8.9, average particle size of 10 μm) are introduced as the core 3 and a stirrer (three-one motor BL600 type, manufactured by Shinto Kagaku Co., Ltd.) (using four fluorine blades) The particles were dispersed by stirring (400 rpm). At this time, the dispersion was in a gray suspension state. Plating solutions X and Y shown in Table 1 were simultaneously dropped into this beaker at a rate of 6.0 ml / min using a metering pump. Bubble generation was confirmed from the suspension 30 seconds after the start of dropping, and nickel plating on the core 3 started. After dropwise addition for 5 minutes, there was no unevenness in the generation of bubbles, and after the reaction in the beaker was sufficiently uniform, Samples A5 and B5 were put into the suspension. Ten minutes after the start of dropping, Samples A5 and B5 were pulled up and washed with running water sufficiently.

無電解ニッケルめっき液(ICPニコロンU、奥野製薬工業株式会社製)を85℃で建浴し、エアーで攪拌を行った。ここへ、サンプルB5とC5を浸漬し、サンプルを揺動しながら30分めっきを実施した。サンプルをめっき液から引き上げ、十分な流水洗を実施した後、乾燥させた。   An electroless nickel plating solution (ICP Nicolon U, manufactured by Okuno Pharmaceutical Co., Ltd.) was placed at 85 ° C. and stirred with air. Here, samples B5 and C5 were immersed, and plating was performed for 30 minutes while the sample was rocked. The sample was pulled up from the plating solution, washed with running water and dried.

無電解めっき後のサンプルA5、B5、C5の重量測定結果と外観観察結果を、表2に示す。   Table 2 shows the weight measurement results and appearance observation results of Samples A5, B5, and C5 after electroless plating.

Figure 0005445818
Figure 0005445818


表2において、サンプルのニッケルの厚みは、以下の算出式に従って算出した。   In Table 2, the nickel thickness of the sample was calculated according to the following calculation formula.

Figure 0005445818


また、表2において、ニッケルの析出(外観)は、析出有りを〇、析出無しを×とした。
Figure 0005445818


In Table 2, the nickel precipitation (appearance) was marked with ◯ when there was precipitation and x when there was no precipitation.

表2の結果より、本発明に係る無電解めっき方法を施したサンプルA5、B5は、Au板、Ni板、Cu板いずれの表面も、ニッケルの析出が確認された。一方、通常のディップによる無電解めっきの工程のみを施したサンプルC5では、Au板、Cu板の表面にニッケルの析出は確認されず、重量変化からNi板の表面にのみニッケルが析出した。これは、ニッケルは自己触媒性があるためと考えられる。   From the results in Table 2, it was confirmed that the samples A5 and B5 subjected to the electroless plating method according to the present invention had nickel deposited on the surfaces of the Au plate, Ni plate, and Cu plate. On the other hand, in the sample C5 subjected only to the electroless plating process by normal dipping, no nickel deposition was confirmed on the surfaces of the Au plate and the Cu plate, and nickel was deposited only on the surface of the Ni plate due to the change in weight. This is probably because nickel has autocatalytic properties.

サンプルA5について、光学顕微鏡の落射光にて表面観察を行ったところ、いずれの板の表面も一面に淡灰色を呈していた。これらの表面に凹凸や粒子などの異物の付着はなく平滑な表面であった。また、そのニッケルの厚さは、Au板、Ni板、Cu板のいずれも約0.2μmであったことから、ニッケルの析出量は下地金属に依存していない。   When the surface of Sample A5 was observed with incident light from an optical microscope, the surfaces of all the plates were light gray. These surfaces were smooth surfaces with no foreign matter such as irregularities or particles attached thereto. Moreover, since the thickness of the nickel was about 0.2 μm for all of the Au plate, Ni plate, and Cu plate, the amount of nickel deposited does not depend on the underlying metal.

