JP6351930B2 - Method for producing multilayer membrane electrode assembly - Google Patents

Method for producing multilayer membrane electrode assembly Download PDF

Info

Publication number
JP6351930B2
JP6351930B2 JP2013061102A JP2013061102A JP6351930B2 JP 6351930 B2 JP6351930 B2 JP 6351930B2 JP 2013061102 A JP2013061102 A JP 2013061102A JP 2013061102 A JP2013061102 A JP 2013061102A JP 6351930 B2 JP6351930 B2 JP 6351930B2
Authority
JP
Japan
Prior art keywords
electrode plate
plate
negative electrode
positive electrode
strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013061102A
Other languages
Japanese (ja)
Other versions
JP2014060141A (en
Inventor
野上 光秀
光秀 野上
克 瓶子
克 瓶子
健一 新明
健一 新明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2013061102A priority Critical patent/JP6351930B2/en
Publication of JP2014060141A publication Critical patent/JP2014060141A/en
Application granted granted Critical
Publication of JP6351930B2 publication Critical patent/JP6351930B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、リチウムイオン二次電池等に用いられる多層の膜電極接合体の製造方法及び積層型電池に関する。   The present invention relates to a method for producing a multilayer membrane electrode assembly used for a lithium ion secondary battery or the like and a laminated battery.

一般に、リチウムイオン二次電池は、正極活物質が集電体に塗工された正極板と、負極活物質が集電体に塗工された負極板とを、これらの間にセパレータを介装させて積層し、これら正極板、セパレータ及び負極板を積層させた多層の膜電極接合体を電解液と共にケース内に封止するとともに、多層の膜電極接合体の正極板と負極板のそれぞれに接続された端子用タブをケースから突出させて概略構成されている。
近年、二次電池は、小型軽量化、安全性の向上を目的としてポリマーリチウムイオン二次電池が開発されている。これは、従来のリチウムイオン二次電池に用いられている電解液の代わりに、ゲル状電解質が用いられたものである。このポリマーリチウムイオン二次電池の製造方法としては、例えば、下記特許文献1に開示された方法が提案されている。
Generally, a lithium ion secondary battery includes a positive electrode plate coated with a positive electrode active material on a current collector and a negative electrode plate coated with a negative electrode active material on a current collector, with a separator interposed therebetween. The multilayer membrane electrode assembly in which the positive electrode plate, the separator and the negative electrode plate are laminated is sealed in the case together with the electrolyte solution, and the positive electrode plate and the negative electrode plate of the multilayer membrane electrode assembly are respectively sealed. The connected terminal tab protrudes from the case and is schematically configured.
In recent years, polymer lithium ion secondary batteries have been developed as secondary batteries for the purpose of reducing the size and weight and improving safety. This is a gel electrolyte used in place of the electrolyte used in the conventional lithium ion secondary battery. As a manufacturing method of this polymer lithium ion secondary battery, for example, a method disclosed in Patent Document 1 below has been proposed.

特許文献1に記載されたポリマーリチウム二次電池の製造方法では、シート状に形成された非水電解液未含浸の正極板と非水電解液未含浸の負極板との間に非水電解液未含浸セパレータが介在するように、シート状の正極板と負極板とを積層しユニットセルとしている。そして、得られたユニットセルをラミネートフィルムからなる外装材で一部開口部を残して封入し、その後前記開口部から外装材の内部に非水電解液を注入して開口部を封止してポリマーリチウム二次電池としている。   In the method for producing a polymer lithium secondary battery described in Patent Document 1, a non-aqueous electrolyte solution is provided between a non-aqueous electrolyte non-impregnated positive electrode plate and a non-aqueous electrolyte non-impregnated negative electrode plate formed in a sheet shape. A unit cell is formed by laminating a sheet-like positive electrode plate and a negative electrode plate so that an unimpregnated separator is interposed. Then, the obtained unit cell is sealed with an exterior material made of a laminate film, leaving a part of the opening, and then the non-aqueous electrolyte is injected into the exterior material from the opening to seal the opening. It is a polymer lithium secondary battery.

特開2001−76760号公報JP 2001-76760 A

ところで、特許文献1の多層の膜電極接合体の製造方法によれば、シート状に形成された正極板と負極板とを、これらの間にシート状のセパレータを介装させ正確に位置合わせをしながら積層する必要があるため、正極板と負極板の積層作業が煩雑で作業効率が悪いという問題があった。また、外装材の開口部から非水電解液を注入して電解質層を形成しているため、非水電解液の注入及びエージングに長時間を要し、ポリマーリチウム二次電池の製造効率が悪いという問題があった。   By the way, according to the method of manufacturing a multilayer membrane electrode assembly of Patent Document 1, a positive electrode plate and a negative electrode plate formed in a sheet shape are accurately positioned by interposing a sheet-like separator therebetween. However, there is a problem that the work of laminating the positive electrode plate and the negative electrode plate is complicated and the work efficiency is poor. Further, since the electrolyte layer is formed by injecting the nonaqueous electrolyte from the opening of the exterior material, it takes a long time to inject and age the nonaqueous electrolyte, and the production efficiency of the polymer lithium secondary battery is poor. There was a problem.

そこで、本発明は、上記問題に鑑みて、正極板、電解質層及び負極板を簡便かつ短時間で積層することができる多層の膜電極接合体の製造方法を提供することを課題とする。   Then, in view of the said problem, this invention makes it a subject to provide the manufacturing method of the multilayer membrane electrode assembly which can laminate | stack a positive electrode plate, an electrolyte layer, and a negative electrode plate simply and for a short time.

本発明は、正極板と負極板との間に電解質層を介装させつつこれら正極板と負極板とを交互に積層して形成される多層の膜電極接合体の製造方法において、帯状に形成された前記正極板及び帯状に形成された前記負極板のいずれか一方の電極板を繰り出し延在させる一方の電極板延在工程と、前記帯状に形成された一方の電極板の両板面に電解液を塗工してゲル状の電解質層を形成し又は固体電解質を配して電解質層を形成する電解質層形成工程と、他方の電極板を繰り出し延在させる他方の電極板延在工程と、前記帯状の正極板と前記帯状の負極板とを貼り合せ、貼り合わされた前記帯状の正極板、前記電解質層、及び前記帯状の負極板を所定の間隔で切断してユニットセルとし、該ユニットセルを積層する積層工程とを備え、前記他方の電極板は、一方の板面を前記一方の電極板の一方の板面に対向させて、この一方の電極板に前記電解質層が形成された位置よりも下流側の位置から更に下流側に向けて繰り出され、前記一方の電極板および前記他方の電極板はそれぞれ平板状に積層されていることを特徴とすることを特徴とする。
また、本発明は、正極板と負極板との間に電解質層を介装させつつ、これら正極板と負極板とを交互に積層して形成される多層の膜電極接合体の製造方法において、帯状に形成された前記正極板及び帯状に形成された前記負極板のいずれか一方の電極板を繰り出し延在させる一方の電極板延在工程と、前記帯状に形成された一方の電極板の両板面に電解液を塗工してゲル状の電解質層を形成し又は固体電解質を配して電解質層を形成する電解質層形成工程と、他方の電極板を繰り出し延在させる他方の電極板延在工程と、前記帯状の正極板と前記帯状の負極板とを貼り合せ、貼り合わされた前記帯状の正極板、前記電解質層、及び前記帯状の負極板を、前記正極板が内側に位置するように巻回する巻回工程と、を備え、前記他方の電極板は、一方の板面を前記一方の電極板の一方の板面に対向させて、この一方の電極板に前記電解質層が形成された位置よりも下流側の位置から更に下流側に向けて繰り出されていることを特徴とする。
本発明によれば、延在させた帯状の電極板の板面に電解液を塗工してゲル状の電解質層を形成し、又は固体電解質を配する構成とされているため、電極板の板面に簡便かつ短時間で電解質層を連続的に形成することができる。
そして、正極板と負極板との間に電解質層を介装させた状態で、帯状の正極板及び帯状の負極板を同時に切断又は巻回するため、電解質層を介装させた正極板及び負極板の多層の膜電極接合体を簡便に製造することができる。
The present invention, while interposing an electrolyte layer between the positive and negative electrode plates, in the manufacturing method of the multi-layer membrane electrode assembly which is formed by laminating with these positive and negative electrode plates alternately, a strip One electrode plate extending step of extending and extending any one of the positive electrode plate formed and the negative electrode plate formed in a strip shape, and both plate surfaces of the one electrode plate formed in a strip shape An electrolyte layer is formed by forming an electrolyte layer by coating an electrolyte solution on the surface, or forming an electrolyte layer by disposing a solid electrolyte, and the other electrode plate extending step of extending and extending the other electrode plate And bonding the strip-shaped positive electrode plate and the strip-shaped negative electrode plate , cutting the bonded strip-shaped positive electrode plate, the electrolyte layer, and the strip-shaped negative electrode plate at a predetermined interval to form a unit cell, comprising a stacking step of stacking the unit cells, wherein the other In this electrode plate, one plate surface is opposed to one plate surface of the one electrode plate, and further downstream from the position where the electrolyte layer is formed on the one electrode plate. The one electrode plate and the other electrode plate are stacked in a flat plate shape, respectively.
Further, the present invention provides a method for producing a multilayer membrane electrode assembly formed by alternately laminating these positive electrode plates and negative electrode plates while interposing an electrolyte layer between the positive electrode plate and the negative electrode plate. Both of the positive electrode plate formed in a strip shape and the one negative electrode plate formed in a strip shape are extended by extending one electrode plate, and the one electrode plate formed in the strip shape. An electrolyte layer forming step of forming an electrolyte layer by applying an electrolytic solution to the plate surface to form a gel electrolyte layer or a solid electrolyte, and extending the other electrode plate to extend the other electrode plate And bonding the band-shaped positive electrode plate and the band-shaped negative electrode plate, and bonding the band-shaped positive electrode plate, the electrolyte layer, and the band-shaped negative electrode plate so that the positive electrode plate is located inside. And the other electrode plate includes: The other plate surface is made to face one plate surface of the one electrode plate, and the one electrode plate is drawn further downstream from the position where the electrolyte layer is formed. It is characterized by being.
According to the present invention, the electrolytic solution is applied to the surface of the extended strip-shaped electrode plate to form a gel electrolyte layer, or the solid electrolyte is disposed. The electrolyte layer can be continuously formed on the plate surface simply and in a short time.
And in the state which interposed the electrolyte layer between the positive electrode plate and the negative electrode plate, in order to cut | disconnect or wind a strip | belt-shaped positive electrode plate and a strip | belt-shaped negative electrode plate simultaneously, the positive electrode plate and negative electrode which interposed the electrolyte layer A multilayered membrane electrode assembly of a plate can be easily produced.

