WO2017110842A1 - Nonaqueous secondary battery and method for manufacturing same - Google Patents

Nonaqueous secondary battery and method for manufacturing same Download PDF

Info

Publication number
WO2017110842A1
WO2017110842A1 PCT/JP2016/088038 JP2016088038W WO2017110842A1 WO 2017110842 A1 WO2017110842 A1 WO 2017110842A1 JP 2016088038 W JP2016088038 W JP 2016088038W WO 2017110842 A1 WO2017110842 A1 WO 2017110842A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
secondary battery
positive electrode
negative electrode
aqueous secondary
Prior art date
Application number
PCT/JP2016/088038
Other languages
French (fr)
Japanese (ja)
Inventor
丈主 加味根
岸見 光浩
Original Assignee
日立マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立マクセル株式会社 filed Critical 日立マクセル株式会社
Publication of WO2017110842A1 publication Critical patent/WO2017110842A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • H01M50/466U-shaped, bag-shaped or folded
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a non-aqueous secondary battery excellent in productivity and reliability and a manufacturing method thereof.
  • Non-aqueous secondary batteries such as lithium ion secondary batteries have high voltage and high capacity, and thus are highly expected for their development.
  • a device using an electrode body (laminated electrode body) having a structure in which a plate-like positive electrode, a negative electrode, and a separator are stacked is also known.
  • the positive electrode, the negative electrode, and the separator are likely to be displaced from each other during the production of the laminated electrode body or the assembly of the battery.
  • the separator is displaced and the positive electrode and the negative electrode come into contact with each other, a short circuit occurs, and when the positive electrode and the negative electrode are displaced and the area of the opposing portion through the separator between the positive electrode and the negative electrode is reduced, the capacity is reduced. There is a risk of doing. For this reason, in a battery using a laminated electrode body, it is required to suppress misalignment of the positive electrode, the negative electrode, and the separator in the laminated electrode body.
  • Patent Document 1 a technology to avoid such problems is being studied.
  • two separators arranged above and below a positive electrode are joined to each other by thermal welding at their peripheral portions, whereby a positive electrode is formed into a bag-shaped separator formed by two separators.
  • a technique for suppressing the occurrence of problems due to misalignment between the positive electrode and the negative electrode and the separator has been proposed.
  • non-aqueous secondary batteries are also applied to applications that are exposed to relatively high temperatures such as in-vehicle applications. Therefore, in a non-aqueous secondary battery, for example, a laminated layer provided with a layer having high heat resistance instead of a polyolefin separator that has been conventionally used so that sufficient functions can be exhibited even when applied to such applications.
  • a heat-resistant separator such as a mold separator or a separator made of a resin having high heat resistance may be used.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a non-aqueous secondary battery excellent in productivity and reliability, and a method for manufacturing the same.
  • the nonaqueous secondary battery of the present invention that has achieved the above object has a laminated electrode body in which a positive electrode and a negative electrode are laminated via a separator, and at least one of the positive electrode and the negative electrode
  • the separators arranged on both sides of the electrode each have a crimping part at least at a part of the peripheral edge, and are joined to each other at the crimping part.
  • the method for producing a non-aqueous secondary battery of the present invention is a method for producing a non-aqueous secondary battery having a laminated electrode body in which a positive electrode and a negative electrode are laminated via a separator, the positive electrode and the negative electrode A step of disposing a separator on both sides of at least one of the electrodes, and a step of crimping and joining at least a part of the peripheral edge of the separator disposed on both sides of the electrode.
  • the nonaqueous secondary battery of the present invention has a laminated electrode body in which a positive electrode and a negative electrode are laminated via a separator.
  • the separators disposed on both sides of at least one of the positive electrode and the negative electrode in the laminated electrode body each have a crimp portion on at least a part of the peripheral portion, and are joined to each other at the crimp portion. Yes.
  • Alignment between the separator and the electrode (positive electrode or negative electrode) disposed therebetween is prevented by disposing the positive electrode or the negative electrode between the separators in which at least a part of the peripheral edge is pressure-bonded and joined to each other. Therefore, in the non-aqueous secondary battery of the present invention, it is possible to suppress the occurrence of a short circuit due to the direct contact between the positive electrode and the negative electrode due to the displacement of the separator in the laminated electrode body. Moreover, in the battery after completion, the deterioration of characteristics due to the short circuit can be suppressed.
  • the laminated electrode body only the portion where the positive electrode and the negative electrode face each other via the separator functions during the battery reaction, and the region not facing the counter electrode cannot participate in the battery reaction.
  • capacitance of a battery falling also arises.
  • the laminated electrode body is formed in a state in which the positive electrode or the negative electrode is disposed between the separators bonded to each other at least at a part of the peripheral edge, misalignment between the positive electrode and the negative electrode is difficult to occur. It is possible to reduce the incidence of defective products with insufficient capacity at the time of manufacture, and to suppress capacity reduction due to misalignment between the positive electrode and the negative electrode in a completed battery.
  • the separator joined to at least a part of the peripheral portion according to the non-aqueous secondary battery of the present invention is composed of two or more separators present on both sides of the positive electrode or the negative electrode, and at least one of the peripheral portions.
  • the part has a crimping part for joining these separators.
  • both are pressure-bonded.
  • the separators are made of materials that are difficult to heat-seal as described above or cannot be heat-sealable, they are strong enough to accommodate the electrodes and prevent displacement. Both can be joined.
  • the separators can be joined by a simpler operation than the thermal welding even in a case using a separator made of a material capable of thermal welding (polyolefin or the like).
  • the productivity and reliability of the non-aqueous secondary battery can be improved.
  • the embodiment to which the present invention is applicable is not limited to the case where one separator is disposed on each side of the electrode, and there are two or more separators disposed on one or both sides of the electrode.
  • the present invention can also be applied to a case where one separator is folded and disposed on both sides of the electrode.
  • the separators to be disposed on both surfaces of the electrodes are joined together in advance at least at a part of the peripheral edge by pressure bonding, and then the electrodes are inserted between the opposing separators, whereby the non-aqueous secondary battery of the present invention May be configured.
  • a polyolefin microporous film or nonwoven fabric generally used as a separator for non-aqueous secondary batteries can be used.
  • Examples of the polyolefin constituting the separator include polyethylene (PE), polypropylene (PP), and ethylene-propylene copolymer.
  • the polyolefin microporous film or non-woven fabric may have a single-layer structure containing one or more kinds of polyolefins, or a multilayer structure having a plurality of layers containing different types of polyolefins (for example, It may be a two-layer structure in which a PE layer and a PP layer are laminated, or a three-layer structure in which a PP layer is provided on both sides of the PE layer.
  • the separator does not have a melting point, that is, a material having a melting temperature of 250 ° C. or higher measured using a differential scanning calorimeter (DSC) in accordance with the provisions of JIS K 7121, It is also possible to use a material containing a heat resistant material such as a material that is thermally decomposed before melting.
  • a separator containing such a heat-resistant material even if the battery is used in an environment where it is exposed to high temperatures, it is possible to suppress the deterioration of battery characteristics and the occurrence of short circuits due to melting of the separator.
  • a non-aqueous secondary battery having higher heat resistance and suitable for use in a high temperature environment can be obtained.
  • the separator containing the heat resistant material for example, at least one resin (heat resistant resin) selected from the group consisting of polyamide, polyimide, polyamideimide, polyphenylene sulfide, polyester, polyacrylonitrile, aramid, and cellulose is used. What is contained is mentioned, For example, the nonwoven fabric etc. which were comprised with at least 1 sort (s) of these can be illustrated.
  • resin heat resistant resin
  • a laminated separator in which a heat-resistant porous layer is provided on the above-mentioned polyolefin microporous film or non-woven fabric can be used.
  • the separator shrinkage can be suppressed even when the temperature in the battery rises, and a short circuit due to contact between the positive electrode and the negative electrode can be suppressed.
  • the temperature becomes high a non-aqueous secondary battery with higher safety can be obtained, which can ensure a shutdown function that closes the pores of the separator by melting the polyolefin.
  • the heat-resistant porous layer related to the laminated separator can be formed of, for example, a nonwoven fabric composed of the heat-resistant resin exemplified above.
  • a laminated separator is made by heat-welding a non-woven fabric made of a heat-resistant resin on one side or both sides of a microporous film made of polyolefin or a non-woven fabric, or by melting a part of the polyolefin, Can be formed.
  • the laminated separator has a heat-resistant porous layer mainly comprising inorganic particles having a heat-resistant temperature of 250 ° C. or more on one side or both sides of a substrate layer made of a polyolefin microporous film or nonwoven fabric. The formed one is also included.
  • the “heat-resistant temperature is 250 ° C. or higher” in the inorganic particles in the present specification means that deformation such as softening is not observed at least at 250 ° C.
  • boehmite As the inorganic particles to be contained in the heat-resistant porous layer, boehmite, alumina, silica, titanium oxide and the like are preferable, and one or more of these can be used.
  • the heat-resistant porous layer includes a binder for binding the inorganic particles to each other or bonding the heat-resistant porous layer and the base material layer (polyolefin microporous film or nonwoven fabric). It is preferable to contain.
  • the binder includes an ethylene-vinyl acetate copolymer (EVA, having a structural unit derived from vinyl acetate of 20 to 35 mol%), an ethylene-acrylic acid copolymer such as an ethylene-ethyl acrylate copolymer, and a fluorine-based rubber.
  • Styrene butadiene rubber SBR
  • CMC carboxymethyl cellulose
  • HEC hydroxyethyl cellulose
  • PVA polyvinyl alcohol
  • PVB polyvinyl butyral
  • PVP polyvinyl pyrrolidone
  • cross-linked acrylic resin polyurethane, epoxy resin, etc.
  • the inorganic particles are included as the main component, and the content of the inorganic particles in the heat-resistant porous layer is the heat-resistant porous layer.
  • the total volume of the components constituting the stratified layer in the total volume excluding the void portion, it is preferably 50% by volume or more, more preferably 70% by volume or more, and 99% by volume or less. It is more preferable (the remainder may be the above binder).
  • the thickness of the separator is preferably 500 ⁇ m or less, and more preferably 450 ⁇ m or less from the viewpoint of suppressing a decrease in the energy density of the battery.
  • the thickness is preferably 10 ⁇ m or more, and particularly a separator made of a nonwoven fabric or a heat resistant porous layer made of a nonwoven fabric. In the case of a laminated separator having a thickness of 100 ⁇ m or more, more preferably 150 ⁇ m or more.
  • the porosity of the separator is preferably 30% or more and 80% or less, and more preferably 50% or more in the case of a separator made of a nonwoven fabric.
  • the separator as described above is disposed on both sides of the electrode, and a crimping part for joining the separators is formed on at least a part of the peripheral part. And either one of a positive electrode and a negative electrode is accommodated between the separators which oppose.
  • FIG. 1 is a plan view of the separator
  • FIG. 2 is a cross-sectional view taken along the line II of FIG.
  • the separator 30 is formed into a bag-like shape by providing a pressure-bonding portion 31 (indicated by a lattice pattern in the drawing) that joins the separators 30a and 30b to each other at least at a part of the peripheral edge. It has become.
  • the positive electrode is housed in the bag-shaped separator 30, that is, the positive electrode is inserted between the separator 30a and the separator 30b.
  • the mode that the tab part 13 of the positive electrode utilized for electrical connection with another member protrudes is illustrated.
  • the crimping part 31 that joins the two separators 30a and 30b can be configured to bend in the thickness direction (vertical direction in the figure) of the separators 30a and 30b, for example, as shown in FIG.
  • the above-mentioned separators made of heat-resistant resin and heat-resistant porous layers can be used. Even if it is difficult or impossible to heat-separate the separators, such as a laminated separator having a separator, the separators are joined to each other with such a strength that the displacement of the electrodes accommodated therein can be suppressed. be able to.
  • 2 can be formed by corrugating, for example.
  • the separators on both sides of the electrodes are Can be bonded by pressure bonding.
  • it is possible to bond the separators by pressing the roll sheet with the positive electrode or negative electrode sandwiched between two separators between the rolls with grooves on the surface. is there.
  • the depth of the groove is not particularly limited as long as the separator does not break.
  • the shape and area of the crimping can also be appropriately changed according to the battery shape by changing the shape of the mold used for processing.
  • the crimping part in the separator may be provided on the whole peripheral part except the part from which the tab part of the electrode accommodated in the separator is pulled out, or may be provided only in a part. Specifically, it is preferable that a portion having a length of 5% or more in the entire length of the outer periphery of the separator is a crimping portion.
  • the peripheral portion of the separator may be formed with only one continuous long crimping portion, or a plurality of crimping portions may be formed discontinuously as shown in FIG.
  • compression-bonding part is formed in each of three sides other than the edge
  • compression-bonding part 31 is provided also in the edge
  • compression-bonding part provided in two adjacent sides may be continued including the corner
  • the positive electrode according to the nonaqueous secondary battery of the present invention for example, one having a structure having a positive electrode mixture layer containing a positive electrode active material, a binder, a conductive additive and the like on one side or both sides of a current collector is used.
  • the active material generally used as a positive electrode for nonaqueous secondary batteries such as a lithium containing transition metal oxide.
  • the lithium-containing transition metal oxide include, for example, Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x Co y Ni 1-y O 2 , Li x Mny y Ni z Co 1-y. -Z O 2 , Li x Mn 2 O 4 and the like are exemplified (in the above structural formulas, 0 ⁇ x ⁇ 1.1, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1). .
  • the binder related to the positive electrode mixture layer the same binder as that used in the positive electrode mixture layer related to the positive electrode for a known non-aqueous secondary battery can be used.
  • the binder related to the positive electrode mixture layer the same binder as that used in the positive electrode mixture layer related to the positive electrode for a known non-aqueous secondary battery can be used.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PAI polyamideimide
  • PI polyimide
  • acrylic styrene butadiene rubber
  • CMC carboxymethyl cellulose
  • Examples of the conductive aid for the positive electrode mixture layer include graphite such as natural graphite (eg, scaly graphite) and artificial graphite; carbon such as acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black. -Bon black; carbon fiber;
  • a positive electrode active material, a binder and a conductive additive are dispersed in a solvent such as an organic solvent such as N-methyl-2-pyrrolidone (NMP) to prepare a positive electrode mixture-containing composition (however, the binder May be dissolved in a solvent), and may be produced by a method of forming a positive electrode mixture layer by applying this to one or both sides of a current collector and drying it. Moreover, you may perform a calendar process as needed after formation of a positive mix layer.
  • NMP N-methyl-2-pyrrolidone
  • the same one used for the positive electrode of a conventionally known non-aqueous secondary battery can be used, and for example, an aluminum foil having a thickness of 10 to 30 ⁇ m is preferable.
  • the thickness of the positive electrode mixture layer (the thickness per side when the positive electrode mixture layer is formed on both sides of the current collector) is preferably 30 to 95 ⁇ m.
  • the content of the positive electrode active material is preferably 85 to 98% by mass
  • the content of the binder is preferably 1 to 10% by mass
  • the content of the conductive auxiliary agent is It is preferably 1 to 10% by mass.
  • a negative electrode mixture layer containing a negative electrode active material, a binder or the like is used on one side or both sides of a current collector.
  • the negative electrode active material a conventionally known negative electrode active material used for a negative electrode of a non-aqueous secondary battery, that is, an active material capable of occluding and releasing Li ions can be used.
  • a negative electrode active material include, for example, graphite (natural graphite; artificial graphite obtained by graphitizing graphitized carbon such as pyrolytic carbons, mesophase carbon microbeads, and carbon fibers at 2800 ° C.
  • the same binders as those exemplified above as those that can be used for the positive electrode mixture layer can be used.
  • the same thing as the various conductive support agents illustrated previously as what can be used for a positive mix layer can be used for the conductive support agent.
  • the negative electrode having the negative electrode mixture layer includes, for example, a negative electrode active material and a binder, and a paste-like or slurry-like negative electrode mixture in which a conductive auxiliary agent is dispersed in an organic solvent such as NMP or a solvent such as water as necessary. It can be produced by preparing a containing composition (however, the binder may be dissolved in a solvent), applying this to one or both sides of the current collector and drying to form a negative electrode mixture layer. . Moreover, you may perform a calendar process as needed after formation of a negative mix layer.
  • the thickness of the negative electrode mixture layer is preferably, for example, 10 to 100 ⁇ m per one side of the current collector.
  • the amount of the negative electrode active material is preferably 85 to 99% by mass, and the amount of the binder is preferably 1.0 to 10% by mass.
  • the amount of the conductive auxiliary in the negative electrode mixture layer is preferably 0.5 to 10% by mass.
  • the negative electrode current collector may be made of copper, copper alloy, nickel, nickel alloy foil, punching metal, net, expanded metal, or the like, but copper foil is usually used.