このように貴金属のような触媒を用いずに、無電解めっきによって導電体2上に導電層1を形成することが可能であった。また、形成された導電層1は導電体2表面内でムラが無く、その厚みはサブミクロンレベルと極微量で、非常に薄い導電層1を均一に形成できた。更にこの導電層1は、導電体2に依存せず、ほぼ同じ厚みに導電層1を形成できることから、積層する金属の制限が緩い無電解めっき方法である。更に、異なる導電体2を同じめっき浴の中に入れ、同時に且つほぼ同量のニッケルを、無電解めっきによって析出させることができたことから、めっき工程を短縮する効果があり、めっきシステムの制限が緩い無電解めっき方法である。これによって、多品種の被めっき体(導電体2)を同時に処理することができる。   Thus, the conductive layer 1 could be formed on the conductor 2 by electroless plating without using a catalyst such as a noble metal. In addition, the formed conductive layer 1 had no unevenness on the surface of the conductor 2, and the thickness thereof was a submicron level and a very small amount, and a very thin conductive layer 1 could be uniformly formed. Furthermore, the conductive layer 1 is an electroless plating method in which the metal layer to be laminated is loosely restricted because the conductive layer 1 can be formed with substantially the same thickness without depending on the conductor 2. Furthermore, different conductors 2 can be placed in the same plating bath, and at the same time, almost the same amount of nickel can be deposited by electroless plating, which has the effect of shortening the plating process and limits the plating system. Is a loose electroless plating method. As a result, a wide variety of objects to be plated (conductors 2) can be processed simultaneously.

更に、サンプルB5のAu板、Ni板、Cu板について、光学顕微鏡の落射光にて表面観察を行ったところ、いずれの板の表面も一面にムラ無く灰色を呈していた。これらの表面に凹凸や粒子などの異物の付着はなく平滑な表面であった。また、析出したニッケルの厚みは4.4〜5.0μmであり、その厚みに下地金属の依存性は無かった。このように、下地金属に触媒付与処理を行わずとも、通常のディップによる無電解めっきが可能であった。また、下地金属に関係なく通常のディップによる無電解めっきによって均一な厚みのニッケル層を形成することが可能であった。このように、通常のディップによる無電解めっきで行われる貴金属触媒付与工程を代替する被めっき体の活性化前処理方法としての利用が可能であることを示した。   Furthermore, when the surface of the Au plate, Ni plate, and Cu plate of sample B5 was observed with incident light from an optical microscope, the surfaces of all the plates were gray with no unevenness. These surfaces were smooth surfaces with no foreign matter such as irregularities or particles attached thereto. The deposited nickel had a thickness of 4.4 to 5.0 μm, and the thickness did not depend on the base metal. In this way, electroless plating by ordinary dipping was possible without performing catalyst application treatment on the base metal. Moreover, it was possible to form a nickel layer having a uniform thickness by electroless plating by ordinary dipping regardless of the base metal. Thus, it has been shown that it can be used as a pretreatment method for activation of the object to be plated, which replaces the precious metal catalyst application step performed by electroless plating by ordinary dipping.

また、ニッケルは銅や金よりも卑な金属であり、通常の無電解めっき方法で金や銅の上にニッケルを析出させるには、貴金属を金や銅の上に付与することが必要であった。特に、次亜リン酸系の還元剤を利用した無電解ニッケルめっきにおいては、銅はニッケルに対して触媒作用を発揮しない為、貴金属触媒がなければニッケルは析出しない。本発明に係る無電解めっき方法では、パラジウムや銀などの貴金属触媒を使用することなく、下地の金属より卑な金属を無電解めっき方法により積層できた。更には、積層させる金属に対して触媒作用を発揮しない無電解めっきシステムを用いて、パラジウムや銀などの貴金属触媒を使用することなく、下地の金属上にことなる金属を無電解めっき方法により積層できた。   Nickel is a base metal than copper and gold. In order to deposit nickel on gold or copper by a normal electroless plating method, it is necessary to apply a noble metal on the gold or copper. It was. In particular, in electroless nickel plating using a hypophosphorous acid-based reducing agent, since copper does not exert a catalytic action on nickel, nickel does not precipitate without a noble metal catalyst. In the electroless plating method according to the present invention, a base metal can be laminated by an electroless plating method without using a noble metal catalyst such as palladium or silver. Furthermore, using an electroless plating system that does not exert a catalytic action on the metal to be laminated, a different metal is laminated on the underlying metal by an electroless plating method without using a noble metal catalyst such as palladium or silver. did it.