本発明は、前記帯状に形成された一方の電極板の板面上又は前記帯状に形成された他方の電極板の板面上に、帯状に形成されたセパレータを配するセパレータ配置工程を有するのが望ましい。
本発明によれば、正極板と負極板との間に介装させるセパレータの配置を正極板及び負極板と同一のライン上で簡便に行うことができる。
The present invention includes a separator disposing step of arranging a separator formed in a strip shape on the plate surface of one electrode plate formed in the strip shape or on the plate surface of the other electrode plate formed in the strip shape. Is desirable.
According to the present invention, the separator disposed between the positive electrode plate and the negative electrode plate can be easily arranged on the same line as the positive electrode plate and the negative electrode plate.

本発明は、前記電解質層形成工程において、前記正極板及び前記負極板のそれぞれの板面に電解液を塗工してゲル状の電解質を形成し又は固体電解質を配し、電解質層を形成することが望ましい。
本発明によれば、正極板及び負極板のそれぞれの板面に効率良く電解液を含浸させることができる。
In the electrolyte layer forming step, the present invention forms an electrolyte layer by applying an electrolyte solution to the respective plate surfaces of the positive electrode plate and the negative electrode plate to form a gel electrolyte or by disposing a solid electrolyte. It is desirable.
According to the present invention, each of the positive electrode plate and the negative electrode plate can be efficiently impregnated with the electrolytic solution.

本発明は、前記帯状の正極板と前記帯状の負極板とを貼り合せる貼り合わせ工程の後に、前記正極板及び/又は前記負極板を誘導加熱により加熱する電解質加熱工程を有することが好ましい。
本発明によれば、誘導加熱により正極板及び/又は負極板の集電体を加熱して、集電体の近傍からゲル状の電解質又は固体電解質を加熱し、正極板及び/又は負極板に効率良くゲル状の電解質又は固体電解質をなじませることができる。
The present invention preferably includes an electrolyte heating step of heating the positive electrode plate and / or the negative electrode plate by induction heating after the bonding step of bonding the belt-shaped positive electrode plate and the belt-shaped negative electrode plate.
According to the present invention, the current collector of the positive electrode plate and / or the negative electrode plate is heated by induction heating, and the gel electrolyte or solid electrolyte is heated from the vicinity of the current collector to form the positive electrode plate and / or the negative electrode plate. The gel electrolyte or solid electrolyte can be blended efficiently.

本発明に係る多層の膜電極接合体の製造方法によれば、多層の膜電極接合体を簡便に製造することができるとともに、製造時間を大幅に圧縮することができ、多層の膜電極接合体の製造効率が向上させることができるという効果を奏する。   According to the method for manufacturing a multilayer membrane electrode assembly according to the present invention, a multilayer membrane electrode assembly can be easily manufactured, and the manufacturing time can be greatly reduced. The production efficiency can be improved.

本発明の第1の実施形態として示した製造方法を用いて製造された多層の膜電極接合体を模式的に示した斜視図である。It is the perspective view which showed typically the multilayer membrane electrode assembly manufactured using the manufacturing method shown as the 1st Embodiment of this invention. 本発明の第1の実施形態の製造方法を用いて製造された多層の膜電極接合体における切り出された正極板及び負極板であり、(a)は正極板、(b)は負極板をそれぞれ示した平面図である。FIG. 2 is a cut positive electrode plate and a negative electrode plate in a multilayer membrane electrode assembly manufactured using the manufacturing method of the first embodiment of the present invention, where (a) is a positive electrode plate and (b) is a negative electrode plate. It is the shown top view. 本発明の第1の実施形態として示した製造方法を示した概略説明図である。It is the schematic explanatory drawing which showed the manufacturing method shown as the 1st Embodiment of this invention. 本発明の第1の実施形態として示した製造方法の変形例を示した概略説明図である。It is the schematic explanatory drawing which showed the modification of the manufacturing method shown as the 1st Embodiment of this invention. 本発明の第2の実施形態として示した製造方法を示した概略説明図である。It is the schematic explanatory drawing which showed the manufacturing method shown as the 2nd Embodiment of this invention.

以下、図を参照して本発明の実施形態について説明する。
図1は、本発明の第1の実施形態の製造方法により製造された多層の膜電極接合体1の概略構成を示した斜視図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a perspective view showing a schematic configuration of a multilayer membrane electrode assembly 1 manufactured by the manufacturing method of the first embodiment of the present invention.

図1に示すように、本発明の第1の実施形態の製造方法の対象となる多層の膜電極接合体1は、電解液が塗工されて固体又はゲル状の電解質層(本図においては不図示)が形成された正極板2aと、電解液が塗工されて固体又はゲル状の電解質層(本図においては不図示)が形成された負極板3aとを交互に積層し、正極板2aの端部から端子用タブ(第一の端子用タブ)4を突出させるとともに、負極板3aの端部から端子用タブ(第二の端子用タブ)5を突出させて形成されたものである。 As shown in FIG. 1, a multilayer membrane electrode assembly 1 which is a target of the manufacturing method of the first embodiment of the present invention is a solid or gel electrolyte layer (in this figure, coated with an electrolyte solution). A positive electrode plate 2a on which an electrolyte solution (not shown) is formed and a negative electrode plate 3a on which a solid or gel electrolyte layer (not shown in the figure) is formed by applying an electrolyte solution are alternately laminated, The terminal tab (first terminal tab) 4 is projected from the end of 2a, and the terminal tab (second terminal tab) 5 is projected from the end of the negative electrode plate 3a. is there.

図2(a)に示すように、切り出された正極板2aは、略長方形に形成されたアルミニウム箔からなる集電体6に、端部7,7を残して両面に正極活物質層8を形成したものである。端部7は、端子用タブ4の接合代となっている。   As shown in FIG. 2A, the cut-out positive electrode plate 2a has a positive electrode active material layer 8 on both sides of the current collector 6 made of an aluminum foil formed in a substantially rectangular shape, leaving the end portions 7 and 7. Formed. The end 7 serves as a joining margin for the terminal tab 4.

正極活物質層8は、例えば正極活物質と、導電助剤、バインダーとなる結着剤を溶媒に分散させてなる正極用スラリーにより構成されたものであり、集電体6の端部7,7間の両面に塗布されている。   The positive electrode active material layer 8 is composed of, for example, a positive electrode active material, a conductive slurry, and a positive electrode slurry in which a binder serving as a binder is dispersed in a solvent. It is applied to both sides between 7.

正極活物質としては、例えば一般式LiMxOy(ただし、Mは金属であり、x及びyは金属Mと酸素Oの組成比である)で表される金属酸リチウム化合物が用いられている。
具体的には、金属酸リチウム化合物としては、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、リン酸鉄リチウム等が用いられている。
導電助剤としてはアセチレンブラック等が用いられ、結着剤としてはポリフッ化ビニリデン等が用いられている。
As the positive electrode active material, for example, a metal acid lithium compound represented by the general formula LiMxOy (where M is a metal and x and y are composition ratios of the metal M and oxygen O) is used.
Specifically, lithium cobaltate, lithium nickelate, lithium manganate, lithium iron phosphate and the like are used as the metal acid lithium compound.
Acetylene black or the like is used as the conductive assistant, and polyvinylidene fluoride or the like is used as the binder.

正極板2aの端子用タブ4は、正極板2aの端部7に接合されて外方に突出するように設けられたものであり、例えばアルミニウム等により形成されている。   The terminal tab 4 of the positive electrode plate 2a is provided so as to be joined to the end portion 7 of the positive electrode plate 2a so as to protrude outward, and is formed of aluminum or the like, for example.

