JP2014149970A - Gel coating machine and device for manufacturing lithium ion secondary battery - Google Patents

Gel coating machine and device for manufacturing lithium ion secondary battery Download PDF

Info

Publication number
JP2014149970A
JP2014149970A JP2013017872A JP2013017872A JP2014149970A JP 2014149970 A JP2014149970 A JP 2014149970A JP 2013017872 A JP2013017872 A JP 2013017872A JP 2013017872 A JP2013017872 A JP 2013017872A JP 2014149970 A JP2014149970 A JP 2014149970A
Authority
JP
Japan
Prior art keywords
electrode plate
gel
electrolyte
separator
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013017872A
Other languages
Japanese (ja)
Other versions
JP6310179B2 (en
Inventor
Mitsuhide Nogami
光秀 野上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2013017872A priority Critical patent/JP6310179B2/en
Publication of JP2014149970A publication Critical patent/JP2014149970A/en
Application granted granted Critical
Publication of JP6310179B2 publication Critical patent/JP6310179B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Coating Apparatus (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a device capable of eliminating a liquid injection step causing a high cost and the like, and inexpensively and efficiently manufacturing a lithium ion secondary battery using a gel-like electrolyte.SOLUTION: A gel coating machine 10 for interposing a gel-like electrolyte in at least any of a positive electrode plate 2, a negative electrode plate 4, and a separator 3 interposed between the positive electrode plate 2 and the negative electrode plate 4 comprises: a piping for transferring an electrolytic solution or the gel-like electrolyte; and a coating nozzle which is mounted on an edge side of the piping and arranges the gel-like electrolyte by coating the electrolytic solution or the gel-like electrolyte on a surface of the positive electrode plate 2, the negative electrode plate 4, or the separator 3. The coating nozzle is heatable.

Description

本発明は、ゲル塗工機及びリチウムイオン二次電池の製造装置に関する。   The present invention relates to a gel coater and an apparatus for manufacturing a lithium ion secondary battery.

従来より、リチウムイオン二次電池の製造は、正極板と負極板とを、これらの間にセパレータを介装させて積層し、ラミネートフィルム等のケーシング内に収納した後、ケーシング内に電解液を注入して正極板と負極板との間に介在させて密封し、積層された正極板と負極板のそれぞれに接続された電極端子をケースから突出させて行っている(例えば、下記特許文献1)。
そして、前記ケーシング内への電解液の注入は、内部を負圧雰囲気下にしたチャンバーと呼ばれる容器内に前記積層体を収容したケーシングを置き、真空引きをして行っている。
Conventionally, a lithium ion secondary battery has been manufactured by laminating a positive electrode plate and a negative electrode plate with a separator interposed between them and storing the laminate in a casing such as a laminate film, and then supplying an electrolyte solution in the casing. It is injected and sealed between a positive electrode plate and a negative electrode plate, and electrode terminals connected to the stacked positive electrode plate and negative electrode plate are projected from the case (for example, Patent Document 1 below) ).
The electrolytic solution is injected into the casing by placing the casing containing the laminate in a container called a chamber having a negative pressure inside and evacuating the casing.

特開2010−102871号公報JP 2010-102871 A

ところで、近年、リチウムイオン二次電池は、5kWh〜10kWhの住宅用の定置電池又は23.4kWhの車載用電池等の大容量の二次電池としてのニーズが高まっており、リチウムイオン電池のセルも大型化している。
しかし、上記したように、チャンバー内で真空引きを行って電解液を注入するという方法でリチウムイオン二次電池を製造したのでは、セルの大型化に伴うチャンバーの大型化、真空引き装置の大型化により製造設備費用が押し上げられるとともに、注液の長時間化により、製造効率を上げられず、安価なリチウムイオン二次電池を広く提供することを困難とするという問題となっていた。
そこで、本発明は、上記課題に鑑み、コスト高等の要因となっている注液工程を省き、ゲル状の電解質を用いて、安価かつ効率的にリチウムイオン二次電池を製造することができる装置を提供することを課題とする。
By the way, in recent years, there has been an increasing need for lithium ion secondary batteries as large capacity secondary batteries such as 5 kWh to 10 kWh stationary batteries for home use or 23.4 kWh in-vehicle batteries. It is getting bigger.
However, as described above, when the lithium ion secondary battery is manufactured by vacuuming the chamber and injecting the electrolytic solution, the chamber becomes larger as the cell becomes larger, and the vacuuming device becomes larger. Manufacturing equipment costs have been pushed up by the increase in production time, and since the injection time has been prolonged, the production efficiency has not been increased, making it difficult to widely provide inexpensive lithium ion secondary batteries.
Therefore, in view of the above problems, the present invention eliminates the liquid injection process, which is a factor of high cost, and can manufacture a lithium ion secondary battery inexpensively and efficiently using a gel electrolyte. It is an issue to provide.

本発明は、正極板、負極板及びこれら正極板と負極板との間に介装されるセパレータの少なくともいずれかにゲル状の電解質を介装させるゲル塗工機において、電解液又は前記ゲル状の電解質を移送させる配管と、この配管の先端側に取り付けられ、電解液又は前記ゲル状の電解質を前記正極板、前記負極板又は前記セパレータの少なくともいずれかの表面に塗工してゲル状の電解質を配する塗工ノズルとを備え、この塗工ノズルは加温可能であることを特徴とする。
この構成によれば、正極板及び負極板の積層工程でゲル状の電解質を配することにより、簡便かつ短時間で正極板と負極板との間に電解質を配することができる。そして、ゲル状の電解質を配するにあたり、電解液又はゲル状の電解質を塗工直前まで適切に温度管理することが可能となる。
The present invention provides a gel coating machine in which a gel electrolyte is interposed in at least one of a positive electrode plate, a negative electrode plate, and a separator interposed between the positive electrode plate and the negative electrode plate. A pipe for transferring the electrolyte, and an electrolyte solution or the gel electrolyte applied to the surface of at least one of the positive electrode plate, the negative electrode plate, or the separator. A coating nozzle for disposing an electrolyte, and the coating nozzle can be heated.
According to this configuration, the electrolyte can be disposed between the positive electrode plate and the negative electrode plate easily and in a short time by arranging the gel electrolyte in the lamination step of the positive electrode plate and the negative electrode plate. And in arranging gel electrolyte, it becomes possible to carry out temperature management appropriately until just before coating of electrolyte solution or gel electrolyte.

本発明は、前記塗工ノズルの先端開口部は、前記正極板、前記負極板又は前記セパレータの少なくともいずれかにゲル状の電解質を配する領域の幅に沿って延在するように一又は複数設けられていることが好ましい。
この構成によれば、前記先端開口部から電解液又はゲル状の電解質を帯状に塗工することができるため、ゲル状の電解質を効率的かつ均質に配することができる。
In the present invention, one or a plurality of tip openings of the coating nozzle extend so as to extend along a width of a region where the gel electrolyte is disposed on at least one of the positive electrode plate, the negative electrode plate, and the separator. It is preferable to be provided.
According to this configuration, since the electrolytic solution or the gel electrolyte can be applied in a strip shape from the opening at the tip, the gel electrolyte can be efficiently and uniformly arranged.

本発明は、前記塗工ノズルは、ゲル状の電解質を配した前記正極板、前記負極板又は前記セパレータの表面を押圧する押し当て部を備えていることが好ましい。
この構成によれば、塗工されたゲル状の電解質を正極板、負極板又はセパレータに効率的に浸透させることができる。
In the present invention, it is preferable that the coating nozzle includes a pressing portion that presses the surface of the positive electrode plate, the negative electrode plate, or the separator provided with a gel electrolyte.
According to this configuration, the coated gel electrolyte can be efficiently infiltrated into the positive electrode plate, the negative electrode plate, or the separator.