(実施例6)
[導電体の調整]
導電体2として銅板(25mm×22mm、ハルセル試験用銅板、株式会社山本鍍金試験器)を用意し、ガラス棒から被覆線を用いて吊り下げ、3組(サンプルA6、B6、C6)用意した。各サンプルを、ポリイミド製のテープで板の面積の約半分を保護し、希硫酸で10秒洗浄し、直ぐに純水で水洗した。水洗後直ぐに、置換金めっき(HGS−500、日立化成工業株式会社製、置換金めっき液、90℃)及び無電解金めっき(HGS−5400、日立化成工業株式会社製、無電解金めっき液、65℃)を行い、約1μmの金めっきを施した。ポリイミドテープを取り除き、金が半分、銅が半分露出したサンプルを得た。
(Example 6)
[Conductor adjustment]
A copper plate (25 mm × 22 mm, Hull cell test copper plate, Yamamoto plating tester) was prepared as the conductor 2, suspended from a glass rod using a coated wire, and three sets (samples A6, B6, C6) were prepared. Each sample was protected with polyimide tape for about half the area of the plate, washed with dilute sulfuric acid for 10 seconds, and immediately washed with pure water. Immediately after washing with water, displacement gold plating (HGS-500, manufactured by Hitachi Chemical Co., Ltd., displacement gold plating solution, 90 ° C.) and electroless gold plating (HGS-5400, manufactured by Hitachi Chemical Co., Ltd., electroless gold plating solution, 65 ° C.) and about 1 μm of gold plating was applied. The polyimide tape was removed to obtain a sample in which half of gold and half of copper were exposed.

[導電体への無電解めっき]
各サンプルは、(実施例5)と同様の手順で、無電解ニッケルめっきを実施した。このサンプルA6を、光学顕微鏡の落射光にて表面観察を行ったところ、銅表面も金表面も全体が淡灰色を呈しており、ニッケルが析出した。また、表面に凹凸や粒子などの異物の付着はなく平滑な表面であり、金と銅の下地の違いは無かった。
[Electroless plating on conductors]
Each sample was subjected to electroless nickel plating in the same procedure as in (Example 5). When the surface of Sample A6 was observed with incident light from an optical microscope, the copper surface and the gold surface were all light gray, and nickel was deposited. Moreover, there was no adhesion of foreign matters such as irregularities and particles on the surface, and the surface was smooth, and there was no difference between the gold and copper bases.

次に、サンプルB6を光学顕微鏡の落射光にて表面観察を行ったところ、銅表面も金表面も全体が灰色を呈していた。また、表面に凹凸や粒子などの異物の付着はなく平滑な表面であり、こちらも金と銅の下地の違いは無かった。但し、サンプルC6は変化が無く、銅表面は酸化して変色していた。   Next, when the surface of Sample B6 was observed with incident light from an optical microscope, the entire copper surface and gold surface were gray. In addition, there was no adhesion of foreign matters such as irregularities and particles on the surface, and the surface was smooth, and there was no difference between the gold and copper bases. However, sample C6 had no change, and the copper surface was oxidized and discolored.

サンプルB6をエポキシ樹脂を用いて注型してから研磨を行い、SEMを用いて銅配線の断面観察をおこなったところ、銅上のニッケル皮膜及び、金上のニッケル皮膜はともに約4μmであった。下地金属とニッケルとの界面に剥離や空隙は観察されず、良好な密着を得られていた。   When sample B6 was cast using an epoxy resin and then polished, and a cross section of the copper wiring was observed using SEM, the nickel film on copper and the nickel film on gold were both about 4 μm. . Peeling and voids were not observed at the interface between the base metal and nickel, and good adhesion was obtained.

このように、導電体2が異なる金属で形成され、連続(導通)した表面であっても、金属の違いによらず、均一なニッケル皮膜を形成できた。   Thus, even if the conductor 2 was formed of different metals and was a continuous (conductive) surface, a uniform nickel film could be formed regardless of the difference of the metals.

(実施例7)
[導電体の調整]
以下の板状サンプルを用意し、重量を測定した。
銅、25mm×22mm(ハルセル試験用銅板、株式会社山本鍍金試験器)
ニッケル、20mm×20mm(銅張り積層板の銅表面にニッケルめっき済み)※
金、20mm×20mm(銅張り積層板の銅表面にニッケル/金めっき済み)※
ポリスチレン、20mm×20mm
※銅張りエポキシ積層板:MCL−E−679(日立化成工業株式会社製、商品名)
(Example 7)
[Conductor adjustment]
The following plate samples were prepared and weighed.
Copper, 25mm x 22mm (Hull cell test copper plate, Yamamoto plating tester)
Nickel, 20 mm x 20 mm (Nickel plated on the copper surface of the copper-clad laminate) *
Gold, 20mm x 20mm (copper-clad laminate with nickel / gold plated on copper surface) *
Polystyrene, 20mm x 20mm
* Copper-clad epoxy laminate: MCL-E-679 (manufactured by Hitachi Chemical Co., Ltd., trade name)