また、切り出された負極板3aは、図2(b)に示すように、例えば略長方形に形成された銅(Cu)からなる集電体10に、端部11を残して両面に負極活物質層12を形成したものである。端部11は、端子用タブ5の接合代となっている。   Further, as shown in FIG. 2B, the cut-out negative electrode plate 3a is formed on the current collector 10 made of, for example, copper (Cu) formed in a substantially rectangular shape, and the negative electrode active material is formed on both surfaces with the end 11 remaining. The layer 12 is formed. The end portion 11 serves as a joining margin for the terminal tab 5.

負極活物質層12は、例えば負極活物質と、バインダーとなる結着剤、必要に応じて加えられた導電助剤を溶媒に分散させてなる負極用スラリーにより構成されたものであり、集電体10の端部11,11間の両面に塗布されている。
負極活物質としては、例えば炭素粉末や黒鉛粉末等からなる炭素材料やチタン酸リチウム等の金属酸化物が用いられている。
結着材には、例えばポリフッ化ビニリデン等が用いられ、導電助剤にはアセチレンブラック等が用いられている。
負極板3aの端子用タブ5は、端部11に接合されて外方に突出するように設けられたものであり、例えばニッケル等により形成されている。
The negative electrode active material layer 12 is composed of, for example, a negative electrode active material, a binder serving as a binder, and a negative electrode slurry obtained by dispersing a conductive additive added as necessary in a solvent. It is applied to both surfaces between the end portions 11 and 11 of the body 10.
As the negative electrode active material, for example, a carbon material made of carbon powder or graphite powder, or a metal oxide such as lithium titanate is used.
For example, polyvinylidene fluoride or the like is used as the binder, and acetylene black or the like is used as the conductive auxiliary agent.
The terminal tab 5 of the negative electrode plate 3a is provided so as to be joined to the end portion 11 and protrude outward, and is formed of nickel or the like, for example.

図3に示す電解質層13は、帯状の負極板3の両板面に塗工された電解液13aが、ゲル化又は固体化したものである。この電解質層13は、帯状の正極板2及び負極板3の両板面に設けられていることがより好ましい。   The electrolyte layer 13 shown in FIG. 3 is obtained by gelling or solidifying the electrolytic solution 13a applied to both plate surfaces of the strip-shaped negative electrode plate 3. The electrolyte layer 13 is more preferably provided on both plate surfaces of the strip-like positive electrode plate 2 and negative electrode plate 3.

電解液13aは、例えば、高分子マトリックス及び非水電解質液(すなわち、非水溶媒及び電解質塩)からなり、ゲル化されて表面に粘着性を生じるものである。又は、電解液は、高分子マトリックス及び非水溶媒からなり、固体電解質となるものである。いずれの電解液であっても、該電解液が正極板2又は負極板3に塗工された際に粘着性を有するものが用いられる。また、電解液は、正極板2又は負極板3の板面から分離しない自立膜を形成するものであることが好ましい。   The electrolytic solution 13a is made of, for example, a polymer matrix and a non-aqueous electrolyte solution (that is, a non-aqueous solvent and an electrolyte salt), and is gelled to cause stickiness on the surface. Or an electrolyte solution consists of a polymer matrix and a non-aqueous solvent, and becomes a solid electrolyte. Whichever electrolyte is used, one having adhesiveness when the electrolyte is applied to the positive electrode plate 2 or the negative electrode plate 3 is used. Further, the electrolytic solution preferably forms a self-supporting film that does not separate from the plate surface of the positive electrode plate 2 or the negative electrode plate 3.

高分子マトリックスとしては、ポリフッ化ビニリデン(PVDF)、ヘキサフルオロプロピレン共重合体(PVDF−HFP)、ポリアクリロニトリル、ポリエチレンオキシドやポリプロピレンオキシド等のアルキレンエーテルをはじめ、ポリエステル、ポリアミン、ポリフォスファゼン、ポリシロキサン等が用いられる。   The polymer matrix includes polyvinylidene fluoride (PVDF), hexafluoropropylene copolymer (PVDF-HFP), polyacrylonitrile, alkylene ethers such as polyethylene oxide and polypropylene oxide, polyester, polyamine, polyphosphazene, polysiloxane Etc. are used.

非水溶媒は、γ−ブチロラクトン等のラクトン化合物;エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等の炭酸エステル化合物;ギ酸メチル、酢酸メチル、プロピオン酸メチル等のカルボン酸エステル化合物;テトラヒドロフラン、ジメトキシエタン等のエーテル化合物;テトラヒドロフラン、ジメトキシエタン等のエーテル化合物;アセトニトリル等のニトリル化合物;スルホラン等のスルホン化合物、ジメチルホルムアミド等のアミド化合物等、単独または2種類以上を混合して調製される。   The non-aqueous solvent is a lactone compound such as γ-butyrolactone; a carbonic acid ester compound such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, or methyl ethyl carbonate; a carboxylic acid ester compound such as methyl formate, methyl acetate, or methyl propionate; Ether compounds such as tetrahydrofuran and dimethoxyethane; ether compounds such as tetrahydrofuran and dimethoxyethane; nitrile compounds such as acetonitrile; sulfone compounds such as sulfolane; amide compounds such as dimethylformamide; .

また、電解液13aを固体電解質層にする場合には、アセトニトリル等のニトリル化合物;テトラヒドロフラン等のエーテル化合物:ジメチルホルムアミド等のアミド系化合物を単独または2種類以上を混合して調製される。
電解質塩としては、特に限定されないが六フッ化リン酸リチウム、過塩素酸リチウム、四フッ化ホウ酸リチウム等のリチウム塩等が使用できる。
When the electrolyte solution 13a is used as a solid electrolyte layer, it is prepared by mixing a nitrile compound such as acetonitrile; an ether compound such as tetrahydrofuran; and an amide compound such as dimethylformamide alone or in combination of two or more.
The electrolyte salt is not particularly limited, and lithium salts such as lithium hexafluorophosphate, lithium perchlorate, and lithium tetrafluoroborate can be used.

セパレータ14には、不織布等が用いられている。   A non-woven fabric or the like is used for the separator 14.

次に、本発明の第1の実施形態に係る多層の膜電極接合体1の製造方法について図2(a),(b),図3を用いて説明する。この多層の膜電極接合体1の製造方法は、以下の工程を備えている。
(I)集電体10の両板面に負極活物質層12が形成された帯状の負極板3を一方向(矢印P)に向かって繰り出して延在させ、同矢印P方向に搬送可能な状態とする工程<負極板延在工程(一方の電極板延在工程)>
(II)集電体6の両板面に正極活物質層8が形成された正極板2を、一方向(矢印P)に向かって繰り出して延在させ、同矢印P方向に搬送可能な状態とする工程<正極板延在工程(他方の電極板延在工程)>
(III)帯状に形成された負極板3の両板面に電解液13aを塗工し、ゲル状又は固体状の電解質層13を形成する工程<電解質層形成工程>
(IV)帯状に形成された負極板3の両板面上に、帯状に形成されたセパレータ14を配する工程<セパレータ配置工程>
(V)正極板2と負極板3とを、電解質層13及びセパレータ14を介装させた状態で貼り合せて積層し、積層された正極板2、セパレータ14及び負極板3を所定の間隔で切断して矩形形状のユニットセル1aとし、ユニットセル1aを積層する工程<積層工程>
Next, a method for manufacturing the multilayer membrane electrode assembly 1 according to the first embodiment of the present invention will be described with reference to FIGS. 2 (a), 2 (b), and 3. FIG. The manufacturing method of this multilayer membrane electrode assembly 1 includes the following steps.
(I) The strip-shaped negative electrode plate 3 in which the negative electrode active material layers 12 are formed on both plate surfaces of the current collector 10 is extended in one direction (arrow P) and can be conveyed in the direction of arrow P. Step <State of Negative Electrode Plate Extension (One Electrode Plate Extension Step)>
(II) A state in which the positive electrode plate 2 in which the positive electrode active material layers 8 are formed on both plate surfaces of the current collector 6 is extended in one direction (arrow P) and can be conveyed in the arrow P direction. <Positive electrode plate extending step (the other electrode plate extending step)>
(III) Step of applying electrolyte solution 13a on both plate surfaces of negative electrode plate 3 formed in a strip shape to form gel-like or solid electrolyte layer 13 <Electrolyte layer forming step>
(IV) Step of placing the separator 14 formed in a strip shape on both plate surfaces of the negative electrode plate 3 formed in a strip shape <Separator placement step>
(V) The positive electrode plate 2 and the negative electrode plate 3 are bonded and laminated with the electrolyte layer 13 and the separator 14 interposed therebetween, and the laminated positive electrode plate 2, separator 14 and negative electrode plate 3 are spaced at a predetermined interval. A process of cutting the rectangular unit cell 1a and laminating the unit cells 1a <Lamination process>

(I)負極板延在工程(一方の電極板延在工程)
負極板延在工程では、予め準備した帯状の負極板3を用いる。
負極板(一方の電極板)3には、銅箔等を用いて、帯状に形成された集電体10を用いる。集電体10の両板面には、幅方向の端部11,11を残して負極用スラリーを塗布し、乾燥させて負極活物質層12を設けた帯状の負極板3とする。帯状の負極板3は、ロール状に巻回しておく。なお、端子用タブ5は、負極活物質層12を設けなかった集電体10の端部11,11に所定の間隔をおいて溶接しておく。
そして、上記のようにして形成された負極板3を一方向(矢印P)に向けて繰り出して所定寸法(L1)延在させる。
(I) Negative electrode plate extending step (one electrode plate extending step)
In the negative electrode plate extending step, a strip-shaped negative electrode plate 3 prepared in advance is used.
As the negative electrode plate (one electrode plate) 3, a current collector 10 formed in a strip shape using a copper foil or the like is used. On both plate surfaces of the current collector 10, the negative electrode slurry is applied, leaving the end portions 11, 11 in the width direction, and dried to form a strip-shaped negative electrode plate 3 provided with the negative electrode active material layer 12. The strip-shaped negative electrode plate 3 is wound in a roll shape. The terminal tab 5 is welded to the end portions 11 and 11 of the current collector 10 where the negative electrode active material layer 12 is not provided at a predetermined interval.
Then, the negative electrode plate 3 formed as described above is extended in one direction (arrow P) to extend a predetermined dimension (L1).

