JP7232452B2 - Plating film surface modification method and apparatus - Google Patents

Plating film surface modification method and apparatus Download PDF

Info

Publication number
JP7232452B2
JP7232452B2 JP2018164619A JP2018164619A JP7232452B2 JP 7232452 B2 JP7232452 B2 JP 7232452B2 JP 2018164619 A JP2018164619 A JP 2018164619A JP 2018164619 A JP2018164619 A JP 2018164619A JP 7232452 B2 JP7232452 B2 JP 7232452B2
Authority
JP
Japan
Prior art keywords
hardness
irradiation
plating film
laser
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018164619A
Other languages
Japanese (ja)
Other versions
JP2020037718A (en
Inventor
寛 鈴木
正健 佐藤
愛子 奈良崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Eyetec Co Ltd
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Eyetec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Eyetec Co Ltd filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2018164619A priority Critical patent/JP7232452B2/en
Publication of JP2020037718A publication Critical patent/JP2020037718A/en
Application granted granted Critical
Publication of JP7232452B2 publication Critical patent/JP7232452B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemically Coating (AREA)

Description

本発明は、レーザー光の照射によりめっき被膜を改質する表面改質方法及び装置に関する。 The present invention relates to a surface modification method and apparatus for modifying a plating film by irradiating laser light.

従来より金属材料等の素材表面の耐久性を向上させるためにめっき処理によりめっき被膜を形成することが行われている。無電解めっき処理によるめっき被膜は、電解めっき処理と異なり、めっき浴に浸漬するだけで均一なめっき被膜が形成できることから、様々な素材に適用されてきている。無電解めっき被膜としては、リン(P)を含有するニッケル(Ni)めっき被膜(以下「Ni-Pめっき被膜」という)が代表的なものとして挙げられるが、こうしためっき被膜では、リンの含有量を低下させることで結晶化が進み、めっき被膜の硬度を高めて耐摩耗性等の耐久性を向上させることが知られている。 2. Description of the Related Art Conventionally, a plating film is formed by plating in order to improve the durability of the surface of a material such as a metal material. Unlike electroplating, electroless plating has been applied to various materials because a uniform plating film can be formed simply by immersion in a plating bath. A representative example of the electroless plating film is a nickel (Ni) plating film containing phosphorus (P) (hereinafter referred to as “Ni—P plating film”). It is known that crystallization proceeds by lowering , and the hardness of the plating film is increased to improve durability such as wear resistance.

また、めっき被膜に対して熱処理等の表面処理を施すことでも、めっき被膜の硬度を向上させることが知られており、例えば、特許文献1及び2では、Ni-Pめっき被膜に対して、バレル研磨処理、ショットブラスト処理、レーザビーム処理や高周波誘導加熱処理といった表面処理を行って表面硬化処理を行う点が記載されている。また、特許文献3では、めっき被膜表面にレーザー光を照射して局部的に加熱処理することで、素材に対する加熱の影響を抑えてめっき被膜の硬度を向上させる表面改質方法が記載されている。 It is also known that the hardness of the plating film is improved by subjecting the plating film to surface treatment such as heat treatment. It is described that the surface hardening treatment is performed by surface treatment such as polishing treatment, shot blasting treatment, laser beam treatment, or high-frequency induction heating treatment. In addition, Patent Document 3 describes a surface modification method for improving the hardness of the plating film by suppressing the influence of heating on the material by locally heat-treating the surface of the plating film by irradiating it with a laser beam. .

特許第3066798号公報Japanese Patent No. 3066798 再表98/31849号公報Retable 98/31849 特開2017-222922号公報JP 2017-222922 A

Ni-Pめっき被膜では、めっき被膜のリンの含有量を低下させることで、めっき被膜の硬度を向上させることができるが、得られる硬度はビッカース硬度で700HV程度までとなっており、十分な硬度を得ることが難しい。 In the Ni—P plating film, the hardness of the plating film can be improved by reducing the phosphorus content of the plating film, but the obtained hardness is up to about 700 HV in Vickers hardness, which is sufficient. difficult to obtain.

熱処理等の表面処理を行う場合には、加熱温度400℃で1時間程度加熱処理することで、ビッカース硬度で900HV程度の十分な硬度を得ることができるが、加熱温度が高いことから、めっき被膜が形成された素材によっては、加熱されることで、焼鈍しの効果として歪が発生し、素材自体の硬度の低下に伴う引張強度の低下といった悪影響を及ぼすようになる。 When surface treatment such as heat treatment is performed, a sufficient Vickers hardness of about 900 HV can be obtained by heat treatment at a heating temperature of 400 ° C. for about 1 hour. Depending on the material on which is formed, heating causes distortion as an effect of annealing, and adverse effects such as a decrease in tensile strength due to a decrease in hardness of the material itself occur.

また、特許文献3では、レーザー光の照射によりめっき被膜の表面から加熱を行うことでめっき被膜の硬度を上昇させつつ素材への熱影響を抑制している。しかしながら、素材表面層での硬度が10%程度低下しており、レーザー光の照射による素材への熱影響が及んでいる点が課題となっている。 Further, in Patent Document 3, heating is performed from the surface of the plated film by irradiating a laser beam, thereby increasing the hardness of the plated film and suppressing the thermal effect on the material. However, the hardness of the surface layer of the material is reduced by about 10%, and there is a problem that the material is thermally affected by the irradiation of the laser beam.

そこで、本発明は、めっき被膜の表面硬化を高めるとともに素材表面の硬度の低下を抑止することができるめっき被膜の表面改質方法及び装置を提供することを目的とする。 SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a method and apparatus for modifying the surface of a plated film, which can increase the surface hardening of the plated film and suppress the decrease in the hardness of the surface of the material.

本発明に係るめっき被膜の表面改質方法は、鋼材からなる素材の硬化処理された表面に形成された膜厚1μm~30μmのめっき被膜に対してパルス幅が1μ秒~200μ秒のパルスレーザーを照射してめっき被膜表面の硬度を900Hv以上に硬化させるとともに素材表面の硬度を700Hv以上に維持する。さらに、前記パルスレーザーの照射量は、フルーエンスが0.01J/cm2~2.0J/cm2になるように設定する。さらに、前記素材は、浸炭処理又は焼き入れ処理により表面硬化処理がされており、前記めっき被膜は、無電解めっき処理により形成されている。 The method for modifying the surface of a plating film according to the present invention uses a pulse laser with a pulse width of 1 μs to 200 μs for a plating film having a thickness of 1 μm to 30 μm formed on a hardened surface of a material made of steel. is irradiated to harden the surface of the plating film to a hardness of 900 Hv or more, and the hardness of the material surface is maintained at 700 Hv or more. Further, the irradiation amount of the pulse laser is set so that the fluence is 0.01 J/cm 2 to 2.0 J/cm 2 . Further, the material is surface-hardened by carburizing or quenching, and the plated film is formed by electroless plating.