これらを、フッ素製攪拌羽根(直径3.5cm、4枚羽)の羽根の部分に1枚ずつしっかり固定した。これを撹拌機(スリーワンモーターBL600型、新東科学株式会社製)に固定した。使用する直前に希硫酸が入った300mlビーカーにサンプルの部分を浸漬し、10秒洗浄し、直ぐに洗瓶を用いて純水で水洗して使用した。   Each of these was firmly fixed to the blade portion of a fluorine stirring blade (diameter 3.5 cm, 4 blades) one by one. This was fixed to a stirrer (three-one motor BL600 type, manufactured by Shinto Kagaku Co., Ltd.). Immediately before use, the sample portion was immersed in a 300 ml beaker containing dilute sulfuric acid, washed for 10 seconds, and immediately washed with pure water using a washing bottle.

[導電体への無電解めっき]
1000mlのビーカーに水600ml、錯化剤として乳酸ナトリウム20gを入れ80℃に温めた。ここへ、表面にニッケル層を持つ核体3を6g(比重:2.0、平均粒径5μm)を投入した。サンプルが羽根に固定された撹拌機(スリーワンモーターBL600型、新東科学株式会社製)で撹拌して粒子を分散させた。撹拌機は、150rpm、正転5秒/逆転5秒で作動させた。分散液はこの動作で灰色の懸濁状態になり、核体3は分散していた。このビーカーへ定量ポンプを用いて表2に示しためっき液X、Yを、それぞれ同時に6.0ml/minの速度で滴下した。滴下開始30秒で懸濁液中から気泡の発生が確認され、核体3へのニッケルめっきが始まった。滴下開始から10分後にサンプルを素早く、めっき液から引き上げ、十分な流水洗を実施した。
[Electroless plating on conductors]
In a 1000 ml beaker, 600 ml of water and 20 g of sodium lactate as a complexing agent were added and warmed to 80 ° C. Here, 6 g (specific gravity: 2.0, average particle size 5 μm) of the core 3 having a nickel layer on the surface was charged. The particles were dispersed by stirring with a stirrer (three-one motor BL600 type, manufactured by Shinto Kagaku Co., Ltd.) in which the sample was fixed to the blades. The stirrer was operated at 150 rpm, 5 seconds forward / 5 seconds reverse. The dispersion became gray suspension by this operation, and the core 3 was dispersed. Plating solutions X and Y shown in Table 2 were simultaneously dropped into this beaker at a rate of 6.0 ml / min using a metering pump. Bubble generation was confirmed from the suspension 30 seconds after the start of dropping, and nickel plating on the core 3 started. After 10 minutes from the start of dropping, the sample was quickly lifted from the plating solution and washed thoroughly with running water.

このサンプルを攪拌羽根から取り外し、重量を測定したところ、金、銅、ニッケルのサンプルは重量が数mg増加していたが、ポリスチレンは変化していなかった。更に、光学顕微鏡の落射光にて表面観察を行ったところ、銅と金の表面は全体が淡灰色を呈しており、ニッケルが析出したことを確認した。また、表面に凹凸や粒子などの異物の付着はなく平滑な表面であった。このように、導電体2を液中で揺動することで、導電層1が析出中の核体3と導電体2が接触し、導電体2に無電解ニッケルめっきを行うことができた。無電解めっきによって発生する泡(水素)によって、核体3が導電体2表面に付着しやすいため、核体3を十分に分散させ、攪拌する必要がある。導電体2を揺動すると、低い回転数の撹拌でも導電体2表面のニッケル層に核体3が取り込まれず、ニッケル層が形成できた。   When this sample was removed from the stirring blade and the weight was measured, the weight of the gold, copper, and nickel samples was increased by several mg, but the polystyrene was not changed. Furthermore, when the surface was observed with incident light of an optical microscope, the entire surface of copper and gold was light gray, and it was confirmed that nickel was deposited. Further, the surface was smooth without any foreign matter such as irregularities or particles adhering to the surface. Thus, by swinging the conductor 2 in the liquid, the core 3 in which the conductive layer 1 is being deposited and the conductor 2 were in contact with each other, and electroless nickel plating could be performed on the conductor 2. Since the core 3 is likely to adhere to the surface of the conductor 2 due to bubbles (hydrogen) generated by electroless plating, the core 3 needs to be sufficiently dispersed and stirred. When the conductor 2 was swung, the core 3 was not taken into the nickel layer on the surface of the conductor 2 even with stirring at a low rotational speed, and a nickel layer could be formed.