本発明は、前記配管の少なくとも一部が加温可能であることが好ましい。
この構成によれば、ゲル状の電解質をより安定的に温度管理できる。
In the present invention, it is preferable that at least a part of the pipe can be heated.
According to this configuration, the temperature of the gel electrolyte can be more stably controlled.

リチウムイオン二次電池の製造装置において、請求項1から4のいずれか一項に記載のゲル塗工機を備えていることを特徴とする。
この構成によれば、上記した作用機能を有するリチウムイオン二次電池の製造装置を用いることができる。
An apparatus for manufacturing a lithium ion secondary battery includes the gel coater according to any one of claims 1 to 4.
According to this structure, the manufacturing apparatus of the lithium ion secondary battery which has an above-mentioned function can be used.

本発明によれば、正極板及び負極板の積層工程においてゲル状の電解質を配することにより、簡便かつ短時間で正極板と負極板との間に電解質を介装させることができるとともに、電解液又はゲル状の電解質を塗工直前まで温度管理してゲル状の電解質を均質に配することができるため、簡便、短時間でかつより高品質なリチウムイオン二次電池を製造することが可能となるという効果を奏する。   According to the present invention, the electrolyte can be interposed between the positive electrode plate and the negative electrode plate easily and in a short time by arranging the gel electrolyte in the lamination step of the positive electrode plate and the negative electrode plate. Since the temperature of the liquid or gel electrolyte can be controlled until just before coating, and the gel electrolyte can be distributed uniformly, it is possible to manufacture a high-quality lithium ion secondary battery easily, in a short time. It has the effect of becoming.

本発明の一実施形態として示したゲル塗工機を備えたリチウムイオン二次電池の製造装置により製造されたリチウムイオン二次電池を模式的に示した斜視図である。It is the perspective view which showed typically the lithium ion secondary battery manufactured with the manufacturing apparatus of the lithium ion secondary battery provided with the gel coating machine shown as one Embodiment of this invention. 本発明の一実施形態として示したゲル塗工機を備えたリチウムイオン二次電池の製造装置を示した正面図である。It is the front view which showed the manufacturing apparatus of the lithium ion secondary battery provided with the gel coating machine shown as one Embodiment of this invention. 本発明の一実施形態として示したゲル塗工機を備えたリチウムイオン二次電池の製造装置を示した側面図である。It is the side view which showed the manufacturing apparatus of the lithium ion secondary battery provided with the gel coating machine shown as one Embodiment of this invention. 本発明の一実施形態として示したゲル塗工機の塗工ノズルを示した図であり、(a)は(b)をX−X線で矢視した断面図、(b)は正面図、(c)はその側面図、(d)はその底面図である。It is the figure which showed the coating nozzle of the gel coating machine shown as one Embodiment of this invention, (a) is sectional drawing which looked at (b) by the XX line, (b) is a front view, (C) is the side view, and (d) is the bottom view. 本発明の一実施形態として示したゲル塗工機の変形例を示す要部側面図である。It is a principal part side view which shows the modification of the gel coating machine shown as one Embodiment of this invention.

本発明の一実施形態リチウムイオン二次電池の製造装置を用いて製造される図1に示す多層の膜電極積層体1は、正極板2と、セパレータ3と、負極板4とを順に積層し、ゲル状電解質(不図示)を正極板2と負極板4との間に配し、更に上下に積層された複数の正極板2,2・・の一端部2a,2a・・を接合して端子用タブ5を接合し、複数の負極板4,4・・の一端部4a,4a・・を接合して端子用タブ6を接合したものである。
この多層の膜電極接合体1は、ラミネートフィルム等により形成された筐体7内に配置されて、例えばリチウムイオン二次電池等の積層型電池Pとなる。
One embodiment of the present invention A multilayer membrane electrode stack 1 shown in FIG. 1 manufactured using a lithium ion secondary battery manufacturing apparatus includes a positive electrode plate 2, a separator 3, and a negative electrode plate 4 stacked in this order. A gel electrolyte (not shown) is disposed between the positive electrode plate 2 and the negative electrode plate 4, and one end portions 2a, 2a,... Of a plurality of positive electrode plates 2, 2,. The terminal tab 5 is joined, and the terminal tabs 6 are joined by joining one end portions 4a, 4a,.
This multilayer membrane electrode assembly 1 is arranged in a housing 7 formed of a laminate film or the like, and becomes a laminated battery P such as a lithium ion secondary battery.

図1,図2に示すように、本実施形態のリチウムイオン二次電池の製造装置11は、電極板積層装置12とゲル塗工機10とを備えて構成されている。   As shown in FIGS. 1 and 2, the lithium ion secondary battery manufacturing apparatus 11 of this embodiment includes an electrode plate laminating apparatus 12 and a gel coating machine 10.

電極板積層装置12は、積層ステージ13、積層する正極板2及び負極板4を収容しておく収容部14A,14B、正極板2,負極板4それぞれの保持アーム15A,15B、保持アーム15A,15Bを支持する支持板16、セパレータ3を折り返しながら正極板2と負極板4との間に介装させるセパレータ介装機17(図3では省略)を備えている。   The electrode plate laminating apparatus 12 includes a laminating stage 13, accommodating portions 14A and 14B for accommodating the laminated positive electrode plate 2 and negative electrode plate 4, holding arms 15A and 15B for the positive electrode plate 2 and the negative electrode plate 4, and holding arms 15A, A support plate 16 that supports 15B, and a separator interposing machine 17 (not shown in FIG. 3) that is interposed between the positive electrode plate 2 and the negative electrode plate 4 while folding the separator 3 are provided.

積層ステージ13は、正極板2及び負極板4を載置できる表面積を有し、その上面で正極板2、負極板4及びセパレータ3を積層させる作業台である。この積層ステージ13は、上下動可能に構成されており、正極板2、セパレータ3及び負極板4が積層されて積層体1aの厚みが増すに連れて漸次下降するようになっている。   The lamination stage 13 has a surface area on which the positive electrode plate 2 and the negative electrode plate 4 can be placed, and is a work table on which the positive electrode plate 2, the negative electrode plate 4 and the separator 3 are laminated. The stacking stage 13 is configured to be movable up and down, and is gradually lowered as the thickness of the stacked body 1a increases as the positive electrode plate 2, the separator 3 and the negative electrode plate 4 are stacked.