(II)正極板延在工程(他方の電極板延在工程)
正極板延在工程では、予め準備した帯状の正極板2を用いる。
正極板2(他方の電極板)には、アルミニウム箔等を用いて帯状に形成された集電体6を用いる。集電体6の両板面には、幅方向の端部7,7を残して正極用スラリーを塗布し、乾燥させて正極活物質層8を設けた帯状の正極板2とする。帯状の正極板2は、ロール状に巻回しておく。なお、端子用タブ4は、正極活物質層8を設けなかった集電体6の端部7,7に所定の間隔をおいて溶接しておく。
そして、上記のようにして形成された正極板2を、負極板3の繰り出し開始位置よりも所定寸法L2分下流側の位置から繰り出し、一板面を負極板3の板面に対向させて所定寸法(L3)延在させる。
なお、上記の正極板2及び負極板3は、後述する電解質層形成工程の前に、十分に水分を飛ばして乾燥し、電解液13aの塗工を良好に行えるようにしておくと良い。
(II) Positive electrode plate extending step (the other electrode plate extending step)
In the positive electrode plate extending step, a belt-shaped positive electrode plate 2 prepared in advance is used.
For the positive electrode plate 2 (the other electrode plate), a current collector 6 formed in a strip shape using an aluminum foil or the like is used. On both plate surfaces of the current collector 6, a positive electrode slurry is applied, leaving the end portions 7, 7 in the width direction, and dried to form a strip-like positive electrode plate 2 provided with a positive electrode active material layer 8. The belt-like positive electrode plate 2 is wound in a roll shape. The terminal tab 4 is welded to the end portions 7 and 7 of the current collector 6 on which the positive electrode active material layer 8 is not provided at a predetermined interval.
Then, the positive electrode plate 2 formed as described above is fed out from a position downstream of the feeding start position of the negative electrode plate 3 by a predetermined dimension L2, and one plate surface is made to face the plate surface of the negative electrode plate 3 to be predetermined. Extend dimension (L3).
The positive electrode plate 2 and the negative electrode plate 3 are preferably dried by sufficiently removing water before the electrolyte layer forming step described later, so that the electrolyte solution 13a can be applied satisfactorily.

(III)電解質層形成工程
正極板2の繰り出し開始位置よりも上流側において、負極板3の両板面に電解液13aを塗工し、塗工された電解液13aを冷却してゲル状又は固体状の電解質層13を形成する。
(IV)セパレータ配置工程
帯状に形成された負極板3の両板面上に、帯状に形成されたセパレータ14を配する。なお、セパレータ14の配置は、上述した電解質層形成工程の前後のいずれのタイミングであってもよい。
(III) Electrolyte Layer Formation Step On the upstream side of the feeding start position of the positive electrode plate 2, the electrolyte solution 13 a is applied to both plate surfaces of the negative electrode plate 3, and the applied electrolyte solution 13 a is cooled to form a gel or A solid electrolyte layer 13 is formed.
(IV) Separator Arrangement Step A separator 14 formed in a band shape is disposed on both plate surfaces of the negative electrode plate 3 formed in a band shape. In addition, the arrangement | positioning of the separator 14 may be any timing before and behind the electrolyte layer formation process mentioned above.

(V)積層工程
積層工程においては、電解質層13及びセパレータ14を介装させて互いに対向配置された正極板2と負極板3とをローラーR,Rで貼り合せて積層し、積層された正極板2、電解質層13、セパレータ14及び負極板3を所定の間隔をおいて一方向(矢印P方向)に直交する方向(紙面奥行き方向)に切断して矩形形状のシート状のユニットセル1aとする。そして、得られたユニットセル1aを複数積層し多層の膜電極接合体1とする。
なお、この際、電解質層13を加熱してゲル状の電解質を正極活物質層及び負極活物質層に浸透させることが好ましい。加熱方法としては、抵抗加熱ヒータと送風とによる熱風加熱、セラミックヒータを用いた遠赤外線加熱、ランプヒータ、マイクロプラズマ加熱、インダクションヒーティングなどの非接触加熱を適用することができる。
(V) Laminating Step In the laminating step, the positive electrode plate 2 and the negative electrode plate 3 that are arranged to face each other with the electrolyte layer 13 and the separator 14 interposed therebetween are laminated by rollers R and R, and the positive electrode is laminated. The plate 2, the electrolyte layer 13, the separator 14 and the negative electrode plate 3 are cut at a predetermined interval in a direction (depth direction in the drawing) perpendicular to one direction (arrow P direction) and a rectangular sheet-like unit cell 1a To do. Then, a plurality of unit cells 1 a obtained are stacked to form a multilayer membrane electrode assembly 1.
At this time, it is preferable to heat the electrolyte layer 13 so that the gel electrolyte penetrates into the positive electrode active material layer and the negative electrode active material layer. As a heating method, non-contact heating such as hot air heating using a resistance heater and air blowing, far-infrared heating using a ceramic heater, lamp heater, microplasma heating, induction heating, and the like can be applied.

以上のようにして、負極板3aに正極板2aが配置されるとともに正極板2aと負極板3aとの間にゲル状の電解質層13及びセパレータ14が介装された多層の膜電極接合体1が形成される。また、帯状の正極板2及び負極板3を矢印P方向に搬送させつつ、連続的に多層の膜電極接合体1を作製することができる。   As described above, the multilayer membrane electrode assembly 1 in which the positive electrode plate 2a is disposed on the negative electrode plate 3a and the gel electrolyte layer 13 and the separator 14 are interposed between the positive electrode plate 2a and the negative electrode plate 3a. Is formed. Moreover, the multilayered membrane electrode assembly 1 can be continuously produced while the belt-like positive electrode plate 2 and the negative electrode plate 3 are conveyed in the direction of arrow P.

この場合、多層の膜電極接合体1の最下層及び最上層には、負極板3が位置するように積層することが望ましい。多層の膜電極接合体1を形成することにより、最外層に正極板2aを位置させることにより生じ得るリチウムの樹枝状析出物(デンドライト)の発生を防止してショート等の不具合を引き起こすおそれを回避することができる。なお、左記デンドライトの発生は、多層の膜電極接合体1の最外層に正極板2aが位置し、かつ正極板2aの外方を向く(すなわち負極板3aに対向していない)板面に正極活物質層8が形成されている場合であるので、多層の膜電極接合体1の正極板2aと負極板3aの双方の枚数を調整せず正極板2aを最外層に位置させる場合であっても、該最外層に位置する正極板2aの外方を向く板面に正極活物質層8を形成しないことによっても、デンドライトの発生を防止してショート等の不具合を引き起こすおそれを回避することができる。   In this case, it is desirable to laminate so that the negative electrode plate 3 is located in the lowermost layer and the uppermost layer of the multilayer membrane electrode assembly 1. By forming the multilayer membrane electrode assembly 1, it is possible to prevent the occurrence of defects such as a short circuit by preventing the occurrence of lithium dendritic precipitates (dendrites) that can be generated by positioning the positive electrode plate 2 a as the outermost layer. can do. The dendrite shown on the left is generated when the positive electrode plate 2a is located in the outermost layer of the multilayer membrane electrode assembly 1 and faces the outside of the positive electrode plate 2a (that is, not facing the negative electrode plate 3a). Since the active material layer 8 is formed, the positive electrode plate 2a is positioned in the outermost layer without adjusting the number of both the positive electrode plate 2a and the negative electrode plate 3a of the multilayer membrane electrode assembly 1. However, by not forming the positive electrode active material layer 8 on the plate surface facing the outside of the positive electrode plate 2a located in the outermost layer, it is possible to prevent the generation of dendrites and avoid the possibility of causing problems such as a short circuit. it can.

上記の方法で得られた多層の膜電極接合体1は、端子用タブ4,5を外方に突出させた状態で、例えばラミネートフィルム等の不図示の外装材で包装し、外周を封止してリチウムイオン二次電池等の積層型電池となる。   The multilayer membrane electrode assembly 1 obtained by the above method is packaged with an exterior material (not shown) such as a laminate film with the terminal tabs 4 and 5 protruding outward, and the outer periphery is sealed. Thus, a laminated battery such as a lithium ion secondary battery is obtained.