  • the thickness of the negative electrode current collector is preferably 5 to 30 ⁇ m, for example.
  • a laminated electrode body configured using a positive electrode, a negative electrode, and at least a part of the peripheral edge are bonded to each other and bonded, for example, a bag-shaped separator is used.
  • a positive electrode or a negative electrode may be arranged between separators bonded to each other by pressure bonding depending on the laminated configuration.
  • planar shape of the electrodes positive electrode and negative electrode
  • the planar shape of the electrodes according to the non-aqueous secondary battery of the present invention, depending on the shape of the exterior body to be employed, such as a circle or a polygon (such as a square, a pentagon, or a hexagon).
  • a circle or a polygon such as a square, a pentagon, or a hexagon
  • the planar shape of the bag-shaped separator that accommodates this electrode is also the planar shape of the electrode that accommodates it, such as a circle or a polygon (such as a square, pentagon, or hexagon shown in FIG. 1).
  • any shape may be adopted.
  • the above-mentioned laminated electrode body is enclosed in an exterior body together with a non-aqueous electrolyte solution to obtain the non-aqueous secondary battery of the present invention.
  • a non-aqueous electrolyte solution to obtain the non-aqueous secondary battery of the present invention.
  • the exterior body one having a form suitable for accommodating the laminated electrode body can be used.
  • a flat exterior can including coin shape and button shape
  • a square exterior can a metal laminate film exterior body Etc.
  • non-aqueous electrolyte solution a solution containing a lithium salt and an organic solvent and in which the lithium salt is dissolved in the organic solvent is used.
  • lithium salt examples include inorganic lithium salts such as LiClO 4 , LiBF 4 , LiAsF 6 , and LiSbF 6 ; LiCF 3 SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1 SO 3 (n ⁇ 2), LiN (FSO 2 ) 2 [LiFSI], LiN (CF 3 SO 2 ) 2 [LiTFSI], LiN (C 2 F 5 SO 2 ) 2 ,
  • organic lithium salts such as lithium bisoxalate borate (LiBOB) can be used.
  • organic solvents include cyclic carbonates such as ethylene carbonate, propylene carbonate, and butylene carbonate; chain carbonates such as dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate; chain esters such as methyl propionate; ⁇ -butyrolactone, substituted at the ⁇ -position Cyclic esters such as lactones having a group; chain ethers such as dimethoxyethane, diethyl ether, 1,3-dioxolane, diglyme, triglyme and tetraglyme; cyclic ethers such as dioxane, tetrahydrofuran and 2-methyltetrahydrofuran; acetonitrile, pro Nitriles such as pionitrile and methoxypropionitrile; sulfites such as ethylene glycol sulfite; and the like.
  • cyclic carbonates such as ethylene carbonate, propylene carbonate, and butylene carbonate
  • lactones having a substituent at the ⁇ -position are also preferable to use as the organic solvent. Since the lactone having a substituent at the ⁇ -position has a high boiling point of 150 ° C. or higher, it is difficult to volatilize even when the battery is placed in a high temperature environment, and the composition of the non-aqueous electrolyte changes and the outer body swells. Therefore, a battery having higher heat resistance and excellent storage characteristics at high temperatures can be configured.
  • high-boiling solvents having a boiling point of 150 ° C. or higher are known, but generally high-boiling solvents have low permeability to polyolefin separators, In order to increase the permeability of the non-aqueous electrolyte to the separator, it is necessary to use another solvent (generally having a low boiling point).
  • lactones having a substituent at the ⁇ -position have good permeability to polyolefin separators, by using a non-aqueous electrolyte using this, for example, without impairing the load characteristics of the battery, Heat resistance can be improved.
  • the lactone having a substituent at the ⁇ -position is preferably, for example, a 5-membered ring (having 4 carbon atoms constituting the ring).
  • the ⁇ -position substituent of the lactone may be one or two.
  • the substituent examples include a hydrocarbon group and a halogen group (fluoro group, chloro group, bromo group, iodo group) and the like.
  • a hydrocarbon group an alkyl group, an aryl group, etc. are preferable, and it is preferable that the carbon number is 1 or more and 15 or less (more preferably 6 or less).
  • the substituent is a hydrocarbon group, a methyl group, an ethyl group, a propyl group, a butyl group, a phenyl group, and the like are more preferable.
  • lactones having a substituent at the ⁇ -position include ⁇ -methyl- ⁇ -butyrolactone, ⁇ -ethyl- ⁇ -butyrolactone, ⁇ -propyl- ⁇ -butyrolactone, ⁇ -butyl- ⁇ -butyrolactone, ⁇ -phenyl - ⁇ -butyrolactone, ⁇ -fluoro- ⁇ -butyrolactone, ⁇ -chloro- ⁇ -butyrolactone, ⁇ -bromo- ⁇ -butyrolactone, ⁇ -iodo- ⁇ -butyrolactone, ⁇ , ⁇ -dimethyl- ⁇ -butyrolactone, ⁇ , ⁇ -Diethyl- ⁇ -butyrolactone, ⁇ , ⁇ -diphenyl- ⁇ -butyrolactone, ⁇ -ethyl- ⁇ -methyl- ⁇ -butyrolactone, ⁇ -methyl- ⁇ -phenyl- ⁇ -butyrolactone, ⁇ , ⁇ ,
  • lactones having a substituent at the ⁇ -position are used in the organic solvent, only lactones having a substituent at the ⁇ -position may be used, but when other organic solvents are used together, 150 ° C or higher It is preferable to use a high-boiling solvent having a boiling point (ethylene carbonate, propylene carbonate, ⁇ -butyrolactone, sulfolane, trimethyl phosphate, triethyl phosphate, etc.).
  • a high-boiling solvent having a boiling point ethylene carbonate, propylene carbonate, ⁇ -butyrolactone, sulfolane, trimethyl phosphate, triethyl phosphate, etc.
  • the ratio in the total organic solvent in the non-aqueous electrolyte is preferably 70 to 100% by volume.
  • the concentration of the lithium salt in the non-aqueous electrolyte is preferably 0.6 to 1.8 mol / L, and more preferably 0.9 to 1.6 mol / L.
  • vinylene carbonates, 1,3-propane sultone, diphenyl disulfide, biphenyl, fluorobenzene are added to the non-aqueous electrolyte.
  • Additives such as t-butylbenzene and halogen-substituted cyclic carbonates (4-fluoro-1,3-dioxolan-2-one etc.) can also be added as appropriate.
  • a gel (gel electrolyte) obtained by adding a gelling agent such as a known polymer to the non-aqueous electrolyte may be used.
  • Example 1 Preparation of positive electrode> LiNi 0.5 Co 0.2 Mn 0.3 O 2 as a positive electrode active material: 96.5 parts by mass, NMP solution containing PVDF as a binder at a concentration of 10% by mass: 20 parts by mass, and a conductive additive Acetylene black: 1.5 parts by mass was kneaded using a biaxial kneader, and NMP was added to adjust the viscosity to prepare a positive electrode mixture-containing paste. This paste is applied to both sides of an aluminum foil having a thickness of 15 ⁇ m, vacuum-dried at 120 ° C. for 12 hours, a positive electrode mixture layer is formed on both sides of the aluminum foil, and press treatment is performed. By cutting, a belt-like positive electrode was obtained.
  • the thickness of the positive electrode mixture layer of the obtained positive electrode was 41 ⁇ m.
  • FIG. 3 is a plan view schematically showing the battery positive electrode (however, in order to facilitate understanding of the structure of the positive electrode, the size of the positive electrode shown in FIG. 3 does not necessarily match the actual one).
  • the positive electrode 10 has a tab portion 13 punched out so that a part of the exposed portion of the positive electrode current collector 12 protrudes, and the shape of the forming portion of the positive electrode mixture layer 11 is a substantially rectangular shape with four corners curved.
  • the lengths a, b and c were 61 mm, 137 mm and 10 mm, respectively.
  • the negative electrode active material 96 parts by mass of soft carbon, acrylic resin: 2 parts by mass, CMC: 2 parts by mass, and water were mixed to prepare a negative electrode mixture-containing paste.
  • the negative electrode mixture-containing paste is applied to both sides of a copper foil having a thickness of 10 ⁇ m and dried to form a negative electrode mixture layer on both sides of the copper foil, and press treatment is performed to set the density of the negative electrode mixture layer to 1. After adjusting to 00 g / cm 3 , it was cut to a predetermined size to obtain a strip-shaped negative electrode.
  • the thickness of the negative electrode mixture layer of the obtained negative electrode was 61.5 ⁇ m.
  • FIG. 4 is a plan view schematically showing the battery negative electrode (however, in order to facilitate understanding of the structure of the negative electrode, the size of the negative electrode shown in FIG. 4 does not necessarily match the actual one).
  • the negative electrode 20 has a shape having a tab portion 23 punched out so that a part of the exposed portion of the negative electrode current collector 22 protrudes, and the shape of the forming portion of the negative electrode mixture layer 21 is a substantially rectangular shape with four corners curved.
  • the lengths d, e, and f were 64 mm, 142.5 mm, and 10 mm, respectively.
  • a laminated electrode body was formed using 18 positive electrodes for a battery in which a positive electrode mixture layer was formed on both sides of the positive electrode current collector and 19 negative electrodes for a battery in which a negative electrode mixture layer was formed on both sides of the negative electrode current collector.
  • all the battery positive electrodes were housed in the bag-shaped separator. Then, the upper and lower ends are set as battery negative electrodes, the battery positive electrodes and the battery negative electrodes are alternately arranged between them, and the tab portions between the positive electrodes and the tab portions between the negative electrodes are welded respectively to form a laminated electrode body. Produced.
  • the laminated electrode body is inserted into the depression of an aluminum laminate film having a thickness of 5.7 mm, a width of 78 mm, and a height of 161 mm in which a depression is formed so that the laminated electrode body can be accommodated.
  • An aluminum laminate film of the same size was placed and three sides of both aluminum laminate films were heat-welded. Then, from the remaining one side of both aluminum laminate films, LiPF 6 was dissolved at a concentration of 1 mol / l in a non-aqueous electrolyte (a mixed solvent of ethylene carbonate and diethyl carbonate in a volume ratio of 3: 7), and vinylene carbonate was further added. The solution added in an amount of 2% by mass) was injected. Thereafter, the remaining one side of both aluminum laminate films was vacuum heat sealed to produce a non-aqueous secondary battery having the cross-sectional structure shown in FIG. 6 with the appearance shown in FIG.
  • FIG. 5 is a plan view schematically showing a non-aqueous secondary battery
  • FIG. 6 is a cross-sectional view taken along the line II-II in FIG.
  • the nonaqueous secondary battery 100 includes a laminated electrode body 102 constituted by laminating a positive electrode and a negative electrode with a separator in an aluminum laminated film outer package 101 constituted by two aluminum laminated films, and a nonaqueous electrolytic solution. (Not shown) is housed, and the aluminum laminate film outer package 101 is sealed by heat-sealing the upper and lower aluminum laminate films at the outer peripheral portion thereof.
  • the layers constituting the aluminum laminate film outer package 101 and the positive electrode, the negative electrode, and the separator constituting the laminated electrode body are not shown separately. .
  • Each positive electrode of the laminated electrode body 102 is integrated by welding the tab portions together, and the integrated product of the welded tab portions is connected to the positive electrode external terminal 103 in the battery 100, although not shown.
  • the negative electrodes of the laminated electrode body 102 are also integrated by welding the tab portions together, and the integrated product of the welded tab portions is connected to the negative electrode external terminal 104 in the battery 100.
  • the positive electrode external terminal 103 and the negative electrode external terminal 104 are drawn out to the outside of the aluminum laminate film exterior body 101 so that they can be connected to an external device or the like.
  • Example 2 A bag-like separator was produced in the same manner as in Example 1 except that paper (that is, a cellulose nonwoven fabric, no melting point of cellulose, and a thickness of 20 ⁇ m) was used instead of the polyimide nonwoven fabric. And the non-aqueous secondary battery was produced like Example 1 except having used this bag-shaped separator.
  • paper that is, a cellulose nonwoven fabric, no melting point of cellulose, and a thickness of 20 ⁇ m
  • Example 3 instead of polyimide non-woven fabric, a laminate with a three-layer structure having layers made of an aramid non-woven fabric on both sides of a PE microporous film [PE melting point: 130 ° C., PE microporous film thickness: 16 ⁇ m, aramid melting point None, the thickness of the layer made of an aramid nonwoven fabric (one side): 3 ⁇ m, the total thickness of the laminate: 22 ⁇ m, the porosity of the laminate: 50%], and the bag-like separator as in Example 1. Was made. And the non-aqueous secondary battery was produced like Example 1 except having used this bag-shaped separator.
  • Example 4 instead of polyimide non-woven fabric, a laminate (PE melting point: 130 ° C., PE) having a heat-resistant porous layer containing 97% by volume of boehmite on one side of the PE microporous film (the remainder being an acrylic resin as a binder)
  • the bag was made in the same manner as in Example 1 except that the thickness of the microporous film made was 16 ⁇ m, the thickness of the heat-resistant porous layer was 5 ⁇ m, the total thickness of the laminate: 21 ⁇ m, and the porosity of the laminate: 45%.
  • a shaped separator was prepared.
  • the non-aqueous secondary battery was produced like Example 1 except having used this bag-shaped separator.
  • Example 5 The non-aqueous electrolyte was mixed with propylene carbonate and ⁇ -methyl- ⁇ -butyrolactone in a 3: 7 volume ratio, LiBF 4 at a concentration of 1 mol / L, and LiBOB at a concentration of 0.03 mol / L.
  • a non-aqueous secondary battery was produced in the same manner as in Example 2 except that each was dissolved and further changed to a solution in which vinylene carbonate was added in an amount of 5% by mass.
  • Example 6 Olivine type lithium iron phosphate as a positive electrode active material (average particle size 13 ⁇ m): 89 parts by mass, acetylene black as a conductive auxiliary agent: 3.5 parts by mass and 1.5 parts by mass of graphite, acrylic resin: 3. 3 parts by mass, polyvinylpyrrolidone (dispersing agent): 0.3 parts by mass, CMC (thickening agent): 2.4 parts by mass, and using a positive electrode mixture-containing paste prepared by mixing water Produced a positive electrode for a battery in the same manner as in Example 1. The thickness of the positive electrode mixture layer (thickness per one surface) of the obtained positive electrode was 65 ⁇ m.
  • LiBF 4 was dissolved at a concentration of 1 mol / L and LiBOB at a concentration of 0.03 mol / L in a mixed solvent of propylene carbonate and ⁇ -methyl- ⁇ -butyrolactone at a volume ratio of 3: 7, Further, vinylene carbonate was added in an amount of 2.5% by mass to prepare a nonaqueous electrolytic solution.
  • a nonaqueous secondary battery was produced in the same manner as in Example 2 except that the battery positive electrode and the nonaqueous electrolyte were used.
  • Example 7 A non-aqueous secondary battery was produced in the same manner as in Example 2 except that the same positive electrode as that produced in Example 6 was used.
  • Example 8 A bag-like separator was prepared in the same manner as in Example 1 except that a PE microporous film (PE melting point: 130 ° C., thickness: 18 ⁇ m) was used instead of the polyimide nonwoven fabric. And the non-aqueous secondary battery was produced like Example 1 except having used this bag-shaped separator.
  • PE microporous film PE melting point: 130 ° C., thickness: 18 ⁇ m
  • Comparative Example 1 A laminated electrode body was produced in the same manner as in Example 2 except that the cellulose nonwoven fabric was not formed into a bag shape and was interposed between the positive electrode and the negative electrode as a separator. And the non-aqueous secondary battery was produced like Example 6 except having used this laminated electrode body.
  • Comparative Example 2 A laminated electrode body was produced in the same manner as in Example 2 except that the cellulose nonwoven fabric was not formed into a bag shape and was interposed between the positive electrode and the negative electrode as a separator. And the non-aqueous secondary battery was produced like Example 2 except having used this laminated electrode body.
  • Example A bag-like separator was produced in the same manner as in Example 8 except that two PE microporous films were joined by heat welding. And the non-aqueous secondary battery was produced like Example 8 except having used this bag-shaped separator.
  • each of 100 non-aqueous secondary batteries was charged at a constant current until the voltage reached 3.85 V at a current value of 300 mA in an environment of 25 ° C., and then the current value was reduced to 60 mA. After being charged at a constant voltage of 3.85 V until the voltage reached, a constant current discharge was performed until the voltage became 2.0 V at a current value of 3000 mA, and the discharge capacity (initial discharge capacity) was measured.
  • the non-aqueous secondary batteries of Examples 1 to 8 using a bag-shaped separator having a crimping part for joining two separators are the batteries of reference examples (two sheets) corresponding to conventional products.
  • Comparative Example 1 using a non-bag-like separator whereas the generation of defective products was not observed, as in the case of a battery using a bag-like separator formed by thermally welding a PE microporous film, In the battery of 2, a defective product with insufficient discharge capacity was generated. Therefore, it was found that the batteries of Examples 1 to 8 were superior in productivity and reliability to the batteries of Comparative Examples 1 and 2.
  • the bag-shaped separator used in the batteries of Examples 1 to 8 can be produced by a simpler operation than the separator according to the battery of the reference example in which two PE microporous films are formed into a bag shape by heat welding. Therefore, it can be said that the batteries of Examples 1 to 8 are more productive than the battery of the reference example.
  • non-aqueous secondary batteries of Examples 1 to 8 and Reference Example were subjected to the following high-temperature storage tests 1 and 2 and high-temperature charge / discharge cycle characteristics evaluation.
  • ⁇ High temperature storage test 1> About each battery, after performing constant current charge and constant voltage charge on the same conditions as the time of first time discharge capacity measurement, it stored for 48 hours in a 100 degreeC thermostat. After each battery is taken out of the thermostat and cooled to room temperature, constant current discharge is performed under the same conditions as the initial discharge capacity measurement, and constant current charge and constant voltage charge are performed under the same conditions as the initial discharge capacity measurement. Then, a constant current discharge was performed, and a discharge capacity (recovery capacity) was measured. And about each battery, the value which remove
  • a series of operations for performing constant-current discharge (however, the discharge end voltage is 2.0 V) was set as one cycle, and this was performed for 1000 cycles.
  • the capacity maintenance rate was calculated
  • Table 2 shows the results of the high-temperature storage tests 1 and 2 and the high-temperature charge / discharge cycle characteristics evaluation.
  • heat fusion such as a nonwoven fabric made of polyimide or a nonwoven fabric made of cellulose is made by crimping and joining at least a part of the peripheral portion of the separator disposed on both sides of the electrode. Since it is possible to easily join separators that cannot be joined by adhesion, productivity and reliability are the same as when joining a microporous film made of PE by thermal welding, even when using a separator with high heat resistance. It is possible to provide a non-aqueous secondary battery excellent in the above.
  • the nonaqueous secondary battery of the present invention can ensure high reliability in addition to good productivity even when it has a particularly excellent heat resistance structure (a structure using a heat resistant separator). Therefore, it can be preferably used for applications that are highly likely to be placed in a high temperature environment such as in-vehicle use, and also applied to applications where conventionally known non-aqueous secondary batteries are used. Can do.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)