次に、このサンプルをガラス棒から被覆線を用いて吊り下げた。無電解ニッケルめっき液を85℃で建浴し、エアーで攪拌を行った。(ICPニコロンU、奥野製薬工業株式会社製)サンプルを希硫酸中で10秒水洗後、流水洗を10秒実施し、直ぐにめっき液へ浸漬し、サンプルを揺動しながら30分めっきを実施した。サンプルをめっき液から引き上げ、十分な流水洗を実施した後、乾燥させた。   Next, this sample was suspended from a glass rod using a coated wire. The electroless nickel plating solution was erected at 85 ° C. and stirred with air. (ICP Nicolon U, manufactured by Okuno Pharmaceutical Co., Ltd.) The sample was washed with dilute sulfuric acid for 10 seconds, then washed with running water for 10 seconds, immediately immersed in a plating solution, and then plated for 30 minutes while shaking the sample. . The sample was pulled up from the plating solution, washed with running water and dried.

サンプルの各重量を測定したところ、金、銅、ニッケルのサンプルは重量が30〜40mg増加していたが、ポリスチレンは変化していなかった。金、銅、ニッケルには無電解めっきによってニッケルが析出した。また、サンプルを光学顕微鏡の落射光にて表面観察を行ったところ、金、銅、ニッケルの表面は全体が灰色を呈していた。また、表面に凹凸や粒子などの異物の付着はなく平滑な表面であり、金、銅、ニッケルのサンプルをエポキシ樹脂を用いて注型してから研磨を行い、SEMを用いて断面観察をおこなったところ、いずれもニッケル皮膜はともに約4μmであった。下地金属とニッケルとの界面に剥離や空隙は観察されず、良好な密着を得られていた。   When each weight of the sample was measured, the weight of the gold, copper and nickel samples was increased by 30 to 40 mg, but the polystyrene was not changed. Nickel was deposited on gold, copper and nickel by electroless plating. Further, when the surface of the sample was observed with incident light of an optical microscope, the entire surface of gold, copper and nickel was gray. In addition, the surface has a smooth surface with no foreign matter such as irregularities and particles, and after casting a sample of gold, copper, or nickel using an epoxy resin, polishing is performed, and a cross section is observed using an SEM. As a result, both nickel films were about 4 μm. Peeling and voids were not observed at the interface between the base metal and nickel, and good adhesion was obtained.

(比較例1)
核体3に、アクリル製の球状粒子:8g(比重:1.0、平均粒径3μm)を使用した以外は(実施例1)と同様の手順で作業を行った。導電体2及び比較サンプルとして10mm×10mmの銅板(ハルセル試験用銅板、株式会社山本鍍金試験器)、アクリル板、ポリスチレン板、スライドガラスを用意し、ガラス棒から被覆線を用いて吊り下げたサンプルA11を用意した。
(Comparative Example 1)
The same procedure as in Example 1 was performed, except that acrylic globular particles: 8 g (specific gravity: 1.0, average particle size: 3 μm) were used for the core 3. A conductor 2 and a 10 mm × 10 mm copper plate (Hull cell test copper plate, Yamamoto plating tester), an acrylic plate, a polystyrene plate, and a slide glass were prepared as samples for comparison and suspended from a glass rod using a coated wire A11 was prepared.

実施例1の手順に従い、核体3が分散した液の中へサンプルA11を投入し、定量ポンプを用いて表1に示しためっき液X、Yを、それぞれ同時に3.2ml/minの速度で滴下した。しかし、5分経っても変化は起こらなかったので、そのまま滴下を進めたところ、突然ビーカー内から泡が発生し黒い沈殿物が発生した。めっき液は分解し、ニッケルが異常析出して沈殿した。サンプルA11を引き上げ、流水洗を十分行い、観察したが、どの板にも変化がみられず、特に銅は、表面が酸化して変色していたが、ニッケルの析出は見られなかった。
In accordance with the procedure of Example 1, sample A11 was put into the liquid in which core 3 was dispersed, and plating solutions X and Y shown in Table 1 were simultaneously used at a rate of 3.2 ml / min using a metering pump. It was dripped. However, no change occurred even after 5 minutes. When the dropping was continued as it was, bubbles suddenly formed from the beaker and black precipitates were generated. The plating solution was decomposed and nickel was abnormally deposited and precipitated. Sample A11 was pulled up, washed with running water, and observed, but no change was observed in any of the plates. In particular, copper was oxidized and discolored, but nickel was not deposited.