本発明に係る摺動部材は、鋼材からなる本体の硬化処理された表面に膜厚1μm~30μmのめっき被膜が形成された摺動部材であって、前記本体表面の硬度が700Hv以上であり、前記めっき被膜表面の硬度が900Hv以上である。 A sliding member according to the present invention is a sliding member in which a hardened surface of a main body made of steel is formed with a plated film having a thickness of 1 μm to 30 μm, and the surface of the main body has a hardness of 700 Hv or more, The surface hardness of the plating film is 900 Hv or more.

本発明に係るめっき被膜の表面改質装置は、鋼材からなる素材の硬化処理された表面に形成された膜厚1μm~30μmのめっき被膜に対してレーザー光を照射して改質するめっき被膜の表面改質装置であって、パルス幅が1μ秒~200μ秒のパルスレーザーを出射する光源部と、前記光源部から出射されたレーザー光を所定の照射領域に対してフルーエンスが0.01J/cm2~2.0J/cm2となる照射量で照射してめっき被膜表面の硬度を900Hv以上に硬化させるとともに素材表面の硬度を700Hv以上に維持するように制御する照射制御部とを備えている。さらに、前記照射制御部は、前記素材表面を前記照射領域に対して相対的に移動させて照射制御する。 The apparatus for modifying the surface of a plating film according to the present invention modifies a plating film having a thickness of 1 μm to 30 μm formed on a hardened surface of a steel material by irradiating it with a laser beam. A surface modification apparatus comprising: a light source unit that emits a pulsed laser having a pulse width of 1 μs to 200 μs; and a laser beam emitted from the light source unit having a fluence of 0.01 J/ cm 2 to 2.0 J/cm 2 to harden the surface of the plating film to a hardness of 900 Hv or more and control the hardness of the surface of the material to be maintained at 700 Hv or more. there is Further, the irradiation control unit controls irradiation by moving the surface of the material relative to the irradiation region.

本発明は、上記の構成を備えることで、パルス状のレーザー光を照射してめっき被膜を局部的に加熱処理することができ、素材に対する加熱の影響を抑えてめっき被膜の硬度を向上させることが可能となる。 By providing the above configuration, the present invention can locally heat-treat the plated film by irradiating a pulsed laser beam, suppressing the influence of heating on the material and improving the hardness of the plated film. becomes possible.

レーザー光の照射による加熱処理について有限要素法を用いて解析した結果を示す説明図である。It is explanatory drawing which shows the result of having analyzed using the finite element method about the heat processing by irradiation of a laser beam. レーザー光の照射による加熱処理について有限要素法を用いて解析した結果を示す説明図である。It is explanatory drawing which shows the result of having analyzed using the finite element method about the heat processing by irradiation of a laser beam. レーザー光の照射による加熱処理について有限要素法を用いて解析した結果を示す説明図である。It is explanatory drawing which shows the result of having analyzed using the finite element method about the heat processing by irradiation of a laser beam. レーザー光を素材表面に対して走査して照射する装置を用いる例である。This is an example using a device that scans and irradiates a material surface with a laser beam. 素材を回転しながらレーザー光を照射する装置を用いる例である。This is an example using a device that irradiates a laser beam while rotating a material. 素材を回転しながらレーザー光を走査して照射する装置を用いる例である。This is an example using a device that scans and irradiates a laser beam while rotating a material.

以下、本発明に係る実施形態について詳しく説明する。なお、以下に説明する実施形態は、本発明を実施するにあたって好ましい具体例であるから、技術的に種々の限定がなされているが、本発明は、以下の説明において特に本発明を限定する旨明記されていない限り、これらの形態に限定されるものではない。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments according to the present invention will be described in detail. It should be noted that the embodiments described below are preferred specific examples for carrying out the present invention, and thus various technical limitations are made, but the present invention is particularly limited in the following description. These forms are not intended to be limiting unless specified.

素材としては、めっき処理が可能な金属材料であればよく特に限定されないが、機械部品、工具等の高硬度に仕上げる必要がある材料に好適である。例えば、クロムモリブデン鋼等の機械構造用鋼材、炭素工具鋼等の工具鋼材、高炭素クロム軸受鋼等の特殊用途鋼材、ねずみ鋳鉄品等の鋳鉄材といった素材が挙げられる。こうした素材では、浸炭処理や焼き入れ処理といった表面の硬化処理が行われているが、表面処理後の更なる加熱処理は、強度低下や素材の変形といった影響を受けやすくなるため、できるだけ避けることが望ましい。また、アルミニウム等融点が低く歪などの変形を起こしやすい素材に対しても有効である。 The material is not particularly limited as long as it is a metal material that can be plated, but it is suitable for materials that need to be finished with high hardness, such as machine parts and tools. For example, materials such as machine structural steel such as chromium molybdenum steel, tool steel such as carbon tool steel, special purpose steel such as high carbon chromium bearing steel, and cast iron such as gray cast iron. For such materials, surface hardening treatments such as carburizing and quenching are performed, but further heat treatment after surface treatment is susceptible to deterioration of strength and deformation of the material, so it should be avoided as much as possible. desirable. It is also effective for materials that have a low melting point such as aluminum and are prone to deformation such as distortion.

素材表面に形成するめっき被膜としては、金属材料の表面にめっき処理により形成することができるものであればよく特に限定されないが、幅広い素材に対応可能で熱処理により硬度が向上する無電解めっき被膜が好適である。特に、Niを主成分とするNi-Pめっき被膜については、レーザー光により硬度を高めることができることから好ましい。そして、めっき被膜の膜厚は1μm~30μmに形成することが好ましい。 The plating film to be formed on the surface of the material is not particularly limited as long as it can be formed on the surface of the metal material by plating. preferred. In particular, a Ni—P plating film containing Ni as a main component is preferable because the hardness can be increased by a laser beam. The film thickness of the plated film is preferably 1 μm to 30 μm.

また、めっき被膜には、炭素材料を複合させることで、めっき被膜の硬度を高めることができる。炭素材料としては、例えば、ナノダイヤモンド等の炭素微粒子、カーボンナノチューブ、フラーレンといったものが挙げられる。こうした炭素材料は、予めめっき液に投入しておき、めっき処理によりめっき被膜に含有させることができる。また、炭素材料を含むコーティング液を調製し、形成されためっき被膜にコーティング処理することで、炭素材料を複合させることができる。このような炭素材料を複合させためっき被膜についてもレーザー光照射によって更なる硬度の向上を図ることができる。 Moreover, the hardness of the plating film can be increased by compounding a carbon material in the plating film. Carbon materials include, for example, carbon microparticles such as nanodiamonds, carbon nanotubes, and fullerenes. Such a carbon material can be added to the plating solution in advance and incorporated into the plating film by plating. Moreover, a carbon material can be compounded by preparing a coating liquid containing a carbon material and coating the formed plating film. The hardness of the plated film made by combining such a carbon material can be further improved by irradiating with a laser beam.