積層ステージ13の両側方には、積層ステージ13から同距離だけ離間した位置にシート状の正極板2の平板面を鉛直方向に向けて重ね収容した正極板用の収容部14Aと、正極板2と同様にして負極板4を収容した負極板用の収容部14Bとが設置されている。
なお、正極板2は、例えば正極活物質、導電助剤及びバインダーとなる結着剤を溶媒に分散させてなる正極用スラリーを用いて構成された正極活物質層が集電体両面に形成さたもので、矩形その他の所定の形状に打ち抜かれた枚葉状態で収容部14Aに重ねて載置されている。
また、負極板4は、例えば炭素粉末や黒鉛粉末等からなる炭素材料と、ポリフッ化ビニリデンのような結着剤とを溶媒に分散させてなる負極用スラリーを用いて構成された負極活物質層が、銅(Cu)からなる集電体に形成されたもので、矩形その他の所定の形状に打ち抜かれた枚葉状態で収容部14Bに重ねて載置されている。
On both sides of the lamination stage 13, a positive electrode plate accommodating portion 14 </ b> A in which the flat plate surface of the sheet-like positive electrode plate 2 is stacked and accommodated in the vertical direction at positions separated from the lamination stage 13 by the same distance, and the positive electrode plate 2. In the same manner as described above, a negative electrode plate accommodating portion 14B accommodating the negative electrode plate 4 is provided.
In the positive electrode plate 2, for example, a positive electrode active material layer composed of a positive electrode slurry in which a positive electrode active material, a conductive auxiliary agent, and a binder serving as a binder are dispersed in a solvent is formed on both surfaces of the current collector. It is placed so as to overlap the accommodating portion 14A in a single-wafer state punched into a rectangular or other predetermined shape.
The negative electrode plate 4 is a negative electrode active material layer formed by using a negative electrode slurry in which a carbon material made of, for example, carbon powder or graphite powder and a binder such as polyvinylidene fluoride are dispersed in a solvent. However, it is formed on a current collector made of copper (Cu), and is placed on the accommodating portion 14B in a single-wafer state punched into a rectangular or other predetermined shape.

保持アーム15A,15Bは、正極板2の保持用と負極板4の保持用とが水平方向に左右対称となるよう支持板16に一対固定されている。
保持アーム15A,15B同士の間は、一方の保持アーム15A(15B)が収容部14A(14B)に上方から対向配置した際に、他方の保持アーム15B(15A)が積層ステージ13に上方から対向配置し得る距離で支持板16に固定されている。そして、一方の保持アーム15Aが正極板2の収容部14Aの上方に位置して正極板2を保持するときに他方の保持アーム15Bが積層ステージ13の上方に位置して負極板4を積層することができ、他方の保持アーム15Bが負極板4の収容部14Bの上方に位置して負極板4を保持するときに一方の保持アーム15Aが積層ステージ13の上方に位置して正極板2を積層することができるようになっている。
A pair of holding arms 15A and 15B are fixed to the support plate 16 so that the holding of the positive electrode plate 2 and the holding of the negative electrode plate 4 are symmetrical in the horizontal direction.
Between the holding arms 15A and 15B, when one holding arm 15A (15B) is arranged to face the accommodating portion 14A (14B) from above, the other holding arm 15B (15A) faces the stacking stage 13 from above. It is fixed to the support plate 16 at a distance that can be arranged. When one holding arm 15A is positioned above the accommodating portion 14A of the positive electrode plate 2 and holds the positive electrode plate 2, the other holding arm 15B is positioned above the stacking stage 13 and stacks the negative electrode plate 4. When the other holding arm 15B is positioned above the accommodating portion 14B of the negative electrode plate 4 and holds the negative electrode plate 4, the one holding arm 15A is positioned above the stacking stage 13 to hold the positive electrode plate 2 It can be stacked.

セパレータ介装機17は、ロール18から引き出された帯状のセパレータ3の延在方向中間を保持するセパレータ保持部19を備えている。セパレータ保持部19は、一対の保持アーム15A,15Bの間に配置され、保持アーム15A,15Bの水平方向の動きに同期して水平方向に往復運動し、セパレータ3を折り返しながら左右に移動し、いわゆるつづら折りにできるように構成されている。
なお、セパレータ3は、不織布等を基材として形成されたものであり、材質として、特に限定されないが、セルロース、ポリオレフィン系樹脂(ポリプロピレン、ポリエチレン等)やポリエステル系樹脂、ポリイミド系樹脂等が用いられる。セパレータ3は、その内部に空隙部を有しており、セパレータ3の一方の板面から他方の板面に向かってゲル状の電解質を通過させることができるようになっている。特に不織布の場合、空隙部の空隙率が40%未満の場合、ゲル状の電解質を通過させることが困難となり、90%以上の場合セパレータ3の強度が弱くなり多層の膜電極接合体1の作製工程において破損するおそれがある。したがって、セパレータ3の空隙率は、40%〜90%とされている。
The separator interposing machine 17 includes a separator holding portion 19 that holds the middle in the extending direction of the strip-shaped separator 3 drawn from the roll 18. The separator holding portion 19 is disposed between the pair of holding arms 15A and 15B, reciprocates in the horizontal direction in synchronization with the horizontal movement of the holding arms 15A and 15B, and moves left and right while folding the separator 3, It is comprised so that it can fold so-called.
The separator 3 is formed using a nonwoven fabric or the like as a base material, and the material is not particularly limited, but cellulose, polyolefin resin (polypropylene, polyethylene, etc.), polyester resin, polyimide resin, or the like is used. . The separator 3 has a gap inside thereof, and allows the gel electrolyte to pass from one plate surface of the separator 3 to the other plate surface. In particular, in the case of a nonwoven fabric, when the porosity of the void portion is less than 40%, it becomes difficult to pass the gel electrolyte, and when it is 90% or more, the strength of the separator 3 becomes weak and the multilayer membrane electrode assembly 1 is produced. There is a risk of damage in the process. Therefore, the porosity of the separator 3 is 40% to 90%.

なお、セパレータ3の空隙率とは、セパレータ3全体の体積に占める空隙部の体積の割合、すなわち「{1−(セパレータを構成する物体の体積)/(セパレータ全体の体積)}×100」を意味する。この場合のセパレータ3全体の体積は、例えば、セパレータ3の表面積と厚みを用いて算定するか、もしくはセパレータの板面の一定面積分を切り出し、切り出されたセパレータ3の板面の面積と厚みの値を用いて算定すればよく、または、セパレータ3の表面単位面積当たりの重量(g/m2)の値を用いても算出してもよい。一方、セパレータ3を構成する物体(例えば不織布である場合には、不織布を構成する繊維)の体積は、切り出されたセパレータ3の重量を測定するとともに、例えば、島津製アキュアピックII 1340等の測定器を用いて、切り出されたセパレータ3の密度を測定し、前記重量を前記密度で割ることによって算出することができる。なお、ここで「セパレータ全体の体積」とは、セパレータ3の外郭(輪郭)で決定される見かけ上の体積を意味する。   The porosity of the separator 3 is the ratio of the volume of the void portion to the total volume of the separator 3, that is, “{1- (volume of the object constituting the separator) / (volume of the entire separator)} × 100”. means. The total volume of the separator 3 in this case is calculated using, for example, the surface area and thickness of the separator 3, or a predetermined area of the separator plate surface is cut out, and the area and thickness of the plate surface of the separator 3 thus cut out are calculated. What is necessary is just to calculate using a value, or you may calculate using the value of the weight per unit surface area of the separator 3 (g / m <2>). On the other hand, the volume of the object constituting the separator 3 (for example, in the case of a non-woven fabric, the fiber constituting the non-woven fabric) measures the weight of the cut-out separator 3 and measures, for example, Shimadzu AccuPick II 1340 It can be calculated by measuring the density of the cut-out separator 3 using a vessel and dividing the weight by the density. Here, the “volume of the entire separator” means an apparent volume determined by the outline (contour) of the separator 3.