Abstract

Provided are: a nonaqueous secondary battery which has excellent productivity and reliability; and a method for manufacturing this nonaqueous secondary battery. A nonaqueous secondary battery according to the present invention is characterized by comprising a multilayer electrode body which is obtained by laminating a positive electrode and a negative electrode with a separator being interposed therebetween, and is also characterized in that separators arranged on both sides of the positive electrode and/or the negative electrode respectively have a compression bonded part in at least a part of the peripheral part and are bonded with each other at the compression bonded parts. This nonaqueous secondary battery is able to be manufactured by a manufacturing method according to the present invention, which comprises a step for arranging separators on both sides of a positive electrode and/or a negative electrode and a step for compression bonding at least parts of the peripheral parts of the separators arranged on both sides of the electrode with each other.

Description

非水二次電池およびその製造方法Non-aqueous secondary battery and manufacturing method thereof
 本発明は、生産性および信頼性に優れた非水二次電池と、その製造方法に関するものである。 The present invention relates to a non-aqueous secondary battery excellent in productivity and reliability and a manufacturing method thereof.
 リチウムイオン二次電池をはじめとする非水二次電池は、高電圧・高容量であることから、その発展に対して大きな期待が寄せられている。 Non-aqueous secondary batteries such as lithium ion secondary batteries have high voltage and high capacity, and thus are highly expected for their development.
 非水二次電池には、正極と負極とをセパレータを介して積層した積層体を渦巻状に巻回して形成した巻回電極体を使用したもののほか、前記積層体を巻回することなく、平板状の正極と負極とセパレータとが積み重ねられた構造の電極体(積層電極体)を使用したものも知られている。 For non-aqueous secondary batteries, in addition to those using a wound electrode body formed by winding a laminated body in which a positive electrode and a negative electrode are laminated via a separator in a spiral shape, without winding the laminated body, A device using an electrode body (laminated electrode body) having a structure in which a plate-like positive electrode, a negative electrode, and a separator are stacked is also known.
 前記の積層電極体を用いた非水二次電池においては、積層電極体の製造時や電池の組み立て時などにおいて、正極、負極およびセパレータが、互いに位置ずれを起こしやすい。セパレータの位置ずれが生じて正極と負極とが接触すると短絡が生じてしまい、また、正極や負極の位置ずれが生じて正極と負極とのセパレータを介した対向部分の面積が小さくなると容量が低下する虞がある。このようなことから、積層電極体を用いた電池においては、積層電極体内での正極、負極およびセパレータの位置ずれを抑制することが求められる。 In a non-aqueous secondary battery using the above-described laminated electrode body, the positive electrode, the negative electrode, and the separator are likely to be displaced from each other during the production of the laminated electrode body or the assembly of the battery. When the separator is displaced and the positive electrode and the negative electrode come into contact with each other, a short circuit occurs, and when the positive electrode and the negative electrode are displaced and the area of the opposing portion through the separator between the positive electrode and the negative electrode is reduced, the capacity is reduced. There is a risk of doing. For this reason, in a battery using a laminated electrode body, it is required to suppress misalignment of the positive electrode, the negative electrode, and the separator in the laminated electrode body.
 現在では、こうした問題を回避する技術の検討も行われている。例えば、特許文献1には、正極の上下に配置された2枚のセパレータ同士を、それらの周縁部において熱溶着によって接合することで、正極が2枚のセパレータにより形成された袋状のセパレータに収容された構造として、正極や負極とセパレータとの位置ずれによる問題の発生を抑制する技術が提案されている。 Currently, a technology to avoid such problems is being studied. For example, in Patent Document 1, two separators arranged above and below a positive electrode are joined to each other by thermal welding at their peripheral portions, whereby a positive electrode is formed into a bag-shaped separator formed by two separators. As a housed structure, a technique for suppressing the occurrence of problems due to misalignment between the positive electrode and the negative electrode and the separator has been proposed.
特許第3380935号Japanese Patent No. 3380935
 ところで、最近では、非水二次電池を、例えば車載用途などといった比較的高温に曝されるような用途へ適用することも行われている。そこで、非水二次電池では、こうした用途へ適用しても十分な機能を発揮できるように、例えば、従来から汎用されているポリオレフィン製のセパレータに代えて、耐熱性の高い層を設けた積層型のセパレータや、耐熱性の高い樹脂で構成されたセパレータなどといった耐熱型のセパレータが使用されることがある。 By the way, recently, non-aqueous secondary batteries are also applied to applications that are exposed to relatively high temperatures such as in-vehicle applications. Therefore, in a non-aqueous secondary battery, for example, a laminated layer provided with a layer having high heat resistance instead of a polyolefin separator that has been conventionally used so that sufficient functions can be exhibited even when applied to such applications. A heat-resistant separator such as a mold separator or a separator made of a resin having high heat resistance may be used.
 ところが、前記のような耐熱型のセパレータを用いた場合、従来のポリオレフィン製のセパレータの場合と同様の手法でセパレータ同士を接合して例えば袋状のセパレータを形成することは困難である。よって、電極の両側に配置されたセパレータ同士を接合することで前記の問題を回避するに際しては、前記のような耐熱型のセパレータを用いた場合でも、良好に接合し得る技術の開発要請もある。 However, when such a heat-resistant separator is used, it is difficult to form a bag-like separator by joining the separators in the same manner as in the case of a conventional polyolefin separator. Therefore, in order to avoid the above problem by joining the separators arranged on both sides of the electrode, there is also a demand for development of a technology that can satisfactorily join even when the above heat-resistant separator is used. .
 本発明は、前記事情に鑑みてなされたものであり、その目的は、生産性および信頼性に優れた非水二次電池と、その製造方法とを提供することにある。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a non-aqueous secondary battery excellent in productivity and reliability, and a method for manufacturing the same.
 前記目的を達成し得た本発明の非水二次電池は、正極と負極とがセパレータを介して積層されてなる積層電極体を有しており、前記正極および前記負極のうちの少なくとも一方の電極の両側に配置されたセパレータは、それぞれ周縁部の少なくとも一部に圧着部を有しており、前記圧着部において互いに接合されていることを特徴とするものである。 The nonaqueous secondary battery of the present invention that has achieved the above object has a laminated electrode body in which a positive electrode and a negative electrode are laminated via a separator, and at least one of the positive electrode and the negative electrode The separators arranged on both sides of the electrode each have a crimping part at least at a part of the peripheral edge, and are joined to each other at the crimping part.
 また、本発明の非水二次電池の製造方法は、正極と負極とがセパレータを介して積層されてなる積層電極体を有する非水二次電池の製造方法であって、前記正極および前記負極のうちの少なくとも一方の電極の両側にセパレータを配置する工程と、前記電極の両側に配置されたセパレータの周縁部の少なくとも一部を互いに圧着し接合する工程とを有する。 The method for producing a non-aqueous secondary battery of the present invention is a method for producing a non-aqueous secondary battery having a laminated electrode body in which a positive electrode and a negative electrode are laminated via a separator, the positive electrode and the negative electrode A step of disposing a separator on both sides of at least one of the electrodes, and a step of crimping and joining at least a part of the peripheral edge of the separator disposed on both sides of the electrode.
 本発明によれば、生産性および信頼性に優れた非水二次電池と、その製造方法とを提供することができる。 According to the present invention, it is possible to provide a non-aqueous secondary battery excellent in productivity and reliability and a manufacturing method thereof.
本発明の非水二次電池に係るセパレータの一例を模式的に表す平面図である。It is a top view which represents typically an example of the separator which concerns on the nonaqueous secondary battery of this invention. 図1のI-I線断面図である。It is the II sectional view taken on the line of FIG. 本発明の非水二次電池に係る正極の一例を模式的に表す平面図である。It is a top view which represents typically an example of the positive electrode which concerns on the nonaqueous secondary battery of this invention. 本発明の非水二次電池に係る負極の一例を模式的に表す平面図である。It is a top view which represents typically an example of the negative electrode which concerns on the nonaqueous secondary battery of this invention. 本発明の非水二次電池の一例を模式的に表す平面図である。It is a top view which represents typically an example of the non-aqueous secondary battery of this invention. 図5のII-II線断面図である。It is the II-II sectional view taken on the line of FIG.
 本発明の非水二次電池は、正極と負極とがセパレータを介して積層されてなる積層電極体を有している。そして、積層電極体中の正極および負極のうちの少なくとも一方の電極の両側に配置されたセパレータは、それぞれ周縁部の少なくとも一部に圧着部を有しており、前記圧着部において互いに接合されている。 The nonaqueous secondary battery of the present invention has a laminated electrode body in which a positive electrode and a negative electrode are laminated via a separator. The separators disposed on both sides of at least one of the positive electrode and the negative electrode in the laminated electrode body each have a crimp portion on at least a part of the peripheral portion, and are joined to each other at the crimp portion. Yes.
 周縁部の少なくとも一部が圧着され互いに接合されたセパレータの間に正極または負極が配置されることで、セパレータと、その間に配置された電極(正極または負極)との位置ずれが防止される。よって、本発明の非水二次電池では、積層電極体内において、セパレータの位置ずれによる正極と負極との直接の接触による短絡の発生を抑制できることから、その製造時においては不良品の発生率を低減することができ、また、完成後の電池においては前記の短絡による特性の低下などを抑えることができる。 Alignment between the separator and the electrode (positive electrode or negative electrode) disposed therebetween is prevented by disposing the positive electrode or the negative electrode between the separators in which at least a part of the peripheral edge is pressure-bonded and joined to each other. Therefore, in the non-aqueous secondary battery of the present invention, it is possible to suppress the occurrence of a short circuit due to the direct contact between the positive electrode and the negative electrode due to the displacement of the separator in the laminated electrode body. Moreover, in the battery after completion, the deterioration of characteristics due to the short circuit can be suppressed.
 更に、積層電極体においては、正極と負極とがセパレータを介して対向している部分のみが電池反応時に機能し、対極と対向していない領域は電池反応に関与し得ないため、正極と負極との位置ずれが生じて、正極と負極とのセパレータを介した対向部分の面積が減少した場合には、電池の容量が低下する問題も生じる。しかしながら、正極または負極を、周縁部の少なくとも一部で互いに接合したセパレータの間に配置した状態で積層電極体を形成した場合には、正極と負極との位置ずれ自体も生じ難くなるため、電池の製造時における容量が不十分な不良品の発生率を低減したり、完成後の電池における正極と負極との位置ずれによる容量低下を抑制したりすることができる。 Furthermore, in the laminated electrode body, only the portion where the positive electrode and the negative electrode face each other via the separator functions during the battery reaction, and the region not facing the counter electrode cannot participate in the battery reaction. When the area of the opposing part through the separator of a positive electrode and a negative electrode reduces, the problem of the capacity | capacitance of a battery falling also arises. However, when the laminated electrode body is formed in a state in which the positive electrode or the negative electrode is disposed between the separators bonded to each other at least at a part of the peripheral edge, misalignment between the positive electrode and the negative electrode is difficult to occur. It is possible to reduce the incidence of defective products with insufficient capacity at the time of manufacture, and to suppress capacity reduction due to misalignment between the positive electrode and the negative electrode in a completed battery.
 本発明の非水二次電池に係る前記周縁部の少なくとも一部で互いに接合されたセパレータは、正極または負極の両側に存在する2枚以上のセパレータによって構成されており、その周縁部の少なくとも一部に、これらのセパレータ同士を接合する圧着部を有している。 The separator joined to at least a part of the peripheral portion according to the non-aqueous secondary battery of the present invention is composed of two or more separators present on both sides of the positive electrode or the negative electrode, and at least one of the peripheral portions. The part has a crimping part for joining these separators.
 従来から非水二次電池用のセパレータとして汎用されているポリオレフィン(ポリエチレン、ポリプロピレンなど)製のセパレータの場合、比較的低い温度でセパレータ同士を熱溶着することが可能である。しかしながら、耐熱性の高い層を設けた積層型のセパレータや、耐熱性の高い樹脂で構成されたセパレータなどといった耐熱型のセパレータの場合、融点が高いために熱溶着が容易ではなかったり、融解前に分解してしまうために熱融着自体ができなかったりするため、熱融着によってセパレータ同士を接合することは困難である。 In the case of a separator made of polyolefin (polyethylene, polypropylene, etc.) that has been conventionally used as a separator for non-aqueous secondary batteries, it is possible to heat-separate the separators at a relatively low temperature. However, in the case of heat-resistant separators such as laminated separators with high heat-resistant layers and separators made of highly heat-resistant resins, heat welding is not easy because the melting point is high, or before melting. Therefore, it is difficult to bond the separators together by heat fusion.
 そこで、本発明では、正極または負極の両側に存在するセパレータ同士を接合するに際し、両者を圧着することとした。この場合には、前記のような熱融着が困難であるか、または熱融着ができない材料で構成されたセパレータ同士であっても、電極を収容し位置ずれを防止可能な程度の強度で両者を接合できる。また、セパレータ同士を圧着により接合する場合、熱溶着が可能な材料(ポリオレフィンなど)で構成されたセパレータを用いたケースでも、セパレータ同士を熱溶着よりも簡単な操作で接合することができる。 Therefore, in the present invention, when the separators present on both sides of the positive electrode or the negative electrode are joined, both are pressure-bonded. In this case, even if the separators are made of materials that are difficult to heat-seal as described above or cannot be heat-sealable, they are strong enough to accommodate the electrodes and prevent displacement. Both can be joined. Further, when the separators are joined by pressure bonding, the separators can be joined by a simpler operation than the thermal welding even in a case using a separator made of a material capable of thermal welding (polyolefin or the like).
 よって、本発明によれば、非水二次電池の生産性および信頼性を高めることが可能となる。 Therefore, according to the present invention, the productivity and reliability of the non-aqueous secondary battery can be improved.
 なお、本発明を適用可能な実施態様は、電極の両面にセパレータがそれぞれ1枚ずつ配置された場合に限定されるものではなく、電極の片面あるいは両面に配置されたセパレータが2枚以上である場合や、1枚のセパレータを折り返して電極の両面に配置した場合にも本発明を適用することができる。 The embodiment to which the present invention is applicable is not limited to the case where one separator is disposed on each side of the electrode, and there are two or more separators disposed on one or both sides of the electrode. The present invention can also be applied to a case where one separator is folded and disposed on both sides of the electrode.
 また、電極の両面に配置すべきセパレータ同士を、圧着により、あらかじめ周縁部の少なくとも一部で互いに接合し、その後、対向するセパレータの間に電極を挿入して、本発明の非水二次電池を構成するのであってもよい。 In addition, the separators to be disposed on both surfaces of the electrodes are joined together in advance at least at a part of the peripheral edge by pressure bonding, and then the electrodes are inserted between the opposing separators, whereby the non-aqueous secondary battery of the present invention May be configured.
 本発明の非水二次電池に係るセパレータには、一般に非水二次電池用のセパレータとして用いられているポリオレフィン製の微多孔フィルムや不織布が使用できる。 For the separator according to the non-aqueous secondary battery of the present invention, a polyolefin microporous film or nonwoven fabric generally used as a separator for non-aqueous secondary batteries can be used.
 セパレータを構成するポリオレフィンとしては、ポリエチレン(PE)、ポリプロピレン(PP)、エチレン-プロピレン共重合体などが挙げられる。 Examples of the polyolefin constituting the separator include polyethylene (PE), polypropylene (PP), and ethylene-propylene copolymer.