めっき被膜に照射するレーザー光については、ファイバーレーザー、YAGレーザー、CO2レーザー、高出力半導体レーザーといった公知のパルス状のレーザー光を発振可能なレーザー照射装置を用いて照射することができるが、めっき被膜に対して熱影響の及ぶ深さ範囲を限定して基材表面に対して熱影響が及ばないようにパルス幅を適切な値に設定する必要がある。膜厚が1μm~30μmのめっき被膜に対しては、パルス幅が1μ秒~200μ秒のレーザー光を照射することで、素材に対する熱影響を抑止しながらめっき被膜を満遍なく加熱して硬化させることができる。具体的には、めっき被膜表面の硬度を900Hv以上に硬化させるとともに素材表面の硬度を700Hv以上に維持することで、めっき被膜を加熱により硬化させるとともに素材への熱による影響を抑止することが可能となる。 The laser beam to be irradiated onto the plated film can be irradiated using a laser irradiation device capable of oscillating known pulsed laser beams such as fiber laser, YAG laser, CO 2 laser, and high-power semiconductor laser. It is necessary to set the pulse width to an appropriate value so as to limit the depth range in which the film is thermally affected and the substrate surface is not thermally affected. By irradiating a plated film with a thickness of 1 μm to 30 μm with a laser beam with a pulse width of 1 μs to 200 μs, the plated film is evenly heated and hardened while suppressing the thermal effect on the material. can be done. Specifically, by hardening the hardness of the plating film surface to 900Hv or more and maintaining the hardness of the material surface to 700Hv or more, it is possible to harden the plating film by heating and suppress the influence of heat on the material. becomes.

図1から図3は、レーザー光の照射による加熱処理について有限要素法を用いて解析した結果を示す説明図である。有限要素法に用いたモデル計算には、公知のソフトウェア(計測エンジニアリング株式会社製COMSOL)を用いた。モデルに関する条件設定として、ビーム中心軸周りに回転対称な直径10mm、厚さ1mmの円盤モデルの中央にレーザーパルスが入射し、めっき膜表面の最高到達温度がめっき膜の融点800℃程度になるようにレーザー出力を設定して解析処理した。 1 to 3 are explanatory diagrams showing the results of analysis of heat treatment by laser light irradiation using the finite element method. Publicly known software (COMSOL manufactured by Keisoku Engineering Co., Ltd.) was used for the model calculation used in the finite element method. As a condition setting for the model, a laser pulse is incident on the center of a disk model with a diameter of 10 mm and a thickness of 1 mm, which is rotationally symmetric around the beam center axis, and the maximum temperature reached on the surface of the plating film is about 800°C, the melting point of the plating film. was analyzed by setting the laser output to .

図1は、パルス幅500μ秒のレーザー光による照射例であり、レーザーの平均出力150W、繰り返し周波数200Hzに設定した。図1(a)は、1パルスが入射した直後の深さ方向の温度分布を示しており、図1(b)は、照射直後の表面及び深さ方向の温度分布を示している。また、図1(c)は、照射領域の中心における深さ方向の温度変化を示すグラフであり、照射開始からの経過時間(ミリ秒)による温度変化の推移を示している。 FIG. 1 shows an example of irradiation with a laser beam having a pulse width of 500 μs , and the laser was set to have an average output of 150 W and a repetition frequency of 200 Hz. FIG. 1(a) shows the temperature distribution in the depth direction immediately after one pulse is incident, and FIG. 1(b) shows the temperature distribution in the surface and depth directions immediately after irradiation. FIG. 1(c) is a graph showing the temperature change in the depth direction at the center of the irradiation region, showing the transition of the temperature change with elapsed time (milliseconds) from the start of irradiation.

パルス幅500μ秒のレーザー光による照射では、レーザー光の照射中に表面が急激に加熱され、レーザー光の照射終了後に熱が内部に移動しつつ冷却されていくことがわかる。照射直後に400℃以上に加熱される領域は表面から33μmの深さまで及んでおり、膜厚が4μmのめっき被膜より深く素材にまで熱影響が及んでいることがわかる。めっき被膜と素材との境界面における最高温度は510℃に達しており、素材への熱影響が大きくなっている。 It can be seen that in irradiation with a laser beam having a pulse width of 500 μs, the surface is rapidly heated during the irradiation of the laser beam, and after the irradiation of the laser beam is completed, the heat is transferred inside and cooled. The region heated to 400° C. or higher immediately after irradiation extends to a depth of 33 μm from the surface, and it can be seen that the heat affects the material deeper than the plating film with a thickness of 4 μm. The maximum temperature at the interface between the plating film and the material reaches 510°C, and the thermal effect on the material is increasing.

図2は、パルス幅1μ秒のレーザー光による照射例であり、平均出力400W、繰り返し周波数100kHzに設定した。図2(a)は、1パルスが入射した直後の深さ方向の温度分布を示しており、照射面付近の一部拡大図を併せて示している。図2(b)は、照射直後の表面及び深さ方向の温度分布を示している。また、図2(c)は、照射領域の中心における深さ方向の温度変化を示すグラフであり、照射開始からの経過時間(マイクロ秒)による温度変化の推移を示している。 FIG. 2 shows an example of irradiation with a laser beam having a pulse width of 1 μs, with an average output of 400 W and a repetition frequency of 100 kHz. FIG. 2(a) shows the temperature distribution in the depth direction immediately after one pulse is incident, and also shows a partially enlarged view near the irradiation surface. FIG. 2(b) shows the temperature distribution in the surface and depth directions immediately after irradiation. FIG. 2(c) is a graph showing the temperature change in the depth direction at the center of the irradiation region, showing the transition of the temperature change with elapsed time (microseconds) from the start of irradiation.

パルス幅10μ秒のレーザー光による照射では、パルス幅500μ秒のレーザー光の場合と同様に、照射中の加熱及び照射終了後の冷却が確認できるが、400℃以上に加熱される領域は表面から1μm以内の深さの領域となり、パルス幅500μ秒のレーザー光を照射した場合と比較して大幅に浅くなることが示されている。この場合、めっき被膜及び素材の境界面である深さ4μmでの最高到達温度は80℃となり、素材への熱影響が大幅に低減されることを示している。また、めっき被膜に対しては、十分な加熱処理を行うことができ、めっき被膜表面の硬度を高めることができる。 In irradiation with a laser beam with a pulse width of 10 μs, heating during irradiation and cooling after irradiation can be confirmed as in the case of a laser beam with a pulse width of 500 μs. It is shown that the depth of the region is within 1 μm, which is significantly shallower than that in the case of irradiation with a laser beam having a pulse width of 500 μs . In this case, the maximum temperature reached at a depth of 4 μm, which is the interface between the plating film and the material, is 80° C., indicating that the thermal effect on the material is greatly reduced. Moreover, the plated film can be sufficiently heat-treated, and the hardness of the surface of the plated film can be increased.