次に、ゲル塗工機10について説明する。
図3に示すように、ゲル塗工機10は、電解液又はゲル状の電解質を移送させる配管21と、配管21の先端側に取り付けられ、電解液又はゲル状の電解質を積層ステージ13上に配されたセパレータの3表面に塗工してゲル状の電解質を配する塗工ノズル22とを備えているとともに、塗工ノズル22が加温可能に構成されている。
配管21としては、フレキシブル配管21Aと直線状に延びた金属製配管21Bとが備えられている。金属製配管21Bは、ガイドレール23に摺動自在に支持されており、先端に固定した塗工ノズル22と共に水平方向(矢印L1,L2方向)に進出及び後退自在となっている。
Next, the gel coater 10 will be described.
As shown in FIG. 3, the gel coater 10 is attached to a pipe 21 for transferring an electrolytic solution or a gel-like electrolyte, and a tip side of the pipe 21, and the electrolyte or the gel-like electrolyte is placed on the lamination stage 13. A coating nozzle 22 that coats the three surfaces of the disposed separator and disposes a gel electrolyte is provided, and the coating nozzle 22 is configured to be heated.
As the pipe 21, a flexible pipe 21A and a metal pipe 21B extending linearly are provided. The metal pipe 21B is slidably supported on the guide rail 23, and can move forward and backward in the horizontal direction (arrow L1, L2 direction) together with the coating nozzle 22 fixed to the tip.

図4(a)〜(d)に示すように、塗工ノズル22は、所定の厚さ及び幅寸法をもって略直方体形状に形成されたノズル上部26とノズル上部26の下面に連設され、直方体形状の壁部の厚さ寸法を漸次小としたノズル下部28とを備えている。
ノズル上部26の内部には、電解液又はゲル状の電解質の供給口Sから幅方向(矢印L3方向)両端に向かって延びた拡散流路24と、拡散流路24の下方に連通するよう幅方向(矢印L3方向)に略等間隔で設けられた複数の分岐流路25,25,・・とが形成さている。
ノズル下部28には、その厚さ方向中間部に形成され、複数の分岐流路25,25・の全てに連通して下方に開口する溝状の長孔流路(先端開口部)27が形成されている。
As shown in FIGS. 4A to 4D, the coating nozzle 22 is connected to a nozzle upper portion 26 formed in a substantially rectangular parallelepiped shape with a predetermined thickness and width dimension, and a lower surface of the nozzle upper portion 26, and is a rectangular parallelepiped. And a nozzle lower portion 28 in which the thickness of the shape wall portion is gradually reduced.
Inside the nozzle upper portion 26, a diffusion channel 24 extending from the electrolyte solution or gel electrolyte supply port S toward both ends in the width direction (arrow L3 direction), and a width communicating with the diffusion channel 24 below. A plurality of branch flow paths 25, 25,... Provided at substantially equal intervals in the direction (arrow L3 direction) are formed.
The nozzle lower portion 28 is formed with a groove-like long hole flow passage (tip opening portion) 27 that is formed at an intermediate portion in the thickness direction and communicates with all of the plurality of branch flow passages 25, 25. Has been.

そして、塗工ノズル22は、拡散流路24、分岐流路25及び溝状の長孔流路27を介して電解液又はゲル状の電解質を移送させることにより、長孔流路27の先端開口部29からゲル状の電解質を幅方向(矢印L3方向)に沿った帯状に配するようになっている。なお、長孔流路27の開口寸法は特に限定されないが、本実施形態では塗工ノズル22の移動方向に対する正極板2又は負極板4の幅寸法よりも大きい長さ寸法で開口されている。
塗工ノズル22の流路24,25,27の周壁には、加熱部Kが備えられ、流路24,25,27を所定の温度(例えば40度〜100度、望ましくは60度〜80度)に加温できるようになっている。この塗工ノズル22の温度設定は、使用するゲル状の電解質の配合により決定されるため、ゲル状の電解質のゲル化温度以上で、望ましくはゲル化温度+10℃以上がよい。ただし、過剰な高温になるとゲル状の電解質の粘度が低くなり、塗工性に支障をきたすため、適度な温度帯に調整する必要がある。
The coating nozzle 22 transfers the electrolyte solution or the gel electrolyte through the diffusion channel 24, the branch channel 25, and the grooved long hole channel 27, thereby opening the front end of the long hole channel 27. The gel electrolyte is arranged from the portion 29 in a band shape along the width direction (arrow L3 direction). In addition, although the opening dimension of the long hole flow path 27 is not specifically limited, In this embodiment, it opens with the length dimension larger than the width dimension of the positive electrode plate 2 or the negative electrode plate 4 with respect to the moving direction of the coating nozzle 22. FIG.
A heating part K is provided on the peripheral walls of the flow paths 24, 25, and 27 of the coating nozzle 22, and the flow paths 24, 25, and 27 are set to a predetermined temperature (for example, 40 degrees to 100 degrees, desirably 60 degrees to 80 degrees). ) Can be heated. Since the temperature setting of the coating nozzle 22 is determined by the composition of the gel electrolyte to be used, the temperature is equal to or higher than the gel temperature of the gel electrolyte, and preferably the gel temperature + 10 ° C. or higher. However, when the temperature is excessively high, the viscosity of the gel electrolyte is lowered, which impairs the coatability. Therefore, it is necessary to adjust to an appropriate temperature range.

以上の構成を有するゲル塗工機10は、図3に示すように、配管21Bの延在方向を積層装置12の保持ノズル15A,15B間方向に直交する方向に向けて、配管21Bをガイドレール23に沿って摺動させることにより、塗工ノズル22が積層ステージ13上に進出し又は積層ステージ13から後退し得る位置に配置されている。   As shown in FIG. 3, the gel coater 10 having the above-described configuration directs the pipe 21 </ b> B to a guide rail with the extending direction of the pipe 21 </ b> B oriented in a direction orthogonal to the direction between the holding nozzles 15 </ b> A and 15 </ b> B of the laminating apparatus 12. By sliding along 23, the coating nozzle 22 is disposed at a position where the coating nozzle 22 can advance onto the lamination stage 13 or retract from the lamination stage 13.