 ポリオレフィン製の微多孔フィルムや不織布は、1種または複数種のポリオレフィンを含む単層構造のものであってもよく、また、種類の異なるポリオレフィンを含む複数の層を有する多層構造のもの(例えば、PE層とPP層とが積層された2層構造や、PE層の両面にPP層を設けた3層構造など)であってもよい。 The polyolefin microporous film or non-woven fabric may have a single-layer structure containing one or more kinds of polyolefins, or a multilayer structure having a plurality of layers containing different types of polyolefins (for example, It may be a two-layer structure in which a PE layer and a PP layer are laminated, or a three-layer structure in which a PP layer is provided on both sides of the PE layer.
 また、セパレータには、融点、すなわち、JIS K 7121の規定に準じて、示差走査熱量計(DSC)を用いて測定される融解温度が250℃以上である材料や、融点を持たない(すなわち、融解前に熱分解する)材料といった耐熱性材料を含有するものを使用することもできる。このような耐熱性材料を含有するセパレータを使用した場合には、高温に曝されるような環境下で電池を使用しても、セパレータの溶融による電池特性の低下や短絡の発生を抑制できるため、より耐熱性が高く、高温環境下での使用に適した非水二次電池とすることができる。 In addition, the separator does not have a melting point, that is, a material having a melting temperature of 250 ° C. or higher measured using a differential scanning calorimeter (DSC) in accordance with the provisions of JIS K 7121, It is also possible to use a material containing a heat resistant material such as a material that is thermally decomposed before melting. When using a separator containing such a heat-resistant material, even if the battery is used in an environment where it is exposed to high temperatures, it is possible to suppress the deterioration of battery characteristics and the occurrence of short circuits due to melting of the separator. Thus, a non-aqueous secondary battery having higher heat resistance and suitable for use in a high temperature environment can be obtained.
 前記の耐熱性材料を含有するセパレータとしては、例えば、ポリアミド、ポリイミド、ポリアミドイミド、ポリフェニレンスルフィド、ポリエステル、ポリアクリロニトリル、アラミドおよびセルロースよりなる群から選択される少なくとも1種の樹脂(耐熱性樹脂)を含有するものが挙げられ、例えば、これらのうちの少なくとも1種の樹脂で構成された不織布などが例示できる。 As the separator containing the heat resistant material, for example, at least one resin (heat resistant resin) selected from the group consisting of polyamide, polyimide, polyamideimide, polyphenylene sulfide, polyester, polyacrylonitrile, aramid, and cellulose is used. What is contained is mentioned, For example, the nonwoven fabric etc. which were comprised with at least 1 sort (s) of these can be illustrated.
 また、前記のポリオレフィン製の微多孔フィルムや不織布に、耐熱性多孔質層を設けた積層型のセパレータを使用することもできる。このような積層型のセパレータを用いた場合には、電池内の温度が上昇してもセパレータの収縮を抑制して、正極と負極との接触による短絡を抑えることができ、また、電池内が高温となった場合にポリオレフィンの溶融によってセパレータの孔を塞ぐシャットダウン機能も確保できる、より安全性の高い非水二次電池とすることができる。 Also, a laminated separator in which a heat-resistant porous layer is provided on the above-mentioned polyolefin microporous film or non-woven fabric can be used. When such a laminated separator is used, the separator shrinkage can be suppressed even when the temperature in the battery rises, and a short circuit due to contact between the positive electrode and the negative electrode can be suppressed. When the temperature becomes high, a non-aqueous secondary battery with higher safety can be obtained, which can ensure a shutdown function that closes the pores of the separator by melting the polyolefin.
 前記積層型のセパレータに係る耐熱性多孔質層は、例えば、前記例示の耐熱性樹脂で構成された不織布で形成することができる。このような積層型のセパレータは、ポリオレフィン製の微多孔フィルムや不織布の片面または両面に、耐熱性樹脂製の不織布を、圧着したりポリオレフィンの一部を溶融させて熱溶着したりすることで、形成することができる。 The heat-resistant porous layer related to the laminated separator can be formed of, for example, a nonwoven fabric composed of the heat-resistant resin exemplified above. Such a laminated separator is made by heat-welding a non-woven fabric made of a heat-resistant resin on one side or both sides of a microporous film made of polyolefin or a non-woven fabric, or by melting a part of the polyolefin, Can be formed.
 また、前記積層型のセパレータには、ポリオレフィン製の微多孔フィルムや不織布で構成される基材層の片面または両面に、耐熱温度が250℃以上の無機粒子を主体として含む耐熱性多孔質層を形成したものも含まれる。本明細書でいう無機粒子における「耐熱温度が250℃以上」とは、少なくとも250℃において軟化などの変形が認められないことを意味している。 The laminated separator has a heat-resistant porous layer mainly comprising inorganic particles having a heat-resistant temperature of 250 ° C. or more on one side or both sides of a substrate layer made of a polyolefin microporous film or nonwoven fabric. The formed one is also included. The “heat-resistant temperature is 250 ° C. or higher” in the inorganic particles in the present specification means that deformation such as softening is not observed at least at 250 ° C.
 耐熱性多孔質層に含有させる無機粒子としては、ベーマイト、アルミナ、シリカ、酸化チタンなどが好ましく、これらのうちの1種または2種以上を使用することができる。 As the inorganic particles to be contained in the heat-resistant porous layer, boehmite, alumina, silica, titanium oxide and the like are preferable, and one or more of these can be used.
 また、耐熱性多孔質層には、前記の無機粒子同士を結着したり、耐熱性多孔質層と基材層(ポリオレフィン製の微多孔フィルムや不織布)とを接着したりするためのバインダを含有させることが好ましい。バインダには、エチレン-酢酸ビニル共重合体(EVA、酢酸ビニル由来の構造単位が20~35モル%のもの)、エチレン-エチルアクリレート共重合体などのエチレン-アクリル酸共重合体、フッ素系ゴム、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース(HEC)、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)、ポリビニルピロリドン(PVP)、架橋アクリル樹脂、ポリウレタン、エポキシ樹脂などを用いることが好ましく、これらのうちの1種または2種以上を使用することができる。 In addition, the heat-resistant porous layer includes a binder for binding the inorganic particles to each other or bonding the heat-resistant porous layer and the base material layer (polyolefin microporous film or nonwoven fabric). It is preferable to contain. The binder includes an ethylene-vinyl acetate copolymer (EVA, having a structural unit derived from vinyl acetate of 20 to 35 mol%), an ethylene-acrylic acid copolymer such as an ethylene-ethyl acrylate copolymer, and a fluorine-based rubber. Styrene butadiene rubber (SBR), carboxymethyl cellulose (CMC), hydroxyethyl cellulose (HEC), polyvinyl alcohol (PVA), polyvinyl butyral (PVB), polyvinyl pyrrolidone (PVP), cross-linked acrylic resin, polyurethane, epoxy resin, etc. Are preferred, and one or more of these can be used.
 耐熱温度が250℃以上の無機粒子を含有する耐熱性多孔質層において、前記無機粒子は、その主体として含まれるものであり、耐熱性多孔質層中の無機粒子の含有量は、耐熱性多孔質層を構成する成分の全体積中(空孔部分を除く全体積中)、50体積%以上であることが好ましく、70体積%以上であることがより好ましく、また、99体積%以下であることがより好ましい(残部は、前記のバインダであればよい)。 In the heat-resistant porous layer containing inorganic particles having a heat-resistant temperature of 250 ° C. or higher, the inorganic particles are included as the main component, and the content of the inorganic particles in the heat-resistant porous layer is the heat-resistant porous layer. In the total volume of the components constituting the stratified layer (in the total volume excluding the void portion), it is preferably 50% by volume or more, more preferably 70% by volume or more, and 99% by volume or less. It is more preferable (the remainder may be the above binder).
 セパレータの厚みは、電池のエネルギー密度の低下を抑制する観点から、500μm以下であることが好ましく、450μm以下であることがより好ましい。ただし、セパレータが薄すぎると、短絡を防止する機能が低下する虞があることから、その厚みは、10μm以上であることが好ましく、特に不織布からなるセパレータや、不織布で構成された耐熱多孔質層を有する積層型のセパレータの場合には、100μm以上であることがより好ましく、150μm以上であることが更に好ましい。 The thickness of the separator is preferably 500 μm or less, and more preferably 450 μm or less from the viewpoint of suppressing a decrease in the energy density of the battery. However, if the separator is too thin, there is a possibility that the function of preventing a short circuit may be deteriorated. Therefore, the thickness is preferably 10 μm or more, and particularly a separator made of a nonwoven fabric or a heat resistant porous layer made of a nonwoven fabric. In the case of a laminated separator having a thickness of 100 μm or more, more preferably 150 μm or more.
 また、セパレータの空隙率は、30%以上80%以下であることが好ましく、特に不織布からなるセパレータの場合には、50%以上であることがより好ましい。 The porosity of the separator is preferably 30% or more and 80% or less, and more preferably 50% or more in the case of a separator made of a nonwoven fabric.
 本発明の非水二次電池においては、前記のようなセパレータを電極の両側に配置し、周縁部の少なくとも一部に、前記セパレータ同士を接合する圧着部を形成して用いる。そして、対向するセパレータの間に、正極および負極のうちのいずれか一方が収容される。 In the non-aqueous secondary battery of the present invention, the separator as described above is disposed on both sides of the electrode, and a crimping part for joining the separators is formed on at least a part of the peripheral part. And either one of a positive electrode and a negative electrode is accommodated between the separators which oppose.
 図1および図2に、本発明の非水二次電池に係るセパレータの一例を模式的に示している。図1は、セパレータの平面図、図2は図1のI-I線断面図、すなわち圧着部の断面図である。 1 and 2 schematically show an example of a separator according to the nonaqueous secondary battery of the present invention. FIG. 1 is a plan view of the separator, and FIG. 2 is a cross-sectional view taken along the line II of FIG.
 セパレータ30は、2枚のセパレータ30a、30bが、周縁部の少なくとも一部において、これらのセパレータ30a、30b同士を接合する圧着部31(図中格子模様で表示)が設けられることで、袋状となっている。なお、図1では、袋状のセパレータ30内に正極が収容された様子、すなわち、セパレータ30aとセパレータ30bとの間に正極が挿入されており、袋状のセパレータ30から、正極と電池内の他の部材との電気的接続に利用される正極のタブ部13が突出している様子を図示している。 The separator 30 is formed into a bag-like shape by providing a pressure-bonding portion 31 (indicated by a lattice pattern in the drawing) that joins the separators 30a and 30b to each other at least at a part of the peripheral edge. It has become. In FIG. 1, the positive electrode is housed in the bag-shaped separator 30, that is, the positive electrode is inserted between the separator 30a and the separator 30b. The mode that the tab part 13 of the positive electrode utilized for electrical connection with another member protrudes is illustrated.
 2枚のセパレータ30a、30b同士を接合する圧着部31は、例えば、図2に示すように、セパレータ30a、30bの厚み方向(図中の上下方向)に屈曲する形態とすることができる。このような形態の圧着部で2枚のセパレータ同士を接合することで、セパレータ同士の熱溶着が可能なポリオレフィン製のセパレータは勿論のこと、前記の耐熱性樹脂製のセパレータや耐熱性多孔質層を有する積層型のセパレータといった、セパレータ同士の熱溶着が困難または不可能なものを用いていても、内部に収容された電極の位置ずれを抑制可能な程度の強度で互いに接合されたセパレータとすることができる。 The crimping part 31 that joins the two separators 30a and 30b can be configured to bend in the thickness direction (vertical direction in the figure) of the separators 30a and 30b, for example, as shown in FIG. In addition to polyolefin separators that can be welded together by joining two separators together in such a crimping section, the above-mentioned separators made of heat-resistant resin and heat-resistant porous layers can be used. Even if it is difficult or impossible to heat-separate the separators, such as a laminated separator having a separator, the separators are joined to each other with such a strength that the displacement of the electrodes accommodated therein can be suppressed. be able to.
 図2に図示しているような屈曲形状の圧着部は、例えば、コルゲート加工により形成することができる。 2 can be formed by corrugating, for example.
 具体的には、正極または負極の両側を、例えば2枚のセパレータで挟み込んだ状態で、表面に溝が設けられた金型により上下からプレスを行うことで、前記電極の両側にあるセパレータ同士を圧着し接合することができる。生産効率を考慮した場合、正極または負極を2枚のセパレータに挟み込んだロール状のシートを、表面に溝が設けられたロールの間に通過させることでもセパレータ同士を圧着し接合することが可能である。また、溝の深さは、セパレータが破断しない程度であれば、特に制限はない。圧着の形状や面積についても、加工に使用する金型形状を変えることで、電池形状に合わせて適宜変更することが可能である。 Specifically, with both sides of the positive electrode or negative electrode sandwiched between two separators, for example, by pressing from above and below with a mold having grooves on the surface, the separators on both sides of the electrodes are Can be bonded by pressure bonding. In consideration of production efficiency, it is possible to bond the separators by pressing the roll sheet with the positive electrode or negative electrode sandwiched between two separators between the rolls with grooves on the surface. is there. The depth of the groove is not particularly limited as long as the separator does not break. The shape and area of the crimping can also be appropriately changed according to the battery shape by changing the shape of the mold used for processing.
 セパレータにおける圧着部は、内部に収容されている電極のタブ部が引き出される箇所を除く周縁部の全部に設けられていてもよく、一部にのみ設けられていてもよい。具体的には、セパレータの外周の全長さ中の5%以上の長さの部分を、圧着部とすることが好ましい。 The crimping part in the separator may be provided on the whole peripheral part except the part from which the tab part of the electrode accommodated in the separator is pulled out, or may be provided only in a part. Specifically, it is preferable that a portion having a length of 5% or more in the entire length of the outer periphery of the separator is a crimping portion.
 また、セパレータの周縁部は、連続する長い圧着部が一つだけ形成されていてもよく、図1に示すように複数の圧着部が不連続に形成されていてもよい。なお、図1に示すように、セパレータが平面視で四角形(長方形または正方形)の場合には、少なくともタブ部を引き出す辺以外の3辺のそれぞれに、圧着部が形成されていることが好ましい(ただし、図1に示すセパレータ30では、タブ部13が引き出されている辺にも圧着部31が設けられている)。この場合、隣り合う2辺に設けられる圧着部は、両辺の間の角部を含めて連続していてもよい。 Further, the peripheral portion of the separator may be formed with only one continuous long crimping portion, or a plurality of crimping portions may be formed discontinuously as shown in FIG. In addition, as shown in FIG. 1, when a separator is a rectangle (rectangle or square) by planar view, it is preferable that the crimping | compression-bonding part is formed in each of three sides other than the edge | side which pulls out a tab part at least ( However, in the separator 30 shown in FIG. 1, the crimping | compression-bonding part 31 is provided also in the edge | side where the tab part 13 is pulled out. In this case, the crimping | compression-bonding part provided in two adjacent sides may be continued including the corner | angular part between both sides.
 本発明の非水二次電池に係る正極には、例えば、正極活物質、バインダおよび導電助剤などを含有する正極合剤層を、集電体の片面または両面に有する構造のものが使用される。 For the positive electrode according to the nonaqueous secondary battery of the present invention, for example, one having a structure having a positive electrode mixture layer containing a positive electrode active material, a binder, a conductive additive and the like on one side or both sides of a current collector is used. The
 正極合剤層に係る正極活物質については特に制限はなく、リチウム含有遷移金属酸化物などの、非水二次電池用の正極として一般に用いられている活物質を使用すればよい。リチウム含有遷移金属酸化物の具体例としては、例えば、LiCoO、LiNiO、LiMnO、LiCoNi1-y、LiMnNiCo1-y-z、LiMnなどが例示される(なお、前記の各構造式中において、0≦x≦1.1、0<y<1、0<z<1である。)。 There is no restriction | limiting in particular about the positive electrode active material which concerns on a positive mix layer, What is necessary is just to use the active material generally used as a positive electrode for nonaqueous secondary batteries, such as a lithium containing transition metal oxide. Specific examples of the lithium-containing transition metal oxide include, for example, Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x Co y Ni 1-y O 2 , Li x Mny y Ni z Co 1-y. -Z O 2 , Li x Mn 2 O 4 and the like are exemplified (in the above structural formulas, 0 ≦ x ≦ 1.1, 0 <y <1, 0 <z <1). .
 正極合剤層に係るバインダには、従来から知られている非水二次電池用の正極に係る正極合剤層で使用されているバインダと同じものが使用できる。具体的には、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリアミドイミド(PAI)、ポリイミド(PI)、アクリル、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)などが好ましいものとして挙げられる。 As the binder related to the positive electrode mixture layer, the same binder as that used in the positive electrode mixture layer related to the positive electrode for a known non-aqueous secondary battery can be used. Specifically, for example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyamideimide (PAI), polyimide (PI), acrylic, styrene butadiene rubber (SBR), carboxymethyl cellulose (CMC) and the like are preferable. It is mentioned as a thing.