以上のように、本発明の多層の膜電極接合体1の製造方法によれば、帯状に形成された正極板2と帯状に形成された負極板3とをそれぞれの板面を対向させて一方向に配置し、正極板2と負極板3との貼り合せ前に電解液13aを負極板3の両板面に連続的に塗工することにより、ゲル状又は固体の電解質層13を形成する。   As described above, according to the method for manufacturing a multilayer membrane electrode assembly 1 of the present invention, the positive electrode plate 2 formed in a strip shape and the negative electrode plate 3 formed in a strip shape are made to face each other. The gel-like or solid electrolyte layer 13 is formed by continuously applying the electrolytic solution 13a to both plate surfaces of the negative electrode plate 3 before being bonded to each other. .

したがって、例えば正極板2及び負極板3を短冊状に切断した後電解液13aを塗工する場合のように、負極板3aを一枚ずつ保持して電解液13aを塗工し、正極板2aと正確に位置合わせして貼り合せるという手間を省いて、簡便、確実及び短時間で電解質層13を形成し、積層することができるという効果が得られる。   Therefore, for example, when the positive electrode plate 2 and the negative electrode plate 3 are cut into strips and then the electrolytic solution 13a is applied, the negative electrode plates 3a are held one by one and the electrolytic solution 13a is applied, and the positive electrode plate 2a Thus, it is possible to obtain the effect that the electrolyte layer 13 can be formed and laminated easily, reliably and in a short time, without the trouble of accurately aligning and bonding.

また、従来の多層の膜電極接合体の製造方法のように、外装材に封入された多層の膜電極接合体を真空雰囲気下におき、正極板と負極板との間に電解液を注入しエージングするという手間及び注入時間を省いて効率的に電解質層を形成することができるという効果が得られる。   In addition, as in the conventional method of manufacturing a multilayer membrane electrode assembly, the multilayer membrane electrode assembly enclosed in the exterior material is placed in a vacuum atmosphere, and an electrolyte is injected between the positive electrode plate and the negative electrode plate. The effect that the electrolyte layer can be efficiently formed without the labor and aging time of aging is obtained.

また、延在させた帯状の負極板3の板面に電解液13aを塗工しゲル状にするものであるため、正極板2及び負極板3の搬送中の早いタイミングで電解液13aの正極活物質層8及び負極活物質層12への浸透を開始させることが可能となる。したがって、多層の膜電極接合体1の作成のリードタイムを圧縮することができるという効果が得られる。   Further, since the electrolytic solution 13a is applied to the plate surface of the extended strip-shaped negative electrode plate 3 to form a gel, the positive electrode of the electrolytic solution 13a is conveyed at an early timing during the transportation of the positive electrode plate 2 and the negative electrode plate 3. The penetration into the active material layer 8 and the negative electrode active material layer 12 can be started. Therefore, an effect that the lead time for producing the multilayer membrane electrode assembly 1 can be compressed is obtained.

また、正極板2、電解質層13、負極板3及びセパレータ14の積層を一ライン上で行うことができるとともに、正極板2、セパレータ14及び負極板3の切断が一箇所で同時に行われる。したがって、多層の膜電極接合体1の製造装置をコンパクトにすることができ、製造装置の設置スペースを削減することができるという効果が得られる。   Further, the positive electrode plate 2, the electrolyte layer 13, the negative electrode plate 3 and the separator 14 can be laminated on one line, and the positive electrode plate 2, the separator 14 and the negative electrode plate 3 are simultaneously cut at one place. Therefore, the manufacturing apparatus of the multilayer membrane electrode assembly 1 can be made compact, and the effect that the installation space of the manufacturing apparatus can be reduced is obtained.

また、ゲル状又は固体状の電解質層13を用いた多層の膜電極接合体1をリチウムイオン二次電池等の積層型電池に適用することにより、積層状態が良好で液漏れし難く、かつ製造費用を抑えた好適な積層型電池を製造することができるという効果が得られる。   Further, by applying the multilayer membrane electrode assembly 1 using the gel-like or solid electrolyte layer 13 to a laminated battery such as a lithium ion secondary battery, the laminated state is good and the liquid does not easily leak, and is manufactured. The effect that the suitable laminated battery which suppressed cost can be manufactured is acquired.

上記の実施形態において、多層の膜電極接合体1は、帯状の負極板3と帯状の正極板2とを所定の間隔で切断して形成したユニットセル1aを、複数積層した構成とされているが、図4に示すように帯状の負極板3と帯状の正極板2とを貼り合せた状態で、正極板2が内側に位置するように巻回したものであってもよい。   In the above embodiment, the multilayer membrane electrode assembly 1 has a configuration in which a plurality of unit cells 1a formed by cutting the strip-shaped negative electrode plate 3 and the strip-shaped positive electrode plate 2 at predetermined intervals are stacked. However, as shown in FIG. 4, the belt-like negative electrode plate 3 and the belt-like positive electrode plate 2 may be bonded so that the positive electrode plate 2 is positioned inside.

また、上記実施形態において、ゲル状の電解質層13を形成する電解液13aを帯状の負極板3の両板面に塗工したが、上記電解液13aは、負極板3及び正極板2の各一方の板面、又は、負極板3及び正極板2の双方の両板面に塗工されてもよい。   Moreover, in the said embodiment, although the electrolyte solution 13a which forms the gel-like electrolyte layer 13 was applied to both board surfaces of the strip | belt-shaped negative electrode plate 3, the said electrolyte solution 13a is each of the negative electrode plate 3 and the positive electrode plate 2. It may be applied to one plate surface, or both plate surfaces of both the negative electrode plate 3 and the positive electrode plate 2.

また、上記実施形態においては、負極板3の上面に正極板2を積層させたが、正極活物質層8が多層の膜電極接合体1の最下層の外方を向く板面又は最上層の外方を向く板面に形成されないようにし、デンドライトの発生を防止できるようにするのであれば、正極板2の上面に負極板3を積層する構成としたものであってもよい。   Further, in the above embodiment, the positive electrode plate 2 is laminated on the upper surface of the negative electrode plate 3, but the positive electrode active material layer 8 is the plate surface or the uppermost layer of the multilayer membrane electrode assembly 1 facing outward. A configuration in which the negative electrode plate 3 is laminated on the upper surface of the positive electrode plate 2 may be used as long as it is not formed on the plate surface facing outward and generation of dendrites can be prevented.

また、負極板3と正極板2とを電解質層13及びセパレータ14を介装させつつ適切に積層させることができる限り、負極板3と正極板2とは、互いに水平方向から貼り合わされてもよい。   Moreover, as long as the negative electrode plate 3 and the positive electrode plate 2 can be appropriately laminated while interposing the electrolyte layer 13 and the separator 14, the negative electrode plate 3 and the positive electrode plate 2 may be bonded to each other from the horizontal direction. .

次に、本発明の第2の実施形態について図5を用いて説明する。本実施形態において、前述した第1の実施形態と同一の構成については同一の符号を付して、その説明を省略し、第1の実施形態と異なる点についてのみ説明する。
本実施形態は、セパレータ14にゲル状の電解質13を塗工し負極板3と貼り合わせた後と、セパレータ14にゲル状の電解質13を塗工し正極板2とを貼り合わせた後のそれぞれのタイミングで、又は、正極板2と負極板3とをセパレータ14及びゲル状又は固体電解質を介装させた後で、誘導加熱装置(例えばIHによる加熱)20により正極板2及び負極板3をそれぞれ誘導加熱する点で第1の実施形態と異なる。
Next, a second embodiment of the present invention will be described with reference to FIG. In the present embodiment, the same components as those in the first embodiment described above are denoted by the same reference numerals, description thereof is omitted, and only differences from the first embodiment will be described.
In this embodiment, the gel electrolyte 13 is applied to the separator 14 and bonded to the negative electrode plate 3, and the gel electrolyte 13 is applied to the separator 14 and bonded to the positive electrode plate 2. Or after interposing the separator 14 and the gel or solid electrolyte between the positive electrode plate 2 and the negative electrode plate 3, the positive electrode plate 2 and the negative electrode plate 3 are moved by an induction heating device (for example, heating by IH) 20. Each differs from the first embodiment in that it is induction heated.