なお、ゲル状の電解質とは、例えば、高分子マトリックス及び非水電解液(すなわち、非水溶媒及び電解質塩)をゲル化させて表面に粘着性を生じさせたものである。
また、ゲル状の電解質は、例えば下方から順に正極板2、セパレータ3、負極板4を積層し、セパレータ3と負極板4との板面間に配された時に、負極板4を押圧することなくセパレー3タ内及びセパレータ3と正極板2との板面間に全て流動してしまうことのない粘度、すなわち、負極板4をその表面から押圧することによってゲル状の電解質が徐々にセパレータに浸透し、正極板2側に到達することができる粘度であって、かつ、セパレータ3上に略均一に塗工できる範囲の粘度のものが用いられる。具体的には、ゲル状の電解質の粘度が100Pa・S以下である場合には、ゲル状の電解質はセパレータ3よりも下方に流動してしまいセパレータ3と負極板4との間に殆ど残らないため、セパレータ3よりも上方の負極活物質層にゲル状の電解質を浸透させることができない。また、ゲル状の電解質の粘度が10000Pa・S以上である場合、ゲル状の電解質の粘度が高過ぎて正極板2及び負極板4の活物質層上に均一に塗工できない。したがって、ゲル状の電解質の粘度は、100Pa・S〜10000Pa・Sの範囲に設定され、ゲル状の電解質の正極活物質層、セパレータ3及び負極活物質層への円滑かつ良好な浸透及びロバスト性を持たせることを考慮すると、100Pa・S〜5000Pa・Sであることが望ましい。また前述のように、ゲル状の電解質の粘度は、温度による依存性があるため、適切な温度帯で調整することが望ましく、さらには、ゲル状の電解質はチキソトロピー性を示す為、液圧送による圧力によっても流動性が変動する。したがって、電解液又はゲル状の電解質は、適切な範囲で条件設定を行われる必要がある。
The gel electrolyte is, for example, a gel formed from a polymer matrix and a non-aqueous electrolyte (that is, a non-aqueous solvent and an electrolyte salt) to cause the surface to be sticky.
The gel electrolyte presses the negative electrode plate 4 when the positive electrode plate 2, the separator 3, and the negative electrode plate 4 are stacked in this order from the lower side and disposed between the plate surfaces of the separator 3 and the negative electrode plate 4, for example. In the separator 3 and between the plate surfaces of the separator 3 and the positive electrode plate 2, the viscosity that does not flow completely, that is, by pressing the negative electrode plate 4 from the surface, the gel electrolyte gradually becomes a separator. A viscosity that can permeate and reach the positive electrode plate 2 side and that can be applied on the separator 3 substantially uniformly is used. Specifically, when the viscosity of the gel electrolyte is 100 Pa · S or less, the gel electrolyte flows below the separator 3 and hardly remains between the separator 3 and the negative electrode plate 4. Therefore, the gel electrolyte cannot penetrate into the negative electrode active material layer above the separator 3. Moreover, when the viscosity of the gel electrolyte is 10000 Pa · S or more, the viscosity of the gel electrolyte is too high and cannot be applied uniformly on the active material layers of the positive electrode plate 2 and the negative electrode plate 4. Therefore, the viscosity of the gel electrolyte is set in the range of 100 Pa · S to 10000 Pa · S, and smooth and good penetration and robustness of the gel electrolyte into the positive electrode active material layer, the separator 3 and the negative electrode active material layer are achieved. When it is considered to have a thickness of 100 Pa · S to 5000 Pa · S, it is desirable. As described above, the viscosity of the gel electrolyte is dependent on temperature, so it is desirable to adjust it in an appropriate temperature range. Furthermore, since the gel electrolyte exhibits thixotropic properties, The fluidity varies depending on the pressure. Therefore, the electrolytic solution or the gel electrolyte needs to be set in an appropriate range.

また、上記ゲル状の電解質の粘度の測定は、レオメーター(粘弾性測定装置。具体的には、例えばハーケ社製レオストレス600)を使用し、高分子マトリックスの流動性が確保できる温度(例えば高分子マトリックスとしてポリフッ化ビニリデンとヘキサフルオロプロピレンの共重合体(PVDF−HFP)を使用した場合には80℃)でゲル状の電解質1gを加温して流動性のある状態とし、このゲル状の電解質に0.1〜10(1/sec)のせん断速度を与えた時のせん断応力を測定して、式「せん断応力=せん断速度×粘度」から算出することができる。なお、レオメーターで粘度を測定する場合、材料の物性やせん断速度によっては、せん断応力が変化する場合があるので、せん断速度を変化させてせん断応力の変化を見て、粘度を算出することが好ましい。そして、せん断応力(=粘度)が上記範囲でほぼ一定の場合には、当該粘度を確定させ、せん断応力が変化する場合には、平均値を算出して用いればよい。   Further, the viscosity of the gel electrolyte is measured by using a rheometer (viscoelasticity measuring apparatus. Specifically, for example, rhe stress 600 manufactured by HAKE Co., Ltd.), and the temperature at which the fluidity of the polymer matrix can be secured (for example, 1 g of the gel electrolyte is heated with a copolymer of polyvinylidene fluoride and hexafluoropropylene (PVDF-HFP) as the polymer matrix (80 ° C.) to obtain a fluid state. The shear stress when a shear rate of 0.1 to 10 (1 / sec) is applied to the electrolyte is measured and can be calculated from the formula “shear stress = shear rate × viscosity”. When measuring the viscosity with a rheometer, the shear stress may vary depending on the physical properties and shear rate of the material, so it is possible to calculate the viscosity by looking at the change in shear stress by changing the shear rate. preferable. Then, when the shear stress (= viscosity) is substantially constant within the above range, the viscosity is determined, and when the shear stress changes, an average value may be calculated and used.

高分子マトリックスとしては、ポリフッ化ビニリデン(PVDF)、ヘキサフルオロプロピレン共重合体(PVDF−HFP)、ポリアクリロニトリル、ポリエチレンオキシドやポリプロピレンオキシド等のアルキレンエーテルをはじめ、ポリエステル、ポリアミン、ポリフォスファゼン、ポリシロキサン等が用いられる。   Polymer matrices include polyvinylidene fluoride (PVDF), hexafluoropropylene copolymer (PVDF-HFP), polyacrylonitrile, alkylene ethers such as polyethylene oxide and polypropylene oxide, polyester, polyamine, polyphosphazene, and polysiloxane. Etc. are used.

非水溶媒は、γ−ブチロラクトン等のラクトン化合物;エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等の炭酸エステル化合物;ギ酸メチル、酢酸メチル、プロピオン酸メチル等のカルボン酸エステル化合物;テトラヒドロフラン、ジメトキシエタン等のエーテル化合物;テトラヒドロフラン、ジメトキシエタン等のエーテル化合物;アセトニトリル等のニトリル化合物;スルホラン等のスルホン化合物、ジメチルホルムアミド等のアミド化合物等、単独または2種類以上を混合して調製される。   The non-aqueous solvent is a lactone compound such as γ-butyrolactone; a carbonic acid ester compound such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, or methyl ethyl carbonate; a carboxylic acid ester compound such as methyl formate, methyl acetate, or methyl propionate; Ether compounds such as tetrahydrofuran and dimethoxyethane; ether compounds such as tetrahydrofuran and dimethoxyethane; nitrile compounds such as acetonitrile; sulfone compounds such as sulfolane; amide compounds such as dimethylformamide; .

また、電解液をゲル状の電解質にする場合には、アセトニトリル等のニトリル化合物;テトラヒドロフラン等のエーテル化合物:ジメチルホルムアミド等のアミド系化合物を単独または2種類以上を混合して調製される。
電解質塩としては、特に限定されないが六フッ化リン酸リチウム、過塩素酸リチウム、四フッ化ホウ酸リチウム等のリチウム塩等が使用できる。
When the electrolyte is made into a gel electrolyte, it is prepared by mixing a nitrile compound such as acetonitrile; an ether compound such as tetrahydrofuran; an amide compound such as dimethylformamide, or a mixture of two or more.
The electrolyte salt is not particularly limited, and lithium salts such as lithium hexafluorophosphate, lithium perchlorate, and lithium tetrafluoroborate can be used.

次に、本実施形態のゲル塗工機10を用いた図1に示す多層の膜電極接合体1の製造方法について、図2,図3を用いて説明する。この多層の膜電極接合体1を製造するにあたっては、まず、アルミ箔等よりなる集電体上に正極活物質層を形成した枚葉状の正極板2を収容部14Aに載置しておく。
また、銅箔等よりなる集電体の両面に負極活物質層13を形成した枚葉状の負極板4を収容部14Bに載置しておく。
Next, the manufacturing method of the multilayer membrane electrode assembly 1 shown in FIG. 1 using the gel coating machine 10 of the present embodiment will be described with reference to FIGS. In manufacturing the multilayer membrane electrode assembly 1, first, a sheet-like positive electrode plate 2 in which a positive electrode active material layer is formed on a current collector made of aluminum foil or the like is placed in the accommodating portion 14 </ b> A.
Moreover, the sheet-like negative electrode plate 4 in which the negative electrode active material layers 13 are formed on both surfaces of a current collector made of copper foil or the like is placed in the accommodating portion 14B.