図3は、パルス幅0.04μ秒のレーザー光による照射例であり、平均出力400W、繰り返し周波数100kHzに設定した。図3(a)は、1パルスが入射した直後の深さ方向の温度分布を示しており、照射面付近の一部拡大図を併せて示している。図3(b)は、照射直後の表面及び深さ方向の温度分布を示している。また、図3(c)は、照射領域の中心における深さ方向の温度変化を示すグラフであり、照射開始からの経過時間(ナノ秒)による温度変化の推移を示している。 FIG. 3 shows an example of irradiation with a laser beam having a pulse width of 0.04 μsec, with an average output of 400 W and a repetition frequency of 100 kHz. FIG. 3(a) shows the temperature distribution in the depth direction immediately after one pulse is incident, and also shows a partially enlarged view near the irradiated surface. FIG. 3(b) shows the temperature distribution in the surface and depth directions immediately after irradiation. FIG. 3(c) is a graph showing the temperature change in the depth direction at the center of the irradiation region, showing transition of the temperature change with elapsed time (nanoseconds) from the start of irradiation.

パルス幅が0.04μ秒のレーザー光による照射では、400℃以上に加熱される領域は表面から0.2μm以内の深さの領域となり、めっき被膜及び素材の境界面である深さ4μmでの最高到達温度は20℃となっている。したがって、素材に対する熱影響はほとんどないもののめっき被膜に対する加熱が不十分となって硬度を十分高めることが難しい。 When irradiated with a laser beam having a pulse width of 0.04 μs, the region heated to 400° C. or higher is within 0.2 μm from the surface, and the boundary surface between the plating film and the material is 4 μm deep. The maximum reaching temperature is 20°C. Therefore, although there is almost no thermal influence on the material, the heating of the plated film is insufficient and it is difficult to sufficiently increase the hardness.

レーザー光の照射量は、めっき被膜を加熱して硬度を高めるとともに素材の加熱による影響を抑えることが望ましく、レーザーの出力に応じて最適な値に設定する必要がある。具体的には、膜厚が1μm~30μmのめっき被膜に対して、照射量はフルーエンスが0.01J/cm2~2.0J/cm2になるように設定することで、めっき被膜表面にアブレーション等の現象が生じることなく加熱させ、素材に対して熱的影響を及ぼすことなくめっき被膜を満遍なく加熱して硬化させることができる。 It is desirable that the amount of laser light irradiation heats the plating film to increase its hardness and suppresses the influence of heating of the material, and it is necessary to set an optimum value according to the output of the laser. Specifically, for a plated film with a film thickness of 1 μm to 30 μm, the irradiation dose is set so that the fluence is 0.01 J/cm 2 to 2.0 J/cm 2 , thereby ablating the surface of the plated film. It is possible to evenly heat and harden the plated film without causing any such phenomena as above, and without exerting a thermal influence on the material.

こうした照射制御を行うめっき被膜の表面改質装置は、パルス幅が1μ秒~200μ秒のパルスレーザーを出射する光源部と、前記光源部から出射されたレーザー光を所定の照射領域に対してフルーエンスが0.01J/cm2~2.0J/cm2となる照射量で照射してめっき被膜表面の硬度を900Hv以上に硬化させるとともに素材表面の硬度を700Hv以上に維持するように制御する照射制御部とを備えている。照射制御部は、素材表面を照射領域に対して相対的に移動させて照射制御することで、移動に伴う平均的な照射量(照射密度)によりめっき被膜の蓄熱状態を調整することが可能となり、めっき被膜の放熱状態に対応して表面改質処理をきめ細かく制御することができる。 A plating film surface modification apparatus that performs such irradiation control includes a light source unit that emits a pulse laser with a pulse width of 1 μs to 200 μs, and a laser beam emitted from the light source unit to a predetermined irradiation area. Irradiation controlled so that the hardness of the plating film surface is hardened to 900Hv or more and the hardness of the material surface is maintained at 700Hv or more by irradiating with an irradiation amount that gives a fluence of 0.01 J/cm 2 to 2.0 J/cm 2 . and a control unit. The irradiation control unit controls the irradiation by moving the material surface relative to the irradiation area, making it possible to adjust the heat accumulation state of the plating film according to the average irradiation amount (irradiation density) that accompanies the movement. , the surface modification treatment can be finely controlled according to the heat dissipation state of the plating film.

図4から図6は、めっき被膜の表面改質装置に関する概略構成図である。図4は、レーザー光を素材表面に対して走査して照射する装置を用いる例である。光源部として、公知のレーザー照射装置10を用い、照射制御部として、ガルバノスキャナ11及び光学調整部12を備えており、レーザー照射装置10から照射されたレーザー光Lを集光又は拡散等の光学的な調整を行う光学調整部12を通過して移動部となるガルバノスキャナ11により素材Sのめっき被膜表面に対して走査させる。レーザー光を走査しながら照射することで単位面積当たりの照射量を制御することができ、レーザー光の走査速度を調整することで照射領域のめっき被膜を均一に改質処理することが可能となる。 4 to 6 are schematic configuration diagrams relating to a surface modification apparatus for a plated film. FIG. 4 shows an example using a device that scans and irradiates a material surface with a laser beam. A well-known laser irradiation device 10 is used as a light source, and a galvanometer scanner 11 and an optical adjustment unit 12 are provided as an irradiation control unit. The galvanometer scanner 11 serving as a moving part passes through an optical adjusting part 12 for performing a mechanical adjustment, and scans the plated film surface of the material S. As shown in FIG. By irradiating while scanning the laser beam, the irradiation amount per unit area can be controlled, and by adjusting the scanning speed of the laser beam, it is possible to uniformly modify the plating film in the irradiated area. .

図5は、素材を回転しながらレーザー光を照射する装置を用いる例である。光源部として、公知のレーザー照射装置20を用い、照射制御部として、回転装置(図示せず)及び光学調整部21を備えており、レーザー照射装置20から照射されたレーザー光Lを集光又は拡散等の光学的な調整を行う光学調整部21を通過して円柱状の素材Tのめっき被膜表面に向かって照射する。素材Tは、移動部となる回転装置を用いて中心軸を中心に回転するようになっており、素材表面を所定の回転速度で回転させながらレーザー光を照射する。そして、素材の回転速度を調整することで照射領域のめっき被膜を均一に改質処理することが可能となる。 FIG. 5 shows an example using a device that irradiates a laser beam while rotating a material. As a light source unit, a known laser irradiation device 20 is used, and as an irradiation control unit, a rotating device (not shown) and an optical adjustment unit 21 are provided, and the laser light L emitted from the laser irradiation device 20 is condensed or The light passes through the optical adjustment unit 21 that performs optical adjustment such as diffusion, and is irradiated toward the plated film surface of the cylindrical material T. As shown in FIG. The material T is rotated about its central axis by using a rotating device serving as a moving part, and the surface of the material T is irradiated with laser light while being rotated at a predetermined rotational speed. By adjusting the rotation speed of the material, it becomes possible to uniformly modify the plating film in the irradiation area.