また、アクリルの核体3は異常析出したニッケルの塊に取り込まれたり、何の変化も無いものなどが見られた。しかし、核体3の表面に、無電解めっきで連続的に析出したと考えられるようなニッケル層は形成されていなかったことから、核体3へは無電解めっきが進行していなかったことがわかった。   Moreover, the acrylic core 3 was taken into the abnormally precipitated nickel lump, or was found to have no change. However, since the nickel layer considered to have been continuously deposited by electroless plating was not formed on the surface of the core 3, the electroless plating had not progressed to the core 3. all right.

このように、無電解めっきによって金属の析出が起こっていない核体3を、導電体2へ接触させても導電体2への無電解めっきは起こらなかった。   Thus, even when the core 3 on which no metal deposition occurred by electroless plating was brought into contact with the conductor 2, electroless plating on the conductor 2 did not occur.

本発明の第1の実施の形態に係り、無電解めっきにより導電層が析出中の核体が間欠的に導電体へ接触したことで形成された導電層、及び導電体の断面図である。FIG. 4 is a cross-sectional view of a conductive layer formed by electroless plating and a conductive layer formed by intermittently contacting a core in which a conductive layer is being deposited by electroless plating according to the first embodiment of the present invention. 本発明の実施の形態に係る核体の鳥瞰図である。It is a bird's-eye view of the nuclear body which concerns on embodiment of this invention. 本発明の実施の形態に係る核体の断面図である。It is sectional drawing of the nucleus which concerns on embodiment of this invention. 本発明の実施の形態に係る、核体及び、導電体、導電層の断面図で、無電解めっきにより導電層が析出中の核体が間欠的に導電体へ接触したことによって、導電体上に導電層が析出していく過程を経時的に表した図である。In the cross-sectional view of the core body, the conductor, and the conductive layer according to the embodiment of the present invention, the core body on which the conductive layer is deposited by electroless plating intermittently contacts the conductor, It is the figure which represented the process in which a conductive layer precipitates in time.

符号の説明Explanation of symbols

1…導電層
2…導電体
3…核体
DESCRIPTION OF SYMBOLS 1 ... Conductive layer 2 ... Conductor 3 ... Nucleus

Claims (3)

パラジウム、銀、白金などの貴金属触媒を表面に保有しない導電体へ、無電解ニッケルめっき層を形成する方法であって、
a)表面にニッケルまたはニッケル合金を有する平均粒径10nm以上1mm以下の粉体である核体が、攪拌羽根による連続した攪拌操作により分散した水溶液を用意する工程と、
b)金、銅、ニッケル又はニッケル合金のいずれかを表面に有する導電体を前記水溶液中に浸漬する工程と、
c)次亜リン酸塩を還元剤とする無電解ニッケルめっき液を前記水溶液中に一定流速で添加する工程、又は、該無電解ニッケルめっき液の成分のうち、少なくともニッケルイオン溶液と還元剤溶液に分割し、それぞれを前記水溶液中に同時かつ並行に一定流速で添加する工程と、を含む導電体への無電解ニッケルめっき方法。
A method of forming an electroless nickel plating layer on a conductor that does not have a noble metal catalyst such as palladium, silver, or platinum on its surface,
a) a step of preparing an aqueous solution in which a core, which is a powder having an average particle diameter of 10 nm or more and 1 mm or less having nickel or a nickel alloy on its surface, is dispersed by a continuous stirring operation with a stirring blade;
b) a step of immersing a conductor having any of gold, copper, nickel or nickel alloy on the surface thereof in the aqueous solution;
c) a step of adding an electroless nickel plating solution containing hypophosphite as a reducing agent to the aqueous solution at a constant flow rate, or at least a nickel ion solution and a reducing agent solution among the components of the electroless nickel plating solution divided, electroless nickel plating method and adding a constant flow rate simultaneously and in parallel respectively into the aqueous solution, the to including electrical conductors.
導電体が、表面に銅と金を有する導電体である請求項1に記載の導電体への無電解ニッケルめっき方法。   The electroless nickel plating method for a conductor according to claim 1, wherein the conductor is a conductor having copper and gold on the surface. 導電体が、金、銅、ニッケル又はニッケル合金から1つ選ばれる金属を表面に有する導電体のうち、少なくとも異なる金属表面を有する2つ以上の導電体である請求項1に記載の導電体への無電解ニッケルめっき方法。   The conductor according to claim 1, wherein the conductor is at least two conductors having at least different metal surfaces among conductors having one metal selected from gold, copper, nickel, or nickel alloy on the surface. Electroless nickel plating method.
JP2008117200A 2008-04-28 2008-04-28 Electroless plating method and activation pretreatment method Active JP5445818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008117200A JP5445818B2 (en) 2008-04-28 2008-04-28 Electroless plating method and activation pretreatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008117200A JP5445818B2 (en) 2008-04-28 2008-04-28 Electroless plating method and activation pretreatment method