そして、電極板積層装置12を用いて、仮想線で示すように負極板4を保持アーム15Bで保持した後、積層ステージ13上に支持板16を移動させる。そして、保持アーム15A,15Bを下降させて保持アーム15Bを離し負極板4を積層ステージ13上に載置すると、これと同時に保持アーム15Aによって正極板2を保持する。   Then, the electrode plate stacking device 12 is used to hold the negative electrode plate 4 by the holding arm 15 </ b> B as indicated by a virtual line, and then the support plate 16 is moved onto the stacking stage 13. When the holding arms 15A and 15B are lowered to release the holding arm 15B and the negative electrode plate 4 is placed on the lamination stage 13, the positive electrode plate 2 is held by the holding arm 15A at the same time.

次に保持アーム15A,15Bを上昇させて正極板2を保持した保持アーム15Aを積層ステージ13の上方に向けて移動させると、保持アーム15A,15Bの間で支持板16に固定されたセパレータ保持部19が保持アーム15A,15Bの移動に同期して先に積層ステージ13を通過し、セパレータ保持部19に挟持されたセパレータ3が負極板4の上面にセパレータ3を被せる。   Next, when the holding arms 15A and 15B are raised and the holding arm 15A holding the positive electrode plate 2 is moved upward of the stacking stage 13, the separator holding fixed to the support plate 16 between the holding arms 15A and 15B is held. The part 19 passes through the stacking stage 13 first in synchronization with the movement of the holding arms 15 </ b> A and 15 </ b> B, and the separator 3 sandwiched between the separator holding parts 19 covers the upper surface of the negative electrode plate 4.

そこで、保持アーム15Aが積層ステージ13上に位置する前に支持板16の動きを止め、ゲル塗工機10を駆動し、塗工ノズル22を積層ステージ13上に進出させ、積層ステージ13上に位置するセパレータ3にゲル状の電解質を配する。
この際、塗工ノズル22は、正極板2,負極板4の幅方向よりも大きい幅寸法を有しているため、塗工ノズル22を一往復させるだけでセパレータ3を含んで負極板4上の全体にゲル状の電解質を配することができる。また、塗工ノズル22が加熱部Kを有し加温されているので、塗工ノズル22に達した電解液又はゲル状の電解質を所望の温度にすることができるので、ゲル状の電解質が均質に配される。
そして、塗工ノズル22が後退した後に、支持板16を保持アーム15B側に更に移動させ、保持アーム15Aを積層ステージ13上に移動させる。
Therefore, before the holding arm 15A is positioned on the lamination stage 13, the movement of the support plate 16 is stopped, the gel coating machine 10 is driven, the coating nozzle 22 is advanced onto the lamination stage 13, and the A gel electrolyte is disposed on the separator 3 positioned.
At this time, since the coating nozzle 22 has a width dimension larger than the width direction of the positive electrode plate 2 and the negative electrode plate 4, the separator 3 is included on the negative electrode plate 4 only by reciprocating the coating nozzle 22 once. A gel electrolyte can be disposed on the whole. Moreover, since the coating nozzle 22 has the heating part K and is heated, the electrolyte solution or the gel-like electrolyte that has reached the coating nozzle 22 can be brought to a desired temperature. It is uniformly distributed.
Then, after the coating nozzle 22 is retracted, the support plate 16 is further moved to the holding arm 15B side, and the holding arm 15A is moved onto the stacking stage 13.

保持アーム15Aが積層ステージ13上に位置したら、保持アーム15A,15Bを下降させて負極板4及びセパレータ3の上に正極板2を載置するとともに、仮想線で示すように保持アーム15Bによって負極板4を保持する。そして、再び保持アーム15Bを積層ステージ13に向けて移動させると、これに同期して移動するセパレータ保持部19が先に積層ステージ13を通過し、セパレータ3を正極板2上に被せるので、この後、保持アーム15Bが積層ステージ13上に位置する前に、塗工ノズル22を積層ステージ13上に進出させてゲル状の電解質を塗工する。   When the holding arm 15A is positioned on the stacking stage 13, the holding arms 15A and 15B are lowered to place the positive electrode plate 2 on the negative electrode plate 4 and the separator 3, and the negative electrode is held by the holding arm 15B as indicated by a virtual line. The plate 4 is held. When the holding arm 15B is moved again toward the stacking stage 13, the separator holding portion 19 that moves in synchronization with the holding arm 15B first passes through the stacking stage 13 and covers the separator 3 on the positive electrode plate 2. Thereafter, before the holding arm 15B is positioned on the stacking stage 13, the coating nozzle 22 is advanced onto the stacking stage 13 to apply the gel electrolyte.

塗工ノズル22により電解液又はゲル状の電解質を塗工した後は、塗工ノズル22は積層ステージ13上から後退するので、保持アーム15Bを積層ステージ13上に移動させ、負極板4を載置する。   After coating the electrolyte solution or gel electrolyte with the coating nozzle 22, the coating nozzle 22 moves backward from the stacking stage 13, so the holding arm 15B is moved onto the stacking stage 13 and the negative electrode plate 4 is mounted. Put.

以上の動作を繰り返すことにより、負極板4、セパレータ3、ゲル状の電解質、正極板2・・・がこの順に積層された積層体1aが製作されるので、図1に示すように、この積層体1aの正極板2,2・・の端部2aを溶接して端子タブ5を接続するとともに、負極板4,4・・の端部4aを溶接して端子タブ6を接続して多層の膜電極接合体1を作製し、更にこの多層の膜電極接合体1をラミネートフィルム7等で前記端子タブを突出させて密封し、リチウムイオン二次電池Pを得る。   By repeating the above operation, a laminated body 1a in which the negative electrode plate 4, the separator 3, the gel electrolyte, the positive electrode plate 2... Are laminated in this order is manufactured. The end portions 2a of the positive plates 2, 2... Of the body 1a are welded to connect the terminal tabs 5, and the end portions 4a of the negative plates 4, 4,. The membrane / electrode assembly 1 is prepared, and the multilayer membrane / electrode assembly 1 is sealed with a laminate film 7 or the like by projecting the terminal tabs to obtain a lithium ion secondary battery P.

以上のように、ゲル塗工機10を備えたリチウムイオン二次電池の製造装置11によれば、正極板2、セパレータ3、負極板4を順に積層するプロセスにおいてゲル状の電解質を配するようになっているため、電解液を筐体内に注液する場合のように、積層体1aをラミネートフィルム等の筐体7に収容した後で内部を負圧雰囲気下にしたチャンバーを用いることなく、リチウムイオン二次電池Pを簡便に製造することができる。したがって、注液及びエージング時間を割愛して製造効率を高められるとともに、チャンバー,真空引き設備を用いることなく安価なリチウムイオン二次電池Pを製造することができるという効果が得られる。   As described above, according to the lithium ion secondary battery manufacturing apparatus 11 provided with the gel coater 10, the gel electrolyte is arranged in the process of sequentially stacking the positive electrode plate 2, the separator 3, and the negative electrode plate 4. Therefore, as in the case of injecting the electrolyte into the housing, without using a chamber in which the inside of the laminate 1a is housed in the housing 7 such as a laminate film and the inside is in a negative pressure atmosphere, The lithium ion secondary battery P can be easily manufactured. Therefore, the production efficiency can be improved by omitting the liquid injection and the aging time, and the effect that the inexpensive lithium ion secondary battery P can be produced without using the chamber and the vacuuming equipment can be obtained.