本実施形態の製造方法によれば、正極板2及び負極板3の集電体6,10(図2参照)を加熱し、正極板2及び負極板3から離れた表層側に位置するゲル状の電解質13の溶融を防止して、正極板2及び負極板3に近接しているゲル状の電解質13、すなわちユニットセル1aの内側に位置するゲル状の電解質13から溶融させることができる。その結果、熱風加熱等の加熱手段のように、ゲル状の電解質13をその表層側から溶融し、全体を加熱させて、正極活物質層8(図2(a)参照)又は負極活物質層(図2(b)参照)への浸透時には液だれを発生させてしてしまう可能性を防止して、正極板2及び負極板3近傍のゲル状の電解質13を正極活物質層8又は負極活物質層12に、少ない熱量でかつ短時間で、効果的に浸透させることができるという効果が得られる。   According to the manufacturing method of the present embodiment, the current collectors 6 and 10 (see FIG. 2) of the positive electrode plate 2 and the negative electrode plate 3 are heated, and the gel is located on the surface layer side away from the positive electrode plate 2 and the negative electrode plate 3. The electrolyte 13 can be prevented from melting and melted from the gel electrolyte 13 adjacent to the positive electrode plate 2 and the negative electrode plate 3, that is, the gel electrolyte 13 located inside the unit cell 1a. As a result, like the heating means such as hot air heating, the gel electrolyte 13 is melted from the surface layer side, and the whole is heated, so that the positive electrode active material layer 8 (see FIG. 2A) or the negative electrode active material layer (Refer to FIG. 2 (b)) Prevents the possibility of dripping during penetration into the gel-like electrolyte 13 in the vicinity of the positive electrode plate 2 and the negative electrode plate 3, and the positive electrode active material layer 8 or the negative electrode. The active material layer 12 can be effectively penetrated with a small amount of heat and in a short time.

なお、ゲル状の電解質13が塗工されたセパレータ14−負極板3−ゲル状の電解質13が塗工されたセパレータ14−正極板2のように積層された状態で、負極板3と正極板2とを、負極板3側と正極板2側の両側から誘導加熱で加熱することが望ましいが、十分に加熱できる場合は、負極板3と正極板2とをセパレータ14を介在させた状態で一方向から誘導加熱してもよい。
また、ゲル状の電解質13若しくは固体状の電解質(不図示)をセパレータ14と正極板2との間及びセパレータ14と負極板3との間に配して上記のような加熱をしてもよい。
In addition, in the state laminated | stacked like the separator 14-positive electrode plate 2 to which the separator 14-negative electrode plate 3-gel-like electrolyte 13 coated the gel-like electrolyte 13 was coated, the negative electrode plate 3 and the positive electrode plate 2 is preferably heated by induction heating from both sides of the negative electrode plate 3 side and the positive electrode plate 2 side. However, when sufficient heating is possible, the negative electrode plate 3 and the positive electrode plate 2 are placed with the separator 14 interposed therebetween. Induction heating may be performed from one direction.
Further, the gel electrolyte 13 or the solid electrolyte (not shown) may be disposed between the separator 14 and the positive electrode plate 2 and between the separator 14 and the negative electrode plate 3 and heated as described above. .

以下、実施例を用いて第2の実施形態による多層の膜電極接合体の製造方法について具体的に説明する。   Hereafter, the manufacturing method of the multilayer membrane electrode assembly by 2nd Embodiment is demonstrated concretely using an Example.

[実施例1]
下記仕様により、図1の多層の膜電極接合体と同様のリチウムイオン二次電池(多層の膜電極接合体)を製造した。
[Example 1]
A lithium ion secondary battery (multilayer membrane electrode assembly) similar to the multilayer membrane electrode assembly of FIG. 1 was produced according to the following specifications.

<正極板>
リン酸鉄リチウム(LiFePO4)(重量75wt%以下)、導電助剤としてアセチレンブラック10wt%(重量%)、結着剤(バインダー)としてポリフッ化ビニリデン15wt%を用いて正極用スラリーを作製し、これらを圧延アルミ箔からなる集電体(縦50mm×横100mm)(厚み15μm)の両面に塗布し、乾燥させた。前記集電体上に塗布乾燥された正極活物質を、プレス機により、下記表1に示すように段階的に異なる圧力で加圧、圧密化した3種類の正極板を作成した。
<Positive electrode plate>
A slurry for positive electrode was prepared using lithium iron phosphate (LiFePO 4 ) (weight 75 wt% or less), acetylene black 10 wt% (wt%) as a conductive additive, and polyvinylidene fluoride 15 wt% as a binder (binder), These were applied to both surfaces of a current collector (length 50 mm × width 100 mm) (thickness 15 μm) made of rolled aluminum foil and dried. Three types of positive electrode plates were prepared by pressurizing and compacting the positive electrode active material coated and dried on the current collector with a press machine at different pressures stepwise as shown in Table 1 below.

<負極板>
天然黒鉛(重量75wt%以下)と、バインダーとなる結着剤(ポリフッ化ビニリデン)15wt%、導電助剤(アセチレンブラック)10wt%を溶媒(水)に分散させた負極用スラリーを作製し、これらを圧延銅箔10μmからなる集電体(縦50mm×横100mm)の両面に塗布し、乾燥させた。前記集電体上に塗布し、乾燥させた負極活物質を、プレス機により、下記表1に示すように段階的に異なる圧力で加圧、圧密化した3種類の負極板を作成した。
<Negative electrode plate>
Negative electrode slurry in which natural graphite (weight 75 wt% or less), binder (polyvinylidene fluoride) 15 wt% serving as a binder, and conductive additive (acetylene black) 10 wt% are dispersed in a solvent (water) are prepared. Was applied to both sides of a current collector (length 50 mm × width 100 mm) made of rolled copper foil 10 μm and dried. Three types of negative electrode plates were prepared by pressurizing and compacting the negative electrode active material coated and dried on the current collector with a press machine at different pressures stepwise as shown in Table 1 below.

<ゲル電解質>
エチレンカーボネート(EC):ジエチルカーボネート(DEC):ジメチルカーボネート(DMC)を1:1:1(重量比)で配合した溶媒に、電解質としてLiPF6を1mol/Lで溶解し、ポリマー成分としてPVDFを5wt%の濃度で溶解したゲル状の電解質を調製した。
<Gel electrolyte>
LiPF6 as an electrolyte is dissolved at 1 mol / L in a solvent in which ethylene carbonate (EC): diethyl carbonate (DEC): dimethyl carbonate (DMC) is blended at a ratio of 1: 1: 1 (weight ratio), and PVDF as a polymer component is 5 wt. A gelled electrolyte dissolved at a concentration of% was prepared.

<セパレータ>
空隙率70%,密度0.5g/m3,厚み約20μmのセルロース系の不織布を用いた。
<加熱機器>
誘導加熱機器として、電流3A,電源65V,周波数約15kHzとする渦巻き型の加熱コイル(φ200mm)を備えたNT204(日本サーモニクス製)を使用した。
<Separator>
A cellulose nonwoven fabric having a porosity of 70%, a density of 0.5 g / m 3 , and a thickness of about 20 μm was used.
<Heating equipment>
As an induction heating device, NT204 (manufactured by Nippon Thermonics) equipped with a spiral heating coil (φ200 mm) having a current of 3 A, a power source of 65 V, and a frequency of about 15 kHz was used.

<積層体の作製>
以上のようにして作製された3種類の各負極板の表面のそれぞれに、ゲル状電解質を厚さ30μmで塗工し、負極板と同じ圧でプレスされた各正極板を交互に9組(正極板と負極板との全体で18層になるよう)貼り合わせ、平均起電力3.4V 2Aの積層体を作製した。
<加熱処理>
この積層体の最表面にある電極から10mmの間隔をおいて3秒間、誘導加熱を行い、多層の膜電極接合体を得た。
<Production of laminate>
Nine pairs of positive electrode plates alternately coated with a gel electrolyte at a thickness of 30 μm and pressed at the same pressure as the negative electrode plates are applied to the surfaces of the three types of negative electrode plates produced as described above. A laminated body having an average electromotive force of 3.4 V 2A was prepared by bonding them so that the positive electrode plate and the negative electrode plate were 18 layers in total.
<Heat treatment>
Inductive heating was performed for 3 seconds at an interval of 10 mm from the electrode on the outermost surface of the laminate to obtain a multilayer membrane electrode assembly.

[実施例2]
<積層体>
実施例1と同様の3種類の積層体を作製した。
<加熱機器>
実施例1と同様の誘導加熱機器を用いた。
<加熱処理>
積層体を5m/分の速度で搬送し、加熱コイルによる加熱の開始から終了までの3秒間、最表面にある電極から10mmの間隔をおいて誘導加熱を行い、多層の膜電極接合体を得た。
[Example 2]
<Laminate>
Three types of laminates similar to Example 1 were produced.
<Heating equipment>
The same induction heating apparatus as in Example 1 was used.
<Heat treatment>
The laminated body is conveyed at a speed of 5 m / min, and induction heating is performed at intervals of 10 mm from the electrode on the outermost surface for 3 seconds from the start to the end of heating by the heating coil to obtain a multilayer membrane electrode assembly. It was.

[比較例1]
<積層体>
実施例1と同様の3種類の積層体を作製した。
<加熱機器>
加熱機器として、5kW,電源200Vの熱風乾燥機(竹綱製作所製)を用いた。
<加熱処理>
積層体の最表面から100mmの間隔をおいて、風量1m3/分で10秒間、熱風加熱を行い、多層の膜電極接合体を得た。
[Comparative Example 1]
<Laminate>
Three types of laminates similar to Example 1 were produced.
<Heating equipment>
As a heating device, a hot air dryer (manufactured by Takezuna Seisakusho) with a power of 5 kW and a power source of 200 V was used.
<Heat treatment>
Hot air heating was performed for 10 seconds at an air volume of 1 m 3 / min at an interval of 100 mm from the outermost surface of the laminate to obtain a multilayer membrane electrode assembly.

[比較例2]
<積層体>
実施例1と同様の3種類の積層体を作製した。
<加熱機器>
加熱機器として、5kW,電源200Vの熱風乾燥機(竹綱製作所製)を用いた。
<加熱処理>
積層体の最表面から100mmの間隔をおいて、風量2m3/分で10秒間、熱風加熱を行い、多層の膜電極接合体を得た。
[Comparative Example 2]
<Laminate>
Three types of laminates similar to Example 1 were produced.
<Heating equipment>
As a heating device, a hot air dryer (manufactured by Takezuna Seisakusho) with a power of 5 kW and a power source of 200 V was used.
<Heat treatment>
Hot air heating was performed for 10 seconds at an air volume of 2 m 3 / min at an interval of 100 mm from the outermost surface of the laminate to obtain a multilayer membrane electrode assembly.

[比較例3]
<積層体>
実施例1と同様の3種類の積層体を作製した。
<加熱機器>
加熱機器として、5kW,電源200Vであって1mの搬送距離を有する熱風乾燥炉(竹綱製作所製)を用いた。
<加熱処理>
積層体を5m/分の速度で搬送し、最表面から100mmの間隔をおいて、風量2m3/分で熱風乾燥炉内での搬送開始から終了までの12秒間、熱風加熱を行い、多層の膜電極接合体を得た。
[Comparative Example 3]
<Laminate>
Three types of laminates similar to Example 1 were produced.
<Heating equipment>
As a heating device, a hot air drying furnace (manufactured by Taketsuna Manufacturing Co., Ltd.) having 5 kW, a power source of 200 V and a transport distance of 1 m was used.
<Heat treatment>
The laminated body is conveyed at a speed of 5 m / min, heated at a distance of 100 mm from the outermost surface, heated for 12 seconds from the start to the end in the hot air drying furnace at an air volume of 2 m 3 / min, A membrane electrode assembly was obtained.

[比較例4]
実施例1と同様の3種類の積層体を作製した。
加熱処理を行わずに、多層の膜電極接合体とした。
[Comparative Example 4]
Three types of laminates similar to Example 1 were produced.
A multi-layer membrane electrode assembly was obtained without performing the heat treatment.

[評価結果]
表1に示すとおり、比較例1〜3の積層体については、得られた電池容量が0〜4.5Whであることから、正極板及び負極板のプレス圧を上げて正極活物質及び負極活物質を高密度化した場合、ゲル状の電解質の正極活物質及び負極活物質への浸透質が十分に行われず、浸透が困難となっていることが分かった。
[Evaluation results]
As shown in Table 1, about the laminated body of Comparative Examples 1-3, since the obtained battery capacity is 0-4.5 Wh, the positive electrode active material and the negative electrode active material are increased by increasing the press pressure of the positive electrode plate and the negative electrode plate. It was found that when the density of the material was increased, the permeation of the gel electrolyte into the positive electrode active material and the negative electrode active material was not sufficiently performed, and the penetration was difficult.

これに対し、実施例1,2の誘導加熱を行った場合には、いずれのプレス圧のときでも、比較例1から3のときに用いられた加熱の熱量よりも小さく、かつ、加熱時間がごく短かかったにもかかわらず、比較例1から4よりも遥かに高い電池容量が得られたため、ゲル状の電解質の正極活物質及び負極活物質への浸透質が十分行われたことが分かった。なお、比較例3のように搬送しながら熱風加熱を行ったときは、正極板及び負極板を静止させて熱風を集中的に当てる場合に比べて下熱効率が落ちた。   On the other hand, when the induction heating of Examples 1 and 2 was performed, the heat amount of the heating used in Comparative Examples 1 to 3 was smaller at any press pressure, and the heating time was shorter. In spite of being very short, it was found that a battery capacity far higher than those of Comparative Examples 1 to 4 was obtained, so that the permeation of the gel electrolyte into the positive electrode active material and the negative electrode active material was sufficiently performed. It was. In addition, when hot air heating was performed while conveying as in Comparative Example 3, the lower heat efficiency was lower than when the positive electrode plate and the negative electrode plate were kept stationary and hot air was applied intensively.

すなわち、積層体の作成後、誘導加熱を行った場合には、小さい熱量かつ短時間で効率良くゲル状の電解質を正極活物質及び負極活物質に浸透させることができることが分かった。更に、積層体のプレス圧を上げても、プレス圧が低い場合に比べ殆ど遜色ない電池容量が得られたことから、誘導加熱を用いることで、簡便に電池の高容量化を測ることができることが分かった。また、誘導加熱によって熱の受け渡しが容易に行われるため搬送しながらの多層の膜電極接合体を製造する、いわゆるRoll to Rollの製造方法の場合であっても、加熱効率を下げることなく、短時間での加熱によるゲル状の電解質の浸透が可能となり、誘導加熱の優位性が確認された。   That is, it was found that when induction heating is performed after the laminate is formed, the gel electrolyte can be efficiently infiltrated into the positive electrode active material and the negative electrode active material in a small amount of heat and in a short time. Furthermore, even if the press pressure of the laminate was increased, a battery capacity almost comparable to that obtained when the press pressure was low was obtained. Therefore, by using induction heating, the capacity of the battery can be easily increased. I understood. In addition, since heat is easily transferred by induction heating, even in the case of a so-called Roll to Roll manufacturing method for manufacturing a multilayer membrane electrode assembly while being conveyed, the heating efficiency is reduced without reducing the heating efficiency. It was possible to permeate the gel electrolyte by heating over time, and the superiority of induction heating was confirmed.

Figure 0006351930
Figure 0006351930

1 多層の膜電極接合体
2 帯状の正極板
2a 切断後の正極板
3 帯状の負極板
3a 切断後の負極板
13 ゲル状の電解質層(電解質層)
20 加熱装置
P 一方向
DESCRIPTION OF SYMBOLS 1 Multilayer membrane electrode assembly 2 Strip | belt-shaped positive electrode plate 2a Cathode plate 3 after cutting 3 Strip | belt-shaped negative electrode plate
3a The negative electrode plate after cutting
13 Gel electrolyte layer (electrolyte layer)
20 Heating device P One direction

Claims (5)