図6は、素材を回転しながらレーザー光を走査して照射する装置を用いる例である。光源部として、公知のレーザー照射装置30を用い、照射制御部として、ガルバノスキャナ31、回転装置(図示せず)及び光学調整部32を備えており、レーザー照射装置30から照射されたレーザー光Lを集光又は拡散等の光学的な調整を行う光学調整部32を通過して移動部となるガルバノスキャナ31により円柱状の素材Uのめっき被膜表面に対して走査させる。そして、走査ラインを素材Uの中心軸方向に沿って設定して照射する。素材Uは、両端部を支持部材33で把持して移動部となる回転装置(図示せず)を用いて中心軸を中心に回転するようになっている。素材表面を中心軸を中心に回転させながらレーザー光を中心軸方向に走査して照射することで、照射領域に対して照射制御を行うことができる。 FIG. 6 shows an example using a device that scans and irradiates a laser beam while rotating a material. A known laser irradiation device 30 is used as a light source, and a galvanometer scanner 31, a rotating device (not shown) and an optical adjustment unit 32 are provided as an irradiation control unit, and the laser light L emitted from the laser irradiation device 30 passes through an optical adjustment unit 32 that performs optical adjustment such as light condensing or diffusion, and is scanned against the plated film surface of the cylindrical material U by a galvanometer scanner 31 that serves as a moving unit. Then, the scanning line is set along the central axis direction of the material U and irradiated. Both ends of the material U are gripped by the supporting members 33 and rotated about the central axis by using a rotating device (not shown) serving as a moving part. By scanning and irradiating the laser light in the direction of the central axis while rotating the surface of the material about the central axis, irradiation control can be performed on the irradiation area.

以下に実施例を挙げ、本発明をさらに詳しく説明するが、本発明はこれらの実施例に何ら制約されるものではない。 EXAMPLES The present invention will be described in more detail with reference to Examples below, but the present invention is not limited to these Examples.

[実施例1]
素材となる金属材料として、浸炭処理を施したクロム鋼からなる円柱状の棒状体(直径4mm、長さ20mm)を準備した。棒状体に対して、無電解ニッケルめっき液(日本カニゼン株式会社製;シューマーSEK-670)を用いて、表面全体に膜厚20μmの無電解Ni-Pめっき被膜(P含有量;7重量%)を常法により形成した。形成されためっき被膜の硬度をビッカース硬度計(株式会社アカシ製;AVK-C2V3)により測定したところ、769HVであった。棒状体を軸方向に直交する方向に切断して、素材表面から0.1mmの深さで硬度を測定したところ、743HVであった。
[Example 1]
A cylindrical rod (4 mm in diameter and 20 mm in length) made of carburized chromium steel was prepared as a metal material to be used as a raw material. Using an electroless nickel plating solution (manufactured by Nippon Kanigen Co., Ltd.; Schumer SEK-670), an electroless Ni—P plating film with a thickness of 20 μm (P content: 7% by weight) is applied to the entire surface of the rod-shaped body. was formed by a conventional method. The hardness of the formed plating film was measured with a Vickers hardness tester (manufactured by Akashi Co.; AVK-C2V3) and found to be 769 HV. The bar was cut in a direction orthogonal to the axial direction, and the hardness was measured at a depth of 0.1 mm from the surface of the material, which was 743 HV.

レーザー光源として高出力レーザーダイオード(コヒーレント―ディラス社製;M10Y-808.3-150Q)を用い、高出力パルス電源(ユニタック社製;PLSS17B)で駆動してパルス状のレーザー光を出射し、出射されたレーザー光をシリンドリカルレンズによりライン状に集光してレーザー光を照射するように構成した。 A high-output laser diode (M10Y-808.3-150Q, manufactured by Coherent-Dylas) is used as a laser light source, and a pulsed laser beam is emitted by driving with a high-output pulse power supply (PLSS17B, manufactured by Unitac). The emitted laser light is condensed into a line by a cylindrical lens and irradiated with the laser light.

図5に示すように、めっき処理した棒状体の一方の端部を回転装置(オリエンタルモーター株式会社製;型番US2-26JA-5-1)の治具に固定して中心軸を中心に回転速度100rpmで回転させながら、めっき被膜の表面にレーザー光をパルス幅10μ秒で繰り返し周波数5kHzに調整して照射し、平均出力6.3Wで10分間連続して照射を実施した。単位面積当たりの照射量(フルーエンス)は0.04J/cm2であった。 As shown in Fig. 5, one end of the plated rod-shaped body was fixed to a jig of a rotating device (manufactured by Oriental Motor Co., Ltd.; model number US2-26JA-5-1) and rotated about the central axis. While rotating at 100 rpm, the surface of the plated film was irradiated with a laser beam having a pulse width of 10 μs and a repetition frequency of 5 kHz, and was continuously irradiated at an average output of 6.3 W for 10 minutes. The dose per unit area (fluence) was 0.04 J/cm 2 .

照射後のめっき被膜表面の硬度を測定したところ、923HVであった。また、照射後の棒状体を軸方向に直交する方向に切断して、素材表面から0.1mmの深さで硬度を測定したところ、718HVであり、素材側の硬度低下は3%であった。 It was 923 HV when the hardness of the plating film surface after irradiation was measured. Further, when the rod-shaped body after irradiation was cut in a direction perpendicular to the axial direction and the hardness was measured at a depth of 0.1 mm from the material surface, it was 718 HV, and the decrease in hardness on the material side was 3%. .

[比較例1]
実施例1と同様に、めっき処理した棒状体を回転させながら、ファイバーレーザー発振器(IPG社製)を用いてレーザー光を照射した。照射するレーザー光は、パルス幅300μ秒で繰り返し周波数600Hzとし、平均出力135Wで7.6秒間連続して照射を実施した。実施例1と同様に、照射後のめっき被膜表面の硬度を測定したところ、1165HVであった。照射後の棒状体を軸方向に直交する方向に切断して、素材表面から0.1mmの深さで硬度を測定したところ、671HVであり、素材側の硬度は10%低下した。素材に対する熱影響が大きくなっていることがわかる。
[Comparative Example 1]
As in Example 1, while rotating the plated bar, a laser beam was applied using a fiber laser oscillator (manufactured by IPG). The laser light to be irradiated had a pulse width of 300 μs and a repetition frequency of 600 Hz, and was irradiated continuously for 7.6 seconds at an average output of 135 W. The hardness of the plated film surface after irradiation was measured in the same manner as in Example 1 and found to be 1165 HV. After the irradiation, the bar was cut in a direction orthogonal to the axial direction, and the hardness was measured at a depth of 0.1 mm from the surface of the material. It can be seen that the thermal effect on the material is increasing.