 正極合剤層に係る導電助剤としては、例えば、天然黒鉛(鱗片状黒鉛など)、人造黒鉛などの黒鉛;アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカ-ボンブラック;炭素繊維;などが挙げられる。 Examples of the conductive aid for the positive electrode mixture layer include graphite such as natural graphite (eg, scaly graphite) and artificial graphite; carbon such as acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black. -Bon black; carbon fiber;
 正極は、例えば、正極活物質、バインダおよび導電助剤を、N-メチル-2-ピロリドン(NMP)などの有機溶媒などの溶媒に分散させて正極合剤含有組成物を調製し(ただし、バインダは溶媒に溶解していてもよい)、これを集電体の片面または両面に塗布し乾燥して正極合剤層を形成する方法で製造することができる。また、正極合剤層の形成後に、必要に応じてカレンダ処理を施してもよい。 For the positive electrode, for example, a positive electrode active material, a binder and a conductive additive are dispersed in a solvent such as an organic solvent such as N-methyl-2-pyrrolidone (NMP) to prepare a positive electrode mixture-containing composition (however, the binder May be dissolved in a solvent), and may be produced by a method of forming a positive electrode mixture layer by applying this to one or both sides of a current collector and drying it. Moreover, you may perform a calendar process as needed after formation of a positive mix layer.
 正極に係る集電体には、従来から知られている非水二次電池の正極に使用されているものと同様のものが使用でき、例えば、厚みが10~30μmのアルミニウム箔が好ましい。 As the current collector for the positive electrode, the same one used for the positive electrode of a conventionally known non-aqueous secondary battery can be used, and for example, an aluminum foil having a thickness of 10 to 30 μm is preferable.
 正極合剤層の厚み(集電体の両面に正極合剤層が形成されている場合には、片面あたりの厚み。)は、30~95μmであることが好ましい。また、正極合剤層においては、正極活物質の含有量は85~98質量%であることが好ましく、バインダの含有量は1~10質量%であることが好ましく、導電助剤の含有量は1~10質量%であることが好ましい。 The thickness of the positive electrode mixture layer (the thickness per side when the positive electrode mixture layer is formed on both sides of the current collector) is preferably 30 to 95 μm. In the positive electrode mixture layer, the content of the positive electrode active material is preferably 85 to 98% by mass, the content of the binder is preferably 1 to 10% by mass, and the content of the conductive auxiliary agent is It is preferably 1 to 10% by mass.
 本発明の非水二次電池に係る負極には、例えば、負極活物質やバインダなどを含有する負極合剤層を、集電体の片面または両面に有する構造のものが使用される。 For the negative electrode according to the non-aqueous secondary battery of the present invention, for example, a negative electrode mixture layer containing a negative electrode active material, a binder or the like is used on one side or both sides of a current collector.
 負極活物質には、従来から知られている非水二次電池の負極に使用されている負極活物質、すなわち、Liイオンを吸蔵放出可能な活物質を用いることができる。このような負極活物質の具体例としては、例えば、黒鉛(天然黒鉛;熱分解炭素類、メソフェーズカーボンマイクロビーズ、炭素繊維などの易黒鉛化炭素を2800℃以上で黒鉛化処理した人造黒鉛;など)、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソフェーズカーボンマイクロビーズ、炭素繊維、活性炭などの炭素材料;リチウムと合金化可能な金属(Si、Snなど)や、これらの金属を含む材料(合金、酸化物など);などの粒子が挙げられる。負極には、前記例示の負極活物質のうち、1種のみを使用してもよく、2種以上を併用してもよい。 As the negative electrode active material, a conventionally known negative electrode active material used for a negative electrode of a non-aqueous secondary battery, that is, an active material capable of occluding and releasing Li ions can be used. Specific examples of such a negative electrode active material include, for example, graphite (natural graphite; artificial graphite obtained by graphitizing graphitized carbon such as pyrolytic carbons, mesophase carbon microbeads, and carbon fibers at 2800 ° C. or higher; ), Pyrolytic carbons, cokes, glassy carbons, fired bodies of organic polymer compounds, mesophase carbon microbeads, carbon fibers, activated carbon, and other carbon materials; metals that can be alloyed with lithium (Si, Sn, etc.) And particles containing these metals (alloys, oxides, etc.). In the negative electrode, only one type of the above illustrated negative electrode active materials may be used, or two or more types may be used in combination.
 負極合剤層に係るバインダには、正極合剤層に使用し得るものとして先に例示した各種バインダと同じものが使用できる。また、負極合剤層に導電助剤を含有させる場合、その導電助剤には、正極合剤層に使用し得るものとして先に例示した各種導電助剤と同じものが使用できる。 As the binder related to the negative electrode mixture layer, the same binders as those exemplified above as those that can be used for the positive electrode mixture layer can be used. Moreover, when making a negative electrode mixture layer contain a conductive support agent, the same thing as the various conductive support agents illustrated previously as what can be used for a positive mix layer can be used for the conductive support agent.
 負極合剤層を有する負極は、例えば、負極活物質およびバインダ、更には必要に応じて導電助剤などをNMPなどの有機溶媒や水といった溶媒に分散させたペースト状やスラリー状の負極合剤含有組成物を調製し(ただし、バインダは溶媒に溶解していてもよい)、これを集電体の片面または両面に塗布し乾燥して負極合剤層を形成する方法で製造することができる。また、負極合剤層の形成後に、必要に応じてカレンダ処理を施してもよい。 The negative electrode having the negative electrode mixture layer includes, for example, a negative electrode active material and a binder, and a paste-like or slurry-like negative electrode mixture in which a conductive auxiliary agent is dispersed in an organic solvent such as NMP or a solvent such as water as necessary. It can be produced by preparing a containing composition (however, the binder may be dissolved in a solvent), applying this to one or both sides of the current collector and drying to form a negative electrode mixture layer. . Moreover, you may perform a calendar process as needed after formation of a negative mix layer.
 負極合剤層の厚みは、例えば、集電体の片面あたり10~100μmであることが好ましい。負極合剤層の組成としては、例えば、負極活物質の量が85~99質量%であることが好ましく、バインダの量が1.0~10質量%であることが好ましい。また、負極合剤層に導電助剤を含有させる場合には、負極合剤層中における導電助剤の量は0.5~10質量%であることが好ましい。 The thickness of the negative electrode mixture layer is preferably, for example, 10 to 100 μm per one side of the current collector. As the composition of the negative electrode mixture layer, for example, the amount of the negative electrode active material is preferably 85 to 99% by mass, and the amount of the binder is preferably 1.0 to 10% by mass. Further, when the conductive additive is contained in the negative electrode mixture layer, the amount of the conductive auxiliary in the negative electrode mixture layer is preferably 0.5 to 10% by mass.
 負極の集電体には、銅製や銅合金製、ニッケル製、ニッケル合金製の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、銅箔が用いられる。負極集電体の厚みは、例えば、5~30μmであることが好ましい。 The negative electrode current collector may be made of copper, copper alloy, nickel, nickel alloy foil, punching metal, net, expanded metal, or the like, but copper foil is usually used. The thickness of the negative electrode current collector is preferably 5 to 30 μm, for example.
 本発明の非水二次電池においては、正極と、負極と、前記周縁部の少なくとも一部が互いに圧着されて接合されている、例えば袋状のセパレータとを用いて構成した積層電極体を使用するが、この積層電極体においては、その積層構成に応じて、圧着により互いに接合されたセパレータ同士の間に、正極を配置してもよく、負極を配置してもよい。 In the non-aqueous secondary battery of the present invention, a laminated electrode body configured using a positive electrode, a negative electrode, and at least a part of the peripheral edge are bonded to each other and bonded, for example, a bag-shaped separator is used. However, in this laminated electrode body, a positive electrode or a negative electrode may be arranged between separators bonded to each other by pressure bonding depending on the laminated configuration.
 本発明の非水二次電池に係る電極(正極および負極)の平面形状には特に制限はなく、円形や多角形(四角形、五角形、六角形など)など、採用する外装体の形状に応じていずれの形状としてもよく、また、この電極を収容する袋状のセパレータの平面形状も、円形や多角形(図1に示す四角形や、五角形、六角形など)など、収容する電極の平面形状に応じて、いずれの形状としてもよい。 There are no particular limitations on the planar shape of the electrodes (positive electrode and negative electrode) according to the non-aqueous secondary battery of the present invention, depending on the shape of the exterior body to be employed, such as a circle or a polygon (such as a square, a pentagon, or a hexagon). Any shape is acceptable, and the planar shape of the bag-shaped separator that accommodates this electrode is also the planar shape of the electrode that accommodates it, such as a circle or a polygon (such as a square, pentagon, or hexagon shown in FIG. 1). Depending on the shape, any shape may be adopted.
 前記の積層電極体を、非水電解液と共に外装体内に封入して、本発明の非水二次電池とする。外装体には、積層電極体を収容するのに適した形態のものが使用でき、例えば、扁平形状の外装缶(コイン形、ボタン形を含む)や、角形の外装缶、金属ラミネートフィルム外装体などを用いることができる。 The above-mentioned laminated electrode body is enclosed in an exterior body together with a non-aqueous electrolyte solution to obtain the non-aqueous secondary battery of the present invention. For the exterior body, one having a form suitable for accommodating the laminated electrode body can be used. For example, a flat exterior can (including coin shape and button shape), a square exterior can, a metal laminate film exterior body Etc. can be used.
 本発明の非水二次電池に係る非水電解液には、リチウム塩および有機溶媒を含有し、このリチウム塩が有機溶媒に溶解した溶液が使用される。 In the non-aqueous electrolyte solution according to the non-aqueous secondary battery of the present invention, a solution containing a lithium salt and an organic solvent and in which the lithium salt is dissolved in the organic solvent is used.
 リチウム塩には、例えば、LiClO、LiBF、LiAsF、LiSbFなどの無機リチウム塩;LiCFSO、LiCFCO、Li(SO、LiC(CFSO、LiC2n+1SO(n≧2)、LiN(FSO〔LiFSI〕、LiN(CFSO〔LiTFSI〕、LiN(CSO、リチウムビスオキサレートボレート(LiBOB)などの有機リチウム塩;のうちの1種または2種以上を用いることができる。 Examples of the lithium salt include inorganic lithium salts such as LiClO 4 , LiBF 4 , LiAsF 6 , and LiSbF 6 ; LiCF 3 SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1 SO 3 (n ≧ 2), LiN (FSO 2 ) 2 [LiFSI], LiN (CF 3 SO 2 ) 2 [LiTFSI], LiN (C 2 F 5 SO 2 ) 2 , One or more of organic lithium salts such as lithium bisoxalate borate (LiBOB) can be used.
 有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートなどの環状カーボネート;ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネートなどの鎖状カーボネート;プロピオン酸メチルなどの鎖状エステル;γ-ブチロラクトン、α位に置換基を有するラクトン類などの環状エステル;ジメトキシエタン、ジエチルエーテル、1,3-ジオキソラン、ジグライム、トリグライム、テトラグライムなどの鎖状エーテル;ジオキサン、テトラヒドロフラン、2-メチルテトラヒドロフランなどの環状エーテル;アセトニトリル、プロピオニトリル、メトキシプロピオニトリルなどのニトリル類;エチレングリコールサルファイトなどの亜硫酸エステル類;などが挙げられ、これらは2種以上混合して用いることもできる。より良好な特性の電池とするためには、前記例示の環状カーボネートと前記例示の鎖状カーボネートとの混合溶媒など、高い導電率を得ることができる組み合わせで用いることが望ましい。 Examples of organic solvents include cyclic carbonates such as ethylene carbonate, propylene carbonate, and butylene carbonate; chain carbonates such as dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate; chain esters such as methyl propionate; γ-butyrolactone, substituted at the α-position Cyclic esters such as lactones having a group; chain ethers such as dimethoxyethane, diethyl ether, 1,3-dioxolane, diglyme, triglyme and tetraglyme; cyclic ethers such as dioxane, tetrahydrofuran and 2-methyltetrahydrofuran; acetonitrile, pro Nitriles such as pionitrile and methoxypropionitrile; sulfites such as ethylene glycol sulfite; and the like. It can also be used as a mixture. In order to obtain a battery having better characteristics, it is desirable to use a combination that can obtain a high conductivity, such as a mixed solvent of the above-mentioned cyclic carbonate and the above-mentioned chain carbonate.
 また、有機溶媒には、α位に置換基を有するラクトン類を使用することも好ましい。α位に置換基を有するラクトン類は150℃以上の高い沸点を有しているため、電池が高温環境下に置かれても揮発し難く、非水電解液の組成の変動や外装体の膨れによる電池特性の低下を抑制し得るため、より耐熱性が高く高温下での貯蔵特性に優れた電池を構成することができる。 It is also preferable to use lactones having a substituent at the α-position as the organic solvent. Since the lactone having a substituent at the α-position has a high boiling point of 150 ° C. or higher, it is difficult to volatilize even when the battery is placed in a high temperature environment, and the composition of the non-aqueous electrolyte changes and the outer body swells. Therefore, a battery having higher heat resistance and excellent storage characteristics at high temperatures can be configured.
 なお、α位に置換基を有するラクトン類以外にも、150℃以上の沸点を有する高沸点溶媒は知られているが、一般に高沸点溶媒はポリオレフィン製のセパレータへの浸透性が低いことから、非水電解液のセパレータへの浸透性を高めるために別の溶媒(一般に沸点が低い)を併用する必要がある。これに対し、α位に置換基を有するラクトン類はポリオレフィン製セパレータへの浸透性が良好であるため、これを使用した非水電解液を用いることで、例えば電池の負荷特性を損なうことなく、耐熱性を高めることができる。 In addition to lactones having a substituent at the α-position, high-boiling solvents having a boiling point of 150 ° C. or higher are known, but generally high-boiling solvents have low permeability to polyolefin separators, In order to increase the permeability of the non-aqueous electrolyte to the separator, it is necessary to use another solvent (generally having a low boiling point). On the other hand, since lactones having a substituent at the α-position have good permeability to polyolefin separators, by using a non-aqueous electrolyte using this, for example, without impairing the load characteristics of the battery, Heat resistance can be improved.
 α位に置換基を有するラクトン類は、例えば5員環のもの(環を構成する炭素数が4つのもの)が好ましい。前記ラクトン類のα位の置換基は、1つであってもよく、2つであってもよい。 The lactone having a substituent at the α-position is preferably, for example, a 5-membered ring (having 4 carbon atoms constituting the ring). The α-position substituent of the lactone may be one or two.
 前記置換基としては、炭化水素基、ハロゲン基(フルオロ基、クロロ基、ブロモ基、ヨード基)などが挙げられる。炭化水素基としては、アルキル基、アリール基などが好ましく、その炭素数は1以上15以下(より好ましくは6以下)であることが好ましい。前記置換基が炭化水素基の場合、メチル基、エチル基、プロピル基、ブチル基、フェニル基などが更に好ましい。 Examples of the substituent include a hydrocarbon group and a halogen group (fluoro group, chloro group, bromo group, iodo group) and the like. As a hydrocarbon group, an alkyl group, an aryl group, etc. are preferable, and it is preferable that the carbon number is 1 or more and 15 or less (more preferably 6 or less). When the substituent is a hydrocarbon group, a methyl group, an ethyl group, a propyl group, a butyl group, a phenyl group, and the like are more preferable.
 α位に置換基を有するラクトン類の具体例としては、α-メチル-γ-ブチロラクトン、α-エチル-γ-ブチロラクトン、α-プロピル-γ-ブチロラクトン、α-ブチル-γ-ブチロラクトン、α-フェニル-γ-ブチロラクトン、α-フルオロ-γ-ブチロラクトン、α-クロロ-γ-ブチロラクトン、α-ブロモ-γ-ブチロラクトン、α-ヨード-γ-ブチロラクトン、α,α-ジメチル-γ-ブチロラクトン、α,α-ジエチル-γ-ブチロラクトン、α,α-ジフェニル-γ-ブチロラクトン、α-エチル-α-メチル-γ-ブチロラクトン、α-メチル-α-フェニル-γ-ブチロラクトン、α,α-ジフルオロ-γ-ブチロラクトン、α,α-ジクロロ-γ-ブチロラクトン、α,α-ジブロモ-γ-ブチロラクトン、α,α-ジヨード-γ-ブチロラクトンなどが挙げられ、これらのうちの1種のみを用いてもよく、2種以上を併用してもよい。これらの中でも、α-メチル-γ-ブチロラクトンがより好ましい。 Specific examples of lactones having a substituent at the α-position include α-methyl-γ-butyrolactone, α-ethyl-γ-butyrolactone, α-propyl-γ-butyrolactone, α-butyl-γ-butyrolactone, α-phenyl -Γ-butyrolactone, α-fluoro-γ-butyrolactone, α-chloro-γ-butyrolactone, α-bromo-γ-butyrolactone, α-iodo-γ-butyrolactone, α, α-dimethyl-γ-butyrolactone, α, α -Diethyl-γ-butyrolactone, α, α-diphenyl-γ-butyrolactone, α-ethyl-α-methyl-γ-butyrolactone, α-methyl-α-phenyl-γ-butyrolactone, α, α-difluoro-γ-butyrolactone , Α, α-dichloro-γ-butyrolactone, α, α-dibromo-γ-butyrolactone, α, α-diiodo-γ-butyrolactone Tons, and the like, it may be used only one of these may be used in combination of two or more. Among these, α-methyl-γ-butyrolactone is more preferable.
 有機溶媒にα位に置換基を有するラクトン類を使用する場合、α位に置換基を有するラクトン類のみを用いてもよいが、他の有機溶媒を共に使用する場合には、150℃以上の沸点を有する高沸点溶媒(エチレンカーボネート、プロピレンカーボネート、γ-ブチロラクトン、スルホラン、トリメチルホスフェート、トリエチルホスフェートなど)を使用することが好ましい。 When lactones having a substituent at the α-position are used in the organic solvent, only lactones having a substituent at the α-position may be used, but when other organic solvents are used together, 150 ° C or higher It is preferable to use a high-boiling solvent having a boiling point (ethylene carbonate, propylene carbonate, γ-butyrolactone, sulfolane, trimethyl phosphate, triethyl phosphate, etc.).