正極板と負極板との間に電解質層を介装させつつ、これら正極板と負極板とを交互に積層して形成される多層の膜電極接合体の製造方法において、
帯状に形成された前記正極板及び帯状に形成された前記負極板のいずれか一方の電極板を繰り出し延在させる一方の電極板延在工程と、
前記帯状に形成された一方の電極板の両板面に電解液を塗工してゲル状の電解質層を形成し又は固体電解質を配して電解質層を形成する電解質層形成工程と、
他方の電極板を繰り出し延在させる他方の電極板延在工程と、
前記帯状の正極板と前記帯状の負極板とを貼り合せ、貼り合わされた前記帯状の正極板、前記電解質層、及び前記帯状の負極板を所定の間隔で切断してユニットセルとし、該ユニットセルを積層する積層工程と、を備え、
前記他方の電極板は、一方の板面を前記一方の電極板の一方の板面に対向させて、この一方の電極板に前記電解質層が形成された位置よりも下流側の位置から更に下流側に向けて繰り出され、
前記一方の電極板および前記他方の電極板はそれぞれ平板状に積層されていることを特徴とする多層の膜電極接合体の製造方法。
In the method for producing a multilayer membrane electrode assembly formed by alternately laminating these positive electrode plates and negative electrode plates while interposing an electrolyte layer between the positive electrode plates and the negative electrode plates,
One electrode plate extending step of extending and extending any one of the positive electrode plate formed in a strip shape and the negative electrode plate formed in a strip shape,
An electrolyte layer forming step of forming an electrolyte layer by applying an electrolyte solution on both plate surfaces of one of the electrode plates formed in the belt shape to form a gel electrolyte layer or disposing a solid electrolyte; and
The other electrode plate extending step of extending and extending the other electrode plate;
The strip-shaped positive electrode plate and the strip-shaped negative electrode plate are bonded together, and the bonded strip-shaped positive electrode plate, the electrolyte layer, and the strip-shaped negative electrode plate are cut at a predetermined interval to form a unit cell. Laminating step of laminating,
The other electrode plate has one plate surface opposed to the one plate surface of the one electrode plate, and is further downstream from a position downstream of the position where the electrolyte layer is formed on the one electrode plate. It is paid out toward the side,
The method for producing a multilayer membrane electrode assembly, wherein the one electrode plate and the other electrode plate are laminated in a flat plate shape.
正極板と負極板との間に電解質層を介装させつつ、これら正極板と負極板とを交互に積層して形成される多層の膜電極接合体の製造方法において、
帯状に形成された前記正極板及び帯状に形成された前記負極板のいずれか一方の電極板を繰り出し延在させる一方の電極板延在工程と、
前記帯状に形成された一方の電極板の両板面に電解液を塗工してゲル状の電解質層を形成し又は固体電解質を配して電解質層を形成する電解質層形成工程と、
他方の電極板を繰り出し延在させる他方の電極板延在工程と、
前記帯状の正極板と前記帯状の負極板とを貼り合せ、貼り合わされた前記帯状の正極板、前記電解質層、及び前記帯状の負極板を、前記正極板が内側に位置するように巻回する巻回工程と、を備え、
前記他方の電極板は、一方の板面を前記一方の電極板の一方の板面に対向させて、この一方の電極板に前記電解質層が形成された位置よりも下流側の位置から更に下流側に向けて繰り出されていることを特徴とする多層の膜電極接合体の製造方法。
In the method for producing a multilayer membrane electrode assembly formed by alternately laminating these positive electrode plates and negative electrode plates while interposing an electrolyte layer between the positive electrode plates and the negative electrode plates,
One electrode plate extending step of extending and extending any one of the positive electrode plate formed in a strip shape and the negative electrode plate formed in a strip shape,
An electrolyte layer forming step of forming an electrolyte layer by applying an electrolyte solution on both plate surfaces of one of the electrode plates formed in the belt shape to form a gel electrolyte layer or disposing a solid electrolyte; and
The other electrode plate extending step of extending and extending the other electrode plate;
The strip-shaped positive plate and the strip-shaped negative plate are bonded together, and the bonded strip-shaped positive plate, the electrolyte layer, and the strip-shaped negative plate are wound so that the positive plate is positioned inside. A winding process,
The other electrode plate has one plate surface opposed to the one plate surface of the one electrode plate, and is further downstream from a position downstream of the position where the electrolyte layer is formed on the one electrode plate. A process for producing a multilayer membrane electrode assembly, wherein the multilayer electrode assembly is drawn out toward the side.
前記帯状に形成された一方の電極板の板面上又は前記帯状に形成された他方の電極板の板面上に、帯状に形成されたセパレータを配するセパレータ配置工程を有することを特徴とする請求項1又は2に記載の多層の膜電極接合体の製造方法。   It has the separator arrangement | positioning process which arrange | positions the separator formed in strip | belt shape on the plate | board surface of one electrode plate formed in the said strip | belt shape, or on the plate | board surface of the other electrode plate formed in the said strip | belt shape. The manufacturing method of the multilayer membrane electrode assembly of Claim 1 or 2. 前記電解質層形成工程において、前記正極板及び前記負極板のそれぞれの板面に電解液を塗工してゲル状の電解質を形成し又は固体電解質を配し、電解質層を形成することを特徴とする請求項1から3のいずれか一項に記載の多層の膜電極接合体の製造方法。   In the electrolyte layer forming step, an electrolyte solution is applied to the plate surfaces of the positive electrode plate and the negative electrode plate to form a gel electrolyte or a solid electrolyte to form an electrolyte layer, The manufacturing method of the multilayer membrane electrode assembly as described in any one of Claim 1 to 3 to do. 前記帯状の正極板と前記帯状の負極板とを貼り合わせる貼り合わせ工程の後に、前記正極板及び/又は前記負極板を誘導加熱により加熱する電解質加熱工程を有することを特徴とする請求項1から4のいずれか一項に記載の多層の膜電極接合体の製造方法。   2. An electrolyte heating step of heating the positive electrode plate and / or the negative electrode plate by induction heating after the bonding step of bonding the belt-shaped positive electrode plate and the belt-shaped negative electrode plate. 5. A method for producing a multilayer membrane electrode assembly according to claim 4.
JP2013061102A 2012-08-21 2013-03-22 Method for producing multilayer membrane electrode assembly Active JP6351930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013061102A JP6351930B2 (en) 2012-08-21 2013-03-22 Method for producing multilayer membrane electrode assembly

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012182258 2012-08-21
JP2012182258 2012-08-21
JP2013061102A JP6351930B2 (en) 2012-08-21 2013-03-22 Method for producing multilayer membrane electrode assembly

Publications (2)

Publication Number Publication Date
JP2014060141A JP2014060141A (en) 2014-04-03
JP6351930B2 true JP6351930B2 (en) 2018-07-04

Family

ID=50616410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013061102A Active JP6351930B2 (en) 2012-08-21 2013-03-22 Method for producing multilayer membrane electrode assembly

Country Status (1)

Country Link
JP (1) JP6351930B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023055100A1 (en) * 2021-09-30 2023-04-06 주식회사 엘지에너지솔루션 Electrode assembly manufacturing method and apparatus

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015076404A1 (en) * 2013-11-25 2015-05-28 積水化学工業株式会社 Method and device for manufacturing layered cell and layered cell
KR101664945B1 (en) * 2014-08-21 2016-10-11 주식회사 엘지화학 Method for manufacturing electrode assembly and electrode assembly manufactured using the same
KR101689873B1 (en) * 2014-10-31 2016-12-27 주식회사 엘지화학 Multi Layer Ceramic Battery and Method for Preparing the Same
WO2016152876A1 (en) * 2015-03-24 2016-09-29 日本電気株式会社 Lithium-ion secondary cell and method for manufacturing same
JP6747248B2 (en) * 2016-11-03 2020-08-26 トヨタ自動車株式会社 Stacked battery manufacturing equipment
CN108054418B (en) * 2017-11-02 2020-07-10 珠海格力智能装备有限公司 Battery processing device
JP7225555B2 (en) * 2018-04-05 2023-02-21 三菱自動車工業株式会社 Battery manufacturing method
CN109301339A (en) * 2018-10-08 2019-02-01 东莞阿李自动化股份有限公司 Electric core winding technique
JP7156046B2 (en) * 2019-01-14 2022-10-19 トヨタ自動車株式会社 LAMINATE PRESSING DEVICE, METHOD FOR MANUFACTURING PRESSED STRIP LAMINATE, METHOD FOR MANUFACTURING LAMINATED ELECTRODE, AND METHOD FOR MANUFACTURING BATTERY
KR20230135010A (en) * 2022-03-15 2023-09-22 주식회사 엘지에너지솔루션 Electrode assembly, electrode assembly manufacturing equipment and manufacturing method for electrode assembly

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000133248A (en) * 1998-10-21 2000-05-12 Mitsubishi Chemicals Corp Manufacture of thin film type battery
WO2001089020A1 (en) * 2000-05-19 2001-11-22 Korea Institute Of Science And Technology A hybrid polymer electrolyte, a lithium secondary battery comprising the hybrid polymer electrolyte and their fabrication methods
JP2001338686A (en) * 2000-05-26 2001-12-07 Mitsubishi Chemicals Corp Unit cell element and flat laminated cell
JP2003059525A (en) * 2001-08-09 2003-02-28 Toray Eng Co Ltd Manufacturing method of secondary battery and manufacturing device of secondary battery
JP2006127824A (en) * 2004-10-27 2006-05-18 Sony Corp Manufacturing device of secondary battery and manufacturing method of the same
JP5426989B2 (en) * 2009-10-15 2014-02-26 コマツNtc株式会社 Multilayer battery manufacturing equipment
JP2011129398A (en) * 2009-12-18 2011-06-30 Konica Minolta Holdings Inc Sheet-like secondary battery cell and method of manufacturing the same
KR20120009577A (en) * 2010-07-19 2012-02-02 주식회사 엘지화학 Secondary electric cell with differential lead structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023055100A1 (en) * 2021-09-30 2023-04-06 주식회사 엘지에너지솔루션 Electrode assembly manufacturing method and apparatus

Also Published As

Publication number Publication date
JP2014060141A (en) 2014-04-03

Similar Documents

Publication Publication Date Title
JP6351930B2 (en) Method for producing multilayer membrane electrode assembly
JP4967265B2 (en) Non-aqueous electrolyte storage element electrode structure, method for producing the electrode structure, and non-aqueous electrolyte storage element
US9985319B2 (en) Method for producing laminate battery, apparatus for producing laminate battery, and laminate battery
US7820337B2 (en) Electrochemical device
JP3745594B2 (en) Battery and electrode forming apparatus for the battery
KR101639923B1 (en) Separator having heat resistant insulation layers
JP5787750B2 (en) Method for producing multilayer membrane electrode assembly
JP6292678B2 (en) Secondary battery and electrode manufacturing method
JP3745593B2 (en) Battery and manufacturing method thereof
JP2012199162A (en) Laminate covered secondary battery
JP2013187077A (en) Wound type and stack type electrode battery
TWI458152B (en) Secondary battery with excellent productivity and safety
KR101519372B1 (en) Manufacture Device of Battery Cell
KR101154883B1 (en) Method for Production of Electrode Assembly with Improved Electrolyte Wetting Property
KR20130101178A (en) A device for electrode assembly
JP2013161773A (en) Pole plate and secondary battery
JP2013182735A (en) Method for manufacturing multilayered membrane electrode assembly and lithium ion secondary battery
JP5347815B2 (en) Thin battery manufacturing method and thin battery
JP5836542B2 (en) A method for producing a lithium ion secondary battery.
WO2017110842A1 (en) Nonaqueous secondary battery and method for manufacturing same
JP2006164883A (en) Winding electrode and its manufacturing method, and method of manufacturing battery
JP2011108538A (en) Laminate battery
JP7177210B2 (en) Electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2012190566A (en) Method of manufacturing multilayered membrane electrode assembly and laminated battery
JP2013073855A (en) Method of manufacturing multilayer membrane electrode assembly, method of manufacturing lithium ion secondary battery and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170720

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180216

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180606

R151 Written notification of patent or utility model registration

Ref document number: 6351930

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151