[比較例2]
実施例1と同様に、めっき処理した棒状体を回転させながら、全固体レーザー発振器(スペクトラフィジックス社製)を用いてレーザー光を照射した。照射するレーザー光は、パルス幅0.04μ秒で繰り返し周波数10kHzとし、平均出力10.6Wで1分間連続して照射を実施した。実施例1と同様に、照射後のめっき被膜表面の硬度を測定したところ、696HVであった。照射後の棒状体を軸方向に直交する方向に切断して、素材表面から0.1mmの深さで硬度を測定したところ、722HVであり、素材側の硬度低下は3%であった。レーザー光の照射によりめっき被膜の硬度を高められなかった。
[Comparative Example 2]
As in Example 1, while rotating the plated bar, laser light was irradiated using an all-solid-state laser oscillator (manufactured by Spectra Physics). The irradiated laser light had a pulse width of 0.04 μs and a repetition frequency of 10 kHz, and was continuously irradiated for 1 minute at an average output of 10.6 W. The hardness of the plated film surface after irradiation was measured in the same manner as in Example 1 and found to be 696 HV. After the irradiation, the bar was cut in a direction orthogonal to the axial direction, and the hardness was measured at a depth of 0.1 mm from the surface of the material. The hardness of the plating film could not be increased by laser light irradiation.

[比較例3]
実施例1と同様に、めっき処理した棒状体に対して、加熱装置(株式会社デンケン製;KDF-S80)を用いて大気中において400℃で1時間加熱処理した。加熱処理後、実施例1と同様に、めっき被膜表面の硬度を測定したところ、1381HVであった。加熱後の棒状体を軸方向に直交する方向に切断して、素材表面から0.1mmの深さで硬度を測定したところ、565HVであり、素材表面の硬度は24%低下した。めっき被膜の硬度は高められているものの、素材側の硬度が低下しており、熱影響が大きくなっていることがわかる。
[Comparative Example 3]
In the same manner as in Example 1, the plated bar was heat-treated in the air at 400° C. for 1 hour using a heating device (KDF-S80 manufactured by Denken Co., Ltd.). After the heat treatment, the surface hardness of the plated film was measured in the same manner as in Example 1 and found to be 1381 HV. When the heated bar was cut in a direction orthogonal to the axial direction and the hardness was measured at a depth of 0.1 mm from the surface of the material, it was 565 HV, and the hardness of the surface of the material decreased by 24%. It can be seen that although the hardness of the plated film is increased, the hardness of the material side is decreased, and the heat effect is increased.

[実施例2]
素材となる金属材料として、クロムモリブデン鋼からなる板状体(縦15mm、横50mm、厚さ2mm)を準備した。板状体に対して、実施例1と同様に、表面全体に膜厚20μmの無電解Ni-Pめっき被膜(P含有量;7重量%)を形成した。形成されためっき被膜の硬度をビッカース硬度計(株式会社アカシ製;AVK-C2V3)により測定したところ、492HVであった。板状体を厚さ方向に切断して、素材表面から0.1mmの深さで硬度を測定したところ、741HVであった。
[Example 2]
A plate-like body (15 mm long, 50 mm wide, 2 mm thick) made of chromium-molybdenum steel was prepared as a metal material as a raw material. As in Example 1, an electroless Ni—P plated coating (P content: 7% by weight) having a thickness of 20 μm was formed on the entire surface of the plate. The hardness of the formed plating film was measured with a Vickers hardness tester (manufactured by Akashi Co.; AVK-C2V3) and found to be 492 HV. When the plate-like body was cut in the thickness direction and the hardness was measured at a depth of 0.1 mm from the surface of the material, it was 741 HV.

レーザー光源としてファイバーレーザー装置(IPGフォトニクス社製;YLR-150/1500-QCW)を用い、パルス幅200μ秒で繰り返し周波数600Hzに調整してピーク出力1125Wでレーザー光を出射するように設定した。図4に示すように、出射されたレーザー光は、ガルバノスキャナ装置(SUNNY TECHNOLOGY社製)を用いて所定の走査方向に沿うように偏向制御され、偏向制御されたレーザー光をシリンドリカルレンズに入射して所定の走査ラインに沿うように集光してレーザー光を走査制御するように構成した。 A fiber laser device (manufactured by IPG Photonics; YLR-150/1500-QCW) was used as a laser light source, and was set to emit a laser beam with a pulse width of 200 μs and a repetition frequency of 600 Hz with a peak output of 1125 W. As shown in FIG. 4, the emitted laser light is deflected and controlled along a predetermined scanning direction using a galvanometer scanner (manufactured by SUNNY TECHNOLOGY), and the deflected laser light is incident on a cylindrical lens. The laser beam is condensed along a predetermined scanning line to control the scanning of the laser beam.

ガルバノスキャナ装置のガルバノ移動速度を100mm/秒に設定して照射回数100回でレーザー光を素材表面に照射した。単位面積当たりの照射量(フルーエンス)は1.2J/cm2であった。 The galvanometer movement speed of the galvano scanner device was set to 100 mm/sec, and the material surface was irradiated with the laser beam 100 times. The dose per unit area (fluence) was 1.2 J/cm 2 .

照射後のめっき被膜表面の硬度を測定したところ、916HVであった。また、照射後の板状体を厚さ方向に切断して、素材表面から0.1mmの深さで硬度を測定したところ、705HVであり、素材側の硬度低下は5%であった。 It was 916 HV when the hardness of the plated film surface after irradiation was measured. Further, when the plate-like body after irradiation was cut in the thickness direction and the hardness was measured at a depth of 0.1 mm from the material surface, it was 705 HV, and the decrease in hardness on the material side was 5%.

[比較例4]
実施例2と同様に、めっき処理した板状体に対して、加熱装置(株式会社デンケン製;KDF-S80)を用いて大気中において400℃で1時間加熱処理した。加熱処理後、実施例2と同様に、めっき被膜表面の硬度を測定したところ、942HVであった。加熱後の板状体を厚さ方向に切断して、素材表面から0.1mmの深さで硬度を測定したところ、565HVであり、素材表面の硬度は24%低下した。めっき被膜の硬度は高められているものの、素材側の硬度が低下しており、熱影響が大きくなっていることがわかる。
[Comparative Example 4]
In the same manner as in Example 2, the plated plate was heat-treated in the air at 400° C. for 1 hour using a heating device (KDF-S80 manufactured by Denken Co., Ltd.). After the heat treatment, the surface hardness of the plated film was measured in the same manner as in Example 2, and was 942 HV. When the plate-like body after heating was cut in the thickness direction and the hardness was measured at a depth of 0.1 mm from the surface of the material, it was 565 HV, and the hardness of the surface of the material decreased by 24%. It can be seen that although the hardness of the plated film is increased, the hardness of the material side is decreased, and the heat effect is increased.