 有機溶媒にα位に置換基を有するラクトン類を使用する場合の、非水電解液における全有機溶媒中の割合は、70~100体積%であることが好ましい。 When the lactone having a substituent at the α-position is used as the organic solvent, the ratio in the total organic solvent in the non-aqueous electrolyte is preferably 70 to 100% by volume.
 リチウム塩の非水電解液中の濃度は、0.6~1.8mol/Lであることが好ましく、0.9~1.6mol/Lであることがより好ましい。 The concentration of the lithium salt in the non-aqueous electrolyte is preferably 0.6 to 1.8 mol / L, and more preferably 0.9 to 1.6 mol / L.
 また、前記の非水電解液に、電池の安全性や充放電サイクル性、高温貯蔵性といった特性を向上させる目的で、ビニレンカーボネート類、1,3-プロパンサルトン、ジフェニルジスルフィド、ビフェニル、フルオロベンゼン、t-ブチルベンゼン、ハロゲン置換された環状カーボネート(4-フルオロ-1,3-ジオキソラン-2-オンなど)などの添加剤を適宜加えることもできる。 In addition, for the purpose of improving characteristics such as battery safety, charge / discharge cycleability, and high-temperature storage stability, vinylene carbonates, 1,3-propane sultone, diphenyl disulfide, biphenyl, fluorobenzene are added to the non-aqueous electrolyte. Additives such as t-butylbenzene and halogen-substituted cyclic carbonates (4-fluoro-1,3-dioxolan-2-one etc.) can also be added as appropriate.
 更に、本発明の非水二次電池には、前記の非水電解液に公知のポリマーなどのゲル化剤を添加してゲル状としたもの(ゲル状電解質)を用いてもよい。 Furthermore, in the non-aqueous secondary battery of the present invention, a gel (gel electrolyte) obtained by adding a gelling agent such as a known polymer to the non-aqueous electrolyte may be used.
 以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は、本発明を制限するものではない。 Hereinafter, the present invention will be described in detail based on examples. However, the following examples do not limit the present invention.
実施例1
<正極の作製>
 正極活物質であるLiNi0.5Co0.2Mn0.3:96.5質量部と、バインダであるPVDFを10質量%の濃度で含むNMP溶液:20質量部と、導電助剤であるアセチレンブラック:1.5質量部とを、二軸混練機を用いて混練し、更にNMPを加えて粘度を調節して、正極合剤含有ペーストを調製した。このペーストを厚みが15μmのアルミニウム箔の両面に塗布し、120℃で12時間の真空乾燥を行って、アルミニウム箔の両面に正極合剤層を形成し、プレス処理を行い、所定の大きさで切断して、帯状の正極を得た。なお、アルミニウム箔への正極合剤含有ペーストの塗布の際には、アルミニウム箔の一部が露出するようにし、表面で塗布部とした箇所は裏面も塗布部とした。得られた正極の正極合剤層の厚み(正極集電体であるアルミニウム箔の片面あたりの厚み)は、41μmであった。
Example 1
<Preparation of positive electrode>
LiNi 0.5 Co 0.2 Mn 0.3 O 2 as a positive electrode active material: 96.5 parts by mass, NMP solution containing PVDF as a binder at a concentration of 10% by mass: 20 parts by mass, and a conductive additive Acetylene black: 1.5 parts by mass was kneaded using a biaxial kneader, and NMP was added to adjust the viscosity to prepare a positive electrode mixture-containing paste. This paste is applied to both sides of an aluminum foil having a thickness of 15 μm, vacuum-dried at 120 ° C. for 12 hours, a positive electrode mixture layer is formed on both sides of the aluminum foil, and press treatment is performed. By cutting, a belt-like positive electrode was obtained. When applying the positive electrode mixture-containing paste to the aluminum foil, a part of the aluminum foil was exposed, and the part of the surface that was the application part was also the application part. The thickness of the positive electrode mixture layer of the obtained positive electrode (thickness per one side of the aluminum foil as the positive electrode current collector) was 41 μm.
 前記帯状の正極を、タブ部とするためにアルミニウム箔(正極集電体)の露出部の一部が突出するように、かつ正極合剤層の形成部が四隅を曲線状とした略四角形状になるようにトムソン刃で打ち抜いて、正極集電体の両面に正極合剤層を有する電池用正極を得た。図3に、前記電池用正極を模式的に表す平面図を示している(ただし、正極の構造の理解を容易にするために、図3に示す正極のサイズは、必ずしも実際のものと一致していない)。正極10は、正極集電体12の露出部の一部が突出するように打ち抜いたタブ部13を有する形状とし、正極合剤層11の形成部の形状を、四隅を曲線状にした略四角形とし、図中a、bおよびcの長さを、それぞれ61mm、137mmおよび10mmとした。 In order to make the strip-shaped positive electrode into a tab portion, a part of the exposed portion of the aluminum foil (positive electrode current collector) protrudes, and a portion where the positive electrode mixture layer is formed has a substantially rectangular shape with curved corners. Thus, a positive electrode for a battery having a positive electrode mixture layer on both surfaces of the positive electrode current collector was obtained. FIG. 3 is a plan view schematically showing the battery positive electrode (however, in order to facilitate understanding of the structure of the positive electrode, the size of the positive electrode shown in FIG. 3 does not necessarily match the actual one). Not) The positive electrode 10 has a tab portion 13 punched out so that a part of the exposed portion of the positive electrode current collector 12 protrudes, and the shape of the forming portion of the positive electrode mixture layer 11 is a substantially rectangular shape with four corners curved. In the figure, the lengths a, b and c were 61 mm, 137 mm and 10 mm, respectively.
<負極の作製>
 負極活物質であるソフトカーボン:96質量部と、アクリル樹脂:2質量部と、CMC:2質量部と、水とを混合して負極合剤含有ペーストを調製した。前記負極合剤含有ペーストを厚みが10μmの銅箔の両面に塗布し乾燥を行って、銅箔の両面に負極合剤層を形成し、プレス処理を行って負極合剤層の密度を1.00g/cmに調整した後に所定の大きさで切断して、帯状の負極を得た。なお、銅箔への負極合剤含有ペーストの塗布の際には、銅箔の一部が露出するようにし、表面で塗布部とした箇所は裏面も塗布部とした。得られた負極の負極合剤層の厚み(負極集電体である銅箔の片面あたりの厚み)は、61.5μmであった。
<Production of negative electrode>
The negative electrode active material: 96 parts by mass of soft carbon, acrylic resin: 2 parts by mass, CMC: 2 parts by mass, and water were mixed to prepare a negative electrode mixture-containing paste. The negative electrode mixture-containing paste is applied to both sides of a copper foil having a thickness of 10 μm and dried to form a negative electrode mixture layer on both sides of the copper foil, and press treatment is performed to set the density of the negative electrode mixture layer to 1. After adjusting to 00 g / cm 3 , it was cut to a predetermined size to obtain a strip-shaped negative electrode. In addition, when apply | coating the negative mix containing paste to copper foil, a part of copper foil was exposed and the back surface also made the application part the part made into the application part on the surface. The thickness of the negative electrode mixture layer of the obtained negative electrode (thickness per one side of the copper foil as the negative electrode current collector) was 61.5 μm.
 前記帯状の負極を、タブ部とするために銅箔(負極集電体)の露出部の一部が突出するように、かつ負極合剤層の形成部が四隅を曲線状とした略四角形状になるようにトムソン刃で打ち抜いて、負極集電体の両面に負極合剤層を有する電池用負極を得た。図4に、前記電池用負極を模式的に表す平面図を示している(ただし、負極の構造の理解を容易にするために、図4に示す負極のサイズは、必ずしも実際のものと一致していない)。負極20は、負極集電体22の露出部の一部が突出するように打ち抜いたタブ部23を有する形状とし、負極合剤層21の形成部の形状を、四隅を曲線状にした略四角形とし、図中d、eおよびfの長さを、それぞれ64mm、142.5mmおよび10mmとした。 In order to make the strip-shaped negative electrode into a tab portion, a part of the exposed portion of the copper foil (negative electrode current collector) protrudes, and the negative electrode mixture layer forming portion has a substantially square shape with four corners curved. Then, a negative electrode for a battery having a negative electrode mixture layer on both surfaces of the negative electrode current collector was obtained. FIG. 4 is a plan view schematically showing the battery negative electrode (however, in order to facilitate understanding of the structure of the negative electrode, the size of the negative electrode shown in FIG. 4 does not necessarily match the actual one). Not) The negative electrode 20 has a shape having a tab portion 23 punched out so that a part of the exposed portion of the negative electrode current collector 22 protrudes, and the shape of the forming portion of the negative electrode mixture layer 21 is a substantially rectangular shape with four corners curved. In the drawing, the lengths d, e, and f were 64 mm, 142.5 mm, and 10 mm, respectively.
<袋状のセパレータの作製>
 ポリイミド不織布(ポリイミドの融点なし、厚み:15μm、空隙率:31%)を幅:65mm、高さ:142.5mmに裁断し、2枚重ね合わせ、その周縁部の図1に示す箇所(9箇所)を、コクヨ社製「針なしステープラー(商品名)」によって圧着(コルゲート加工)して、袋状のセパレータを作製した。なお、この袋状のセパレータにおいては、1つの圧着部の長さを10mmとし、外周の全長さ中の、圧着部の形成箇所の長さの合計の割合が、19%となるようにした。また、セパレータの面積は、正極の面積に対して幅方向で107%、高さ方向で104%となるようにした。
<Production of bag-shaped separator>
Polyimide non-woven fabric (no melting point of polyimide, thickness: 15 μm, porosity: 31%) is cut into a width of 65 mm and a height of 142.5 mm, two sheets are overlapped, and the peripheral portion shown in FIG. 1 (9 locations) ) Was pressure-bonded (corrugated) with a “needleless stapler (trade name)” manufactured by KOKUYO to produce a bag-shaped separator. In this bag-shaped separator, the length of one crimping part was set to 10 mm, and the total ratio of the lengths of the crimping parts formed in the entire length of the outer periphery was 19%. The area of the separator was 107% in the width direction and 104% in the height direction with respect to the area of the positive electrode.
<電池の組み立て>
 正極集電体の両面に正極合剤層を形成した電池用正極18枚、および負極集電体の両面に負極合剤層を形成した電池用負極19枚を用いて積層電極体を形成した。積層電極体では、全ての電池用正極を、前記袋状のセパレータ内に収容して使用した。そして、上下の両端を電池用負極として、それらの間に電池用正極と電池用負極とを交互に配置し、正極同士のタブ部、負極同士のタブ部を、それぞれ溶接して積層電極体を作製した。更に、前記積層電極体が収まるように窪みを形成した厚み:5.7mm、幅:78mm、高さ:161mmのアルミニウムラミネートフィルムの、前記窪みに前記積層電極体を挿入し、その上に前記と同じサイズのアルミニウムラミネートフィルムを置いて、両アルミニウムラミネートフィルムの3辺を熱溶着した。そして、両アルミニウムラミネートフィルムの残りの1辺から非水電解液(エチレンカーボネートとジエチルカーボネートとの体積比3:7の混合溶媒に、LiPFを1mol/lの濃度で溶解させ、更にビニレンカーボネートを2質量%となる量で添加した溶液)を注入した。その後、両アルミニウムラミネートフィルムの前記残りの1辺を真空熱封止して、図5に示す外観で、図6に示す断面構造の非水二次電池を作製した。
<Battery assembly>
A laminated electrode body was formed using 18 positive electrodes for a battery in which a positive electrode mixture layer was formed on both sides of the positive electrode current collector and 19 negative electrodes for a battery in which a negative electrode mixture layer was formed on both sides of the negative electrode current collector. In the laminated electrode body, all the battery positive electrodes were housed in the bag-shaped separator. Then, the upper and lower ends are set as battery negative electrodes, the battery positive electrodes and the battery negative electrodes are alternately arranged between them, and the tab portions between the positive electrodes and the tab portions between the negative electrodes are welded respectively to form a laminated electrode body. Produced. Further, the laminated electrode body is inserted into the depression of an aluminum laminate film having a thickness of 5.7 mm, a width of 78 mm, and a height of 161 mm in which a depression is formed so that the laminated electrode body can be accommodated. An aluminum laminate film of the same size was placed and three sides of both aluminum laminate films were heat-welded. Then, from the remaining one side of both aluminum laminate films, LiPF 6 was dissolved at a concentration of 1 mol / l in a non-aqueous electrolyte (a mixed solvent of ethylene carbonate and diethyl carbonate in a volume ratio of 3: 7), and vinylene carbonate was further added. The solution added in an amount of 2% by mass) was injected. Thereafter, the remaining one side of both aluminum laminate films was vacuum heat sealed to produce a non-aqueous secondary battery having the cross-sectional structure shown in FIG. 6 with the appearance shown in FIG.
 ここで、図5および図6について説明すると、図5は非水二次電池を模式的に表す平面図であり、図6は、図5のII-II線断面図である。非水二次電池100は、2枚のアルミニウムラミネートフィルムで構成したアルミニウムラミネートフィルム外装体101内に、正極と負極とをセパレータを介して積層して構成した積層電極体102と、非水電解液(図示しない)とを収容しており、アルミニウムラミネートフィルム外装体101は、その外周部において、上下のアルミニウムラミネートフィルムを熱融着することにより封止されている。なお、図6では、図面が煩雑になることを避けるために、アルミニウムラミネートフィルム外装体101を構成している各層や、積層電極体を構成している正極、負極およびセパレータを区別して示していない。 Here, FIG. 5 and FIG. 6 will be described. FIG. 5 is a plan view schematically showing a non-aqueous secondary battery, and FIG. 6 is a cross-sectional view taken along the line II-II in FIG. The nonaqueous secondary battery 100 includes a laminated electrode body 102 constituted by laminating a positive electrode and a negative electrode with a separator in an aluminum laminated film outer package 101 constituted by two aluminum laminated films, and a nonaqueous electrolytic solution. (Not shown) is housed, and the aluminum laminate film outer package 101 is sealed by heat-sealing the upper and lower aluminum laminate films at the outer peripheral portion thereof. In FIG. 6, in order to avoid the complexity of the drawing, the layers constituting the aluminum laminate film outer package 101 and the positive electrode, the negative electrode, and the separator constituting the laminated electrode body are not shown separately. .
 積層電極体102の有する各正極は、タブ部同士を溶接して一体化し、この溶接したタブ部の一体化物を電池100内で正極外部端子103と接続しており、また、図示していないが、積層電極体102の有する各負極も、タブ部同士を溶接して一体化し、この溶接したタブ部の一体化物を電池100内で負極外部端子104と接続している。そして、正極外部端子103および負極外部端子104は、外部の機器などと接続可能なように、片端側をアルミニウムラミネートフィルム外装体101の外側に引き出している。 Each positive electrode of the laminated electrode body 102 is integrated by welding the tab portions together, and the integrated product of the welded tab portions is connected to the positive electrode external terminal 103 in the battery 100, although not shown. The negative electrodes of the laminated electrode body 102 are also integrated by welding the tab portions together, and the integrated product of the welded tab portions is connected to the negative electrode external terminal 104 in the battery 100. The positive electrode external terminal 103 and the negative electrode external terminal 104 are drawn out to the outside of the aluminum laminate film exterior body 101 so that they can be connected to an external device or the like.
実施例2
 ポリイミド製不織布に代えて、紙(すなわちセルロース製の不織布、セルロースの融点なし、厚み20μm)を用いた以外は、実施例1と同様にして袋状のセパレータを作製した。そして、この袋状のセパレータを用いた以外は、実施例1と同様にして非水二次電池を作製した。
Example 2
A bag-like separator was produced in the same manner as in Example 1 except that paper (that is, a cellulose nonwoven fabric, no melting point of cellulose, and a thickness of 20 μm) was used instead of the polyimide nonwoven fabric. And the non-aqueous secondary battery was produced like Example 1 except having used this bag-shaped separator.
実施例3
 ポリイミド製不織布に代えて、PE製微多孔フィルムの両面にアラミド製不織布からなる層を有する3層構造の積層体〔PEの融点:130℃、PE製微多孔フィルムの厚み:16μm、アラミドの融点なし、アラミド製不織布からなる層の厚み(片面):3μm、積層体の総厚み:22μm、積層体の空隙率:50%〕を用いた以外は、実施例1と同様にして袋状のセパレータを作製した。そして、この袋状のセパレータを用いた以外は、実施例1と同様にして非水二次電池を作製した。
Example 3
Instead of polyimide non-woven fabric, a laminate with a three-layer structure having layers made of an aramid non-woven fabric on both sides of a PE microporous film [PE melting point: 130 ° C., PE microporous film thickness: 16 μm, aramid melting point None, the thickness of the layer made of an aramid nonwoven fabric (one side): 3 μm, the total thickness of the laminate: 22 μm, the porosity of the laminate: 50%], and the bag-like separator as in Example 1. Was made. And the non-aqueous secondary battery was produced like Example 1 except having used this bag-shaped separator.
実施例4
 ポリイミド製不織布に代えて、PE製微多孔フィルムの片面にベーマイトを97体積%含有する耐熱性多孔質層(残部は、バインダであるアクリル樹脂)を有する積層体(PEの融点:130℃、PE製微多孔フィルムの厚み:16μm、耐熱性多孔質層の厚み:5μm、積層体の総厚み:21μm、積層体の空隙率:45%)を用いた以外は、実施例1と同様にして袋状のセパレータを作製した。そして、この袋状のセパレータを用いた以外は、実施例1と同様にして非水二次電池を作製した。
Example 4