Publications (2)

Publication Number Publication Date
JP2009263746A JP2009263746A (en) 2009-11-12
JP5445818B2 true JP5445818B2 (en) 2014-03-19

Family

ID=41389962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008117200A Active JP5445818B2 (en) 2008-04-28 2008-04-28 Electroless plating method and activation pretreatment method

Country Status (1)

Country Link
JP (1) JP5445818B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017052984A (en) * 2015-09-08 2017-03-16 国立大学法人東京海洋大学 Ni-P PLATING FILM AND SCALE AND METHOD FOR SUPPRESSING ADHESION OF SESSILE ANIMAL

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006035556A1 (en) * 2004-09-27 2006-04-06 Murata Manufacturing Co., Ltd. Electroless plating method and electrically nonconductive plating object with plating film formed thereon
WO2007148785A1 (en) * 2006-06-23 2007-12-27 Neomax Materials Co., Ltd. ELECTROLESS Ni-P PLATING METHOD AND SUBSTRATE FOR ELECTRONIC COMPONENT

Also Published As

Publication number Publication date
JP2009263746A (en) 2009-11-12

Similar Documents

Publication Publication Date Title
TW593745B (en) Method of manufacturing electronic part, electronic part and electroless plating method
CN102965646B (en) Stable catalyst solution for electroless metallization
Wang et al. Facile preparation of a high-quality copper layer on epoxy resin via electroless plating for applications in electromagnetic interference shielding
JP5947284B2 (en) Method for coating surface of substrate made of non-metallic material using copper layer
JP6171189B2 (en) Thin coating on material
JP4485508B2 (en) Method for producing conductive particles and anisotropic conductive film using the same
CN1715444A (en) Method for metallizing plastic surfaces
JP2011175951A (en) Conductive fine particles, and anisotropic conductive material
CN102560446A (en) Stable nanoparticles for electroless plating
JP2002322565A (en) Method for reutilizing activating solution of metallic nanoparticle in electroless plating process
Fujiwara et al. Adsorption promotion of Ag nanoparticle using cationic surfactants and polyelectrolytes for electroless Cu plating catalysts
KR101985581B1 (en) Composite conductive particles, conductive resin composition containing same and conductive coated article
Sudagar et al. Electroless deposition of nanolayered metallic coatings
Yamamoto et al. An electroless plating method for conducting microbeads using gold nanoparticles
JP5445818B2 (en) Electroless plating method and activation pretreatment method
JP5408462B2 (en) Electroless plating method and activation pretreatment method
JP2011086786A (en) Method of manufacturing light permeable electromagnetic shield material, and light permeable electromagnetic shield material
Chen et al. Tough bonding of metallic layers to hydrocarbon surfaces by depositing Ag films
JP2014031576A (en) Method for producing printed circuit board
JP2013189661A (en) Method for producing laminate, and laminate
JP2002192648A (en) Composite material improved in junction strength and method for forming the same
JPS6140319B2 (en)
Nagar et al. Nucleation and growth of copper on Ru-based substrates: I. The effect of the inorganic components
JP5446191B2 (en) Method for producing electroless plating resin particles
KR20170030707A (en) Electroless copper plating method using metal particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130509

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130708

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131211

R151 Written notification of patent or utility model registration

Ref document number: 5445818

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371