[実施例3]
実施例1と同様に無電解ニッケルめっきを施した円柱状の棒状体を準備し、図6に示すように、棒状体の両端部を回転装置にセットした。回転装置を中心軸を中心に回転速度250rpmで回転させながら、実施例2と同様のレーザー光源を用いて、めっき被膜の表面にレーザー光をパルス幅200μ秒、及び、繰り返し周波数600Hzに調整し、ピーク出力1500Wで照射した。出射されたレーザー光は、実施例2と同様の走査装置を用いてレーザー光を走査制御するように構成し、ガルバノ移動速度を100mm/秒に設定して照射回数100回でレーザー光を棒状体の中心軸方向に沿って設定された走査ライン状を照射した。そのため、棒状体の回転動作及びレーザー光の走査制御により棒状体の外周面全体にレーザー光が照射されて加熱処理されるようになる。単位面積当たりの照射量(フルーエンス)は1.5J/cm2であった。
[Example 3]
A cylindrical rod-shaped body subjected to electroless nickel plating was prepared in the same manner as in Example 1, and both ends of the rod-shaped body were set in a rotating device as shown in FIG. While rotating the rotating device about the central axis at a rotation speed of 250 rpm, using the same laser light source as in Example 2, the laser light was applied to the surface of the plating film with a pulse width of 200 μs and a repetition frequency of 600 Hz. Irradiated at a peak power of 1500W. The emitted laser light was configured to scan and control the laser light using a scanning device similar to that of Example 2, and the laser light was irradiated 100 times with the galvanometer moving speed set to 100 mm/sec. A scanning line shape set along the central axis direction of was irradiated. Therefore, the entire outer peripheral surface of the rod-shaped body is irradiated with the laser beam and heat-treated by the rotational movement of the rod-shaped body and the scanning control of the laser beam. The dose per unit area (fluence) was 1.5 J/cm 2 .

照射後の棒状体を軸方向に直交する方向に切断して、めっき被膜の硬度を測定したところ916HVであった。また、棒状体表面から0.1mmの深さで硬度を測定したところ、705HVであり、素材側の硬度低下は5%であった。 After the irradiation, the bar was cut in a direction orthogonal to the axial direction, and the hardness of the plating film was measured to be 916 HV. Further, when the hardness was measured at a depth of 0.1 mm from the surface of the bar, it was 705 HV, and the decrease in hardness on the material side was 5%.

また、円柱状の棒状体を軸方向に沿って切断し、その断面からめっき被膜の硬度分布を測定したところ、硬度がほぼ均一に高められていることが確認された。こうした硬度分布が得られたのは、棒状体の回転動作及びレーザー光の走査制御によるレーザー光の照射制御を行うことで、棒状体の外周面がほぼ均一に加熱処理されたことを示している。 Further, when the cylindrical bar was cut along the axial direction and the hardness distribution of the plating film was measured from the cross section, it was confirmed that the hardness was substantially uniformly increased. The fact that such a hardness distribution was obtained indicates that the outer peripheral surface of the rod-shaped body was heat-treated almost uniformly by controlling the rotation of the rod-shaped body and the irradiation control of the laser beam by scanning control of the laser beam. .

以上説明したように、素材表面に形成されためっき被膜に対してパルス幅が1μ秒~200μ秒のレーザー光を照射することで、めっき被膜を局部的に加熱処理することができ、素材に対する加熱の影響を抑えながらめっき被膜の硬度を向上させることが可能となる。 As described above, by irradiating the plated film formed on the surface of the material with a laser beam having a pulse width of 1 μs to 200 μs, the plated film can be locally heat-treated. It is possible to improve the hardness of the plating film while suppressing the influence of heating.

めっき被膜が形成された摺動部材を上述した表面改質方法で処理することで、表面硬度が700Hv以上の本体と、本体表面に形成された表面硬度が900Hv以上のめっき被膜とを備えている摺動部材を得ることができる。例えば、本体が炭素鋼、浸炭処理されたクロム鋼等の金属材料からなる自動車部品、チェーンピン等の摺動部材の摺動面に対して、Ni-P、Ni-B等のめっき被膜を公知の無電解めっき処理により形成し、形成されためっき被膜にパルスレーザーを照射することで、本体表面の硬度を700Hv以上に維持してめっき被膜の表面硬度を900Hv以上に硬化させることができる。そのため、摺動面の摺動特性及び耐久性を向上させて高品質の摺動部材を得ることが可能となる。 A main body having a surface hardness of 700 Hv or more and a plating film having a surface hardness of 900 Hv or more formed on the surface of the main body are provided by treating the sliding member on which the plating film is formed by the surface modification method described above. A sliding member can be obtained. For example, plating films such as Ni--P and Ni--B are known for the sliding surfaces of sliding members such as automobile parts and chain pins whose bodies are made of metal materials such as carbon steel and carburized chromium steel. By irradiating the formed plating film with a pulse laser, the hardness of the surface of the main body can be maintained at 700 Hv or more and the surface hardness of the plating film can be hardened to 900 Hv or more. Therefore, it is possible to obtain a high-quality sliding member by improving the sliding characteristics and durability of the sliding surface.

10・・・レーザー照射装置、11・・・ガルバノスキャナ、12・・・光学調整部、20・・・レーザー照射装置、21・・・光学調整部、30・・・レーザー照射装置、31・・・ガルバノスキャナ、32・・・光学調整部、33・・・支持部材、S、T、U・・・素材 DESCRIPTION OF SYMBOLS 10... Laser irradiation apparatus 11... Galvano scanner 12... Optical adjustment part 20... Laser irradiation apparatus 21... Optical adjustment part 30... Laser irradiation apparatus 31... Galvanometer scanner, 32 Optical adjustment unit, 33 Support member, S, T, U Material

Claims (5)