Instead of polyimide non-woven fabric, a laminate (PE melting point: 130 ° C., PE) having a heat-resistant porous layer containing 97% by volume of boehmite on one side of the PE microporous film (the remainder being an acrylic resin as a binder) The bag was made in the same manner as in Example 1 except that the thickness of the microporous film made was 16 μm, the thickness of the heat-resistant porous layer was 5 μm, the total thickness of the laminate: 21 μm, and the porosity of the laminate: 45%. A shaped separator was prepared. And the non-aqueous secondary battery was produced like Example 1 except having used this bag-shaped separator.
実施例5
 非水電解液を、プロピレンカーボネートとα-メチル-γ-ブチロラクトンとの体積比3:7の混合溶媒に、LiBFを1mol/Lの濃度で、かつLiBOBを0.03mol/Lの濃度で、それぞれ溶解させ、更にビニレンカーボネートを5質量%となる量で添加した溶液に変更した以外は、実施例2と同様にして非水二次電池を作製した。
Example 5
The non-aqueous electrolyte was mixed with propylene carbonate and α-methyl-γ-butyrolactone in a 3: 7 volume ratio, LiBF 4 at a concentration of 1 mol / L, and LiBOB at a concentration of 0.03 mol / L. A non-aqueous secondary battery was produced in the same manner as in Example 2 except that each was dissolved and further changed to a solution in which vinylene carbonate was added in an amount of 5% by mass.
実施例6
 正極活物質であるオリビン型リン酸鉄リチウム(平均粒子径13μm):89質量部と、導電助剤であるアセチレンブラック:3.5質量部および黒鉛1.5質量部と、アクリル樹脂:3.3質量部と、ポリビニルピロリドン(分散剤):0.3質量部と、CMC(増粘剤):2.4質量部と、水とを混合して調製した正極合剤含有ペーストを用いた以外は、実施例1と同様にして、電池用正極を作製した。得られた正極の正極合剤層の厚み(片面あたりの厚み)は、65μmであった。
Example 6
2. Olivine type lithium iron phosphate as a positive electrode active material (average particle size 13 μm): 89 parts by mass, acetylene black as a conductive auxiliary agent: 3.5 parts by mass and 1.5 parts by mass of graphite, acrylic resin: 3. 3 parts by mass, polyvinylpyrrolidone (dispersing agent): 0.3 parts by mass, CMC (thickening agent): 2.4 parts by mass, and using a positive electrode mixture-containing paste prepared by mixing water Produced a positive electrode for a battery in the same manner as in Example 1. The thickness of the positive electrode mixture layer (thickness per one surface) of the obtained positive electrode was 65 μm.
 また、プロピレンカーボネートとα-メチル-γ-ブチロラクトンとの体積比3:7の混合溶媒に、LiBFを1mol/Lの濃度で、かつLiBOBを0.03mol/Lの濃度で、それぞれ溶解させ、更にビニレンカーボネートを2.5質量%となる量で添加して、非水電解液を調製した。 Further, LiBF 4 was dissolved at a concentration of 1 mol / L and LiBOB at a concentration of 0.03 mol / L in a mixed solvent of propylene carbonate and α-methyl-γ-butyrolactone at a volume ratio of 3: 7, Further, vinylene carbonate was added in an amount of 2.5% by mass to prepare a nonaqueous electrolytic solution.
 そして、前記の電池用正極と前記の非水電解液とを用いた以外は、実施例2と同様にして非水二次電池を作製した。 A nonaqueous secondary battery was produced in the same manner as in Example 2 except that the battery positive electrode and the nonaqueous electrolyte were used.
実施例7
 実施例6で作製したものと同じ正極を用いた以外は、実施例2と同様にして非水二次電池を作製した。
Example 7
A non-aqueous secondary battery was produced in the same manner as in Example 2 except that the same positive electrode as that produced in Example 6 was used.
実施例8
 ポリイミド製不織布に代えて、PE製微多孔フィルム(PEの融点:130℃、厚み:18μm)を用いた以外は、実施例1と同様にして袋状のセパレータを作製した。そして、この袋状のセパレータを用いた以外は、実施例1と同様にして非水二次電池を作製した。
Example 8
A bag-like separator was prepared in the same manner as in Example 1 except that a PE microporous film (PE melting point: 130 ° C., thickness: 18 μm) was used instead of the polyimide nonwoven fabric. And the non-aqueous secondary battery was produced like Example 1 except having used this bag-shaped separator.
比較例1
 セルロース製不織布を袋状とせずに、セパレータとして正極と負極との間に介在させた以外は、実施例2と同様にして積層電極体を作製した。そして、この積層電極体を用いた以外は、実施例6と同様にして非水二次電池を作製した。
Comparative Example 1
A laminated electrode body was produced in the same manner as in Example 2 except that the cellulose nonwoven fabric was not formed into a bag shape and was interposed between the positive electrode and the negative electrode as a separator. And the non-aqueous secondary battery was produced like Example 6 except having used this laminated electrode body.
比較例2
 セルロース製不織布を袋状とせずに、セパレータとして正極と負極との間に介在させた以外は、実施例2と同様にして積層電極体を作製した。そして、この積層電極体を用いた以外は、実施例2と同様にして非水二次電池を作製した。
Comparative Example 2
A laminated electrode body was produced in the same manner as in Example 2 except that the cellulose nonwoven fabric was not formed into a bag shape and was interposed between the positive electrode and the negative electrode as a separator. And the non-aqueous secondary battery was produced like Example 2 except having used this laminated electrode body.
参考例
 2枚のPE製微多孔フィルム同士の接合を熱溶着により行った以外は、実施例8と同様にして袋状のセパレータを作製した。そして、この袋状のセパレータを用いた以外は、実施例8と同様にして非水二次電池を作製した。
Reference Example A bag-like separator was produced in the same manner as in Example 8 except that two PE microporous films were joined by heat welding. And the non-aqueous secondary battery was produced like Example 8 except having used this bag-shaped separator.
 実施例1~5および8、比較例ならびに参考例の非水二次電池各100個について、25℃の環境下で、300mAの電流値で電圧が4.2Vになるまで定電流充電し、引き続いて電流値が60mAになるまで4.2Vで定電圧充電した後に、3000mAの電流値で電圧が2.0Vになるまで定電流放電を行って、放電容量(初回放電容量)を測定した。 Each of 100 non-aqueous secondary batteries of Examples 1 to 5 and 8, Comparative Example and Reference Example was charged at a constant current until the voltage reached 4.2 V at a current value of 300 mA in an environment of 25 ° C. Then, after constant voltage charging at 4.2 V until the current value reached 60 mA, constant current discharge was performed until the voltage reached 2.0 V at a current value of 3000 mA, and the discharge capacity (initial discharge capacity) was measured.
 実施例6、7については、非水二次電池各100個について、25℃の環境下で、300mAの電流値で電圧が3.85Vになるまで定電流充電し、引き続いて電流値が60mAになるまで3.85Vで定電圧充電した後に、3000mAの電流値で電圧が2.0Vになるまで定電流放電を行って、放電容量(初回放電容量)を測定した。 For Examples 6 and 7, each of 100 non-aqueous secondary batteries was charged at a constant current until the voltage reached 3.85 V at a current value of 300 mA in an environment of 25 ° C., and then the current value was reduced to 60 mA. After being charged at a constant voltage of 3.85 V until the voltage reached, a constant current discharge was performed until the voltage became 2.0 V at a current value of 3000 mA, and the discharge capacity (initial discharge capacity) was measured.
 そして、前記の初回放電容量が、設計容量(3300mAh)の96%を満たさない電池を不良品と定義して、各実施例、比較例および参考例ごとに、不良品の発生率を調べた。これらの結果を、電池に使用したセパレータの構成と合わせて表1に示す。なお、表1において、「形態(接合)」の欄には、袋状のセパレータを使用した場合は「袋状」と記載するとともに、袋状としたときの2枚のセパレータの接合手段を括弧書きで記載し、袋状とせずにそのままの形態のセパレータを使用した場合は「シート状」と記載する。 Then, a battery in which the initial discharge capacity does not satisfy 96% of the design capacity (3300 mAh) was defined as a defective product, and the occurrence rate of defective products was examined for each example, comparative example, and reference example. These results are shown in Table 1 together with the configuration of the separator used in the battery. In Table 1, in the column of “form (joining)”, when a bag-like separator is used, “bag-like” is described, and the joining means of the two separators when the bag-like separator is used is parenthesized. If the separator is used as it is without being formed into a bag, it is described as “sheet”.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示す通り、2枚のセパレータを接合する圧着部を有する袋状のセパレータを使用した実施例1~8の非水二次電池は、従来品に相当する参考例の電池(2枚のPE製微多孔フィルムを熱溶着することで形成した袋状のセパレータを用いた電池)と同様に、不良品の発生が認められなかったのに対し、袋状でないセパレータを使用した比較例1、2の電池では、放電容量が十分でない不良品が生じた。よって、実施例1~8の電池は、比較例1、2の電池に比べて、生産性および信頼性が優れていることが判明した。また、実施例1~8の電池で使用した袋状のセパレータは、2枚のPE製微多孔フィルムを熱溶着によって袋状とした参考例の電池に係るセパレータよりも簡易な操作で作製し得ることから、実施例1~8の電池は、参考例の電池よりも生産性が優れているといえる。 As shown in Table 1, the non-aqueous secondary batteries of Examples 1 to 8 using a bag-shaped separator having a crimping part for joining two separators are the batteries of reference examples (two sheets) corresponding to conventional products. Comparative Example 1 using a non-bag-like separator, whereas the generation of defective products was not observed, as in the case of a battery using a bag-like separator formed by thermally welding a PE microporous film, In the battery of 2, a defective product with insufficient discharge capacity was generated. Therefore, it was found that the batteries of Examples 1 to 8 were superior in productivity and reliability to the batteries of Comparative Examples 1 and 2. Further, the bag-shaped separator used in the batteries of Examples 1 to 8 can be produced by a simpler operation than the separator according to the battery of the reference example in which two PE microporous films are formed into a bag shape by heat welding. Therefore, it can be said that the batteries of Examples 1 to 8 are more productive than the battery of the reference example.
 また、実施例1~8および参考例の非水二次電池について、下記の高温貯蔵試験1、2および高温充放電サイクル特性評価を行った。 Further, the following non-aqueous secondary batteries of Examples 1 to 8 and Reference Example were subjected to the following high-temperature storage tests 1 and 2 and high-temperature charge / discharge cycle characteristics evaluation.
<高温貯蔵試験1>
 各電池について、初回放電容量測定時と同じ条件で定電流充電および定電圧充電を行った後に、100℃の恒温槽内で48時間保管した。その後の各電池を恒温槽から取り出して室温まで冷却した後に、初回放電容量測定時と同じ条件で定電流放電を行い、更に、初回放電容量測定時と同じ条件で、定電流充電、定電圧充電および定電流放電を行って、放電容量(回復容量)を測定した。そして、各電池について、前記回復容量を初回放電容量で除した値を百分率で表して、容量維持率を求めた。
<High temperature storage test 1>
About each battery, after performing constant current charge and constant voltage charge on the same conditions as the time of first time discharge capacity measurement, it stored for 48 hours in a 100 degreeC thermostat. After each battery is taken out of the thermostat and cooled to room temperature, constant current discharge is performed under the same conditions as the initial discharge capacity measurement, and constant current charge and constant voltage charge are performed under the same conditions as the initial discharge capacity measurement. Then, a constant current discharge was performed, and a discharge capacity (recovery capacity) was measured. And about each battery, the value which remove | divided the said recovery capacity | capacitance by the first time discharge capacity was represented by percentage, and the capacity | capacitance maintenance factor was calculated | required.
<高温貯蔵試験2>
 各電池について、貯蔵時の恒温槽の温度を135℃に変更した以外は、高温貯蔵試験1と同じ条件で、回復容量を測定した。そして、各電池について、前記回復容量を初回放電容量で除した値を百分率で表して、容量維持率を求めた。
<High temperature storage test 2>
About each battery, the recovery capacity | capacitance was measured on the same conditions as the high temperature storage test 1 except having changed the temperature of the thermostat at the time of storage into 135 degreeC. And about each battery, the value which remove | divided the said recovery capacity | capacitance by the first time discharge capacity was represented by percentage, and the capacity | capacitance maintenance factor was calculated | required.
<高温充放電サイクル特性評価>
 実施例1~5、8および参考例の各電池について、50℃の環境下で、30Aの電流値で電圧が4.2Vになるまで定電流充電し、30Aの電流値で放電容量が1.5Ahに達するまで定電流放電を行う(ただし、放電終止電圧は2.0V)一連の操作を1サイクルとし、これを1000サイクル施した。実施例6、7の各電池については、50℃の環境下で、30Aの電流値で電圧が3.85Vになるまで定電流充電し、30Aの電流値で放電容量が1.5Ahに達するまで定電流放電を行う(ただし、放電終止電圧は2.0V)一連の操作を1サイクルとし、これを1000サイクル施した。そして、1000サイクル目の放電容量を1サイクル目の放電容量で除した値を百分率で表して容量維持率を求め、高温充放電サイクル特性を評価した。
<High-temperature charge / discharge cycle characteristics evaluation>
Each of the batteries of Examples 1 to 5, 8 and Reference Example was charged at a constant current until the voltage reached 4.2 V at a current value of 30 A in an environment of 50 ° C., and the discharge capacity was 1. A constant current discharge was performed until 5 Ah was reached (however, the end-of-discharge voltage was 2.0 V). A series of operations was defined as one cycle, and 1000 cycles were performed. For each of the batteries of Examples 6 and 7, constant current charging was performed at a current value of 30 A at a current value of 30 A until the voltage reached 3.85 V, and the discharge capacity reached 1.5 Ah at a current value of 30 A. A series of operations for performing constant-current discharge (however, the discharge end voltage is 2.0 V) was set as one cycle, and this was performed for 1000 cycles. And the capacity maintenance rate was calculated | required by expressing the value which remove | divided the discharge capacity of 1000th cycle by the discharge capacity of 1st cycle in percentage, and the high temperature charge / discharge cycle characteristic was evaluated.
 前記の高温貯蔵試験1、2および高温充放電サイクル特性評価の結果を表2に示す。 Table 2 shows the results of the high-temperature storage tests 1 and 2 and the high-temperature charge / discharge cycle characteristics evaluation.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1~8に示されるように、本発明では、電極の両側に配置されたセパレータの周縁部の少なくとも一部を互いに圧着し接合することにより、ポリイミド製不織布やセルロース製不織布など、熱融着による接合を適用できないセパレータ同士の接合を容易に行うことができるので、耐熱性の高いセパレータを用いる場合でも、PE製微多孔フィルムを熱溶着により接合した場合と同様に、生産性および信頼性に優れた非水二次電池を提供することが可能となる。 As shown in Examples 1 to 8, in the present invention, heat fusion such as a nonwoven fabric made of polyimide or a nonwoven fabric made of cellulose is made by crimping and joining at least a part of the peripheral portion of the separator disposed on both sides of the electrode. Since it is possible to easily join separators that cannot be joined by adhesion, productivity and reliability are the same as when joining a microporous film made of PE by thermal welding, even when using a separator with high heat resistance. It is possible to provide a non-aqueous secondary battery excellent in the above.
 本発明は、その趣旨を逸脱しない範囲で、前記以外の形態としても実施が可能である。本出願に開示された実施形態は一例であって、本発明は、これらの実施形態には限定されない。本発明の範囲は、前記の明細書の記載よりも、添付されている請求の範囲の記載を優先して解釈され、請求の範囲と均等の範囲内での全ての変更は、請求の範囲に含まれる。 The present invention can be implemented in other forms as long as it does not depart from the spirit of the present invention. The embodiments disclosed in the present application are examples, and the present invention is not limited to these embodiments. The scope of the present invention is construed in preference to the description of the appended claims rather than the description of the above specification, and all modifications within the scope equivalent to the claims are construed in the scope of the claims. included.
 本発明の非水二次電池は、特に耐熱性に優れた構成(耐熱性のセパレータを用いた構成)とした場合でも、生産性が良好であることに加えて、高い信頼性を確保し得るものであることから、車載用などの高温環境下に置かれる可能性が高い用途に好ましく使用し得るほか、従来から知られている非水二次電池が採用されている用途にも適用することができる。 The nonaqueous secondary battery of the present invention can ensure high reliability in addition to good productivity even when it has a particularly excellent heat resistance structure (a structure using a heat resistant separator). Therefore, it can be preferably used for applications that are highly likely to be placed in a high temperature environment such as in-vehicle use, and also applied to applications where conventionally known non-aqueous secondary batteries are used. Can do.
 10  正極
 11  正極合剤層
 12  正極集電体
 13  タブ部
 20  負極
 21  負極合剤層
 22  負極集電体
 23  タブ部
 30  袋状のセパレータ
 30a セパレータ
 30b セパレータ
 31  圧着部
100  非水二次電池
101  金属ラミネートフィルム外装体
102  積層電極体
103  正極外部端子
104  負極外部端子
 