そして、ゲル状の電解質を塗工する際には、適切な温度管理が必要となるが、ゲル塗工機10によれば、塗工ノズル22に加熱部Kを備え、電解液又はゲル状の電解質の塗工直前まで電解質を適切に温度管理することができるため、セパレータ3に対して均質かつ好適に電解液又はゲル状の電解質を塗工してゲル状の電解質を配することが可能となり、ゲル状の電解質を用いて高品質なリチウムイオン二次電池Pを製造することが可能となるという効果が得られる。   And when applying a gel electrolyte, appropriate temperature control is required, but according to the gel coating machine 10, the coating nozzle 22 is provided with the heating part K, and an electrolyte solution or a gel-like electrolyte is provided. Since it is possible to appropriately control the temperature of the electrolyte until immediately before the application of the electrolyte, it is possible to apply the electrolyte solution or the gel electrolyte to the separator 3 in a uniform and suitable manner to arrange the gel electrolyte. The effect that it becomes possible to manufacture the high quality lithium ion secondary battery P using a gel-like electrolyte is acquired.

また、ゲル塗工機10は、塗工ノズル22が電解液又はゲル状の電解質を塗工する対象となる正極板2及び負極板4の幅寸法よりも大きい幅寸法をもって帯状に電解液又はゲル状の電解質を塗工することができるため、積層された正極板2、セパレータ3又は負極板4に効率的かつ均一の厚さで好適にゲル状の電解質を配することができるという効果が得られる。
特に、複数の分岐流路25,25・・からこれに連通する長孔流路27内に電解液又はゲル状の電解質を偏りなく充填することができる。したがって、塗工ノズル22によれば、長孔流路27から電解液又はゲル状の電解質を均質な厚さで塗工し、ゲル状の電解質を均質に配し易くすることができるという効果が得られる。
Further, the gel coating machine 10 is configured such that the coating nozzle 22 has a width dimension larger than the width dimension of the positive electrode plate 2 and the negative electrode plate 4 to which the electrolytic solution or the gel-like electrolyte is applied, and is formed into a strip shape. Therefore, it is possible to apply a gel-like electrolyte to the laminated positive electrode plate 2, separator 3 or negative electrode plate 4 in an efficient and uniform thickness. It is done.
In particular, the electrolyte solution or the gel electrolyte can be filled evenly into the long hole channel 27 communicating with the plurality of branch channels 25, 25,. Therefore, according to the coating nozzle 22, there is an effect that it is possible to apply the electrolyte solution or the gel electrolyte with a uniform thickness from the long hole channel 27 and to easily distribute the gel electrolyte uniformly. can get.

なお、上記の実施形態において、ゲル塗工機10は、電極板積層装置12に設置したが、ゲル塗工機10の適用対象は、上述した電極板積層装置12に限定されるものではなく、例えば、ロール状に巻回された各正極板2、セパレータ3及び負極板4を帯状に延出させて、これらを一方向に搬送しながらいわゆる「Roll to Roll」で連続して各工程の作業を行うことができる装置にも有効に用いることができ、上記実施形態の場合と同様の作用及び効果を得ることができる。   In addition, in said embodiment, although the gel coating machine 10 was installed in the electrode plate lamination apparatus 12, the application object of the gel coating machine 10 is not limited to the electrode plate lamination apparatus 12 mentioned above, For example, each positive electrode plate 2, separator 3, and negative electrode plate 4 wound in a roll shape are extended in a strip shape and conveyed in one direction, so that the operation of each process is continuously performed by so-called “Roll to Roll”. Can be effectively used for an apparatus capable of performing the above-described operation, and the same operations and effects as those of the above-described embodiment can be obtained.

また、上記の実施形態においては、ゲル状の電解質10をセパレータ3に配したが、ゲル状の電解質10は、正極板2及び負極板4のいずれか一方又は双方にも配してもよい。
また、塗工ノズル22は、正極板2、負極板4又はセパレータ3の表面に塗工された電解液又はゲル状の電解質を押圧する押し当て部を備えているとより好ましい。この場合、塗工された電解液又はゲル状の電解質を、正極板2、負極板4及びセパレータ3に好適に浸透させてゲル状の電解質を配し、リチウムイオン二次電池Pの性能を向上させることができる。
In the above embodiment, the gel electrolyte 10 is disposed on the separator 3. However, the gel electrolyte 10 may be disposed on one or both of the positive electrode plate 2 and the negative electrode plate 4.
The coating nozzle 22 is more preferably provided with a pressing portion that presses the electrolytic solution or gel electrolyte applied to the surface of the positive electrode plate 2, the negative electrode plate 4 or the separator 3. In this case, the applied electrolyte solution or gel electrolyte is suitably infiltrated into the positive electrode plate 2, the negative electrode plate 4 and the separator 3 to dispose the gel electrolyte, thereby improving the performance of the lithium ion secondary battery P. Can be made.

また、配管21A,21Bの少なくとも一部が加温可能であることが好ましい。
この場合、ゲル状の電解質をより安定的に温度管理できる。
また、塗工ノズル22に設けられた長孔流路27は、一つとされているが、複数設けられたものであってもよい。
Moreover, it is preferable that at least a part of the pipes 21A and 21B can be heated.
In this case, the temperature of the gel electrolyte can be controlled more stably.
Moreover, although the long hole flow path 27 provided in the coating nozzle 22 is one, it may be provided with two or more.

また更に、上記のゲル塗工機10は、塗工ノズル22が配管21Bの一端部にのみ設けられた構成としたが、図5に示すように配管21Bの両端部に塗工ノズル22を設けた構成としてもよい。
この場合、電極板積層装置12を対向配置させ、電解液又はゲル状の電解質を塗工するタイミングを計って配管21Bを移動させることにより、塗工ノズル22,22を用いてリチウムイオン二次電池を複数のラインで効率的に製造することが可能となる。
また、ターンテーブル上で積層体を製造する場合にも、配管21Bの両端に塗工ノズル22を設けたゲル塗工機10を好適に適用することができる。
Furthermore, the gel coating machine 10 has a configuration in which the coating nozzle 22 is provided only at one end of the pipe 21B. However, as shown in FIG. 5, the coating nozzle 22 is provided at both ends of the pipe 21B. It is good also as a structure.
In this case, the electrode plate laminating apparatus 12 is arranged oppositely, and the piping 21B is moved at the timing when the electrolytic solution or the gel electrolyte is applied, so that the lithium ion secondary battery is used using the coating nozzles 22 and 22. Can be efficiently manufactured by a plurality of lines.
Moreover, also when manufacturing a laminated body on a turntable, the gel coating machine 10 which provided the coating nozzle 22 in the both ends of the piping 21B can be applied suitably.

1 多層の膜電極積層体
2 正極板
3 セパレータ
4 負極板
10 ゲル塗工機
11 リチウムイオン二次電池の製造装置
21 配管
22 塗工ノズル
27 長孔流路(先端開口部)
DESCRIPTION OF SYMBOLS 1 Multilayer membrane electrode laminated body 2 Positive electrode plate 3 Separator 4 Negative electrode plate 10 Gel coating machine 11 Manufacturing apparatus 21 of lithium ion secondary battery 21 Pipe 22 Coating nozzle 27 Long hole flow path (tip opening)

Claims (5)

正極板、負極板及びこれら正極板と負極板との間に介装されるセパレータの少なくともいずれかにゲル状の電解質を介装させるゲル塗工機において、
電解液又は前記ゲル状の電解質を移送させる配管と、この配管の先端側に取り付けられ、前記電解液又は前記ゲル状の電解質を前記正極板、前記負極板又は前記セパレータの少なくともいずれかの表面に塗工して前記ゲル状の電解質を配する塗工ノズルとを備え、
この塗工ノズルは加温可能であることを特徴とするゲル塗工機。
In a gel coating machine in which a gel electrolyte is interposed in at least one of a positive electrode plate, a negative electrode plate, and a separator interposed between the positive electrode plate and the negative electrode plate,
A pipe for transferring the electrolyte solution or the gel electrolyte, and attached to the tip side of the pipe, and the electrolyte solution or the gel electrolyte is attached to the surface of at least one of the positive electrode plate, the negative electrode plate, or the separator. A coating nozzle for coating and arranging the gel electrolyte;
The gel coating machine is characterized in that the coating nozzle can be heated.
前記塗工ノズルの先端開口部は、前記正極板、前記負極板又は前記セパレータの少なくともいずれかにゲル状の電解質を配する領域の幅に沿って延在するように一又は複数設けられていることを特徴とする請求項1に記載のゲル塗工機。   One or more tip openings of the coating nozzle are provided so as to extend along the width of the region where the gel electrolyte is disposed on at least one of the positive electrode plate, the negative electrode plate, or the separator. The gel coater according to claim 1, wherein: 前記塗工ノズルは、ゲル状の電解質を配した前記正極板、前記負極板又は前記セパレータの表面を押圧する押し当て部を備えていることを特徴とする請求項1又は2に記載のゲル塗工機。   3. The gel coating according to claim 1, wherein the coating nozzle includes a pressing portion that presses a surface of the positive electrode plate, the negative electrode plate, or the separator provided with a gel electrolyte. Machine tool. 前記配管の少なくとも一部が加温可能であることを特徴とする請求項1から3のいずれか一項に記載のゲル塗工機。   The gel coater according to any one of claims 1 to 3, wherein at least a part of the pipe is heatable. 請求項1から4のいずれか一項に記載のゲル塗工機を備えたリチウムイオン二次電池の製造装置。


The manufacturing apparatus of the lithium ion secondary battery provided with the gel coating machine as described in any one of Claim 1 to 4.


JP2013017872A 2013-01-31 2013-01-31 Gel coating machine and lithium ion secondary battery manufacturing device Active JP6310179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013017872A JP6310179B2 (en) 2013-01-31 2013-01-31 Gel coating machine and lithium ion secondary battery manufacturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013017872A JP6310179B2 (en) 2013-01-31 2013-01-31 Gel coating machine and lithium ion secondary battery manufacturing device

Publications (2)

Publication Number Publication Date
JP2014149970A true JP2014149970A (en) 2014-08-21
JP6310179B2 JP6310179B2 (en) 2018-04-11

Family

ID=51572786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013017872A Active JP6310179B2 (en) 2013-01-31 2013-01-31 Gel coating machine and lithium ion secondary battery manufacturing device

Country Status (1)

Country Link
JP (1) JP6310179B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019210861A (en) * 2018-06-05 2019-12-12 花王株式会社 Liquid supply device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08224503A (en) * 1995-02-21 1996-09-03 Alloy Koki Kk Coating method and apparatus therefor
JP2001266943A (en) * 2000-03-17 2001-09-28 Sony Corp Manufacturing method of battery and application device used for it
JP2001345121A (en) * 2000-03-31 2001-12-14 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and method of manufacturing it
JP2002313428A (en) * 2001-04-17 2002-10-25 Sony Corp Method of manufacturing gel electrolyte battery
JP2005087777A (en) * 2003-09-12 2005-04-07 Tokyo Electron Ltd Coating liquid applying method and coating applicator
JP2005315908A (en) * 2004-04-26 2005-11-10 Sharp Corp Method for manufacturing electrophotographic photoreceptor and manufacturing apparatus
JP2006175415A (en) * 2004-12-24 2006-07-06 Sony Corp Die head, coater and method of producing cell electrode
JP2008188482A (en) * 2007-01-31 2008-08-21 Ricoh Co Ltd Coating film forming apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08224503A (en) * 1995-02-21 1996-09-03 Alloy Koki Kk Coating method and apparatus therefor
JP2001266943A (en) * 2000-03-17 2001-09-28 Sony Corp Manufacturing method of battery and application device used for it
JP2001345121A (en) * 2000-03-31 2001-12-14 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and method of manufacturing it
JP2002313428A (en) * 2001-04-17 2002-10-25 Sony Corp Method of manufacturing gel electrolyte battery
JP2005087777A (en) * 2003-09-12 2005-04-07 Tokyo Electron Ltd Coating liquid applying method and coating applicator
JP2005315908A (en) * 2004-04-26 2005-11-10 Sharp Corp Method for manufacturing electrophotographic photoreceptor and manufacturing apparatus
JP2006175415A (en) * 2004-12-24 2006-07-06 Sony Corp Die head, coater and method of producing cell electrode
JP2008188482A (en) * 2007-01-31 2008-08-21 Ricoh Co Ltd Coating film forming apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019210861A (en) * 2018-06-05 2019-12-12 花王株式会社 Liquid supply device

Also Published As

Publication number Publication date
JP6310179B2 (en) 2018-04-11

Similar Documents

Publication Publication Date Title
US20200411825A1 (en) Dual electrolyte electrochemical cells, systems, and methods of manufacturing the same
JP6287022B2 (en) ELECTRIC DEVICE ELECTRODE AND METHOD FOR PRODUCING THE SAME
JP5796367B2 (en) Separator with heat-resistant insulation layer
JP5787750B2 (en) Method for producing multilayer membrane electrode assembly
JP5605115B2 (en) Electrolytic solution pouring method and electrolytic solution pouring device
JP6351930B2 (en) Method for producing multilayer membrane electrode assembly
JP3745593B2 (en) Battery and manufacturing method thereof
JPWO2011049113A1 (en) Electrochemical devices using polymer solid electrolytes with polymer composite particles
JP6573250B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP4422166B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP2002015764A (en) Battery, battery electrode forming method and electrode forming device
CN104508861A (en) Separator for non-aqueous electrolyte battery, and non-aqueous electrolyte battery
JP2014027196A (en) Power storage device
JP6721636B2 (en) ELECTRODE FOR ELECTRIC DEVICE, METHOD FOR MANUFACTURING THE SAME, AND ELECTRICAL DEVICE USING THE ELECTRODE
CN104508863A (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
JP2009146602A (en) Method for manufacturing lamination type secondary battery
JPWO2017154312A1 (en) Electrode for electrochemical device and method for producing electrochemical device
JP2017010644A (en) Manufacturing method of electrode for secondary battery, manufacturing device, and manufacturing method of secondary battery
KR20160130428A (en) Nonaqueous electrolyte secondary battery
JP2007095590A (en) Electronic component electrode-porous sheet composite, and its manufacturing method
JP2018535534A (en) Separation membrane and battery equipped with the same
JP6310179B2 (en) Gel coating machine and lithium ion secondary battery manufacturing device
JP2013182735A (en) Method for manufacturing multilayered membrane electrode assembly and lithium ion secondary battery
CN105164848A (en) Lithium ion secondary cell and method for producing lithium ion secondary cell
JP2010245086A (en) Method for manufacturing lithium ion capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161006

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170616

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170626

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20170804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180316

R151 Written notification of patent or utility model registration

Ref document number: 6310179

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250