鋼材からなる素材の硬化処理された表面に形成された膜厚1μm~30μmのめっき被膜に対してパルス幅が1μ秒~200μ秒のパルスレーザーを照射してめっき被膜表面の硬度を900Hv以上に硬化させるとともに素材表面の硬度を700Hv以上に維持するめっき被膜の表面改質方法。 A pulse laser with a pulse width of 1 μs to 200 μs is applied to a plating film with a thickness of 1 μm to 30 μm formed on the hardened surface of a steel material to harden the surface of the plating film to a hardness of 900 Hv or more. A method for modifying the surface of a plated film by increasing the hardness of the surface of the material and maintaining the hardness of the material surface at 700 Hv or more. 前記パルスレーザーの照射量は、フルーエンスが0.01J/cm2~2.0J/cm2になるように設定する請求項1に記載のめっき被膜の表面改質方法。 2. The method for modifying the surface of a plating film according to claim 1, wherein the irradiation amount of the pulse laser is set so that the fluence is 0.01 J/cm 2 to 2.0 J/cm 2 . 前記素材は、浸炭処理又は焼き入れ処理により表面硬化処理がされており、前記めっき被膜は、無電解めっき処理により形成されている請求項1又は2に記載のめっき被膜の表面改質方法。 3. The method for modifying the surface of a plated film according to claim 1, wherein the material is surface-hardened by carburizing or quenching, and the plated film is formed by electroless plating. 鋼材からなる素材の硬化処理された表面に形成された膜厚1μm~30μmのめっき被膜に対してレーザー光を照射して改質するめっき被膜の表面改質装置であって、パルス幅が1μ秒~200μ秒のパルスレーザーを出射する光源部と、前記光源部から出射されたレーザー光を所定の照射領域に対してフルーエンスが0.01J/cmA plated film surface modification apparatus for modifying a plated film having a thickness of 1 μm to 30 μm formed on a hardened surface of a material made of steel by irradiating a laser beam with a pulse width of 1 μs. A light source unit that emits a pulse laser of up to 200 μsec, and a fluence of 0.01 J / cm for a predetermined irradiation area of the laser light emitted from the light source unit 22 ~2.0J/cm~2.0 J/cm 22 となる照射量で照射してめっき被膜表面の硬度を900Hv以上に硬化させるとともに素材表面の硬度を700Hv以上に維持するように制御する照射制御部とを備えているめっき被膜の表面改質装置。and an irradiation control unit for controlling the hardness of the surface of the plating film to 900 Hv or more by irradiating with the irradiation amount of , and maintaining the hardness of the surface of the material at 700 Hv or more. 前記照射制御部は、前記素材表面を前記照射領域に対して相対的に移動させて照射制御する請求項4に記載のめっき被膜の表面改質装置。5. The apparatus for modifying the surface of a plated film according to claim 4, wherein the irradiation control section controls the irradiation by moving the surface of the material relative to the irradiation region.
JP2018164619A 2018-09-03 2018-09-03 Plating film surface modification method and apparatus Active JP7232452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018164619A JP7232452B2 (en) 2018-09-03 2018-09-03 Plating film surface modification method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018164619A JP7232452B2 (en) 2018-09-03 2018-09-03 Plating film surface modification method and apparatus

Publications (2)

Publication Number Publication Date
JP2020037718A JP2020037718A (en) 2020-03-12
JP7232452B2 true JP7232452B2 (en) 2023-03-03

Family

ID=69737581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018164619A Active JP7232452B2 (en) 2018-09-03 2018-09-03 Plating film surface modification method and apparatus

Country Status (1)

Country Link
JP (1) JP7232452B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102092152A (en) 2009-12-10 2011-06-15 姚松柏 Ceramet corrugated roller
JP2014152350A (en) 2013-02-06 2014-08-25 National Institute Of Advanced Industrial & Technology Adhesion improvement and removal method of electroless plating film and patterning method using the same
CN105002483A (en) 2015-07-14 2015-10-28 河北科技大学 Method for preparing amorphous nickel-phosphorus-wolfram carbide powder composite coating
JP2017222922A (en) 2016-06-17 2017-12-21 アイテック株式会社 Surface modification method of plating film
JP2021088728A (en) 2018-04-17 2021-06-10 株式会社野村鍍金 Corrugated roll and method for manufacturing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63109182A (en) * 1986-10-24 1988-05-13 Mazda Motor Corp Production of wear resistant member
LU86753A1 (en) * 1987-01-30 1988-08-23 Centre Rech Metallurgique PROCESS FOR THE SURFACE TREATMENT OF A ROLLER CYLINDER
JPH06210325A (en) * 1993-01-18 1994-08-02 Nippon Steel Corp Manufacture of work roll for cold rolling
JP3066798B2 (en) * 1996-09-20 2000-07-17 大豊工業株式会社 Surface treatment method for sliding members
DE69830381T2 (en) * 1997-01-20 2005-10-13 Taiho Kogyo Co., Ltd., Toyota SLIDING PART, METHOD OF SURFACE TREATMENT OF THE SLIDE PART, AND TURN PISTON BUCKET
JP3411499B2 (en) * 1998-04-21 2003-06-03 三菱電機株式会社 Method of manufacturing wear-resistant sliding member

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102092152A (en) 2009-12-10 2011-06-15 姚松柏 Ceramet corrugated roller
JP2014152350A (en) 2013-02-06 2014-08-25 National Institute Of Advanced Industrial & Technology Adhesion improvement and removal method of electroless plating film and patterning method using the same
CN105002483A (en) 2015-07-14 2015-10-28 河北科技大学 Method for preparing amorphous nickel-phosphorus-wolfram carbide powder composite coating
JP2017222922A (en) 2016-06-17 2017-12-21 アイテック株式会社 Surface modification method of plating film
JP2021088728A (en) 2018-04-17 2021-06-10 株式会社野村鍍金 Corrugated roll and method for manufacturing the same

Also Published As

Publication number Publication date
JP2020037718A (en) 2020-03-12

Similar Documents

Publication Publication Date Title
WO2009131202A1 (en) Method for producing steel parts
CN106148644B (en) Short pulse laser metal surface hardening method
CN105755215A (en) Method of manufacturing engine crankshaft and laser shock reinforcing device of engine crankshaft
WO2018043637A1 (en) Metal molded body surface roughening method
JP5587044B2 (en) Heat treatment method for rolling element rolling surface
JP7232452B2 (en) Plating film surface modification method and apparatus
JP5026175B2 (en) Workpiece manufacturing method
JP2020050906A (en) Heat treatment method and heat treatment apparatus for three-dimensional workpiece
CN108486348B (en) Heat treatment process for cutting edge of pliers
JP6131755B2 (en) Steel member manufacturing method
US10301694B2 (en) Heat treatment method for steel material
JP6387916B2 (en) Method and apparatus for hardening steel surface
KR101149732B1 (en) Heat treatment method of pressing die
KR19980032848A (en) Surface treatment method of steel member
JP2017222922A (en) Surface modification method of plating film
JP2021131383A (en) Method for heat-treating horological component
RU2276191C1 (en) Method of surface strengthening of metals
JP5495674B2 (en) Welding apparatus and welding method
US12006556B2 (en) Method for heat treating a horological component
JPH0543940A (en) Method for heat-treating tracking surface of guide rail for linear guide
JP2020076148A (en) Surface hardening treatment method for workpiece
JP2009293076A (en) Heat-treatment method
JP3542228B2 (en) How to harden steel
KR102468984B1 (en) Method for local heat treatment of Fastening screw using laser
KR101391385B1 (en) Heat treatment method using laser and its device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210616

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230210

R150 Certificate of patent or registration of utility model

Ref document number: 7232452

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150