DESCRIPTION OF SYMBOLS 10 Positive electrode 11 Positive electrode mixture layer 12 Positive electrode collector 13 Tab part 20 Negative electrode 21 Negative electrode mixture layer 22 Negative electrode collector 23 Tab part 30 Bag-shaped separator 30a Separator 30b Separator 31 Crimp part 100 Nonaqueous secondary battery 101 Metal Laminate film exterior body 102 Laminated electrode body 103 Positive electrode external terminal 104 Negative electrode external terminal

Claims (8)

  1.  正極と負極とがセパレータを介して積層されてなる積層電極体を有する非水二次電池であって、
     前記正極および前記負極のうちの少なくとも一方の電極の両側に配置されたセパレータは、それぞれ周縁部の少なくとも一部に圧着部を有しており、前記圧着部において互いに接合されていることを特徴とする非水二次電池。
    A non-aqueous secondary battery having a laminated electrode body in which a positive electrode and a negative electrode are laminated via a separator,
    The separators disposed on both sides of at least one of the positive electrode and the negative electrode each have a crimping portion at least at a part of a peripheral portion thereof, and are joined to each other at the crimping portion. Non-aqueous secondary battery.
  2.  前記圧着部は、前記セパレータの厚み方向に屈曲している請求項1に記載の非水二次電池。 The non-aqueous secondary battery according to claim 1, wherein the crimping portion is bent in a thickness direction of the separator.
  3.  前記セパレータは、融点が250℃以上であるか、または融点を持たない材料を含有している請求項1または2に記載の非水二次電池。 The non-aqueous secondary battery according to claim 1 or 2, wherein the separator has a melting point of 250 ° C or higher or contains a material having no melting point.
  4.  前記セパレータは、ポリアミド、ポリイミド、ポリアミドイミド、ポリフェニレンスルフィド、ポリエステル、ポリアクリロニトリル、アラミドおよびセルロースよりなる群から選択される少なくとも1種の樹脂を含有している請求項3に記載の非水二次電池。 The non-aqueous secondary battery according to claim 3, wherein the separator contains at least one resin selected from the group consisting of polyamide, polyimide, polyamideimide, polyphenylene sulfide, polyester, polyacrylonitrile, aramid, and cellulose. .
  5.  前記セパレータは、空隙率が50%以上の不織布で構成されている請求項4に記載の非水二次電池。 The non-aqueous secondary battery according to claim 4, wherein the separator is made of a nonwoven fabric having a porosity of 50% or more.
  6.  前記セパレータは、耐熱温度が250℃以上の無機粒子を主体として含む層を有している請求項3に記載の非水二次電池。 The non-aqueous secondary battery according to claim 3, wherein the separator has a layer mainly containing inorganic particles having a heat resistant temperature of 250 ° C or higher.
  7.  正極と負極とがセパレータを介して積層されてなる積層電極体を有する非水二次電池の製造方法であって、
     前記正極および前記負極のうちの少なくとも一方の電極の両側にセパレータを配置する工程と、
     前記電極の両側に配置されたセパレータの周縁部の少なくとも一部を互いに圧着し接合する工程とを有することを特徴とする非水二次電池の製造方法。
    A method for producing a non-aqueous secondary battery having a laminated electrode body in which a positive electrode and a negative electrode are laminated via a separator,
    Arranging a separator on both sides of at least one of the positive electrode and the negative electrode;
    And a step of pressure-bonding and joining at least a part of the peripheral edges of the separators arranged on both sides of the electrode.
  8.  前記圧着による接合を、コルゲート加工により行う請求項7に記載の非水二次電池の製造方法。 The method for manufacturing a non-aqueous secondary battery according to claim 7, wherein the joining by the pressure bonding is performed by corrugating.
PCT/JP2016/088038 2015-12-25 2016-12-21 Nonaqueous secondary battery and method for manufacturing same WO2017110842A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015253898 2015-12-25
JP2015-253898 2015-12-25

Publications (1)

Publication Number Publication Date
WO2017110842A1 true WO2017110842A1 (en) 2017-06-29

Family

ID=59089420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088038 WO2017110842A1 (en) 2015-12-25 2016-12-21 Nonaqueous secondary battery and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2017110842A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019106314A (en) * 2017-12-13 2019-06-27 ハイメカ株式会社 Separator bonding device for secondary battery, secondary battery, separator bonding method for secondary battery
CN113228400A (en) * 2018-12-26 2021-08-06 松下知识产权经营株式会社 Nonaqueous electrolyte secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008269819A (en) * 2007-04-17 2008-11-06 Sony Corp Nonaqueous electrolytic solution secondary battery
JP2013143337A (en) * 2012-01-12 2013-07-22 Nissan Motor Co Ltd Manufacturing method of secondary battery, secondary battery, and welding device
JP2014003002A (en) * 2012-05-23 2014-01-09 Toyota Industries Corp Electrode storage separator, power storage device, and manufacturing method for electrode storage separator
WO2014199979A1 (en) * 2013-06-14 2014-12-18 日本電気株式会社 Lithium ion secondary cell and production method for same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008269819A (en) * 2007-04-17 2008-11-06 Sony Corp Nonaqueous electrolytic solution secondary battery
JP2013143337A (en) * 2012-01-12 2013-07-22 Nissan Motor Co Ltd Manufacturing method of secondary battery, secondary battery, and welding device
JP2014003002A (en) * 2012-05-23 2014-01-09 Toyota Industries Corp Electrode storage separator, power storage device, and manufacturing method for electrode storage separator
WO2014199979A1 (en) * 2013-06-14 2014-12-18 日本電気株式会社 Lithium ion secondary cell and production method for same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019106314A (en) * 2017-12-13 2019-06-27 ハイメカ株式会社 Separator bonding device for secondary battery, secondary battery, separator bonding method for secondary battery
CN113228400A (en) * 2018-12-26 2021-08-06 松下知识产权经营株式会社 Nonaqueous electrolyte secondary battery
CN113228400B (en) * 2018-12-26 2023-03-21 松下知识产权经营株式会社 Nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
CN110400922B (en) Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP4927064B2 (en) Secondary battery
JP2011054502A (en) Lithium secondary cell and manufacturing method thereof
JP2011081931A (en) Lithium ion secondary battery
JP5552398B2 (en) Lithium ion battery
JP2015072805A (en) Nonaqueous secondary battery
JP2008097879A (en) Lithium ion secondary battery
JP6359454B2 (en) Nonaqueous electrolyte secondary battery
JP6184810B2 (en) Non-aqueous secondary battery
JP2015125948A (en) Lithium ion secondary battery
JP6243666B2 (en) Lithium ion secondary battery separator and method for producing the same, lithium ion secondary battery and method for producing the same
JP2008262788A (en) Nonaqueous electrolyte battery
JP6875820B2 (en) Lithium ion secondary battery
JP5721802B2 (en) Lithium secondary battery separator, lithium secondary battery and method for producing the same
JP5614431B2 (en) Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
WO2017110842A1 (en) Nonaqueous secondary battery and method for manufacturing same
JP2014112478A (en) Nonaqueous electrolyte secondary battery pack
WO2015037522A1 (en) Nonaqueous secondary battery
JP2011108538A (en) Laminate battery
JP2017021986A (en) Nonaqueous secondary battery
JP5639903B2 (en) Lithium ion secondary battery
JP2016181457A (en) Flat plate type laminate battery and battery pack thereof
JP2000348705A (en) Nonaqueous electrolyte secondary battery
CN111033820A (en) Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP7177210B2 (en) Electrode for lithium ion secondary battery, and lithium ion secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878729

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16878729

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP